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1 Introduction

The "market portfolio,” the portfolio of all endowments in the world, has great signifi-
cance in the capital asset pricing model (CAPM) in finance. The Sharpe-Lintner CAPM
characterization of optimal risk sharing implies that in equilibrium no one will be subject
to a random shock that is not shared by everyone else. ! Thus, the CAPM gives us the
"mutual fund theorem,” which asserts that only one risky portfolib need be available to
individual investors, the mutual fund that holds the market portfolio. In this paper we
seek further clarification of the significance of the market portfolio beyond the bounds
of the restrictive assumptions of the CAPM.

In our analysis, we will drop the (highly unrealistic) assumption of the CAPM that
all risks are tradable; thus in general no one will be able to hold the market portfolio
unless unprecedented new institutional arrangements (contracts) are made to permit
it to be traded.? We instead develop a CAPM-type model in which each individual
has a random endowment that is initially not marketable, and we will consider adding
one, two, or more contracts that make it possible to buy or sell portfolios of claims on
the endowments. We assume that these contracts are to be traded in markets open
to everyone, and a market price will be generated such that total excess demand by
all agents is zero. Thus, by creating these contracts, we are creating new markets for
portfolios of endowments, making a risk tradable that had not been so before.

It is very important, at the time financial innovation takes place, to consider what are
conceptually the most important markets.We cannot have liquid markets for everything,
and history shows that markets that are not sufficiently valuable to participants will not
succeed, and markets will sometimes disappear when better markets are created.

It is possible some day that the market portfolio and other major aggregates could
be traded. New derivative contracts cash settled on income or price indexes can achieve
this goal. Methods of creating cash-settled futures contracts for long-term claims on
indexes of national income or of occupational income are discussed in Shiller [1993]; see
also Shiller and Athanasoulis [1995].

In our model it is immediate that, regardless of the number or kind of markets

created, whether or not a market for the market portfolio is created, risk premia, rep-

1CAPM will refer to the Sharpe-Lintuer version unless specified otherwise.
21t is an historical accident that the portfolio of all risky endowments in the world is called the

"market portfolic,” a term that sounds odd when one considers the fact that one cannot in practice
buy a share in the entire world. We persist in this old terminology.



resented by prices of our contracts here, are as in the CAPM determined exclusively
by covariances with the market portfolio. The market portfolio is also in another sense
the most important market: with a normalization rule that we define in the paper, the
market portfolio is the portfolio which would carry the highest risk premium (absolute
value of price), theorem 4 below. In fact all other portfolios orthogonal to the market
portfolio will have a zero risk premium.

And yet we find, curiously, that of all possible markets to create, a market for claims
on the market portfolio would be, by a social welfare criterion, the least important
market to create, not the most important, theorem 2 below. If we are in the business
of creating markets for contracts that are not tradable, then there is a natural order to
creating such markets. There is a most important market to create, and then, after this,
a market that would be the next best market to create, and so on. The market for the
market portfolio turns out to be the very last market in this ordering, still not spanned
by all the other markets when we get to the end of the ordering, and then the welfare
gain to creating it is zero. This is not to say that a market for the market portfolio
would not be useful to people if it were created first, or if it were created second or
third, only that there would always be something better to do instead. This result may
be regarded as, in a sense, the very antithesis of the mutual fund theorem.

Neither will we ever want to create markets for individual endowments or for portfo-
lios weighting all endowments with the same sign. Optimal contracts will always involve
portfolios of risky endowments with both positive and negative quantities and their
weighted sum is zero. The optimal contracts are thus always esssentially swaps, i.e., one
side trades the negatives for the positives. This result may be regarded as in a sense the
apotheosis of swaps.

The results that there is no need for a market for the market portfolio and that only
swaps will be created rest however on the assumption that the contract designer who is
creating the new markets knows everything about utilities. We show one representation
of lack of knowledge on the part of the market designer that brings the market portfolio
back to some potential significance, theorem 8 below. If lack of knowledge is high and if
there is a strong market component to endowments, then something approximating the
market portfolio may well be of first importance.

Some of our results in this paper have antecedents in the literature: Theorem 1 below
is essentially in Demange and Laroque [1995b] as well as in Shiller and Athanasoulis
[1895]. A related analysis is found in Duffie and Jackson [1989]). Cass, Chichilnisky
and Wu [1996] show how the number of assets needed to obtain a complete markets

2



solution can be greatly reduced by constructing a set of mutual insurance contracts and
a smaller set of Arrow securities when compared to an Arrow-Debreu world. This is
related to our results as we only need contracts far less than the number of states of
the world to obtain a first best solution. We however consider which contracts are best
to construct if we do not complete risk sharing markets. Demange and Laroque show
[1995a] that in an economy with general utilities (not necessarily quadratic), when all
residual risk is hedged, then the only important assets remaining tc construct in the
economy are non-linear assets, such as options, whose realizations depend exclusively on
the realization of the market portfolio. Our results are complementary to this Demange
and Laroque result rather than being a competing result. Qur analysis here starts from
no markets at all, and studies a sequence of markets to allow linear spanning of the
original endowments; Demange and Laroque [1995a] are considering moving yet beyond
the linear spanning, and it is in the subsequent nonlinear markets alone that the market
portfolio has (under their assumptions) such importance.

