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I. Introduction

Much of the recent work on investment has used continuous
time stochastic processes to model returns or prices (e.q.
Pindyck (1982,1988), Abel (1983), Dixit (1992), and Bertocla
(1980)). The bulk of this work makes the assumption that prices
(or returns) follow Geocometric Brownian Motion (GBM). The
advantage of GBM is that iﬁ leads to tractable solutions for
investment decisions. In addition, the investment decisicn rules
are explicit and intuitive. However, it has been noted that GBM
is not a plausible equilibrium price process (e.q. Lund (19%3)).
Gecometric Brownian Motion, a continuous time random walk in logs,
is unbounded above. But as prices rise; there exist incentives
for new firms to enter the market (or existing firms to expand)
to supply the good- in question. Firms will enter until the
ﬁarginal entrant earns zero profits. This supply response will
tend to damp the price increase. The relevance of this point for
investment models is obvious. 1If output prices rise, firms
increase investment to expand. In equilibrium however, this
supply shift will lead to a fall in output ﬁrice if demand curves
are downward sloping. Similarly, if prices fall, high cost firms
will exit the market at some point. The supply shift will blunt
the price fall, Thus, as price rises (falls), the underlying
trend should begin to fall (rise). Mean reversion is a way to

capture this effect.

While not as simple as GBM, mean reversion can be quite



tractable. The purpose of this paper is to illustrate the use of
mean reversion and to compare investment rates under Geometric
Mean Reversion (GMR) with investment rates under Geometric
Brownian Motion. Two related points emerge from this paper.
First, there are offsetting effects when moving from GBM to GMR.
Increasing mean reversion reduces the long-run variance of the
price process. This suggests that investment will rise based on
previous findings by researchers of an inverse relationship
between uncertainty and investment (e.g. Pindyck (1982, 1988)}.
We will refer to this effect as the "variance" effect. on the
other hand, the increasing volatility of GBM means that higher
price levels may be achieved. This will induce greater amounts
of investment. We call this effect the "realized price" effect.
In simulations over a range of reasonable parameters that we
present bélow, these two effects offset each other so that
expected cumulative investment after a period of time is the same
under GBM and GMR.

Oour second peoint follows naturally from the first. While
GBM may not follow naturally from any underlying theory and the
non~stationarity of GBM processes might be troubling, cumulative
investment behavior under GBM is very similar to cumulative
investment behavior under GMR. Hence the additional tractability
and intuitive nature of results that emerge when GBM is used can
be bought at very low cost in terms of realism.

This result follows from a model in which the production

function exhibits decreasing returns to scale with lumpy



investmwent. A natural question then is how general our findings
in this paper are. An alternative model of investment assumes
constant returns to scale production function with convex costs
of adjustment (e.g. Abel (1983)). In this model the realized
price and variance effects both work to increase investment, and
hence, our results would not apply. A quick look at Dixit and
Pindyck (1994), however, suggests that there are a broad range of
applications for which the model we analyze in this paper is
apprcpriate.

In the next section, we motivate the use of GMR and review
the theory of investment in a world with mean reversion. The
following section compares cumulative investment under GMR versus
GBM. The last section summarizes our findings.

II. Mean Reversion and Supply Responses

We begin by defining Geometric Brownian Motion (GBM) and
Geometric Mean Reversion (GMR). We then suggest a heuristic
argument for modeling prices as following GMR. A price (P,)
following Geometric Brownian Motion can be characterized by the
following stochastic differential equation:,

dPt = aPtdt + aPtdz (1)
where dz is an increment to a Wiener Process with mean zero and
unit variance. The parameter o measures the trend in the price
process while o measures its volatility.

Geometric Mean Reversion can be characterized by the

following stochastic differential equation:

t

dp,_ = (a+r (Pe™ - P,))Pdt + oPdz (2)
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where A is a positive parameter measuring the speed of reversion
Equation (2) says that prices rise exponentially at rate a from
starting price P. However if shocks to prices (dz) push P, abovs
trend, the effective trend is pushed down, thereby driving price:
back toward the trend line. In the case where o equals 0, we
obtain the Geometric Ornstein-Uhlenbeck process:

dp, = A(P - P, )P dt + oP dz. (3)
In the simulations which follow, we will assume prices follow :
process as given by equation {3). If A equals 0, prices follow
GBM; if A > 0, then prices follow GMR.

