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1. Introduction

Problems of sample selection are common in both randomized and observational
studies. Selection problems arise in clinical trials when a single randomized trial is used to
estimate treatment-control differences in health outcomes among surviving members of the
study sample. Suppose, for example, that the treatment under study keeps relatively sick
patients alive while doing little for those who are otherwise healthy. This sort of impact
induces a spurious negative correlation between treatment status and health status in the
sample of survivors. Therefore, even if the treatment is randomly assigned at the beginning
of an experimental study, it should not be viewed are randomly assigned among survivors
(Kleinbaum, Kupper, and Morgenstern, 1982). An econometric example of this problem has
recently been discussed by Ham and Lalonde (1995). They note that the randomized
treatment (manpower training) in the experimental NSW demonstration raised trainees’
employment rates as well as their average earnings. Therefore the treatment cannot be
assumed to be randomly assigned in the sample of working men.

A similar problem occurs in a non-experimental context when instrumental variables
av) techni_ques are used 1o estimate causal effects. An example is the use of IV to estimate
the effect of schooling on earnings. Angrist and Krueger (1951, 1992) have shown that
someone born later in the year is more likely than someone born earlier in the year to have
been kept in school by compulsory attendance laws. If quarter of birth affects earnings
through schooling alone, then quarter of birth dummies provide valid instruments for the
relationship between schooling and earnings in the population of all men. The selection
problem in this case is that schooling, and hence quarter of birth, affects the probability of

working as well as the level of earnings conditional on working. A relationship between



quarter of birth and employment status can therefore induce correlation between quarter of
birth and errors in the wage equation in the population of working men.

Selection problems are also common in labor-supply models of the relationship
between wages and the observed characteristics of workers. Because the same covariates
affect wages and the probability of working, wage equations in a sample with positive
earnings are not necessarily informative about the relationship between observed
characteristics and offered wages (see, e.g., Heckman, 1974; Gronau, 1974). Finally, a
similar problem arises in estimates of labor supply functions. Mroz (1987) reports a range
of instrumental variables estimates of labor supply equations computed using methods that
take the process of sample selection (conditioning on positive hours worked) into account.

One solution to such selection problems involves an assumption of joint normality for
unobservables and the exclusion of some observed regressors from either the outcome
equation {(e.g., wages) or the sample selection rule. This leads to a selection correction in
the form of inverse Mills-ratio terms (ratios of normal densities to normal CDFs) added to
the outcome regression function (see Heckman, 1976 and 1979). A number of less
restrictive semi-parametric variations on this normal selection model have also been
introduced (see Newey, Powell, and Walker, 1990 and Heckman, 1990 for references.) A
common thread in all these formulations, however, is the use of a latent index framework to
characterize the mean of unobserved regression error terms conditional on the regression
covartates and the sample selection rule.

An alternate approach to the selection problem has recently been discussed by Ahn

and Poweli (1993), who begin with the observation (noted earlier by Heckman and Robb,



1986, and Choi, 1992) that in latent index models, the selected mean of the regression error
is an invertible function of the probability of selection given covariates. Ahn and Powell use
this property to eliminate selection bias by differencing observations with the same (or
similar) probabilities of selection. The Ahn and Powell approach sidesteps the problem of
estimating an unknown conditional mean function but justifies the nonparametric estimation
strategy using traditional single-index selection models.

This ;.)aper develops an approach to the selection problem that is closely related to the
Ahn and Powell (1993) strategy and leads to similar estimators. A key difference is that the
approach taken here is motivated as a variant on the propensity score method developed by
Rosenbaum and Rubin (1983, 1984) to control for bias that arises in the estimation of
treatment effects when treatment is assigned on the basis of observed covariates. Rosenbaum
and Rubin show that conditional on the propensity score -- the probability of treatment
assignment given covariates -- treatment assignment is independent of the covariates.
Therefore, conditioning on the propensity score fully controls for confounding by these
covariates in estimates of treatment effects.

The results presented here complement both Ahn and Powell (1993) and Rosenbaum
and Rubin (1983) by providing weak sufficient conditions for conditioning on the selection
propensity score to control bias in a general selection problem involving instrumental
variables. In particular, this paper provides conditions which imply that the joint distribution
of regression errors and selection status is independent of covariates conditional on the
selection propensity score. These conditions are automatically satisfied by any latent index

formulation of a model with selection on unobserved characteristics (error terms), but such



formulations are more restrictive than necessary.! The principal identifying assumption used
here is that the instruments satisfy a simple monotonicity condition similar to the one
described by Imbens and Angrist (1994) for evalvation models.

The paper is organized as follows: Section 2 discusses a latent index approach to the
problem of selection bias in the Angrist and Krueger (1991) returns-to-schooling application.
Section 3 develops an alternative approach based in the selection propensity score. Section 4

uses the Angrist and Krueger (1991) data to illustrate this approach and Section 5 concludes.

