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ABSTRA

Suppose an observed time series is generated by a stochastic volatility model-i.c., there
is an unobservable state variable controlling the volatility of the innovations in the series. As
shown by Nelson (1992), and Nelson and Foster (1994), a misspecified ARCH model will often
be able to consistently (as a continuous time limit is approached) estimate the unobserved
volatility process, using information in the lagged residuals. This paper shows how to more
efficiently estimate such a volatility process using information in both lagged and led residuals.
In particular, this paper expands the optimal filtering results of Nelson and Foster (1994) and

Nelson (1994) to smoothing.

Daniel B. Nelson

Graduate School of Business
University of Chicago

1101 East 58th Street
Chicago, IL 60637

and NBER



This paper makes two extensions to the ARCH asymptotic filtering theory of Nelson and
Foster (1994) and Nelson (1994) (henceforth NF and N respectively). First, we allow a random
initial condition for the filtering error. Once this extension is made, we are able to consider
using both leads and lags of observed state variables to estimate unobserved state variables—i.e.,
smoothing. In econometric practice, the conditional variances generated by an ARCH mode] are
usually treated as "true” apart from parameter estimation error (see, for example, the survey
papers of Bollerslev, Chou, and Kroner (1992) or of Engle, Bollerslev, and Nelson (1994)). NF
and N treat them simply as estimates of unobservable state variables. Clearly, if the ARCH
variances are true, then there is no error in the estimate (conditional on the system parameters)
and no room for smoothing—i.e., all information is contained in the lagged residuals and none
in the led residuals. To the extent that ARCH conditional variances are noisy estimates,
however, there is a role for smoothing, and two-sided ARCH models can be employed to
improve estimates of historical volatilities.

The basic setup in N takes the data generating process to be a random step function with

jumps at times h, 2h, 3h, ...?
X WX, 7.0

Xt-h I
k(XY

Y

LB + hlﬂ.

+

(1

Ex.zon]

E Yieh

& is set equal to either 3/4 or 1. X, is an nX1 observable process. Y, is an mXx 1 unobservable

process. The {X,,Y,} process is assumed markovian. §x,and £y, are respectively, nx 1 and mx 1

2) Notice that the scale factor h'? on the £ terms in (1) is missing in the univariate case prcscmgd
in NF equations (5.1) and (5.1°). These scale terms are correct here, but were inadvertently omitted in
NF. In addition, the "h'" terms in NF (5.8)-(5.9) should be deleted.
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martingale difference sequences, with joint conditional density f,(£x,.n &y 1+n] X, Yot), which we
assume is continuously differentiable in (X,,Y)). Existence and differentiability of the conditional
densities f,(¢y,on| Exrene X0 Yo1), and fy(Ex on] X, Y,,1) is also assumed. Our interest is in using
information in the sample path of the observed {X,} process to estimate the {Y,} process. The
analysis is asymptotic, in that we approach continuous tirne, i.e., we take limits as h+0. When
& = 1 and some mild regul;rity conditions are satisfied, {X,,Y,} converge weakly to a diffusion
as h40, leading us to term {X,,Y,} a near-diffusion.
The ARCH models used to estimate {Y,} take the form

@ T, =¥ + BORXV0 + BRGE,,, XY, k), where

- X[.h - X; - hba(x‘!f"':)

Xach = p\2

it, k, and G are functions selected by the econometrician. ji and x are drift terms corresponding
to u and « in (1). G is a noise term, a counterpart to the £y term in (1). Accordingly, we make
the normalizing assumption that for all X,, Y,, t, and h, E[G(¢x,,p.X.. Y., t.h)] = O,;. In this
note we will present results on asymptotically optimal filtering and smoothing. For reasons
explained in NF and N, u, 4, x, and x do not appear in the asymptotic distribution of the
normalized measurement error Q, = h="*(Y,-Y,) when § = 1, prompting N and NF to focus on
the case 5 = 3/4, in which an asymptotic bias is introduced in (Y,-Y,) unless u = ji, and x =
k. Since in this paper we focus on asymptotically optimal filters and smoothers, which eliminate
this bias by setting u = i, x = &, we will take §=1, allowing us to effectively ignore these
terms.