Above we noted that supply responses could motivate mear
reversion in prices. Leahy (1993) has modeled equilibriur
behavior in a market in which agents are homogeneous. He finds
that there exists a band within which prices fluctuate with
barriers at top and bottom. That agents are identical is crucial
to his result. With heterogeneocus agents the model becomes more
complicated. Some form of price reversion will occur as entry or
expansion occurs (price high) or firms exit or downsize (price
low). As a first cut at modeling the process, equation (3) with
A > 0 seems reasonable.

What effect will mean reversion have on prices? Figure 1
illustrates a price process for GBM and GMR where the trend in
price equals zero (equation (3)). The 1long run price is
normalized to 1 and the instantaneous volatility equals .15. The
reversion adjustment parameter equals .08 -in this example. These

parameters mean that volatility is on the order of 15% of price
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and that trend will be negative 4.0% when price rises to 1.5 and
positive 4.0% when price falls to 0.5. The price is followed out
for 10 periods. The solid line represents the price assuming it
follows GBM while the dotted line represents the price following
GMR. We‘ve constructed these two series using the same random
process; the only difference is the treatment of the trend as the
price deviates from P equals 1.0. As price rises above P, the
GMR assumption begins to pull the price back down. For example,
at t slightly below 6, the trend for the GMR process is roughly
-3.2% as opposed to the trend for the GBM process of zero. With
the price (in both cases) above P, the negative trend for the GMR
price leads to a widening gap between the two price processes.
By the tenth period, the GBM price is roughly 40% greater than
the GMR price.

The effect of the GMR assumption is to reduce the
conditional variance of price at time T computed at time t < T.1
Intuition suggests that this dampening of the price response
should encourage investment and increase cumulative investment.
on the other hand, the increased variance for GBM means that
higher trigger prices can be achieved - which in turn can lead to

a greater amount of investment in a project whose return depends

1 The variance of the price at time 10 conditicnal on price

equaling 1 at time 0 is .111 for the GMR process and .269 for the

GBM process.



on P.2 These two effects work in opposite directions. Hence w:
turn to simulations to measure their relative impact o;
investment, We begin by presenting the theory of irreversibl.
investment under uncertainty when prices follow GBM and GMR amn

then present results of investment simulations.

III. Optimal Investment Rules Under
Alternative Price Processes

In this section we model the decision at the individual
level to invest in a unit of capital. We assume ¢that the
investment is irreversible and that the marginal cost of usinc
the investment is zero. For simplicity, we assume that the size
of the investment is fixed and we normalize so that maximal
output per period of time equals one.? Firms are assumed to . be
heterogeneous with differing rates of productivity per unit ot
capital and output is reduced by a factor § which ranges from {(
to 1. Hence the value of output per unit of investment will
equal 3P, and the return on an investment of one unit of capital

-

will be 3P per period. The firm’s problem then is to choose ¢

2 We have yet not formally stated how cumulative investment will
be motivated in this model. For now assume that the return on ar
investment is some fraction of P, where the fraction is e
variable distributed across the population of firms.

3  Making the size of the investment endogenous does not alter
the results in any significant way so long as firms are price

takers.



time, T, to invest in a unit of capital to maximize

- -pt -pT
v=pg{ £ s3Pce Prat-xe® } (5)
T

where p is the discount rate (common to all firms) and K is the
cost of the investment (assumed constant)4. To solve this
problem, we must make assumptions about the return stream. In
the next sub-section, we assume that prices follow GBM with no
drift and in the following sﬁbosection, we assume GMR.
IITI. A. Geometric Brownian Motion

our first assumption is that the returns on the investment follow
the continuous time stochastic process

dap, = aPhdz (6)
where dz is the usual increment S5te a Wiener process (see
equation 1 above). Maximizing (5) subject to (6) is a standard
problem in the irfeversibility literature (e.g Dixit (1992),
McDonald and Siegel (1986), Pindyck (1988)) and the optimal time

to invest occurs whenS:

b
8P, = — pK 7
1FPro & o PR (7)

where

4 It would be easy to add depreciation to the model. Assuming
exponential depreciation at rate 7m, the term p in the integral of
equation (5) would be replaced by p+7. Nothing substantive
changes.