2. Selection in index models with an endogenous regressor

The equation of interest in the schooling/earnings example is:
(L Yi = By + 58, + ¢,
where y, is the log weekly wage for workers, and s; is the highest grade completed. The
instrument, Z,, {(quarter of birth) is assumed to be independent of ¢; in the population of all
men. To focus attention on the selection problem, the regression is taken to be linear with
constant coefficients. Discussion of exogenous covariates is also postponed.

The problem with attempts to estimate (1) using IV is that y; is observed only for men
who are working. Because the probability of working is also affected by schooling,

conditioning on observed births is likely to induce correlation between ¢; and Z; in the

'Ahn and Powell (1993), Choi (1992), and Newey (1988) all develop non-parametric
estimators for selection models by assuming that latent index error terms are independent of
covariates conditional on the selection propensity score.
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popuiation of men who work.? This correlation can be characterized in a latent index model
as follows. Let w; indicate selection status (i.e., w;=1 indicates working) and suppose w; is
determined by a latent index capturing the possibility that schooling affects the probability of
working. In particular,

w;, = 1[5;8, - v, > 0]
where #, is a homoscedastic error term that could be correlated with ¢ but is assumed to be
independent of Z;. Suppose also that there is a first stage relationship for s; such that:

=Y + Zy +
where 7, is an error term that could be correlated with ¢ and #; but is assumed to be
independeat of Z,. Then we have,

Ele| Z;, wi=1] = Ele| Zi, (v + Ziviby > v - 78] # 0,
even though E[¢;| Z] = 0. More importantly, it is clear from the previous expression that
E[| Z;, w;=1] is, in general, a function of Z, Therefore Z; is no longer a valid instrument
for earnings in the selected sample of workers.

The ideal solution to this selection problem would be to find an instrument that is
randomly assigned or exogenous in the population where w;= 1. Failing this, one
econometric solution to selection problems of this type is to assume that the error terms (5
n., €) are jointly normally distributed, as well as homoscedastic and independent of Z;. In
that case,

(2) E[5i| Zi, (vob + Znd, > v - 7)) = E[€i| Yoby + Zyd, > vi- 7411

2Ashenfelter and Ham (1979) and Mincer (1991) document a strong association between
schooling and employment probabilities.



= pE[v; - nibi| vod + Zoviby > v - i)
where p is the coefficient from a regression of ¢ on »; - n,8;. Joint independence of (v;, n;,
¢) with Z; allows the simplification in the first line of (2). Because of normality we can
simplify further:

Elv; - 761 vod + Zimdy > v - 1d1) = -¢(red + Ziy 8/ 2(vedy + Ziyib)

= Ny + Zividy),
where ¢(-) and $(-) are the normal density and distribution functions for v, - 7;5,.
Adding M08, + Z18,) as a regressor to (1) provides a practical solution to the selection
probiem in this context because parameters in Myed, + Ziy,§;) can be estimated from a
Probit regression of w; on Z,

Critics of econometric selection models (e.g., Hartigan and Tukey, 1986; Little,
1985) point out that such models combine a variety of independence and functional form
assumptions that can be hard to assess and interpret. The validity of parametric corrections
for sample selection bias clearly turns to a large extent on distributional and functional form
assumptions and the validity of exclusion restrictions (Olsen 1980, 1982). On the other
hand, while the need for exclusion restrictions seems hard to avoid (unless identification is to
be based solely on non-linearities induced by distributional assumptions) many authors have
noted that normality is not an essential feature of the index-model approach to selection
problems. See Newey, Powell, and Watker (1990) and Lee (1982) for examples.

One feature common to almost all parametric and non-parametric selection corrections

is a latent index structure similar to the normal formulation, and an attempt to estimate or



approximate the unknown conditional mean function, E[¢;| vod, + Zivi6, > v - 56,].} An
alternative approach begins with the observation that the selection-correction term is a
potentially non-linear but invertible transformation of the selection propensity score, P[w;=1]
Z].* Given independence of error terms and instruments, an implication of equation (2) is
that conditional on P[w,=1| Z] being fixed, selection bias does not affect instrumental
variables estimates of the slope parameter in (1). This fact motivates the semi-parametric
estimators discussed by Ahn and Powell (1993) and Choi (1992) for models with exogenous
regressors. In particular, Ahn and Powell suggested that 8, be estimated by differencing
observations for which non-parametric estimates of P[w;| Z] are close. The next section
discusses weak. sufficient conditions for the conditional independence property underlying the

Ahn and Powell and related estimation strategies to hold.

3. Conditioning on the selection propensity score

The-structurc retained from the previous section is the outcome equation, (1},
maintaining the assumption that ¢; is independent of the instrument. Now let the instrument
be a discrete scalar variable, Z;, taking on one of J values as follows:

Z. € {z, 1, ... 0}

Note that an implication of equation (1) is that:

3An exception is Manski (1994), who develops bounds for selection bias in more general
models.

‘Heckman and Robb (1986, p. 102-104) discuss this point in the context of models
involving selection on observables and in the context of linear latent index models with
selection on unobservables.



