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ABSTRA

We examine the small sample properties of the GMM estimator for models of covariance
structures, where the technique is often referred to as the optimal minimum distance (OMD)
estimator. We present a variety of Monte Carlo experiments based on simulated data and on the
data used by Abowd and Card (1987, 1990) in an examination of the covariance structure of
hours and carnings changes. Our main finding is that OMD is scriously biased in small samples
for many distributions and in relatively large samples for poorly behaved distributions. The bias
is almost always downward in absolute value. It arises because sampling errors in the second
moments are correlated with sampling errors in®the weighting matrix used by OMD.
Furthermore, OMD usually has a larger root mean square error and median absolute error than
equally weighted minimum distance (EWMD).

We also propose and investigate an alternative estimator, whichﬂwe call independently
weighted optimal minimum distance IWOMD). IWOMD is & split sample estimator using
scparate groups of observations to estimate the moments and the weights. IWOMD has identical
large sample properties to the OMD estimator but is unbiased regardless of sample size.

However, the Monte Carlo evidence indicates that IWOMD is usually dominated by EWMD.
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I. Introduction

Generalized method of moments estimators (GMM) have desirable asymptotic properties
in many contexts but litle is known about their small sample properties. In this paper we
examine the small sample properties of GMM for models of covariance structures.! Sometimes
models of covariance structures arise because a researcher is directly interested in the variances
and covariances of an unobserved variable and has multiple measurements of the moments,
possibly from different samples or from different years. Sometimes they arise because the
researcher is estimating a model of the effects of a set of unobserved variables on the conditional
mean of a set of observed variables. The model restricts the second moments of the data.? In
these contexts, GMM minimizes the weighted distance between sample moments and the implied
population moments, where the weighting matrix is the inverse of a consistent estimate of the

covariance matrix of the sample moments. It is often referred to as the optimal minimum

1 Malinvaud (1970), Chamberlain (1984) and especially Hansen (1982) are standard references on the large
sample propertics of GMM estimation in a variety of contexts but do not consider small sample properties. Tauchen
(1986) examines the use of GMM to estimate parameters of nonlinear models of conditional means with endogenous
variables in time series data. Horowitz and Neumann (1992) present a second order correction for bias in a GMM
based test statistic of the proportional hazards assumption in duration analysis. They focus on problems related to
Jensen's inequality that arise when one ignores estimation error in using weighted averages of nonlinear functions
of estimated parameters (the model residuals in their case), Neither these studies nor a handful of other recent
working papers referenced in Ogaki (forthcoming) maise the issue of bias from correlation between the moments
under study and the weighting matrix, which is our focus. Very little research little theoretical research has been
done on small sample approximations to GMM, particularly for models of second and higher order moments.
Koenker, Machado, Skeels and Welsh (1994) provide a theoretical analysis of small sample properties of GMM i
a somewhat different context than ours but focus on efficiency rather than bias. They suggest the use of robust
estimation methods as an alternatives based on robust estimators rather than the least squares criteria that underlies
conventional GMM. Areilano and Sargan (1992) discuss alternative small sample approximations (o the distribution
of estimators that may be written as functions of second moments, with references to earlier papers, but do not apply
the approximations 1o the class of problems we consider.

2 See for example, Abowd and Card’s (1987) study of contract models of employment and eamings growth, Hall
and Mishkin's (1982) and Altonji, Martins and Siow's studies of the permanent income hypothesis, Behrman,
Rozenzweig and Taubman's (1992) study of the effects of individual endowments on eamings, own schooling, and
spouse’s schooling, or Griliches (1979) survey of sibling models.
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distance estimator (OMD). Our study is motivated by the fact that several authors report
difficulties in empirical applications based on OMD estimation of covariance models, including
Abowd and Card (1989) and Altonji, Martins and Siow (1987).3

We present Monte Carlo evidence on the relative bias, variance, root mean squared error
and median absolute error of the equally weighted minimum distance (EWMD) and OMD
estimators for a set covariance models. To isolate the weighting procedure as the sole source of
bias, we focus on linear models of covariance structures, although many of the issues carry over
to nonlinear models of population moments. Our main finding is that OMD is seriously
downward biased in absolute value in small samples for many distributions and in relatively large
samples for poorly behaved distributions. The theoretical analysis of a specific model indicates
that the bias is downward for most distributions in encountered in economics.* The bias arises
because sampling errors in the second mements are correlated with sampling errors in the
estimate of the covariance matrix of the sample moments. The latter is the weighting matrix for
OMD. Furthermore, OMD usually has a larger root mean square error and median absolute error
than EWMD, although the ranking depends upon the details of model and the characteristics of
the data sample. Our general finding is that OMD outperforms EWMD in root mean squared

error only in situations in which the root mean squared error of both estimators is small. This