The paper is organized as follows. We first lay out the assumptions of the general
equilibrium model and then solve the agent’s problem for a given set of available con-
tracts. The resulting expressions for equilibrium prices and quantities will be used in all
subsequent parts of this paper. We then go through several variations on the maximiza-
tion problem faced by the contract designer, differing in assumptions about pre-existing
markets and about the information available to the designer. We then conclude with
some practical advice for contract designers.

2 The Model

There are J agents in this economy indexed by j = 1, ..., J, each representing an individ-
ual except in section 11 where each agent represents a large number of individuals. All
random variables are defined on a complete probability space (2, F, P) where §2 is the
set of states of the world and we(} is the state of the world. F is a g-algebra of subsets
of Q known as events and P : F —[0,1] satisfying P(0)=0 and P(Q2)=1 is a probability
measure on (€2, F) held commonly by all agents in the economy.

There is a single good in the economy which is consumed. Each agent j has an
endowment z;eL*(Q, F, P) where L%, F,P) is the set of random variables which are
square integrable, 7. e., have finite mean and variance. We will denote the demeaned
stochastic endowment as Z; = z; — E(z;). Define z to be the 1 x J vector of random



endowments in the economy and similarly let Z be the 1x J vector of demeaned stochastic
endowments. Then E(#'Z) = T is the J x J covariance matrix of the endowments in
the economy. Define E(Z'%;) = £; and E(%;Z;) = T;;.

The ¥V < J contracts indexed by n = 1, ..., N designed in this paper are futures
contracts. Let f,eL*(2, F,P) be the risky transfer made in the nt* futures contract
resulting in fn(w) units of consumption contingent on state weQ. To purchase contract
n, the agent must promise today to pay a riskless price p,eR in the period where the
state of the world is resolved. Thus if the state we(? is realized, agents who take a long
position in contract n receive f,(w)—pn, those who take a short position pay this amount.
Define f to be the N x 1 vector whose n** element is f, and P to be the N x 1 vector
whose n** element is p,. Without loss of generality we construct the futures contracts
such that E(f) = 0 and E(ff") = Iy where Iy is the N x N identity matrix. These
are two normalizations that have no effect on the economy. For example, if E (fa) =1,
then we need only increase the price p, by one. So the equilibrium is invariant to these
linear transformations. If var(f,)=2 then we need only increase the price of contract n
by the square root of 2.

Given that we restrict our attention to the set of linear equilibria, i. e., we use
quadratic utility, it must be that the risky transfers, f, are in the space spanned by
the initial endowment risks, Z. This is a point shown by Demange and Laroque [1995).
To see this suppose that f, is not in the space spanned by # and the price, p,, of
this contract is zero. Then no one will demand nor supply this contract as risk averse
agents shun mean preserving spreads. Now suppose this contract has a positive price.
Then agents will only supply this contract as agents will only take on more risk for a
premium. Since all agents will only supply the contract, an equilibrium does not exist
in this economy. Thus it must be that f is in the space spanned by Z. Furthermore it
must be that since f is in the space spanned by # and we are studying linear equilibria,
the optimal contracts will be linear combinations of the elements of %. Consequently we
define f = A’Z’ where A is a J x N matrix and AZel)(Q,F,P),n=1,..,N and A,
is the n** column of A . Therefore, according to our notation, E(f f* )=ALA=]y.



3 Agents

Each agent has a utility function U; : L?*(Q, F,P) — R. We make the simplifying
assumption that the j** agent has mean-variance utility as follows,

Uj = Ele;) - 2 Var(e;) (1)

where ¢; is the consumption of agent j, the same as the endowment plus proceeds from
hedging. Each agent j takes the risky transfers, f, which is a vector L?(Q2, F, P} process
and the futures prices, PeR", as given and solves for her optimal futures positions, g;,
as

g5 = srgmax e {Ujle; = 75+ /(f — P), B(ff') = In}. (2)

We can rewrite this in a simpler form as
] '
gj = 8IgMAaXy g {E(mj) - gi'p— —2—J-(Ejj + g AL Aq; + 2¢// A'L,)|A'TA = IN} - (3)

The optimal demand for this agent is

1 - 1. ,
q,-=—-—7P—Cov(f,a:,-)=——P-—A§3,-. (4)
v, Y5

)

This demand curve tells us that agent j will purchase more of a contract as its price
declines. She will purchase less of the contract the more it covaries with her endowment
since it provides less hedging services. To help the exposition of this paper it is convenient
to form the N x J matrix Q whose j* column is ¢; and rewrite (4) as

Q= —P/T™! - Cov(f,z) = —P. T} - AT (5)

where T is the J x J diagonal matrix with the ;' diagonal element equal to ; and ¢
the J x 1 unit vector.