5 see Dixit (1992) for a clear derivation of this result.
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.5 ¢ + J(-5 a*)? + 2p0°
b = > 1. (8)

2
[»3

In addition, the wvalue function for the expected wvalue in

equation 5 is given by

V (P;P) = 5P (9)
— ~XK, PzP

p

where P is the price at which equation (7} is satisfied as an
equality (trigger price) and a is a constant of integration. The
value function has two components. Before the investment is
made, the only value is the option held by the firm. The upper
component of equation (9) describes the option. As price falls,
the likelihood of the option ever being exercised goes down and
the option becomes 1less valuable. The bottom component of
equation (9) describes the net (of cost) present value of the
investment once investment is made.

III. B. Geometric Mean Reversion

If prices follow GMR, the solution to the maximization

problem in (5) subject to

aP, = A(P - P, )P dt + oP dz (10)

is relatively straightforward (see appendix for details)®.

6 pixit and Pindyck (1994) provide an excellent discussion of
investment models in which the value function follows GMR. As
they note in their book (p. 162) they provide no rationale for

why the value function is mean reverting. Our model differs in
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However, there is no intuitive way to write the expression for
the trigger price as in equation (7) above. The value function

is given by

Vo2 .
AP H(— P, v, Z(v)), P < P
o’ ‘ :
V (P;P) = ¢ - (11)
v, 2A N -
s{BPH(— P, v, Z(v)) + ZC’P - K, Pz P
o 1=1
9

where H(x,a,b) is the confluent hypergeometric function (see

. 2Pa .
appendix), Z(v) = 2v + , v 1is the positive root to the
~ 0.2 }
guadratic Q(x) = .Scrzx(x-l) + aAPx - p, and the cl’s are defined
in equation Al13 in the appendix. Smooth pasting and value

matching conditions can be invoked to eliminate the constants A
and B yielding an equation which implicitly defines P', the

trigger price at which point it is optimal to invest. Letting G
o

= chP’, we get:
1=1

P 2A
(G - K) (vH(-—z P, v, Z(v)) (12)
g

modeling mean reversion in the output price and in providing a
rationale for why the price is mean reverting. In addition,
modeling mean reversion in prices rather than the value function
leads to a somewhat more complicated solution methodology than
the methodology described in Dixit and Pindyck. We note the

differences in our derivation in the appendix.
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2\ p 2A

+ PH' (— P, v, Z2(v))) = &G 'PH{— P, v, Z(V)).
2 2
o o

dH(x,Y,Z) P , )
where H’ refers to o and G° is a particular solution to
x

the differential equation All in the appendix (see appendix for
details). While seemingly different, the value functions in
equations (9) and (11) collapse to the same form as A appreoaches
0. The confluent hypergecmetric function evaluated at ©
(H(0,a,b)) equals 1 and B approaches O. Furthermore, G° equals

P/p for A equals 0. Hence the value functions converge toc the

8H (ax,b,c) _ ab

same value as we’d expect. Using the fact that e —
x c

H(ax,b+1l,c+1), it is easy to verify that equation (12) reduces to
equation (7) as A approaches 0.

Equations (7) and (12) govern investment at the individual
level for price proéesses following GBM and GMR respectively. In
the next section, we embed the individual investment decision in
a model of aggregate investment and provide vresults from
simulations to compare and contrast cumulative investment under
the two price process assumptions.