3 Finance is an area in which GMM bhas been widely adopted and researchers routinely work with models of
higher moments. Lehmann (1990, p 84, 92) reponts difficulties in using OMD to combine information -from
subsamples using an estimated weighting matrix. Shanken (1990) estimates models of the mean and variance of the
tewurn on portfolios by ordinary least squares. In his conclusion he notes that simultaneous estimation of the models
for the mean retum and variance offer advantages, but he reports in a footnoie that "Attemplts to incorporalte the
estimated residual variance relations in potentially more efficient WLS regression were unsuccessful and appear to
induce spurious associations that 1 do not fully understand.” Our analysis implies that serious biases might arise
in applying feasible GLS to Shanken's model.

_ *We provide an example which is biased upwards in absolute value but it involves a symmetric distribution over
finite support with most of the mass near the bounds of the support.
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is wue despite the fact that in a number of our experiments the theoretical advantage of OMD
is quite large. By comparing feasible OMD to OMD based on the theoretically optimal
weighting matrix, we show that estimating the weighting matrix typically involves a large
increase in sampling variance and in root mean square error.

Our strongest evidence in favor of EWMD over OMD is based on the data used by
Abowd and Card (1989, 1987). We begin with the "“stationary model” of the growth in log
eamings and log hours estimated by Abowd and Card and show that OMD leads to substantial
underestimates (in absclute value) of population second moments. Since the change in hours and
eamings probably are not covariance stationary, we also present a simulation in which we treat
the Abowd and Card data as the population and use the moments of that population to define a
model that is true by construction. We analyze the distribution of the various estimators by
drawing samples (with replacement) from the Abowd and Card population and computing each
estimator on the sample. The results strongly reinforce our main theme, which is that the OMD
estimator of covariance structures suffers from serious downward bias in absolute value and is
usually dominated by EWMD. The best choice for the Abowd and Card data is EWMD, which,
incidentally, is what they chose.

In addition to comparing EWMD and OMD we investigate an alternative estimator, which

5 Another example suggesting that our concems are empirically relevant is Schwert and Seguin (1990). They
analyze the covariance in stock market retumns in a micro econometric model relating the second moments of stock
portfolio retuns to a constant and a time varying measure of aggregate market volatility, They estimate the model
individually for each second moment from five size ranked portfolios (5 variances and 10 covariances) by OLS.
Then the OLS residuals are used in a Glejser style regression relating the square of the residuals (o the regressors.
Feasible weighted least squares is applied using the predicied values from the sccond stage regression. Ignoring the
aggregate market volatility regressor, the Glesjer procedure is equivalent (o estimating the variance of the sample
second moments using the average squared deviation of the second moments from their average. Twenty nine of
the thirty WLS coefficients are smaller in absolute value than the OLS coefficients even though both procedures yield
consistent estimates. This is what our analysis predicts. However, the difference in parameter estimates is not large
enough to cffect the conclusions of the paper.



we call independently weighted optimal minimum distance (IWOMD). IWOMD is a split sample
estimator that uses separate groups of observations to estimate the moments and the weights. The
random partitioning of the data breaks the sampling covariance between the moments and the
weights. Parameter estimates are computed separately for each partition, and then the estimates
are averaged to form a final parameter estimate. TWOMD has identical large sample properties
to the OMD estimator but is unbiased regardless of sample size. However, the Monte Carlo
evidence indicates that IWOMD is usually dominated by EWMD,

The paper is organized as follows, In Section II we illustrate the class of models we are
interested in with an example that underlies some of our simulations. We define the OMD and
EWMD estimators for the problem, and present some initial Monte Carlo evidence indicating that
OMD is downward biased. In section III we provide a theoretical discussion of the bias in OMD.
The discussion points to an inverse relationship between the size of the bias and the precision
in the second moments, which is strongly confirmed by the Monte Carlo evidence. In Section
IV we present the IWOMD estimator. In section V we present more detailed Monte Carlo
evidence on the performance of EWMD, OMD, and IWOMD. In section VI we present the
empirical example based on the data uscq by Abowd and Card (1987, 1989). In section VII we
consider statistical inference based on the usual asymptotic formula and on bootstrap methods.