4 Equilibrium

The equilibrium condition in this economy is simply that the futures contracts are in
zero net supply. We can represent equilibrium in this economy as

Qu=0=-P/Tl— A%, (6)

5



From equilibrium condition {6) we can derive the equilibrium pricing equation

P= AT (/T (7)

Let us define the market portfolio as a scaled unit vector m = s 1f we multiply

and divide the right hand side of (7) by (¢'Z.)® then the price of contract n depends

on A, ZLi('Te)~* = A Lm, the covariance of contract n with the market. Thus we can

derive the CAPM pricing equation from equation (7). If the covariance of a contract

with the market is zero, as for example with a risk free contract, then the price of this
contract is py = 0. The price of the market portfolio is p,, = —%{% It follows that:

_ €0V(fn, fm)

Pn—py= var(f ) (pm - pf) (8)
which is the familiar CAPM pricing equation and S8¥U=fm) is the familiar beta of the

Var(fm)
CAPM model. Similar results are obtained by Magill and Quinzii {1996] and Duffie and

Jackson [1989]. Substituting (7) into (5) we also obtain

Q=-ASM (9)

and we define M = [, — ./'T"! (L’I“‘L)—1 and A = {A4;: Ay ...: Ay), where A, is the
n'* column of A. These are the equilibrium demands in matrix form. Looking closely
at the above expressions we see that TM is the J x J matrix whose 7** column is the
amount of each risk agent j wants to sell off at market-clearing prices. In the end, if
markets are complete, each agent will hold the inverse of her own risk aversion times
the harmonic mean of all individuals’ risk aversion, of the market. This result will be

recognizable to those familiar with the CAPM economy, see Huang and Litzenberger
{1988].

9 The Market Portfolio and Contract Design

The contract designer’s problem is to maximize welfare, total utility, in the economy
given she is constrained to choose N < J contracts. The contract designer will choose
the J x N matrix A to maximize the sum of utilities in the economy. From (3) we know
that each agent’s utility is given by

i

- (Zj; + ¢ A’LAg; + 2g/A'S)). (10)

E(z;) - ¢5'p - 5



If we sum over all J agents, drop E(z;), and put this in matrix form we obtain
tr(-@Pe - 5T (E+QQ+2Q'AT)) (11)
where tr denotes the trace. If we substitute (9) into (11) we obtain
tr (%A’EMI‘M’EA - %rz) : (12)

where the term %I‘E has no effect on the contract designer’s decision. Thus the contract
designer’s problem simplifies to

Aeargmax, gy noq, v {tr (AZMTM'EA) |A'ZA = In}. (13)

This leads to a fundamental theorem shown seperately by Demange and Laroque [1995]
and by Shiller and Athanasoulis [1995]:

Theorem 1: The A matrix that solves (13) has columns corresponding to the N
eigenvectors with highest eigenvalues of:

MTM'L. (14)
Proof: We may write the Lagrangian as

L=AZMIMZTA +---+ AYEMTM'EAN—
A (ATZA - 1)+ -+ AN {(ANZAN - 1).
We are requiring in this problem that the diagonal of the matrix A'XA is equal to ¢.
The first order conditions can be written as

(15)

SMTM'TA, = AEAn Vn=1---,N (16)

and
ATA, =1. Vn=1,---,N (17)

If we define A to be the N x N diagonal matrix with the n'* diagonal element to be A,
we can combine the first order conditions to obtain

IMIM'TA=TAA (18)

and
diag(A'LA) = 1. (19)
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Thus taking the inverse of ¥ through equation (18) gives us the result. Finally if one
premultiplies equation (18) by A’, one obtains A’'CSMTM'TA = A. The trace of the
left hand side of this is the objective function the planner is trying to maximize. Since
this equals A, it is diagonal and as such the planner will choose the N eigenvectors
corresponding to the N largest eigenvalues.® O

Note that if we take a Cholesky decomposition of the variance matrix £, £ = C'C,
and premultiply through equation (18) by C’-!, then CMT M'C" is positive semidefinite
and symmetric with eigenvectors CA. The eigenvalues of a positive semidefinite sym-
metric matrix are all real and nonnegative, and these are the same as the eigenvalues
of MI'M'E. Since the rank of M is J — 1, there are only J — 1 nonzero eigenvalues,
and hence only J — 1 contracts are of any value. Thus, there is no point in creating all
J possible contracts, at most J — 1 are needed and A need have no more than J — 1
columns. If there is a fixed cost to creating markets, then N, the number of markets
created, can be chosen optimally. We create all markets whose eigenvalues (divided by
two) are greater than this cost.

One will notice in the above problem that we did not constrain the off diagonal
elements of A’T A to be zero. Notice however that A is diagonal and since C’ MTM'C is
positive semidefinite and symmetric with eigenvectors CA, it follows that ASMTM'SA
is diagonal. Since ALMTM'EA = A'TAA it must be that A’TA is diagonal. Thus
the contraint that the off diagonal elements are zero are satisfied in the unconstrained
problem. This was shown by Darroch [1965] and by Okamoto and Kanazawa [1968].

6 The Market Portfolio is Least Important

It is now very easy to prove our featured result, that the market portfolio is in an
important sense the least important portfolio to allow trading in:

Theorem 2: The A matrix that solves problem (13) is orthogonal to g = ('T"~! (/T-1Zr-
and all N < J — 1 markets together do not span the market portfolio.

Proof: By (18) it follows that A = MTM'SAA-!. Since gM = 0, it follows that
9A =0, i e, the A matrix is orthogonal to g. We can then show by contradiction that
all N < J—1 assets do not span the market portfolio: if there exists a vector v such that

Av =m, then gAv = gm = T (VEe)3(/T1Er )% # 0 which is a contradiction.
O

3 . . .
The second order conditions that we have a maximum are satisfied.