(3) Ely)| Zi, w;=1} = B, + Els| Z, wi=118, + E(¢| Z, wi=1].
Conditioning on any random variable, X;, can help identify B, if there are two possible

realizations of Z;, denoted z; and z,, such that the following holds:

Condition 1. Ele| Z,;=1z;, w;=1, Xi = El§| Zi=n, w;=1, XJ.

The reason Condition 1 is useful is that as long as

Elsi| Z=z, w,=1, X] # Els| Z;=z, w=1, Xi},

B, is identified by comparisons of the mean of y; at Z;=z; and Z;=z, in the selected sample.
More generally, the instruments can be used to estimate 8, by two-stage least squares (2SLS)
in samples where X; is fixed.

Ahn and Powell (1993) show that Condition 1 is also necessary for nonparametric
identification of B, in the following sense.* Equation (3) implies that equation (1) can be
written
(4a) vy, = B, + B, + MZ) + u,
where N(Z) = Ele;| Z;, w;=1] and g; is an error term that satisfies E{y;| Z;, w;=1]=0 by
construction. In the absence of distributional assumptions on ¢; other than independence of
Z,, this is the only implication of equation (1). Note that if MZ) is completely unrestricted,
the following regression also holds:

(4b) y, =By + 88, + N(@) +

where 8," = 8, + a, N(Z) = MZ)-Els;] Z, wi=1]a, and p;" = g + (Els] Z, wi=1]}-s)a.

SAhn and Powell’s discussion of this point is for models with exogenous regressors.
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Therefore, because E[y;"| Z;, w;=1]=E{;| Z;,, w;=1}=0, B, cannot be distinguished from

8, without further restrictions.®

3.1 Assumptions and results

This section establishes a basic conditional independence result which implies that
Condition 1 holds when X, is the selection propensity score. At this point, it is useful to
introduce new notation that describes how the sample selection rule is related to the
instruments. Define indicators of potential selection status to be a set of J random variables,
w;;, each of which describes the selection status of observation i when Z; = z;. Iassume that
a full set of w; could be revealed for each individual, either by careful questioning or by
experimentation, even though only one is actually observed in practice. To illustrate the
nature of potential selection status, note that in the latent index formulation of the previous
section, each w; is given by:

wy = 1[yed, + zyidy > vi-nbl; J = L, ...L
More generally, potential selection status is analogous to the notion of potential treatment

assignment used by Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1995) to

$Chamberlain (1986) derives the restrictions necessary and sufficient for there to be
positive information about 8, in a model where selection is determined by a linear latent
index. Chamberlain also argues that for practical purposes, conditions for positive
information should be interpreted as conditions for identification. These conditions can be
summarized as requiring either exclusions restrictions on the selection propensity score, Of
the combination of exclusion restrictions in the list of regressors and 2 continuously
distributed- selection propensity score. The former seems more natural in an IV context.
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characterize [V estimates of treatment effects.’
The relationship between potential treatment status, potential outcomes, and the

instruments is restricted as follows:

Assumption | (Independence). {g;, (w;; j = 1,2, .. ., J)} are jointly independent of Z;.

An implication of Assumption 1 is that the marginal distribution of each w; is identified from
a sample with data on Z; and w;. The joint distribution of (w;;; j = 1,2, ..., 1) is not
identified from observational data because only one w; is observed for any one person.

The latent index formulation clearly satisfies Assumption 1 because the selection
index error term, v, - 7,8, is independent of the instruments. But the latent index structure is
not necessary for Assumption 1 to hold. For example, Assumption 1 is plausible in an
application where the instruments are generated by random assignment or where they can be
thought of as constituting a "natural experiment”. For example, if quarter of birth is
assigned (by nature and parents) without regard to earnings potential or to how likely a man
born in different quarters would be to work, then Assumption 1 is satisfied for the Angrist
and Krueger (1991) application.

Potential selection status does not have to be tied to an underlying parametric model
for meaningful and potentially verifiable assumptions about treatment assignment to be

described. In particular, the only assumption required beyond Assumption 1 restricts the

"The notation for potential treatment assignment was originally suggested by Gary
Chamberlain in private correspondence with Angrist and Imbens.
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relationship between the instruments and potential selection status to be uni-directional, or

monotone:

Assumption 2 (Monotonicity). Two indicators of potential treatment status, w; and w,, are

said to satisfy monotonicity if either w; = w; for all i or wy < wy forall i

Monotonicily is automatically satisfied by w;; and w, when they are determined by a linear
latent index model because for all j and k:

w; = 1fyed, + 1 > wi-ad] and wy = 1{ved + zevidy > » - midil.
Here it is clearly true that if w; > wy for any i, then w; = Wy for all i, and likewise for the
reverse inequality. More general tatent index models also share the monotonicity property.
Suppose w; = 1[f(z))> ) for any function f(-y and any random variable »; that is
independent of Z..* The resulting sequence of w; clearly satisfies both Assumptions 1 and 2.
The next section shows that many non-index models have this monotonicity property as well.