We close the paper with a brief summary and a research agenda.

IL. Evidence Of Small Sample Bias in Optimal Minimum Distance
In the basic covariance model, multiple sample moments are combined into a single

estimate of the population moments. Our examples focus on linear models relating sample



variances (or covariances) to a single population parameter so that we isolate a particular source

of small sample bias. One has data observations D_;, where p=1,...,P indexes the variable used

pi’

to compute sample moment p and i=1,...,Np indexes the observations on that variable. For each

variable p, the mean and variance are computed using the standard formulas
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The second moment estimates are stacked into a (Px1) vector, m, and are related to a (Pxl)
vector of population moments, p, through the model

m= p+e= f(6) +€. (3)
In (3), 8 is the (Qx1) parameter vector one wishes to estimate and € is a (Px1) vector of sampling
errors.  When £(0) is linear in 8 the model is

m=X0+¢. : {4)
For example, suppose a researcher wishes te estimate a population variance from observations
on a panel covering ten time perieds. The vector m contains the ten estimates of the variance,
one from each time period. The matrix X is a (10x1) vector of ones, and 0 is the population
vaniance (a scalar). Equally weighted minimum distance (EWMD) amounts to a least squares
regression of m on X with the familiar solution

8ewmp = ArgMing (m - £(8))'(m - £(6)) (5)

= XXy Xm) .



The EWMD estimator is not efficient if the elements of € are heteroscedastic or correlated.
Heteroscedasticity may arise as a result of unbalanced data (Np may differ across p) or because

the distributions of the Dpi are different. The g will be correlated if Cov(D Dp'i) is not zero,

P’
which is likely in panel data applications. The variance of € is not a scalar matrix in these cases.
OMD takes this into account and is generalized least squares applied to (4). The covariance

matrix of ¢, £}, is replaced with a consistent estimate obtained from the same data used to

compute the sample second moments m. For example, a conventional estimator of the variance

of mp is
2 N N
var(m_) = P Y O, -D,)* -(— Y (D - D)% (6)
p (Np—l)(Np-z)z Np g pi p Np 15;'1: mn p

Comparable formulas exist for the covariance of second moment estimates. Let & represent the
estimated covariance matrix of m. The OMD estimator minimizes a quadratic form involving
the sampling error in the moments and the estimated covariance matrix. In other words,
8omp = ArgMing (m - £(8))’ it (m - £(8)) o)

= XXy X 1m

Malinvaud (1970), Chamberlain (1982,1984), and others show that under a relatively
innocuous set of conditions N1/2 Bomp - 9) =p N(O, F Q F) where F is 0f/00 evaluated at the
true 8 and that the OMD estimator is asymptotically efficient .

The replacement of © with a consistent estimate does not affect the asymptotic properties

of 8o)Mp. but the small sample distribution is another matter. Table 1 examines the EWMD and

6 The higher moments of D; may differ across p even if the M, are the same across p. When the elements of
X8 differ it is unlikely that the higher moments will be the same.
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OMD estimators of the ten variance model mentioned above based on several common
distributions and several sample sizes. We consider the case in which the data Dp; are
independent across i and p, which implies that the ten sample variances are independent. The
distributions were chosen to include thick tailed symmetric distributions (student t(5) and student
t(10)), long tailed asymmetric distributions (exponential and log normal), an asymmetric
distribution (half normal), a bimodal distribution, and several "well behaved" distributions
(normal and uniform).” All of the population distributions are scaled to have mean 0 and
variance 1. For each distribution, a fixed number of observations are drawn at random and used
to e'stimate the ten sample variances and their covariance. Both the diagonal and off diagona!
elements of € are replaced with sample estimates, even though the elements of m are
independent. This corresponds to the case in which the econometrician is unaware of the fact
that the moments are independent. The EWMD and OMD estimates are computed and the entire
process is replicated 1000 times.

The columns in the first panel of the table (rows 1 through 9) that are labelled "bias"
report the average of (8 - 0) from 1000 replications of the experiment based on 50 observations
per moment (Np=50, p=1....,10). The average of (Q - §) for the EWMD estimates (column 1) is
always near 0, demonstrating the lack of bias in EWMD. However, the bias in OMD (column
5) is always negative. When data are drawn from the standard normal distribution, the OMD
estimates have a bias of -0.074, or 7.4 percent of the parameter value of 1. The mean of OMD
when using data from the uniform distribution is still 0.013 below the true value.