IV. Cumulative Investment

The model of section III describes how an individual firm
would compute the optimal rule for determining the optimal time
to install new capital. Moving to the aggregate 1level, we
explain cumulative investment by assuming heterogeneity in the

return that the investment will earn (&§).7 Firms are modeled to

This gives us a "Probit" type model of diffusion (viz.
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have the same discount rate and complete information about the
price process they face (though no information about the specific
price realization in the future} as well as complete information
on the productivity of the investment (&). The parameter 3§ is
normally distributed but truncated at zero and one. At low
levels of P, only those firms with high values of & - those for
whom the potential return from an investment are the greatest -
will invest. If prices rise, more firms will invest. Investment
will only occur when the current price exceeds the maximum price
that has occurred up to that date. Hence, 1if prices are
increasing over some interval, cumulative investment may
increase, while if prices are decreasing over some interval,
there will be no increase in cumulative investment. In the
simulations that follow, we assume that 3 is (truncated) normally
distributed with mean .50 and standard deviation .15. Assuming
that each firm can make cne investment, cumulative investment can
range from 0 to 100% - meaning that from 0 to 100% of the firms
purchase capital.

Intuitively, -ue would expect that as mean reversion
increases (A increases), firms should be more eager to invest in
an irreversible investment. While the upside gain diminishes
with increased mean reversion, so does the downside loss. Mean
reversion has the effect of reducing the variance of the future
return. As noted above, increased uncertainty reduces

investment. Changes in the trigger price for investment provide

Stoneman (1983)}.
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some support for this idea. Table 1 shows the trigger price for
an investment as A increases from 0 to .090 for different values
of o. The investment is assumed to have a cost of 5 and will
provide a return equal to 50% of the output price. Prices follow
GMR with P equal to 1.0. The discount rate is .10. At ¢ = 0.05,
the trigger price ranges from 1.118 (x = 0) to 1.103 (A = .09).
The trigger price also falls with increasing A for ¢ = 0.15 and
0.25. Table 1 also shows that increasing uncertainty discourages
investment by driving up the trigger price for a given value of
A.

To illustrate how changing A affects investment, consider
figure 2. This set of price realizations hovers around the mean
reversion price so that the GMR price and the GBM price are
nearly coincident. = Cumulative investment at the end of 10
periods is slightly less than 37% if price follows GBM while
cumulative investment is roughly 41% if price follows GMR (figure
3).

That the trigger price 1is falling does not prove that
investment will occur socner. The expected time to any price
above the reversion priée will also increase as A increases. Put
differently, the maximum price that will be achieved over a given
time period will decrease as A increases. Given our model
assumptions, cumulative investment at time t will be determined
by ﬁz = max(P ), s e {0,t]. Substituting ﬁt into equation (12)
gives a critical value of 3 which is a lower bound on the return

parameter that must be achieved before investment will occur.
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All firms with a value of & = § will have invested by time t.

For the model parameterized in table 1, Monte Carlo simulations

-~

ap
(1000 replications) show that PR < 0. For o = 0.15, the average

maximum price falls from 1.440 at A equals 0 to 1.367 at A equals
.09.8

We can illustrate the realization effect with the price
process shown in figure 1. These particular realizations of GBM
and GMR show an upward trend and the maximum price under GBM is
roughly 40% higher than the maximum price under GMR®?. The capital
diffuses more rapidly in this case: cumulative investment is
about 83% under GBM by the end of period 10 while only 67% under
GMR (figure 4).

Which of these two effects (lower variance vs. lower
realized price) dominates? Table 2 presents results from a Monte
Carlo analysis where cumulative investment is simulated 1,000
times for different values of A and ¢. As in table 1, we assume

P, = P = 1.0 and p = .10. We vary A between 0 and 0.090.10

8 fThe variation is quite substantial. The standard deviation of
P for GBM is .44 and .27 for GMR. The maximum value of P over
the 1000 replications is 4.436 for GBM and 2.601 for GMR.

9 While there is an upward trend in the realized price series,

the process itself has no trend.

10 The condition p > AP ensures that the value function is
bounded. This puts an upper limit on A. Note though that A is

scaled by P. Higher values of A are possible if the reversion
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Consider the case where o = 0.15. The average value of
cumulative investment by period 10 varies between 47 and 48%. We
cannot reject the Joint hypothesis that all the expected
cumulative investment levels are the same across the Qifferent
values of A for a given o.