The result that gA = 0 means that no linear combination of the N optimal contracts
can be constructed with all positive elements. Only "swaps” between endowments can
be constructed by portfolios of the optimal contracts. No matter how many markets we
choose to create (regardless of N), it will be impossible to renormalize these markets,
define different markets as linear combinations of them, so that any market is not a swap.
All possible portfolios constructed from the optimal portfolios represent exchanges of
endowments for other endowments. Since the market portfolio holds positive quantities
of all endowments, it is an example of a market that cannot be constructed from the
optimal contracts constructed from the above method. Consider the case where all agents
have the same risk aversion, so that I" is proportional to the identity matrix. It then
follows from this theorem that in all possible portfolios constructed from the optimal
contracts defined by A, the sum of the portfolio weights in terms of endowments are
zero and the portfolios are orthogonal to the market portfolio.

Theorem 3 If N = J — 1, then the resulting equilibrium is Pareto optimal.

Proof: See Magill and Quinzii [1996] P.181 for pareto optimality of the CAPM
equilibrium. This follows here since the case with N = J —1 assets results in the CAPM
equilibrium. O

Since, in creating J — 1 markets that allow a Pareto optimal allocation we have not
created the market portfolio, it follows that the market portfolio, far from being the most
important contract as with the CAPM, is at the opposite extreme, the least important
contract, completely unimportant. To understand these results better let us consider a
two-by-two example: there are only two agents. A two-by-two example ignores some of
the complexity that the optimal market solution method is supposed to handle, but it
will make some basic concepts more transparent. We can then illustrate the solution
to the contract designer’s problem on a simple two-dimensional graph, Figures 1 and
2, with the first element of A;, @;, on the horizontal axis and the second element of
Ay, az, on the vertical axis. On these figures the constraint A{ZA; = 1 is that the A,
vector must end somewhere on the ellipse shown. The ellipse shown illustrates a case
of positive correlation between the two endowments, where both endowments have the
same variance and a correlation coefficient of one half. On each figure, iso-welfare curves
are parallel straight lines (one pair of which is shown); The further from the origin the
higher the welfare.

The optimal A, vector must be orthogonal to g, which means that the vector is in
the upper left quadrant (or lower right), and is not the in the same quadrant where the
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Figure 1:

Ilustration of Optimal portfolio weights when
both agents have same risk aversion, iwc is an
iso-welfare curve, nc is the normalization constraint.

market portfolio vector m is. In Figure 1, the case is shown where all the 4's are one,
and so g equals the market portfolio vector. Each agent will use the optimal contract
to swap half of her endowment risk for half of the other’s, and both agents will end
up holding the market portfolio. In this case, the optimal contract is orthogonal to
the market portfolio, and the market portfolio contract would be utterly useless to the
agents if it were created instead of the optimal contract. The optimal contract is found
on the graph by finding the highest iso-welfare curve, iwc, that satisfies the constraint,
tangent to the ellipse. Clearly in this symmetric situation there is no value to being able

to trade the market portfolio for these agents, as they would both like to take the same
position.

In Figure 2, the case is shown where 7, equals 3 and -y, equals 1. Now, the g vector no
longer coincides with the market portfolio vector. m, and the optimal A; vector results
in an unequal swap. In the swap, the more risk averse agent gives up three times as
much of the risky component of her endowment to the other agent, and pays a price to
the other agent for doing so. After the swap, the more risk averse agent is bearing only
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Figure 2:
Ilustration of Optimal portfolio weights when
agent 1 is three times more risk averse than agent 2,
iwe is an iso-welfare curve, nc is the normalization constraint.

one quarter of world income risk, the less risk averse agent is bearing three quarters.
This is the Pareto optimal outcome: there are no more risk sharing opportunities, and
each agent is bearing world income risk in accordance with her own risk preferences.
Note that in this case had we instead created the market portfolio first, it would have
been of some use though it would touch an iso-welfare curve that is closer to the origin.
In both figures, the isoquants for the objective function in (13) are parallel straight lines
with just such a slope that the tangency between them and the ellipse A12A4; —-1=10
occurs at a point defining a vector perpendicular to g.

7 The Market Portfolio Has the Largest Price

Even though, as we have concluded, the market portfolio is the least important contract
to trade, it remains true that the market portfolio is the most important market by a
different measure: it is the contract (subject to our normalization) that has the highest
possible absolute value of price. Let us change the objective of the contract designer in
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designing the first market, defined by the column vector A; to maximize the absolute
value of price of the contract. Using equation (7) the problem becomes

AT 'r~1 |AYEA; =1 (20)
(4 [er] )] }

Theorem 4: The contract that satisfies (20} is the market portfoho i. e, A=
Proof: The first order conditions can be written as

A= argmax, g {

2 [T = 2234, (21)

and

ATA; = 1. (22)

Solving these we obtain the result. 0O
Thus as in the CAPM, the only insurance which costs anything is to insure oneself
against the market.

It may seem puzzling that the market that is least important to construct by a social
welfare criterion has the highest absolute value of price, the highest amount paid in one
contract. The puzzle is resolved when it is remembered that price tends to be high when
the contract is asymmetric in its risk-reduction services for those short in the contract;
the price is high when people use the contract to pay others to bear their risks. Theorems
3 and 4 together might be described as showing in a sense that contract design is more
beneficial from a social welfare criterion if people are enabled to pool their risks rather
than pay others to assume their risks.