The bias in OMD is larger for thick tailed distributions, which have higher fourth

7 The bimodal distribution is generated by using a binomial to randomize between two normally distributed
random variables. One has mean -2 and the other has mean 2; both have variance 1.
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moments and therefore have more variable second moments. To see this, note that the bias
declines with the number of degrees of freedom of the t distribution, and recall that the tails of
the student t distribution become thinner as the degrees of freedom increase and the distribution
approaches the normal. For example, when N is 50 the bias in the OMD estimator declines from
-.199 10 -.118 to0 -.100 as one moves from a t(5) distribution to a t(10) and then to a t(15)
distribution. The log normal and exponential distributions produce the worst bias. The bias is
-.616 and -.279 respectively when N is 50, which are very large relative to the true parameter
value of 1.

The remaining panels of the table repeat the experiment increasing the amount of data
used to estimate each moment. As N rises, EWMD remains unbiased and the bias in OMD
declines. The additional data improve the accuracy of the variance estimates and the accuracy
of the weights. This, in turn, improves the accuracy of the OMD estimator. For most
distributions the bias is very small when 1,000 observations are available to estimate each sample
moment. However, the bias is 23 percent in the log normal case even with 1,000 observations
per moment.

Table 1 suggest three conclusions. First, OMD is consistently and seriously downward
biased. Second, the bias dissipates with sample size. Third, the bias is worse in long tailed and
thick tailed distributions.

Since there is no heteroscedasticity or serial correlation in the experiments of Table 1, the
EWMD estimator is the optimally weighted estimator, and OMD and EWMD are asymptoticaily
equivalent. It is not surprising that EWMD out performs OMD in these cases. However, we

show in Section V that the three conclusions about bias hold when heteroscedasticity is



introduced by varying the distribution of the data within an experiment (Table 2) and when OMD
is used to estimate a parameter of the covariance matrix of a vector of correlated random

variables (Table 3).

III. The Source of Bias in OMD

Feasible GLS estimation, including OMD, is justified by its asymptotic propertics rather
than small sample properties. In the case of the lincar regression model, feasible GLS is
unbiased in small samples if the estimator of the weighting matrix is an even function of the
disturbances and the disturbances are from a symmetric distribution (provided that the mean of
the estimator cxists).8 Unfortunately, bias will arise in most cases in which the estimate of the
weighting matrix covaries with the regression model error.

This problem can be serious in the case of OMD estimation of covariance structure
models. From (7) the bias for fixed N is
E@omp -9 = E[ X&!xy! xdle] . (8)
In the OMD procedure, the sample estimate, ﬁ, of the covariance matrix of the vector of sample
moments, m, is the weighting matrix. The sample moments and their covariance are estimated
from the same data and the resulting estimates are correlated. Individual observations that
increase the sample estimate of a variance will also have an enlarging effect on the sample
estimate of the variance of the variance, implying that the elements of & and € are corrclated.

A-1

This creates a correlation between the elements of (X'ﬁ'lX)" X’ti"! and the elements of €. Thus,

the bias is non-zero even though the expected error in the moments is zero.

8 Kakawani (1967) discusses these conditions. When £ does not have to be estimated the concerns raised in
the present paper about bias are not relevant,
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The consequences of correlation between the weights and the errors is easily illustrated
in a model of independent but heteroscedastic sample moments. Let oy, be the estimated variance

of the plh element of m, my,. The bias of the OMD estimator may be written as

P
E@omp - ©) = E[(E] mp—l)-l El mp—l ef - )]
p=

The sign of the bias in 8y for a fixed sample size N requires an examination of the
expectation in (9). To provide intuition, treat the first summation as a normalization and focus
on the weighted sum of the g, in the second summation. The weight mp'l (proportional to the
inverse of the difference between the fourth moment and the square of the second sample
moment) tends to be small when there are unusual observations in the sample used to comput?:
the sample variance mp, while m, and its sampling error £, tend to be large. Consequently, the
estimator gives less weight to positive sampling errors in & than to negative sampling errors.
As a result, the bias is negative. Evaluating the expectation on the right hand side of (9} is
difficult because of the comrelation between the terms of the first and second summations,
However, the behavior of the probability limit of 85, as the numbcr. P of independent sample
variances of fixed sample size N goes to infinity may provide useful information about the bias
of 85 for a given sample size N, provided that P is large enough. Dividing each summation

by P, the probability limit of 6y, as P goes to infinity is
: _ = ~1,-1 -1
];-I:)l‘: Oomp - 9) E‘(mp ) E(mp e (10)

provided the expectations actually exist.