An important difference between Assumption 2 and the index mode! formulation
(which imposes Assumption 2 by default) is that the index model casts identifying
assumptions as restrictions on latent indices that have no empirical counterpart (because
observed quantities are a non-invertible function of the latent error terms.) In contrast, it is
possible to imagine designing a survey that would allow Assumption 2 to be checked. For

example, we could ask individuals how they would act or what they think would happen to

*Ahn and Powell (1993) refer to selection indicators of this type as having the "single-
index property.”
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them if they were exposed to different values of Z,. In cases where Z; can be manipulated
and w; is time-invariant for all j, we could actually test Assumption 2 by exposing
individuals repeatedly to altemative values of Z, in a controlled experiment.’

To assess the plausibility of monotonicity without actually conducting a separate study
a researcher must describe (model) the manner in which the instruments affect selection.
This model can come from an understanding of what sort of experiment the instrument
indicates in a clinical setting, or is meant to replicate in an observational study. For
example, in a clinical trial with selecticn by survivorship, a researcher may be prepared to
assert that any pairwise comparison of two randomly assigned dosage levels affects
survivorship in the same way (or not at all) for all study participants. This will be true if
some dosages are known to be non-harmful. Note, however, that Assumption 2 does not
require the relationship between dosage and survivorship to be monotone in dosage,

The theoretical importance of Assumptions 1 and 2 is that together they imply that

conditional on P(w;=1] Z), the joint distribution of {w,, ¢} is independent of Z;.

Proposition I. Given Assumptions I and 2, {w,, €} II Z;| P(w] Z).
Proof. Consider two values of Z;, denoted by z; and z,, for which w; and w; satisfy
monotonicity and for which P(w,=1| Z;=z)=P(w;=1| Z;=z) =e(z). To simplify notation,

write P(w;=1| Z;=z, w;=1, P(w;=1]| Z)=e(z)] as P{w;=1] z;, w;=1, e(z)]. The result is

*Haavelmo (1944, page 6) makes a similar tie to experimentation in his interpretation of
simultaneous equations models. In particular, Haavelmo argues that for a model to be
meaningful it should be possible to conceive of an experiment that would reveal theoretical
quantities, even though such an experiment could be difficult to carry out in practice.

12



established by first showing that
5)  Plw=1]| z, e(z), e]=Plw,=1] z, e(z). &}.
Let h(e) be the marginal density of ¢. Iterating expectations and using the fact that ¢ is
independent of Z;, we have:

0 = § {Plwi=1| 3, e(z), el-Pwi=1] 2, e(z), allh(e)de;
because P[w;=1| z;, e(z)] = e(z) and P(w;=1]| z, e(z)] = e(z). Note that Assumption 1
implies P{w,=1| 2, (z), e] = P[w;=1] ¢]. Therefore,

0= {Piw;=1] ]-P[wa=1]| el}h(e)de;.
By Assumption 2, {P[w;=1| €]-P[wx=1| €]} must be either non-positive for all ¢ or non-
negative for all . Therefore, since h(e) is always non-negative, P{w;=1]| €] must equal
P[wz=1] €] for all ¢ and (5) must hold. The proof is completed by noting that
(6) Plw;=1] z, @), €] = P[w=1, &| z;, e(@))/h(e).
Combined with equation (5) this implies

Plw,=1, &} z, e(z)] = Plw;=1, ¢] e(z)]. O

To interpret Proposition 1, note that Assumption 1 alone implies

& 11 Z]| P(w| Z)
because ¢ [] Z,. In other words, ¢ is independent of Z; given the selection propensity score.
Second, note that Rosenbaum and Rubin (1983) have shown that any binary variable is

independent of covariates given the propensity score.’ In the notation of this paper, we have

"This simple but useful result can be established in a few lines. Let d; be an indicator of
treatment assignment that is correlated with covariates, X;, and define e(X) =P[d;= 1} X1
Note that P[d;=1] X, e(X)}=P[d,=1] X]1=e(X). Also, P[d;=1| e(X)]=E{E[d;=1] X,
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w; 11 Z:} Piw;] Z).
In other words, w; is independent of Z; given the selection propensity score. The
contribution of Proposition 1 is to show that Assumptions | and 2 together imply that w, and
¢; are also jointly independent of Z; conditional on P(w;| Z;). Marginal conditionat
independence, i.e., w; 11 Z;| P(w;] Z), is similar to the conditional independence property
that underlies matching methods using the propensity score in evaluation research. It is
worth emphasizing, however, that the joint conditional independence result established in
Proposition | requires stronger assumptions (in this case, monotonicity) than does marginal
conditional independence of the Rosenbaum and Rubin sort.

The following implication of Proposition 1 is the key result used in the next section to

justify estimation procedures such as the one discuséed by Ahn and Powell (1993).

Corollary. Given Assumptions 1 and 2,

(7 Efg] Zi=z, w;=1, P(w;=1| Z)=e(z)] = El&| Z;=27, w;=1, P(w;=1]| Z)=e(z)].
In other words, Condition 1 is satisfied by the selection propensity score.