8 Pre-existing Markets

The above theorems take no account of pre-existing markets, markets for some en-
dowments or linear combinations of endowments that already exist before the contract
designer begins to define new markets (contracts). Suppose that we modify problem
(13) to represent that there is a single pre-existing contract, where the coefficients of
the endowments in the linear combination that defines this pre-existing contract are
given by the J x 1 vector A4,, the first column of A, which, without loss of generality,
we normalize so that A{EA, = 1. (It is trivial to extend our results to more than one
pre-existing contract.) The contract designer will then design N* = N — 1 markets,
choose A* = [A} A3 --- A}.], the remaining columns of A, (A = [A; : A%]) subject to the
normalization rule A’SA = J. Then A* is defined by:

12



A*eargmax g s pocs,. - {tr (A"SMTM'SAT) |AVSA® = In., A"SA, =0} (23)

Theorem 5: The A* matrix that solves (23) has columns corresponding to the N*
eigenvectors with highest eigenvalues of :

SMTM'Y'S (24)
where ® = I; — A;A'IE

Proof: We can write the Lagrangian as

L= AYSMTM'SA; + -+ + A}.EMTM'S A},
A (AYEA; — 1) + - = Ane (A}.EAL. — 1) (25)
—85LAYE Ay + - — 63 AN A

The first order conditions are

OEMT M!S AL — 20 LA

26
b X A1 =0 vn*=1,-.-,N* (26)
and '
ALZAL.—-1=0 v*=1,---,N* (27)
ANTA; =0 yn*=1,---,N* (28)

If we premultiply equation (26) by A7, then we obtain §,. = 24]ZMTM'CA,..
If we substitute §,. into equation (26), form the N* equations n* = 1,---,N* into a
matrix and rearrange, we arrive at an equation in terms of eigenvectors of (24). If we
premultiply equation (26) by A;. then we obtain A;.EMI'M'EA;. = A,. whose trace
is the function the planner is trying to maximize. Thus the planner chooses the columns
of A* as the N* eigenvectors with the highest eigenvalues of (24). O

An example can be constructed that illustrates that with one pre-existing market, if
we are to create only one more market optimally as we have defined, then the resulting
two markets may span the market portfolio. Suppose that A, is a column of zeros except
for the first element, which is strictly positive. The pre-existing market is just a market
for the endowment of the first agent. Suppose, for simplicity, that T equals the identity
matrix and that " also equals the identity matrix except that the upper left element
is not one but a “very” large number; the first agent is very risk averse. With these
assumptions, if there had been no pre-existing market, the first market to create would

13



have been a swap between the first agent and the rest of the world, with all other agents
receiving equal weight in the contract. With the pre-existing market, the optimal A* will
be proportional to a column of ones with the first element replaced with zero; creating
this market will enable the first agent to swap her endowment risk for the rest of the
world’s, by shorting the first market and going long the second. In this example A; and
A* together also span the market portfolio. _

The result that pre-existing markets may cause the contract designer optimally to
create contracts that allow spanning of the market portfolio does not mean that the
market portfolio is in any real sense important. In the above example, the agents use
the two markets to construct a swap between the first agent’s income and world income,
not to take a position in world income. Had the contract designer, in constructing the
contract represented by A, ignored orthogonality with the pre-existing market and just
created the contract defined as the solution to (13), thereby directly creating the swap
between the first agent’s income and the rest-of-the-world income, then almost all the
welfare improvement available to hedgers would be available just by using the second
market. One may suppose that if the welfare gain available through the pre-existing
market is small enough then the pre-existing market might well disappear after the
second market is created.

9 The Market Portfolio as a Pre-existing Market

It is instructive to consider the problem for the contract designer with the constraint
that the first market must be the market for the market portfolio that is, assuming that
A} = m. While a market for the world portfolio of endowments does not now exist, it
is easy to imagine that it might be constructed someday. At the very least, as we shall
see in this section, these markets are conceptually relatively simple to understand, and
such simplicity might promote more effective use of the markets.

Lemma 1: If the market portfolio exists (i. e. if A; = m) then all other assets
{constructed so that our normalization A'LA = Iy holds) will necessarily have a zero
price.

Proof: If the first contract is the market then it must be the case that the rest of
the contracts 4., n* = 1,.--, N are constructed such that AJ.TA, = %.{j—é-:f =0. If
this is the case, then A’.%: = 0 and from equation (7), the result follows. O

Let us define the N* x J matrix Q" such that its j®® column is the demand vector
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for agent j of the N* contracts. We then have:

Theorem 6: When A; = m the A* matrix that solves (23) has the property that
Q* = —AYEM has columns corresponding to the N* eigenvectors with highest eigen-
values of:

&'TOT ) (29)

Proof: Note that M = ¢ in this case, and that TP = £®. From Theorem 5, we
have the first order condition that #MTM'LA* = A*A* where A* is a diagonal matrix
with eigenvalues along the diagonal. Premultiplying this equation by ¥ ~ &', and
collecting terms, one finds that LA* = $'ZA*. Multiplying this equation in turn by M’
we see that 'L A" = M'TA*. From (9) we see that Q* = —A¥T M. Substituting into
the first order condition yields the desired result. O

®'E® is the variance matrix of residuals when the endowments are regressed on the
world endowment. If I' = I, i. e., that js if everyone has the same risk aversion, then
the optimal markets are defined in terms of eigenvectors of this simple variance matrix.
Moreover, since Q% = —L A", the position that agent j holds of the n®® contract is
just the regression coefficient corresponding to the n'® contract when the endowment
of that agent is regressed on the vector of contract payoffs 4. These results, coupled
with the above-noted zero prices for all contracts other than the market contract, make
this equilibrium a simple one to understand. Once the market portfolio is traded, the
problem agents face for contracts orthogonal to the market is a variance minimization
problem.