The random variable oy is greater than O with probability 1, and so the first exbectation
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in (10) is positive. Thus the sign of the bias depends on the sign of the second expectation.
Since oy is greater than 0 with probability 1, mp‘l is strictly decreasing in 0 This suggests that |
E(ep/wp) will be opposite in sign from E(epmp). although the monotonicity of the transformation

0)'1

b is not sufficient to guarantee this. That is, if Cov(ap,wp)>0 then E(ep/mp) is likely to be less

than O and the bias in OMD is negative. In the appendix we show that the term Cov(ep.mp) is
greater than 0 if the diswibution of (Dip2 - E(Dipz)) has a positive skew. This condition holds
for the standard distributions used in the economics literature, the distribution of the Abowd Card
data, and for all of the distributions used in Table 1. Thus, the analysis of (10) supports the
intuitive argument for a negative bias and the Monte Carlo evidence of Table 1.7 We provide
an example in the appendix in which Cov(ep,mp)d) and the bias in OMD is positive. The
example involves a symmetric distribution with finite support and most of the mass near the
minimum and maximum values.

What determines the size of the bias? The intuitive argument implies that it will depend
on the degree to which €, covaries with @, which suggests that the bias is lower for large N and
higher for distributions with larger higher order moments, since these affect Var(ep). To see the
dependence on N, note that standard asymptotic analysis of OMD examines the behavior of the
estimator for fixed P as N goes to infinity, and therefore implies that the bias in 85y, declines

with the sample size per moment. The distributions of w, and m, are implicitly indexed by N

9 Our simulation results using the Abowd and Card data described below and other unreported monte carlo
experiments indicate that OMD estimates of covariances, like variances, are often biased downwards in absolute
value. To get some insight into this, we have formulated a comparable model with m_ redefined to be the covariance
between two mean 0 random variables Zl and Y;. The sign of the bias continucs to depend on E( cnp) where
(e)p and w,, are defined from the model of covanances E(e /) is lxkelg' to be of opposite sign to Cov(e,,.

ne may show that Cov( ‘“p) has the same sign as E[ Z E(YZ))"]. Since the cross-products of posmvely
(negatively) correlated vanables are likely o have a positive (negative) skew, the simple theoretical analysis is
consistent with the simulation results.
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and the distribution of Dpi. As N goes to infinity, €, converges in probability to 0 and the
covariance between € and cop'l dissipates. Therefore E(ep/(op) normalized by E(l/(.op)'l
converges to 0. For a given N, Var(ep) and Cov(ep, mp) are positive functions of the higher
moments of the distribution, leading to larger bias for distributions with larger higher order
moments. The bias may be small in situaticns in which the sampling errors €, are small, either
because N is large or because the underlying distributions are well behaved. However, in these
situations any improvements in precision from using OMD are also likely to be small in absolute
magnitude.  In Figure 1, we examine the implication that there is a relationship between
Var(e) and the bias, E(Bgpp - 6), by plotting the theoretical standard deviation of the sample
variance against the bias of 8gp for the Monte Carlo experiments of Table 1. Recall that in
Table 1 the data underlying each of the P moments used to estimate 8 are drawn from a single
distribution.'® The figure shows a strong negative relationship between the bias in 8y, and
the standard deviation of the sample variances used by OMD to fit 8.1! The solid regression
line in the figure has a slope of -0.46 and an adjusted R-squared of 0.95. As the sample size
declines and as the fourth moment of the underlying distribution increases holding the second

moment fixed, the variance of the variance increases and the bias becomes worse. The tight fit

in the figure suggests that the simple relationship between the bias and the theoretical standard

1% The theoretical standard deviation is the square root of the variance of the variances and is computed from
the sample size and the population moments of the particular distribution. The bimodal and half normal distributions
are omitted from the lable as we have not calculated the theoretical variance of the variance in these cases.
Exclusion of the points comresponding to the fog normal with 50 observations and the log normal with 100
observations, in which the theoretical standard deviation is much higher than the other cases (1.1 and 1.5
n;spgesctively). produces a regression equation of Bias = .03 - .56 (S1andard Deviation) with an adjusted R-squared
of 95,

1 Note that in Table 1 the bias is larger in the exponential case than in the 1(5) even though the two distributions

have identical fourth moments. This provides limited evidence that the skewness of the distribution, as well as the
variance of the second moments, affects bias.
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deviation holds regardless of whether the variation in the theoretical standard deviation is due to
variation in the distribution across experiments or due to variation in sample size across

experiments.