As in the earlier papers on ARCH filtering, {Q,} oscillates very rapidly as hiO,



becoming heteroskedastic white noise in the limit. To obtain a diffusion limit for Q, we must
focus on increasingly short intervals of time—e.g., [T.T+h'*M,], where M, = o slowly as
hi0. We then 'stretch’ this time scale into an interval {0,M,] on a new 'fast’ time scale. Over
the shrinking time interval [T,T+h'?M,), X, and Y, move more and more slowly, becoming
asymptotically constant at their time T values as h{0. {Q}, on the other hand, converges 0 a
diffusion limit. To accommodate the change in time scales, we define
(3) Qr, = Qremn Xro = X7osnn Yoo = Yrepe.
T indexes the start point of the shrinking interval, while r indexes time on the transformed 'fast’
time scale. To transform from the fast 1o the standard time scale, we note that 1 = h™*?(t-T).
For further discussion of the passage to continuous time and the changing of the time scales, see
NF and N.

The two time scales can make the notation cumbersome, so we make some
simplifications: first, we define t as a function of T, r, and h by
®Ht=yT,r.h)y = T + h'ly,
and suppress the arguments of t. We frequently drop time indices in the arguments of conditional
expectations, so, for example, "E[f]" means "E[f...| X, Y..Ql." We will also often write £,
instead of (£ . n. X, Y,,1.h) (so the £y term is evaluated h time units after X and Y arguments).
We often drop T subscripts and write, for example, w, instead of wr, (so if there is a single
subscript 7. we are always indicating the 'fast’ time scale, holding T fixed). Define the
vector/matrix norm J| A | = [Trace(AA’)]". For A positive semidefinite, let A'” be the unique
positive semidefinite matrix satisfying A'?A'? = A, and let A2 be any real-valued matrix for

which A'?A"* = A. A2 need not be positive definite or symmetric and is not generally unique.



We make several assumptions. For discussion and motivation, see NF or N.
ASSUMPTION 1: Define 1 as a function of Tand 1 byt = T + h'’1. The following
functions are well defined, continuous in t, and twice differentiable in X, and Y,
(5) BX.Y.T.7) = — lim,,, E[0G(Ex.ss X, .Y, L.R)AY| (X, . Y)=(X.Y)],
(6) CCRLY.T.7) = limyyo E[(Gxsun Ko oot W) =Ey o)

(G(Ex_;-oh ,X, > Y':’rh) _EY,H»A) ,I (X: 4 }’l) = (X. Y)]»
Further,

(7) hPE[Q,- 0l X, .Y, .Q)=(X.Y.Q)] - - BX.Y.T.7) Q. and
(8 h'Cov{Q,.,—0Q.|X .Y,.0)=XY.Q] - CX YT

as hi 0 uniformly on every bounded (X,Y,Q,T,71) set.

We will simplify notation further by writing B;, and C;, for B(X,Y,T,7) and C(X,Y,T,7).

ASSUMPTION 2: For some 8 > 0
@) Ef|r (Y., -1l & . D=XD)]

(10) Ef|n "X, =X} | (X, .Y)=(X V)], and
(1) Ef|n "Gy, . X, Tt | 7 (X,.Y,,Q)=(X.Y.Q)] are bounded as h4 0, uniformly on
every bounded (X,Y.0Q,T,1) set.

ASSUMPTION 3: Given X, and Yy, Qr,= N(0,, . Vy o) as hi 0, where V., may depend
onX,, Y;,and T.

Assumption 3 differs from the corresponding assumptions in N and NF, which
conditioned at time T on the values of X;, Y, and Q. Here, we condition on X; and Y, but
allow a random initial condition for Qy, in which Qg is asymptotically normal with a covariance
matrix that may depend on Xy, Y;, and T. Why do this? First, ARCH models of the form (2)

require some "startup” estimate of Y, to initialize the filter. If ‘?o is fixed arbitrarily for all h
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and Y, is also fixed for all h, Q, explodes to @ as h40 unless Y, = Y,. This, of cdursc. makes
conditioning of Qr, in passing to the fast time scale problematic. Foster and Nelson (1994),
however, show that it is often possible to obtain a Y10 such that Qpp = h="(Y1o—Yro) is
asymptotically mean zero and normal using a rolling regression. Vyg in this case can be
interpreted as the asymptotic error covariance matrix for Qr, from this rolling regression.
Alternatively, the ARCH filter may have been running for some time prior to date T, long
enough to settle into the steady state error covariance matrices delivered in N and NF.