10 Uncertainty About Preferences

The preceding analysis assumed great knowledge on the part of the contract designer:
the designer was assumed to know perfectly all utility functions. The unrealism of this
assumption would appear to be an issue if we try to apply this analysis to the design
of actual markets. We show that the relaxation of this assumption may restore the
importance of the market portfolio.

Uncertainty about preferences poses a real problem to the contract designer since
Wwe cannot assume that agents have the same uncertainty about their own preference
parameters that the contract designer does. Agents have perfect knowledge about their
own preference parameters. The above analysis of market equilbrium, equations (6)-
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(9) , must be solved for the agents’ true risk preferences, and so when we arrive at
problem (13) we face the problem that the contract designer does not know the M
and T" matrices. Supposing now that the elements of I' are unknown to the market
designer, we will suppose that the market designer chooses N < J contracts to solve a
maximization problem which is the same as (13) but replacing the unknown value to be
maximized in (13) with its expected value:

Acargmaxy s oy Nt [E(AZMTM'ZA)] |A'ZA = Iy} (30)

Note that since M is a function of I', the expression involves expectations of a
nonlinear function of I'. In order to deal with (30), we rewrite the matrix AZMTM'TA
as

A'SMTM'SA= ASTEA - ATWZA (VT70) 7. (31)
One obtains equation (31) by substituting in for M.

Theorem 7: The A matrix that solves (30) has columns corresponding to the N
eigenvectors with highest eigenvalues of:

E(T)Z - WEE(/T1)? (32)

Proof: Substitute (31) into (30) and proceed as in theorem 1. O
Note that, unless E [[' — w/('T~1¢)"?] is singular, the matrix (32) is generally non-
singular, and so our conclusijon above that only J—1 markets are needed no longer holds.
If there is no constraint on the number of markets constructed, the contract designer
will create all J contracts, and then the contracts will span the market portfolio. Let us
assume the v;’s for all j = 1, ..., J are iid. This assumption represents a symmetric state

of knowledge of all individuals’ risk aversion parameters. With this assumption we can
rescale (32) as

L-c'E (33)

E!L'F_'&['l
E(v)

With (33) w; can easily take account of specific distributional assumptions about I.
We need only derive the expected value and expected value of the harmonic mean of
the elements of T, to define the scalar c¢. The limiting case of this problem, when the
variance of 4 increases to infinity, is particularly interesting. This is the case where the
contract designer’s information is becoming more diffuse.

where ¢ =
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Theorem 8: If v;, j = 1,--,J are iid lognormal variates then as the variance,
02, of In(v;) goes to infinity, the A matrix that solves (30) approaches a matrix whose
columns are V eigenvectors of L with the corresponding highest eigenvalues.

Proof: Define the geometric mean of risk aversion parameters to be G = (I‘] =1 71)5

and the harmonic mean as H = ( 23—17; ) g Under the lognormal assumption

E(C) _ explut(e?/2])) _ 2 (U-1 . EG) _ .
B = ':]t?p(# i) = exp( o (%2)) Therefore hm,,z_.ooge(%l = 0. Since H <

G everywhere, (see for example Hardy et. al. [1964] p. 26) then lim,2_,, %&'—? =
lim,z_,oo ¢ = 0. Thus, the limit of the matrix (33) as o2 goes to infinity is . Since the
solution of problem (30) is a continuous function of the elements of the matrix (33), and
since the limit of a continuous function is the function of the limit, the theorem follows.
0

If one is going to construct some contract given she knows nothing about the utilities
in the economy, what should the contract be? One wants to somehow maximize the
probability that their contract wili have the highest welfare improvement in the economy.
As such the contract designer should construct the contract that markets the largest
component of risk in the economy. This is exactly the result of theorem 8. Given
we know nothing, we have the best chance of welfare improvement in the economy by
allowing agents to hedge the most risk possible. The first principal component of ¥ is
unrestricted by our theory. It could have all positive elements and could approxxmate
the market portfolio.

Let us return to the two-by-two examples that were plotted in Figures 1 and 2. If we
do not know which agent is the more risk averse, then this maximization problem facing
the contract designer is not as simple as it appeared from that figure. We do not know
the position of the vector g, that is whether Figure 1, Figure 2 or some other figure is
relevant. Thus the position of the optimal A; vector cannot be determined.

We plot instead in Figures 3 and 4 the expected iso-welfare-curves, to the maximiza-
tion problem (30). These are not parallel straight lines but curves. If we have only a
little uncertainty about risk aversion, see for example Figure 3 where c=.49, the expected
iso-welfare curves are elongated and near the origin resemble the parallel straight lines
of Figure 1 where c=.5. But if our uncertainty about risk aversion is large, see Figure 4
where c=0, the expected iso-welfare curves are elongated in the perpendicular direction.
In the extreme case, where the uncertainty about agents’ risk aversion makes it very
probable that one is much more risk averse than the other, then, not knowing which is
the more risk averse, the best contract we can design in this example is simply a market
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for the market portfolio.

ai

N

Figure 3:
Ilustration of Optimal portfolio weights when risk
aversions are iid and ¢=.49. eiwc is an expected iso-welfare curve
and nc is the normalization constraint.