We test the robustness of these results in Table 3. In this
table, we report results from different simulations for extreme
values of A and ¢ for different values of the discount rate (p)
and the cost of the capital investment (Pk). In the first set of
results we cut the cost of the investment in half from 5.0 to
2.5. The first column reports mean cumulative investment for the
case in which price follows GBM (A=0.0) while the second column
reports mean cumulative investment for the case in which price
follows GMR with a reversion parameter of .09. For values of o
between .05 and .25 cumulative investment is roughly the same for
the GBM and the GMR cases.

In the third and fourth rows, we double the purchase price.
For reasonable values of ¢, our results hold. However, for high
values of o, there is a difference between the GBM and the GMR
cases. This result holds for the following simulations in which
we first increase and then reduce the discount rate: for very
high levels of ¢ mean cumulative investment can differ markedly

depending on the price processll. such extreme variation in the

price is reduced.

11 In the last two sets of results, we report GMR results for the
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price process is unusual and the similarity between the GBM and
GMR cumulative investment holds at lower levels of ¢. For cases
where annual variation in returns is on the order of 25% or more,
these results suggest that the approximating GMR with a GBM
process can affect mean investment results to some degree.

Considering extreme ranges for the volatility parameter
leads to an additional interesting finding. In general,
increasing uncertainty should lead to lower investment. However,
in cases where there is a low level of investment when o is low,
increasing o substantially can lead to higher mean 1levels of
investment. For example, in the GBM case where Pk'equals io0,
mean investment rises from .003 when ¢ equals .05 to .06%9 when o
equals .25. While the trigger for investment is rising with o,
the likelihood that price will hit that trigger by a given time
also rises with o. 1In this case the second effect dominates the
first.

The results in tables 2 and 3 suggest that in general we do
not sacrifice significant realism by assuming prices follow
Geometric Brownian Motion. Over a reasonab%e range of parameters
of the processes, the use of Geometric Brownian Motion will not
lead to results substantially different than when Geometric Mean
Reversion is assumed. Crucial to this supposition is the
offsetting nature of the variance and price realization effects

that we identify above. In cases where one of these effects

case where A equals .07 to avoid violating the condition that p
must exceed AP.
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dominates, then the greater computational work associated with
GMR may be important as results may diverge from results obtained
assuming GBM.

V. Conclusiocon

In this paper we compare aggregate investment when the
return follows Geometric Brownian Motion (GBM) or Geometric Mean
Reversion (GMR). While GMR. is analytically more burdensome, it
is possible to compute investment trigger prices and simulate
cumulative investment when returns are mean reverting. Theory
suggests that the effect on investment of moving from GBM to GMR
is ambiguous.

There are two offsetting effects on investment when moving
from a model where prices follow GBM to a model assuming mean
reversion in prices. First, the variance of the price process
will decline. This will have the effect of reducing the trigger
price for investment which in turn will increase cumulative
investment over time (holding a price path constant). However,
the realized price path is not held constant. There is a lower
probability of achieving some particular price above the mean
reversion level by a given time t. Holding a trigger price
constant, the chance of hitting that price falls as one moves
from GBM to GMR. We find that for reasonable parameter values
these two effects offset each other in simulations that we
present. The average 1e§e1 of cumulative investment at the end
of a finite period is essentially the same under either GBM or

GMR. This suggests that Geometric Brownian Motion may be a
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reasonable simplifying assumption to make in models of

irreversible investment under uncertainty.
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Appendix
Investment Assuming Geometric Mean Reversion
We sketch out the solution to the investment problem of
choosing an optimal time to make a one-time investment which pays
P, per periocd forever assumipg' P follows GMR. We begin by
noting that once the investment is made the net expected return

on the investment is given by
- -]
SE, IP’e-p("T’ds - K (A1)
T

Define G(p) as the expected value at time T of the integral in
Al. Hence the value of the project at the time of the investment
is given by BG(PT) - K. The investment will be made only if P
exceeds a trigger price P°. At prices below P  the only value to
the investment is iﬁ its option value, V(P). Thus the value of

the project V'(P,P') is given by

. . vV(P) if P < P

V(P;P) = . (A2)