N (Theorem 2.1) shows that under Assumptions 1-3, conditional on (Xr,Yy),

{X1.,Yr,.Qq..} converge weakly to the solution of the stochastic integral equation
XT,! = XT' YT.: = YT

(12) t <
Qro = Qpp = [ Br.Qpeds + [ (e Y2aw,,

where Qro ~ N(Opx1,Vrg). (12) is a vector version of an Omstein-Uhlenbeck process, a

continuous time Gaussian VAR(1) with 7-dependent coefficients.? (12) implies that for fixed 7,
(13) [QTJ I(XT’YTIQT)] - N[O-.l,VT"].

where V, solves the matrix differential equation

T

dVTJ
(14) e = -By Vi, - VieBr, * Cy

with initial condition V¢, given by Assumption 3. (See Karatzas and Shreve (1988, Section
5.6)). This weak convergence is uniform on 0 < 7 = M for all finite M. This implies (see
Helland (1982, Lemma 5.2) that it is also uniform on 0 < 7 s M,, where M =~ o, provided

that M, increases sufficiently slowly with h. This makes it meaningful to consider the limiting

3) N looked at the case in which Qo was given, and in which B, and C;, were independent of 7.
The extension to our case is straightforward.



case T->co,

Note that on the transformed (fast) time scale, X;, and Y, are constant at their time T
values. This implies that when evaluating continuous functions of (X,,Y,,t) for T<t< T+h'?M,,
the functions evaluated at (X,,Y,,t) are asymptotically equal to those evaluated at (X, Y, T).

NF and N defined optimality by minimizing (in a matrix sense) the steady state error
covariance matrix* lim,.. Vi,, in particular minimizing lim,., u'V;u for arbitrary mx1
vector u or minimizing lim_, Trace[V;,]. We now consider the more general task of
minimizing V., for every 7 > O:

ASSUMPTION 4: For every h, the conditional densities f(ty%,|X,Y.t,h) and
SExIX. Y.1.h) are well defined and continuous in X, Y, 1, and h and f(¥4| X, Y,1,}) is continuously
differentiable in Y almost everywhere, with one sided partial derivatives with respect to Y
everywhere. Define the mx 1 vectors
(15) PEyX. Y1) = EfEy, 0| Exsen. X Y )=y . X 1)), and
(16) S(tX.Y.1) = dinff(ky,.\| X. V)]/3Y.

For some 6 > 0

(17) E[|h~"Pley,n . X, .Y, 0| | X=X, ¥,=1], and

(18) E[}h 7Sty X, .Y, )| X=XY,=1]

are bounded as ht 0, uniformly on every bounded (X,Y,T,71) set.

ASSUMPTION §: There exists a unique solution to the matrix Riccati equation

4) The existence of lim,_,, V;, required N and NF (0 make additional assumptions that we do not
need to make, in particular, the assumption that the real parts of the eigenvalues of B;, are positive (see
NF Theorem 3.1 and N Theorem 2.1). NF and N's definition of optimality also required that an
asymptotic bias term disappear. Since we are looking at the standard drift case (i.e., =1, not 3=3/4)
this asymptotic bias term does not appear.



(19) dw, = —EdPS'Jo, = @ E{SP'] — wEfSS'T0, + Edf(Ex—P)Ex—P)']
with initial condition w;, = Vi, such that w, is positive semidefinite for all 7 = 0.

Anderson and Moore (1971, Section 15.2) show that a sufficient condition for
Assumption 5 is that E{[SS’] is positive definite and that wyp = Vqp is positive semidefinite.

THEOREM 1: Ler Assumptions 1-5 be satisfied. Then for any R > 0, a set of sufficient
conditions for Trace[V; ] to be minimized is that for all 0 < 7 < R,

(20) Gty,un. X, Y, .7 8) = Plx,n . X, Y00 + 0SExien. X Y1)
If (20) defines G(9), then V;, = w,.

Let G, X, Y, T.7.h) satisfy Assumptions 1-2, and let Vy, be the asymptotic covariance
marrix delivered at 1 by (13) using this G() function. Then Vy - w, is positive semidefinite and
non null unless Ef(G—G)HG~G)'] = Onyn foralmost all s, T < s S T+h'"r.