With very little uncertainty in these terms about the 4’s, the optimal A, for our two-
by-two example with i.i.d. 7’s will still be a vector perpendicular to the market portfolio,
a vector with a slope of minus one. However, even a small amount of uncertainty means
that there will still be a reason to create a second market, and A; will be the market
portfolio vector, in the first quadrant, with slope of plus one. As the uncertainty about
the 4’s increases, the eigenvalue corresponding to A; shrinks relative to the eigenvalue
corresponding to A, and at some point becomes the lower; at this point we must switch
the order of the columns of A, and the market portfolio becomes the best portfolio to
create. What has happened finally is that uncertainty about the 4’s has become so great
that we can no longer predict what kinds of swaps will be useful to agents. The market
portfolio may still be useful if either agent is more risk averse than the other; that agent
can sell part of the market component of her endowment to the other.

Note that this conclusion using the lognormal assumption might be generalized to
other distributions but it is not true of all distributions of 4; > 0 with finite means. The
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Figure 4:
INustration of Optimal portfolio weights when risk
aversions are iid and ¢=0. eiwc is an expected iso-welfare curve
and nc is the normalization constraint.

important point of the theorem is that the contract designer’s information about agents’
utilities becomes more diffuse. If for some reason, as the variance approaches infinity,
the contract designer’s information becomes less diffuse, then the contract designer can
better construct assets since she has more information which results in more welfare
improvement.

Consider, for example, a case where ~; can only take on two values, 7;; and ;2. ¥;1
is fixed, the mean 7 is fixed and we vary 4;;. The probability we observe v;; or 7;; are
pr1 and pr; respectively. Thus we have

M P2 =7 (34)

and
Var(y;) = pri (v — %)° + pra (vi2 — 3)°. (35)
We increase the variance of ; by moving the higher value v;, towards infinity. As

we do this we reduce the probability pry that risk aversion for person j equals v;;. It is
easy to show that in the limit, as the variance is increased to infinity, i. e, as y;3 — 00
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the expected value of the harmonic mean of J values approaches v;;. In the limit,
the probability approaches one that all J values are the same so that the probability
approaches one that the expected value of y; equals the harmonic mean of the J values.
This example shows that all peoples risk aversion approaches v;; in the limit and thus
as the variance goes to infinity, the contract designer becomes more informed.

11 Each Agent Represents K People

We now suppose that each of the J "agents” is a group of K people who share the same
endowment, but may differ from each other in terms of risk tolerances as measured by
v. Each "agent” may represent a country or an occupational group.

Allowing multiple individuals per "agent” is important, since in practice we are likely
to want to apply the methods for contract design not to data on individual endowments
but to data on endowments of groupings of individuals. It is also important to consider
multiple individuals per "agent” since our uncertainty about risk aversion may be better
thought of as recognition of diversity of risk aversions within each group, rather than as
uncertainty about the average risk aversion of all people in each group.

Assuming that all individuals in a group share the same endowment, the variance
matrix of individual endowments is now £ = T ® (kx') where ® denotes the kronecker
product and « is a K-element column vector of ones, Assuming that all individuals risk
parameters - are iid regardless of the "agent” group to which the individual belongs, we
suppose that the contract designer desires to maximize total utility of all individuals,
i. e., to find the matrix A that solves:

Aeargmaxj_.ps pey n {tr (fi'if)/i - Eﬁ'iﬁ'iﬁ) |A'ZTA = IN} (36)

whereéaﬂ%(:g)_—l and where i= 1@k and T is ' ® I.

Theorem 9: The A that solves (36) equals A ® x where A solves (30). *

Proof: To prove this we use the multiplication rule for kronecker products, (4; ®
}-_31)(14_2 ® By) = (A14;) ® (ByB,). Note that ¢ = £, where ¢ = -E-:-("g—(*_;)‘)‘—l We have
H=Y-art = ER(kr)— ()@ (kK ))(Z@rK') = E® (k') — £((:'E)® (xK") (kK")) =
EQ(rr') — c('E @ (') = H @ (sx’), where H = £ — ¢(w')E. Now, from above we
know that HA = AA. H(A® k) = (H ® (k))(A® k) = (HA) ® (xr'x) = KHA® k.

*There are an infinite number of A’s which will solve (36) of which A ® « is one. All result in the
same equilibrium.
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We can also show that (AA) ® k = (A ® x)A. Hence H(A® k) = (A ® x)(KA). Thus,
the same set of eigenvectors that solve (30) solve (36), with eigenvalues multiplied by
K. O

Thus, the bigger problem of designing optimal markets for all NK people collapses
to the simpler problem discussed in the preceding section. Note that since H is the same
rank as H, there are no more nonzero eigenvalues, the presence of K individuals per
"agent” does not introduce the need for any more than J markets.

12 Conclusion and Practical Implications for Con-
tract Design

We have presented several alternative maximization problems for contract designers to
define optimal risk management contracts. Thus, we have several alternative definitions
of the optimal markets to create.

The simplest maximization problem, (13), is the most restrictive: it assumes no pre-
existing markets and no uncertainty about preferences. It yielded the striking conclusion
that the contracts created would never allow trading the market portfolio, and no lin-
ear combination of the portfolios defined in the contracts could even have non-negative
quantities of all endowments. The question is, how restrictive are the assumptions in
(13)?