Proof. Let h(e;] z, w;=1, e(z;)] denote the conditional density of ¢; given Z,=z and w;=1.
The conditional independence property in Proposition | implies that

(8) h(e;| z, wi=1, e(z)] = hie| z, w;=1, e(z)] = hle| wi=1, e(z)]. o

e(X)ll e(X)}=Efe(X)| e(X)}=e(X). Therefore, Pld,=1| X;, e(X))=P[d;=1] e(X)). The
importance of this result for evaluation research is that conditioning on P(d;| X) fully
controls for possible confounding by X; when estimating the effect of d; on outcomes. See
Rosenbaum and Rubin (1984) for an empirical example.
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Note that one simple implication of this corollary is that, given Assumptions 1 and 2, if
P(w,|Z) does not vary with Z; then sample selection does not affect the consistency of IV

estimates.

3.2 Monotonicity of selection status in earnings functions

In the example outlined in Section 2, monotonicity requires that quarter of birth affect
the probability of working the same way for everybody. This condition can be assessed in
the context of a behavioral model that links the instruments to the selection process. To
illustrate this link, recall that Angrist and Krueger (1991, 1992) provide evidence which
suggests that because of compulsory attendance laws, men bomn in late quarters get at least as
much schooling as they would have gotten had they been born earlier. To formalize the idea
of monotonicity in this context, let s; denote the years of schooling individual i would get if
Z,=z, for j=1, . . ., J. Monotonicity of the relationship between Z; and s; means that for
any two values z; and z,, either s; = s, for alliors; < s, forali An implication of this.
condition is that the CDFs of schooling conditional on z; and z, should not cross. Angrist
and Imbens (1995) show that this implication is satisfied for comparisons of schooling by
quarter of birth in both the 1970 and 1980 Census.

To extend monotonicity of the relationship between Z; and s; to the relationship
between Z; and w;, note that one commonly used model of the labor force participation
decision postulates that individuals choose to work by comparing the potential payoff from
working with some individual reservation level of earnings, r;, which is independent of

covariates (see, e.g., Heckman and Killingsworth 1986, Section 4.1). If individuals behave
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this way and they use eguation (1) to predict what they will earn once their schooling is
completed, then
&) w; = Iy, > 1] = 1[B, + 58, + ¢ > 1] and

wy = 1[Bs + 58, + & > 1],
where w;; is potential selection status given Z;=z;. The presumption in the
schooling/earnings application is that the only reason quarter of birth affects labor market
outcomes is because of schooling. In this case, s; = sy clearly implies wy = w;.
Therefore, if participation is determined by equation (9), Assumption 2 is satisfied in the
Angrist and Krueger (1991) application,

It is important to note that even though (9) satisfies monotonicity it does not
necessarily have the single-index property used by Ahn and Powell (1993) to justify
conditioning on the selection propensity score. Suppose, for example, that s; = ».Z; + g,
where =, and ,; are random coefficients distributed independently of Z; with means =, and
x,. In this formulation, the sequence of potential selection indicators, w, satisfies
Assumplions 1 and 2 even though the indicators cannot be written as a function of a single
index involving the instruments plus an error term that is independent of the instruments. To
see this, substitute x,;Z, + x5 for s; in (9):
(10)  w, = lly; > r] = l[{(Bo+7B) + ZimBy > g+ (xo- %) +Zi(m-7)B,]
The latent index "error term” in this case, [r-&+ (7~ %8 +Z(x-7,)B,], is necessarily
dependent on Z,.

More generally, employment status might be determined by a version of equation (10)

where 3, and 8, are replaced by individual-specific coefficients, (Bg, B.), or where (B,+8,s)
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is replaced by an individual-specific non-linear function, fi(s). The resulting model for w; is
unlikely to have the single-index property for the same reason that the formulation in
equation (10) does not. But such models will satisfy monotonicity for comparisons at Z,=
and Z;=z,, as long as f; is positive or fi(s) is increasing in s; over the range of variation

induced by changing Z; from z; to z,.

3.3 Estimation
An implication of the corollary to Proposition | is that the following non-linear
regression can sometimes be used to identify 8,:
(1)  Ely.| Z, w=1) = 6, + Els;| Z, w;=118, + Efg] w;=1, P(w;=1] Z)].
The formulation in Section 2 is a special case of this equation, where
P(w;=1] Z) = ®(yd, + Zv,4) and
Elg;] w;=1, P(w;=1] Z)] = oN&®"'[P(w;=1] Z)]).
Equation (11) provides a practical tool for non-parametric correction of selection bias
because in many empirical applications P(w;=1| Z) is non-parametrically identified."
The framework developed here also leads to estimators for models with exogenous
covariates and models with no endogenous regressors. To see this, suppose that the
instrument is also the regressor. In this case, equation (11) becomes:
(12) Elyd Z;, wi=1] = B, + ZB, + Efe] wi=1, P(w;=1] Z)].

Of course, for an approach based on equation (11) or (12) to be useful, it must be the case

In the context of Angrist and Krueger (1991), non-parametric identification means that
it is possible to trace out the unknown P(w;=1] Z) by computing the population average of
w; at each value of Z;.
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that there is variation in Z, or E[s;| Z;, w;=1] in subpopulations where P(w;=1] Z) is fixed.
If there is such variation, then 8, can be estimated by 2SLS or OLS in samples stratified on
P(w,=1|Z). Altemnately, an estimate of P(w;=1]Z) can be incorporated in the regression

function."?