PROOF: Our strategy is to guess an optimal G(J and verify its optimality. To arrive
at the guess (20), treat the dynamic minimization of Trace{Vy.,] as an optimal control problem
(see, e.g., Kamien and Schwartz (1981, Part II, Section 5)} naively proceeding as if, given X,
Y, T. and h, G(tx.X.Y.T.7,h) were a separate control variable for each ky (so there are an
uncountably infinite number of control variables.) (20} is one of the first-order conditions.

To verify the guess, let G(} be given by (20). As in the proof of (N, Theorem 2.2), one
can show that B;, = EfPS' + wSS']and C;, = E[(P + &8 — EJ(P + wS — '] Now let
G., = G, + H,., where H., = H(Ey,.s . X, .Y, .1.7), and G satisfies Assumptions 1 and 2.
Then, as in the proof of (N, Theorem 2.2), By, = E[GS'] = E[PS'] + w E[SS'] + E[HS'], and
Cr.=EffP+wS+H-tJP+owS+H-E)] Lat Vr., be the asymptotic covariance

matrix delivered by (13) using G(3. Subtracting the expressions for dV, and dw, and simplifying.



@) dV,~w) = -B,(V,-w) - (V,-w)B,’ + E[HH'].
Comparing Kararzas and Shreve (1988, Chapter 5} equations (6.1) and (6.13)), we see that
(V.—w,) is the time 1 covariance matrix of the vector gaussian stochastic differential equation
(22) d\, = =By \dt + E[HH']'"?dW, ,
where \, is fixed, and W, is an m X 1 standard Brownian motion. Since (V,~w,} is a covariance
matrix, it is, perforce, positive semidefinite. That it is non-null unless EfHH'] is a matrix of
zeros for (almost) aill 7, 0 S 7 S R follows from Karatzas and Shreve (1988, Chapter 5,
equations 6.3 and 6.11). V, therefore exceeds w, for all T by a positive semidefinite non-null
matrix, completing the proof.
The Breakdown of Moment Maiching

The 'large 7" optimality criterion of NF and N led to the interesting property that the
asymptotically optimal filter matched the first two conditional moments in the ARCH model
considered as a data generating process to the first two conditional moments of the {X,,Y,}
process. (See NF, pp. 18-19 and N Theorem 2.5). This property does not necessarily hold for
the filter of Theorem 1. Suppose, for example, that the filter is initialized at 7=0 with a "bad”
initial guess (i.e., Vp, is large). If the filter of (N, Theorem 2.2) is utilized, then wy, eventually
(i.e., as 7—+o0) settles down to the wy delivered by (N, Theorem 2.2). For finite 7, however, the
filter of our Theorem 1 delivers a smaller error covariance matrix than the filter of N Theorem
2.2. Since Vp4 is high, however, the filter of Theorem 1 puts more weight on the score term
for small 7 than does the filter of (N, Theorem 2.2), and therefore does not match moments.
This provides another motivation for the random initial condition of Assumption 3: if the filter

has not yet settled down into its large 7 steady state, then the filter of N, Theorem 2.2 is inefficient.



Solving the Matrix Riccati Equation
Anderson and Moore (1971, Section 15.2) show that the matrix Riccati equation has a
unique, positive semidefinite solution w, for all * = 0, provided that w;, is positive
semidefinite, and that E;[SS’] is positive definite. Anderson and Moore and Gelb et al (1974,
Section 4.6) describe a procedure for sclving the (nonlinear) Riccati equation by converting it
into a system of linear equations. Following Gelb et al, define
A= wlZ,

dZJdr = EfSP1Z, + E[SS]\,

(23)

where Ay = Vigand Z, = [,,.. We then have

d 1% -E,[SP] E,[sS51|[Z,
(24) — = so
dtid | |EL[(E,-PXE,-P)'] E,[PST|}A]
Z, -tE{SP] tE.[S5||[1,..
(25) = exp o, =12
t tET[(Ey_P)(Ey_P)I] tET[PSI] VT.O ,
Smoothing

Development of fixed-point ARCH smoothers is quite similar to their development in the
Kalman filter (see, e.g., Anderson and Moore (1979)): for example, for time t = T the state
variables in Y; are retained in the state vector along with Y,. The ARCH filter now updates both
?‘ and YT, the latter the ARCH estimate at time ¢t of Y;, so G() and Qy, are now (2m)X1

vectors, and V., is 2m x2m.