Of course, we are not in a situation where there are no pre-existing markets, and
so one might conclude that the alternative maximization problem that accounts for
these, (23), is the more relevant. We are, however, somewhat inclined against this view.
We should not automatically assume that we are constrained by pre-existing markets.
History shows that pre-existing derivative markets actually do sometimes wither away
when another derivative market appears that serves hedgers better.3

A more important issue is uncertainty about preferences which leads us to problem
(30), or if there are K individuals per agent, problem (36). These lead to the same
solution and so our maximization problem (30) may be the most relevant. As a matter
of historical fact, market designers have found it very difficult to predict in advance
of creating a new market who will want to take positions in the new market. Qur
representation of uncertainty about preference parameters can be regarded as a metaphor

SAn example of this is the demisc of the GNMA CDR futures resulting from the formation of the
Treasury-bond futures, see Johnston and McConnell [1989).
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for our difficulty in predicting investor behavior.

Thus, taking account of this uncertainty as in (30) would be of great practical impor-
tance for contract designers. If contract designers assumed enormous uncertainty about
preferences, so that the limiting case described in Theorem 8 applies, then, if there is a
substantial market component in the economy one might think that something approx-
imating the market portfolio would be the most important market. If one wants to be
more precise, one should not assume that we have total uncertainty about individuals’
risk aversion. Ideally, one would use the maximization problem (30) in conjunction with
some informative priors about agents’ risk aversion parameters to define markets.

We leave the solution to such a problem with real data to future research. It may
be noted that a possible outcome using (30) and specifying moderate prior uncertainty
about risk parameters would be a conclusion that something approximating the market
portfolio is not the most important new market to create, but still one of the more im-
portant markets. Actual markets we create should be simple to describe and understand
to ensure their success and we have seen in section 9 that if a contract for the market
portfolio is created, then the equilibrium takes on a simple transparent form. If a con-
tract approximating a contract for the market portfolio is found to be important, then

contract designers might wish to create, as one of these markets, a market for exactly
the market portfolio.
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Symbol List
A. Latin Symbols

A: J x N matrix whose jn* element is the share of the unforecastable component of
agent j's endowment that is paid from a short in one of the n'* contracts to a long in
the contract. ' )

A*: J x N* matrix whose jn*® element is the share of the unforecastable component of
agent j's endowment that is paid from a short in one of the nth new (not pre-existing)
contracts to a long in the contract.

Ay: The J x 1 vector whose j** element is the share of the unforecastable component of
agent j's endowment that is paid from a short in one of the nth (pre-existing) contract
to a long in the contract

f: N x 1 vector of dividends of the contracts from the short to the long.

g =01 (/T-gr-1,)7!

H=E-awl

H=Y-¢()X.

j: Index for representative agents.

J: Number of representative agents in the economy, K = 1 unless otherwise specified .
M: A J x J matrix such that zM is the 1 x J vector whose jth element is the dif-
ferent between the unforecastable component of agent j’s endowment and agent j’s
risk-parameter-adjusted share of the unforecastable component of world total endow-
ments.

m = (/)

N: Number of contracts available to investors, < J.

N*: Number of contracts in addition to pre-existing contracts that are available to
investors, N = N* + 1.

P: N x 1 vector whose nth element is the price of contract n, the amount paid from the
long in the contract to the short before the uncertain endowments are realized.

Q: N x J matrix whose njth element is the number of the nth contracts demanded by
agent j.

Q*: N*x J vector whose nth element is the number of the nth new contracted demanded
by agent j who also has one pre-existing contracts available to trade in.

z: The J element row vector whose jth element is the endowment of agent ;.

Z: The j element row vector whose jth element is the endowment of agent j minus its
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expected value.

B. Greek Symbols

v;: Risk aversion parameter of agent j.

I': The J x J diagonal matrix whose jth diagonal element is the risk aversion parameter
of agent j. '

6,: Lagrangian multiplier for the constraint that the nth new contract is uncorrelated
with the pre-existing contract.

t: The J x 1 vector all of whose elements are one.

x: The K x 1 vector all of whose elements are one.

An: The Lagrangian multiplier for the contract designer’s problem, corresponding to the
constraint that A XA, = 1.

A: The N x N diagonal matrix whose nth diagonal element is A,,.

®: The J x J matrix & =7 - A;A(E

E: The J x J variance matrix for agent’s endowments.

Summary of Basic Relations
A. Pertaining to All contract designers problems:
f — ali’
= —A'D (/T 1)?
Q=—-(AZ+ P/ T

Qu=AT"L. =0

QA= ~I

Q=QM

M=1T1—- /T 1) /T!
A=-MTQA?
A=MA

Mc=0

JIM =0

MTIM=T"M
Q=-AZM zA=zMA

Contract designers problem (13).
EN=J-1:

26



MIM=¢

AQ=-M

I+ AQ = u/T-1(/T-1)?

The ijt* element of I + AQ is the exposure of agent i to agnet j’s endowment.

Contract designers problem (If there is a pre-existing contract for market portfolio),
Problem (23) given A; = m:
& =1 uZ(T)?

TP = LP
M =9
Mé=M
LA*= M'EA*
LA =9'XA"
TA = _Q-
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