3.4 The role of exclusion restrictions

The possibility of developing a practical solution to selection problems like the one
described here increases when there are instruments or regressors than can be excluded from
the selection propensity score. Returning to the endogenous regressor case, suppose that Z;
is a vector with components Z,; and Z,;, such that

P(w,=1]| Z) = P(w;=1] Z).

-Now equation (11) can be written
(13)  Ely| Z, wi=11 = B, + Elsi} Zy, Za, w=118, + E[¢] w;=1, P(w;=1] Z,)].
In this case, 8, can be identified by stratifying on Z;,.

When equation (13) holds, estimates of 8, can also be computed using a semi-
parametric estimator that takes advantage of the fact that P(w;=1 |Z)=P(w,=1|Z;) when
estimating E[¢;] w,=1, P(w;=1| Z)}. If the additional exclusion restrictions are invalid,
however, then conditioning on Z, in a highly flexible or nonparametric manner is likely to

do little to reduce selection bias and could even make it worse. The notion that exclusion

"2Ahn and Powell (1993) suggest that 8, be estimated in (11} after differencing all
observations for which nonparametric estimates of P(w,=1| Z;) are close. A similar
differencing estimator for models that control for confounding using the propensity score is
discussed by Rosenbaum and Rubin (1985).
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restrictions matter more than functional form is also consistent with Mroz's (1987) finding
that sample selection corrections for labor supply equations are more sensitive to the choice

of exclusion restrictions than to distributional assumptions.

3.5 Evaluation models

The approach outlined here is also related to the use of selection models to control for
bias in applications where selection status, w;, is actually the regressor of interest. Suppose, .
for example, that w; indicates participation in a training program and that the equation of
interest is:

(1) y,=8+wg8, +¢,
where, as before, ¢ is independent of Z, but w; is not.

Assumption | (independence) is clearly sufficient to identify 8, in (14) when
observations z-ue available on a random sample from a population that includes observations
where w;=0 and observations where w;=1, and the instruments affect w; (see, e.g., |
Heckman, 1990). In fact, Assumption 1 can be weakened to require only mean
independence of ¢, and Z;, leading naturally to 1V estimation. On the other hand,
Assumption 2 and full independence as in Assumption | are relevant for 1V estimation of
(14) when the constant-coefficients framework is dropped in favor of a model with
heterogeneous potential outcomes. In that case, Assumption 1 and Assumption 2
(monotonicity of the relationship between w; and Z)) ensures that IV estimates of (14)
produces an average causal effect for those whose treatment status is influenced by the

instruments (Imbens and Angrist, 1994),
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Finally, note that Heckman and Robb (1986, p. 79) have pointed out that as an
alternative to IV estimation, consistent estimates of 8, can also be obtained by estimating
(15) v, = B, + wB, + [ E| wi=0, Z)(1-w) + E(g] wi=1, Z)w;} + &
by non-linear least squares in cases where the conditional mean function, E(¢;| w;, Z), is
assumed to be known up to a finite set of parameters. In equation (15),

E{ E(&| w;=0, Z)(1-w) + E(g| w;=1, Z)w) | Z;] = 0 and E[§;| Z]=0 by construction.
On the other hand, absent observations where w;=0, 8, cannot be distinguished from S, in
equation (15). Similarly, Proposition 1 does not facilitate identification of the constant in

sample selection problems.

4. Sample selection corrections for IV estimates of the returns to schooling

The literature on schooling and earnings devotes considerable attention to the problem
of "ability bias" in estimates of the economic returns to schooling.!” Ability bias is a form
of omitted-variables bias that would arise if more able individuals in the labor market get
more schooling, perhaps because of better access to capital markets. The observed positive
correlation between schooling and earnings would then partly reflect the fact that those with
more schooling have higher earnings potential.

Instrumental variables that are related to earnings solety because of schooling may
solve this problem. Angrist and Krueger (1991, 1992) showed that students’ quarter of birth
interacts with compulsory attendance laws and age at school entry to generate variation in

years of completed schooling. State compulsory attendance laws typically require students to

For a recent survey, see Card (1994).
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enter school in the Fail of the year in which they turn six, but allow students to drop out of
school when they reach their 16th birthday. This induces a relationship between quarter of
birth and educational attainment because studenis born in the first quarter of the year enter
school at an older age than students born in later quarters. Students who enter school at an
older age are therefore allowed to drop out after having completed less schooling than
students who enter school at a younger age. [f students’ quarter of birth is correlated with
earnings solely because it is correlated with schooling, then it is an instrument for schooling
in an earnings equation,