By Theorem 1, the asymptotically optimal G(?) for (Yo Y77 is

G
(26) [G;] = 1Pl , Wag Wizg S,
1+ Omx], w';z'r “’22_7 Om‘l
where S,,, and P, are the score and prediction components of Assumption 4. The matrix

Riccau equation becomes

dw
d:ll' B ’ET[Ps’]“’:l,‘ - “11.:ET[SPI] - mll.tET[SS,lmllJ + E[(Ey-P)E,-P)')
dw,,
@n —E‘L = -(EAPSY + @,y ESSD o,
d
_f:)d:i: - _m;I-TET[SSIIQIZ,t

where w,, o = W20 = Wne = V. The top line of (27) is, not surprisingly, the Riccati equation
for the original. system. The behavior of wy,, and wy, are also of interest, since GI,, =
w2, S,y supplies the update for YT,. and wy, is the asymptotic covariance matrix of
h= (YT~ Y.l

To interpret the smoother in terms of the optimal filter of Theorem 1, recall first that
since Yy doesn’t change after time t (though of course Y, does) its corresponding prediction
component is a vector of zeros. Similarly, Y doesn’t enter the conditional density of X, after
time T. so the corresponding score component is also a vector of zeros. What makes smoothing
possible is that the measurement errors in Yy and Y, are positively correlated (in fact they are
identical at time T) so information regarding Y, in the score term S,,,, can be used to update T
via the second term in (26). As Y, moves steadily farther from Yy, the value of the marginal
updates diminishes, 50 w3, = Opxp a5 7= 0.

Explicit results are possible when E;[PS’] = Opxn. Fortunately, this is a leading special
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case: If the conditional distribution of [X,,,".Y,.s'] is elliptically symmetric for all t (N Theorem
2.3), or if {X,.Y,} is generated by discretely observed diffusion (N, Theorem 3.1), E[PS'] =
Onxm- Suppose that the optimal filter for Y, has been running for a 'long’ time before date
T—i.e., it was initialized at a time T—h'?M, (where, as usual, M, increases slowly to o as
h40). The filter has settled into its steady state, so wrg is given by

(28) lim . w, = Er[SS’]"”[ETISS']'”Er[(Ev—P)(Ey-P)']ErISS']"’]“’Er[SS’]"”

(See N, Theorem 2.3) Now initialize the smoother at time T. w;;0 = w9 = wpy = wrg.
Further w,,, = wy for all 7 = 0. This drastically simplifies (27):

THEOREM 2: Let E{PS'] = Oy, let E{SS'] and E{(t,—P)(¢,—P)'] be positive
definite, and let the filter/smoother [G,',G1']" be given by (26) with w5 = w;;4 = Wy = Wro
Then w,,, = wr, for all 120, and
(29) w;s, = expf{—wr LSS I1]wr g
(30) wyy, = wrg — wrol § gexpl—E{SS'Jor oSIEASS Jexpl — wy JErfSS'Is}ds)wy o and
(D) lim_, w;, = w2, lim_. w3, = Oy

PROOF: Under the assumptions of the theorem, (27) becomes

Wie T Yrg

dw

(27" —d~t‘—2£ = (o EdSS ey,
d“’:z‘ / !
—dt‘ = -wy, E 55 ]wlz"

The middle line of (27') leads immediately to (29). Since wy, and E{SS'] are positive definite
{recall that positive definiteness of ESS'] and E.{(t,~P)E,—P)'] implies the positive
definiteness of wy.g), their product has positive eigenvalues (Taussky (1968, p. 177)). This in turn

implies the second half of (31) (see Bellman (1970, Chapter 13, Theorem 1)). The last line in
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(27') becomes
(32) dwy Jdr = -w;;,'EdSS I, = -Wre exp[ —E{SS'Jwr oT]EASS Jexp[ —wrEdSS' Ir)wr o
which is equivalent to (30), since wy, = Wyo + § © dwy,,. Since the eigenvalues of wroErlSS']
are positive we may use Lancaster and Tismenetsky (1985, Chapter 12.3, Theorem 3) 1o
recognize § 5 exp[—EH[SS ‘Tws]EASS Jexp[ —wE{S8']s]ds as the unique solution X 1o
(33} E{SS'JwroX + XwrEdSS'] = EdSS].
It is clear by inspection that (33) has the solution X = w™'/2. Substituting this into (30) and
setting T = oo yields the first half of (31).