3G(P) - K if Pz P
By the usual arbitrage argumentl2
E(4V)
dt

Applying Ito‘’s Lemma to dV, substituting the result into A3,

pPV(P) = (A3)

taking expectations and 1letting dt go to zero yields the

differential equation

12 Alternatively, the Bellman equation for the dynamic

optimization problem will give us this result.
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.5ap*v* + A(P-P)PV’ - pV = 0. (A4)

o
A power series solution of the form V = ZalPl‘v provides a
1=0
solution to the differential eguation. Substituting into A4
yields
PVa_(.50%w(v-1) + Pav - p) + (AS)

PV+1{(,5azu(V+1) + ﬁA(u+1) - p)al - Avao] +

p"*z{(.Scrz(vﬂ) (v+2) + Pa(v+2) - p)a, - Aval} + ... =0

We choose v as the roots of the quadratic Q(x) = .Sozx(x—l) + Pax
- p. Note that one root (vl) is negative and the other (va)
positive. Noting that -.50%v(v=-1) = Pav - p, we obtain the

recurrence relation

2
_— (v+n-1)
2
c
an = an—l + M E1 (AG)
n{2v + -1+n)
o2
. 2Pa
Defining Z(v) = 2v + , we get
o2
]
22 . '
S v{v+l)...(v+n-1}
o
a = a (A7)
n n!'zZ(z+1l)...(Z+n-1) o
where a/ is determined as a constant of integration. Let

H(x,a,b) be the confluent hypergecmetric function
a{a+l) 2

a
H(x,a,b) = 1 45 — X + ——— x“" + ... (A8)
b 21b(b+1)
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Then a general solution for V is given by

v, 2a VZH 22
v = A‘P H(—; P, V. Z(vl)) + AZP (_;,p, Vo Z(Vz)) (A9)
o o
As with GBM, P equals 0 is an absorbing state and V(0) = o0.

Hence, Aj must egual zero since v, < 0. Thus

vV o o2a
V{(P) = AP H(-; P, v, 2(v)), v > 0. (A10)
(o

[.-]
Now we must solve G(P) = E_ I P‘e“p(tq)ds .13
T

By the usual dynamic programming argument

.50°P°G* + A(P-P)PG’ - pG + P = 0. (Al1)}
Equation All is the same as A4 except for the extra P on the left
hand side of the equation. A solution to this equation is given
by the sum of the solution to the homogeneous differential
equation (A4) plus a particular solution. The solution to the
homogeneous differential equation is given by Al0 (note that G(0)

equals 0 which allows us to eliminate one constant of

13 pixit and Pindyck’s formulation allows them to fix V upon
investment (at the trigger value v'). when prices (rather than
V) follow GMR, one must explicitly solve for G(P) and apply value
matching and smooth pasting conditions at P’ in equation A2. The
following derivation of G(P) is not found in their book. The
derivation is of interest in its own right as equation Al4 below
gives the expected present discounted value of an infinite stream

of returns from a return process following GMR.
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integration). For the particular seolution, we try a power series
[
P 1 . .
of the form G = anP . We take the derivative of the power
1=0

series, substitute into All and group powers of P to yield

-pc, + {(Aﬁ—p)cl + I}P + (A12)
2{(.502i(i—1)+15i-p)6, - A(i‘l)c,_l} =0

t=2

Therefore,

c =0

o
1
¢, = (A13)
p=-AP
2a(i-1) .
c = c 1 =2,3,...