A set of results like those presented by Angrist and Krueger are shown in Table 1.4
Column 3 of Table 1 shows the OLS estimate of 3, in equation (1), when the equation is
modified to include a set of year dummies as exogenous covariates. Column 4 shows the
corresponding 2SLS estimate when the excluded instruments are a set of three quarter-of-
biith dummies. The OLS estimate is .072 with a very small standard error and the 2SLS
estimate is .110 with a standard error of .018. Columns 1 and 2 report the reduced form
coefficients underlying the 2SLS estimates. Both schooling and eamings are lower for early-
quarter birth cohorts than for later-quarter birth cohorts. Column 5 of Table 1 reports 2SLS
estimates when the instrument list is modified to include 3 quarter-of-birth dummies for each

of the 10 years of birth in the sample, generating a total of 30 instruments. Because the

“This sample differs from the Angrist and Krueger (1991) sample in that men with
wages allocated by the Census Bureau are included in the analysis. Other sample restrictions
are the same as described in the Appendix to Angrist and Krueger (1991) for the 1980
Census sample bormn 1930-39. Men with allocated wages are included because a substantial
fraction of observations with zero wages have had wage data allocated. In the sample used
here, over 34 percent of men born 1930-39 with reports of zero wages have allocated wage
data, while only [1 percent of men with positive earnings have allocated wage data.
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second-stage equation includes year of birth dummies, this 25LS estimate is generated by
within-year-of-birth variation in scheoling and eamings by quarter of birth. The resulting
estimate is .088 with a standard error of .015.

The estimates in columns 1-5 of Table 1 are for men with positive eamings in the
sample born 1930-39 who satisfy the criteria described in footnote 14. In this sample, 15.3
percent have zero earnings. Column 8, which reports the results from an OLS regression of
a dummy for having positive earnings on year dummies and years of schooling, shows that
the probability of having positive earnings rises with schooling. In particular, additional
years of schooling are associated with an average 1.2 percentage point increase in the
probability of working. 2SLS estimates of the relationship between schooling and the
probability of working are reported in columns 9-10. The estimates in column 9 are from a
model that uses 3 quarter-of-birth dummies as instruments and the estimates in column 10 are
from a model that uses 30 quarter-of-birth/year-of-birth interactions as instruments, as in
column 5. Both of the 2SLS estimates are highly statistically significant and substantially
larger than the corresponding OLS estimates.

The reduced form relationships underlying the 2SLS estimates reported in column 8
are shown in columns 6 and 7. The relationship between schooling and quarter of birth in
column 6 differs slightly from the relationship between schooling and quarter of birth in
column 1 because the sample used for column 6 includes observations with zero earnings.
The estimates in column 7 show that early-quarter birth cohorts have a lower probability of
working than later-quarter birth cohorts. This is probably because of the association between

quarter of birth and schooling and between schooling and the probability of working.
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The relationship between quarter of birth and the probability of working documented
in column 7 is important because this relationship implies that IV estimates may generate
biased estimates of the relationship between schooling and offered wages when computed in
samples of working men. On the other hand, a simple correction strategy based on the
approach outlined here can be implemented directly using the estimates in Table 1. Note that
the probability of working differs little by birth quarter when the first-quarter birth cohort is
compared to the second quarter birth cohort, The difference between the first and second
quarter effects in the reduced form equation for w; is .002. The difference in schooling
between first-quarter and second-quarter birth cohorts is .004. Taking the probability of
selection as approximately fixed in the first-quarter/second quarter contrast leads to an IV
estimate of the returns to schooling that compares schooling and eamings in these two
groups. The resulting calculation is {-.015+.011)/(-.156+.106] = .08, which is similar to
the conventional 2SLS estimates,

For an alternative estimate of the same type, note that the contrast between 3rd and
4th quarters in the selection propensity score is even closer to zero than the first quarter-
second quarter contrast, Estimates of the returns to schooling based on this contrast are
.002/-.037 = -.054. Under the Assumptions required for Proposition 1, these estimates
should be unaffected by sample selection bias. In fact, both estimates can be interpreted as a
simple application of the Ahn and Powell (1993) semi-parametric differencing estimator. An
obvious drawback of this simple approach is that none of the contrasts underlying these two
illustrative calculations are statistically significant.

Results of attempts to produce more precise estimates are reported in Table 2.
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Column | of Table 2 repeats the 25LS estimates using 3 quarter-of-birth dummies as
excluded instruments (from column 4 in Table 1). Column 2 shows the results of adding an
estimate of P[w,=1] Z]] to this regression as a covariate."” In this case, the estimate of
P{w;=1] Z] is given by the fitted values from the reduced form regression of w; on 9 year-
of-birth dummies and 3 quarter-of-birth dummies. The quarter-of-birth coefficients from this
regression are reported in column 7 of Table 1. Not surprisingly, adding the fitted values
from a regression on 3 quarter dummies leads to very imprecise 2SLS estimates when the 3
dummies are also used as instruments. The resulting schooling coefficient is -.160 with a
standard error of .192.