The first part of (31) has an interesting interpretation: under the conditions of Theorem
3, as 7o, the covariance matrix of W*[¥T,ya,-Y;) falls to 1/2 the covariance matrix of
h "[Y¢- Yl iﬁdicaling that the information content of data prior to time T is the same as the
information content of data after time T. Note that when {X,,Y } are conditionally multivariate
normal, the G(9) function of the optimal filter depends only on their conditional covariance
matrix. By (N, Theorem 3.1) this is true also when the data are generated by discretely observed
diffusion. As Haussmann and Pardoux (1986) show, the instantaneous covariance matrix of a
diffusion and its time reversed version are the same, so that the accuracy of 'filtering forward’
and ’filtering backward’ should be the same.® Theorem 3 extends this intuition to the case of
conditionally elliptically symmetric {X,,Y,}. This is definitely not true in for all near-diffusions:
for example if GARCH generates the data a2 can be extracted without error from lagged X’s,

but not from led X,'s—see Foster and Nelson (1994).

$) The drift terms, however, are not the same when time is reversed. If we considered the =3/4
case—we have not in this paper—the asymptotic bias terms in the filter would differ when time is
reversed. The optimal filter, however, would climinate this bias.
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An Example

We next consider smoothing for a stochastic volatility model from the options pricing
literature (Wiggins (1987), Hull and White (1987), and Scott (1987)), which has also received
considerable attention in the econometrics literature (e.g., Melino and Turmbull (1990), Jacquier,
Polson. and Rossi (1992), Ruiz (1994), Harvey and Shephard (1993), Kim and Shephard
(1993)). In this model, S, is a stock price and o, is its instantaneous returns volatility. We
observe {S,} at discrete intervals of length h. The model sets
34) dS, = uSdt + S,0dW,,, and
(35) dlin(e»)] = -Blin(e}) — aldt + ¢-dW,,,

where W, and W, are standard Brownian motions independent of (S,,0,) with

dwl.r 1 p
(36) [ dW“ dW,J] = dr.
daw,, : - p 1

4, ¥. B, and « are constants with >0. NF derived the asymptotically optimal filter for this
model: Defining x, = In(S) and y, = In{0?), we first rewrite the model as

(34) dx, = (x — exp(yy/)h*~'dt + exp(y/2)dW,,,

(35°) dy, = =8y, — oh®dt + ¥-dW,,

We have added the h*~! terms to allow the possibility of 'fast’ drift.® The steady state optimal
filter was developed in NF Théorem 4.4. Since this is a diffusion model satisfying the conditions
on N Theorem 3.1, the asymptotic results are the same as for the model

(34" x.p = X+ (& — exp(y)/2yh* + hI%E, .,

6) This illustrates the arbitrariness in the fast drift case §=3/4: if we had introduced fast drift in (34)
and then transformed, the drift in (34°) would have been [uh*~'—exp(y,/2)] instead of (r—exp(y/2)Ih*~".

13



(35"} Yen =Y~ Bly. — a]'hl + hlnsy.nhv where

Eiron N 0 exp(y,) ¥ pexp(y/2)
37 | x.y| -
S P o |veewoyy ¥
Routine calculations now yield P, = ¥pky . eXP(—Y:/2), Sion = [£1. exp(—y,)—-1DIZ,
EfSY = 172, E[¢},-PY] = ¥*(1-p?), and E{PS] = 0. If we initialize the filter at time T with
asymptotic variance Vp, the optimal G() function is

(38) GkrionXaYoT.?) = Yok, Xp(=¥./2) + w[E o exp(—y)—DI2,

where 7 = h~"2(t-T). The solution w, of the Riccati equation can be shown to be

2 M sinh(M<)+cosh(M<) V.
2 Mcosh(Mt) +sinh(Mt) V.

(39 w, = 2M

where M = n,&[(l-p’)ﬂ]”? As 700, w, = Y[2(1-p)]'?, the steady state solution derived in NF
Theorem 4.4. (NF reported the asymptotic variance of h~"[3%-¢%], but it is easy to arrive at our
w, by the delta method.) If we initialize the filter at time T with the steady state covariance
[2¢*(1-pH)}'?, then by Theorem 2,

wy, = [2(0-0D1'"%,
40)  wy, = (20 —pH]'Y exp(—[(1 —p?)/2)"?Y7), and

Wy, = [(1=pD21"[1 + expl—[2(1—p)]"Y1]] = w2 = VI(1-p))/2]'? as r+o0,
so after time T,
(1) fon = 5. = Bl7—al'h® + h'2ypd, .,y exp(—§/2)