1 i-1

2,. .
o (1-v1)(1—v2)
where the v"s are the roots to the quadratic Q(x) = .Sogx(x-lj +
PAx - p. Combining the solution to the homogeneous problem and

the particular solution gives us an expression for G(P)
w©
v, 22 1
G(P) = BPYH(— P, v, Z(v)) + ZCIP , (A12)
2

o 1=1
where the c ‘s are defined in A1314, ‘

Summing up, the solution for the value function V.(P;P.) is giwven

14 rhis solution is valid so long as the positive root to the
quadratic Q(x) = .So°x(x~1) + APx - p is not an integer. Unless
otherwise specified, our parameter values do not lead to a

violation of this condition.
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by

v 2a .
AP H(— P, v, 2(v)), P < P
0_2
L -
vV (P;P) = { © (A15)
v, 22 ' .
3{BP H(— P, v, Z(Vv)) + ZClP - K, Pz P
2
g : 1=1 '
.

We invoke value matching and smooth pasting conditions at P .

Combining the two resulting eguations allows us to eliminate

w
terms involving A and B from the equation. Letting ¢ = ZcHPl,
I=1
we get:
P 2X
(56 - K) (VH{— P, v, Z(v)) (A16)
o2
2A p 2A
+ PH' (— P, v, Z(v))) = &G ‘PH(— P, v, Z(v}).
2 2
T o

This equation can be solved for P .15

15 fThe reader may have noted that the value matching and smooth
pasting conditions only give us two equations to solve for three
unknowns: A, B, and P . Usually a limiting condition as P
approaches infinity would allow us to solve for A or B. There is
no obvious condition to invoke here. One can easily solve for B
by picking a value of P, and computing G(P) by Monte Carlo
methods. Since the other elements of equation Al4 are either
known or convergent power series, we can solve the resulting

equation for B.
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0.000
0.050
0.060
0.070
0.080
0.090

Table 1.

a

= 0.05%

1.118
1.109
1.107
1.105
1.104
1.103

Trigger Price

=2

Trigger Prices Assuming
Geonmetric Mean Reversion

= 0.15

1.396
1.376
1.372
1.368
1.364
1.360

a

= 0.25

1.737
1.72¢
1.71s6
1.711
1.707
1.702

This table reports the optimal trigger price for investment

in an asset costing 5 with a productivity level

(5)

of 0.50.

Prices follow GMR with the reversion level equal to 1.0. The

discount rate is

.10.
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Table 2. Cumulative Investment Over
A Ten Year Period Assuming
Geometric Mean Reversion

A Cumulative Investment

¢ = 0.05 o = 0.15 o = 0.25
0.000 .505 .470 .372
(.004) (.006) (.011)
0.050 .506 .473 .375
(.002) (.004) {.009)
0.060 .506 .477 .376
(.002) (.004) (.009)
0.070 .506 .473 .378
(.002) (.004) {.008)
0.080 .506 .478 .380
(.002) (.004) (.008)
0.090 .506 .479 .382
(.002) (.003) (.008)

This table reports the results of Monte Carlo simulations of a
price process following GMR. Each simulation used 1,000
replications. The mean reversion level was 1.0, the discount
rate equals .10 and the cost of the investment is 5.0. The
starting price in each replication was 1.0. 4 1is normally
distributed with mean .5 and standard deviation .15. Standard
errors are reported in parentheses.
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Table 3. Cumulative Investment Over
A Ten Year Period: Sensitivity Analysis

A
o p P, 0.00 0.09
.05 .10 2.5 .951 .953
(.0004) (.0003)
.25 .10 2.5 ~ .885 .916
(.003) (.002)
.05 .10 10.0 - .0027 .0010
- (.0002) (.00004)
.25 .10 10.0 .069 .014
(.006) (.001)
.05 .15 5.0 .080 .066
(.002) (.001)
.25 .15 5.0 .190 .130
(.009) (.006)
A =.07
.05 .075 5.0 .784 .792
(.002) (.001)
.25 .075 5.0 .545 .618
(.010) (.007)

This table reports the results of Monte Carlo simulations of a
price process following GMR. Each simulation wused 1,000
replications. The mean reversion level and starting price in
each replication was 1.0. & is normally distributed with mean .5
and standard deviation .15. Standard errors are reported in

parentheses.
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Cumulative Investment: Variance Effect

Figure 3.
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