Column 3 of Table 2 repeats the 2SLS estimates (from Column 5 of Table 1) using 3
quarter-of-birth dummies for each of 10 years of birth, for a total of 30 excluded
instruments. Columns 4 and 5 show the result of adding linear and quadratic terms in
P[w,=1| Z] as covariates to this model. In this case, the estimates of P[w;= 1] Z] are fitted
values from a regression of w; on 9 year of birth dummies and a full set of 30 year of birth
and quarter of birth interaction terms. This regression generates a consistent non-parametric
estimate of the true conditional expectation of w; given the instruments and regressors. The
results in column 3 show that adding linear and quadratic terms in the selection propensity

score to the second stage equation leads to somewhat larger standard errors for schooling

A similar "covariance adjustment” for selection bias is discussed by Wainer (1986) and
Powell and Steelman (1984). Newey (1988) discusses the inclusion of polynomial or other
expansion terms in P[w;| Z] as regressors in sample selection models. For single-index
models, Newey shows that in the special case where the conditional expectation of regressors
is linear in P{w;|Z\), including P[w;| Z] as a regressor generates consistent estimates of g,
regardless of the form of E[e} w;=1, P(w;| Z)].
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coefficients than does conventional 2sls estimation, without resulting in a dramatic change in
the schooling coefficients.

Columns 6-9 of Table 2 report the results of estimating schooling coefficients using
30 quarter-of-birth/year-of-birth interactions as instruments, after stratifying on quartiles of
the corresponding estimates of P[w;=1| Z;]. The quartiles are calculated after removing
year effects in the estimates of P(w;=1| ZJ. In other words, the idea here is to hold
constant most of the within-year-of-birth variation in P{w,=1| Z]. The within-year range
(i.e., deviations from year means) in the average probability of working by quarter of birth is
-.0035 to .014. The quartiles are reported in the next to last row in the Table." The
results of within-quartile estimation are highly variable across quartiles and imprecise,
ranging from -.071 with a standard error of .207, to .167 with a standard error of .073. The
average estimate across quartiles is .087 with a standard error of .06. Although this 100 is
imprecise, it differs little from the conventional 2SLS estimate of .088 in column 3.

The fact that non-parametric procedures to control for selection bias lead to imprecise
eslimates is a natural consequence of the attempt to use functions of quarter of birth both as
regressors and control variables. Ahn and Powell (1993, p. 20) report similar imprecision in

their empirical example but note that such imprecision "offers a realistic picture of the

15This approach can be interpreted as an application of the estimator proposed by

Robinson (1988). In the current context, Robinson's approach transforms a semi-parametric
model of the form

Yi = Bo + B8y + Ne(Z)] + p;,
where Ae(Z)]is an unknown function of Z;, to

[y-E(yi]l eZ))] = B, + [s;E(s:] e(Z))IBy + m.
The population E(y;| e(Z)) and E(s;| e(Z)) are then replaced with non-parametric estimates.
Conditioning the estimation on quartiles of ¢(Z)) implements this estimator if there is no
within-quartile variation in e(Z) and B, is constant across quartiles.
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attainable precision when the form of the selection equation is uncertain.” Since the form of
the selection correction is always uncertain in applied work, this imprecision would appear to
be endemic in sample selection models.

Although non-parametric corrections for selection bias should probably be expected 10
generate inconclusive results, the fact that conventional estimates and alternative selection-
correction strategies generate similar results suggests that selection bias does not have a big
impact on estimates of 8, in the earnings function studied here. For example, any role for
terms involving P(w;} Z) in equation (1) should have been reflected in the estimates of 3, in
Table 2. The finding that corrections for selection bias matter little is also consistent with
Angrist and Krueger's (1991) conclusion that there is actually very little ability bias in OLS
estimates of schooling coefficients. Note that if ¢ and [»; - 7;5,] are not actually correlated in
the index-model version of the selection problem (or ¢ and w; in the framework of Section

3), then sample selection rules involving the instruments do not bias 2SLS estimates.

5. Conclusions

In a discussion of econometric models for program evaluation, Holland (1989, page
876) notes that both econometricians and statisticians use the propensity score in selection
and evaluation models but suggests that this use is "quite different for the two approaches.”
Similarly, Heckman and Robb (1986) argue that the econometric approach based on latent
index models uses the propensity score "in a different way than that advocated by
Rosenbaum and Rubin {1983]." This paper shows that differences between the usage of the

propensity score in the econometric and statistics literature are not as great as previously

26



believed. Under mild assumptions, including (but weaker than) those usually invoked in
latent index models, the joint distribution of potential outcomes and selection status is
independent of exogenous regressors or instruments given the selection propensity score.
This result generalizes conditional independence of the Rosenbaum and Rubin (1983) type to
selection models. As in Ahn and Powell (1993), this approach leads to estimators that
condition on the selection propensity score.

An application of these ideas using quarter of birth to construct instrumental variables
estimates of the effect of schooling on earnings illustrates some practical difficulties with
non-parametric selection corrections based on the selection propensity score. First, the
resulting estimates are likely to be imprecise. Second, there is a range of alternative
estimators that exploit the s;me identifying information. On the plus side, in the application
studied here, various approaches to the selection problem generate similar results. This
finding supports the conclusion that conventional 2SLS estimates of the returns to schooling
using quarter of birth as an instrument to estimate wage equations are not biased by

conditioning on employment status.
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