+ (201 = N M E . exp(=5) - DV2]

(42) 3T, = 37 + W0y [ exp(—5)-112)

= ¥ + WPRA-M"Y exp(—[(1—p)/21"2h " 2(-THIEL a- exp(=3) —1))2]

14



REFERENCES

ANDERSON, B. D. O. and J. B. MOORE (1971): Linear Optimal Control. Englewood Cliffs,
NIJ: Prentice Hall.

ANDERSON, B. D. O. and J. B. MOORE (1979): Optimal Filtering. Englewood Cliffs, NJ:
Prentice Hall.

BELLMAN, R. (1970): Introduction to Matrix Analysis, second edition. New York: McGraw Hill.

FOSTER, D. P., and NELSON, D. B. (1994): "Continuous Record Asymptotics for Rolling
Sample Variance Estimators,” Working Paper, The Wharton School.

GELB, A., J. F. KASPER, Jr., R. A. NASH Jr., C. F. PRICE, A. A. SUTHERLAND IJr.
(1974): Applied Optimal Estimation, Cambridge, MA: M.L.T. Press.

HARVEY, A. C., and N. SHEPHARD (1993): "The Econometrics of Stochastic Vclatility,"
forthcoming, Review of Economic Studies.

HAUSSMANN, U. G. and E. PARDOUX (1986): "Time Reversal of Diffusipns." Annals of
Probability, 14, 1188-1205.

HELLAND, . S. (1982): "Central Limit Theorems for Martingales with Discrete or Continuous
Time." Scandinavian Journal of Statistics, 9, 79-94.

HULL. J. and A. WHITE (1987): "The Pricing of Options on Assets with Stochastic Volatilities."
Journal of Finance, 42, 281-300.

JACQUIER, E., N. G. POLSON, and P. E. ROSSI (1992): "Bayesian Analysis of Stochastic
Volatility Models," forthcoming, Journal of Business and Economic Statisfics.

KAMIEN, M., [, and N. L. SCHWARTZ (1981): Dynamic Optimization: The Calculus of
Variations and Optimal Control in Economics and Managemens. New York: North
Holland.

15



KARATZAS, L. and S. E. SHREVE (1988): Brownian Mortion and Stochastic Calculus. New
York: Springer Verlag.

KIM, S. and N. G. SHEPHARD (1993): "Stochastic Volatility: New Models and Optimal
Likelihood Inference,” working paper, Princeton University.

LANCASTER P., and M. TISMENETSKY (1985): The Theory of Matrices, second editicn. San
Diego, CA: Academic Press.

MELINO, A. and S. M. TURNBULL (1990): Pricing Foreign Currency Options with Stochastic
Volatility," Journal of Econometrics, 45, 239-265.
NELSON, D. B. (1992).: "Filtering and Forecasting with Misspecified ARCH Models 1: Getting
the Right Variance with the Wrong Model,” Journal of Econometrics, 25, 61-90.
NELSON, D. B. (1994): "Asymptotic Filtering Theory for Multivariate ARCH Models," working
paper, University of Chicago GSB.

NELSON, D. B., and D. P. FOSTER (1994): "Asymptotic Filtering Theory for Univariate ARCH
Models," Econometrica 62, 1-41.

RUIZ, E. (1994): "Quasi-maximum Likelihood Estimation of Stochastic Volatility Models,"”
Journal of Econometrics, 63, 289-306.

SCOTT, L. O. (1987): "Option Pricing when the Variance Changes Randomly: Theory,
Estimation, and an Application,” Journal of Financial and Quantitative Analysis, 22, 419-
438.

TAUSSKY, O. (1968): "Positive-Definite Matrices and Their Role in the Study of the
Characteristic Roots of General Matrices,” Advances in Mathematics, 2, 175-186.

WIGGINS, J. B. (1987): "Option Values under Stochastic Volatility: Theory and Empirical

Estimates,” Journal of Financial Economics, 19, 351-372.

16