IV. An Unbiased OMD Estimator

The bias in OMD arises because of a correlation between sample moments and the
estimated weighting matrix . Cormections based on bias approximations are cumbersome.
However, (8) suggests a direct way to attack the source of the bias. Observe that estimates of
the second moments based on part of the sample are statistically independent of estimates of the
weighting matrix based on the other part.m3 Randomly partition the full data sample into
G groups of equal size. Let the (Px1) vector ny and the (PxP) matrix ﬁg be the sample estimates
of n (recall that p=f(8)) and Q using only the data in group g. Let M) and ﬁ(g) represent

estimates based on the data excluding group g.14 Define the independently weighted optimal

12 In some applications the observations are dependent within clusters and are independent across clusters. For
example, data may be available on several members of the same family or several students from the same school.
In this case the sample separation should be based on clusters of observations.

13 Splining the sample 10 break statistical dependence is not a new idea in econometrics, Another recent
example is Angrist and Krueger (1994) who use a split sample approach to address bias in instrumental variables
estimation.

14 Since the mean of the data typically is not known, the data are often centered prior to applying EWMD,
OMD, or T'WOMD either by simply taking means or by a multivariate regression using the full sample, The
estimates m_ and {},_, will be dependent if a single sample mean (or regression function) is used to center the data.
Consequentfy. IWO(ﬁD is not unbiased in small samples unless the data are centeced separately for partition g and
(g) with an appropriate degree of freedom adjustment in computing m, and i} y When we refer to TIWOMD as
unbiased, strictly speaking we are referring to the estimator where either the mean is known or the data are centered
separately.

Estimation of the mean has no asymptotic effect because the mean coaverges more rapidly than the higher
moments. Researchers often ignore the effects of estimating the means in actual applications. However, our
simulations (not reported) indicate that the bias due to correlation through the mean may be substantial if the sample
size is small and the distribution is heavily skewed, such as the log normal and the exponential distribution. Use
of a single mean to center the data produces positive bias in the IWOMD estimatoer.
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« . . - . . fa)
minimum distance eslimator GIWOMD(G) as the split sample estimator that uses each mg and Qg
pair to produce G separate parameter estimates, which are then averaged. The formal definition

of the independently weighted estimator (IWOMD) is

G
Orwompie) = 5 X2 AreMing (mg=f@) 0 (my-1@) an
g:

For f(8) linear in 8, each term in the average is free of small sample bias because the
sampling errors in the estimates of p and £ are independent. Hence the average is unbiased,
In the linear case, 8yp and By opp(G) are asymptotically equivalent estimators. This is easily
demonstrated using (11). The basic argument is that the ﬁ(g) and i used in OMD all converge
to £2. When ﬁ(g) is set to Q for all g, Brwomp is rumerically identical to OMD based on the
true 2. Consequently, Opwopp has the same limiting distribution as (feasible) OMD.

In Table 1 we report simulations of By opp analogous to those of Bgynp and Bopp

15

discussed above. We set G=2 throughout the paper.’” The results in column 9 confirm that

OrwomMp is unbiased.

15 we investigated whether the number of partitions G matters much. Our inilial intuition was that when £(8)
is kinear it is best to set G relatively large, since this should provide the most precise estimate of § for each
observation g. The number of groups affects the estimation by trading off the precision of the moment estimates and
the weighling estimates. The precision loss in the moment estimates due to increased G is offset by the averaging
of the parameter estimates as the last step in the procedure. The efficiency gain in estimating the weights tapers off
quickly. An increase in G from 10 to N results in at most a 10 percent increase in the size of the samples use to
compute £, When £(6) is nonlinear in 0 the average of the estimaltes of © based on each of the subgroups of
observations may be biased as a consequence of Jensen's inequality, One could use IWOMD (o estimate the most
festrictive linear model that nests the nonlinear model, and then to use EWMD to fit the nonlinear model to the
parameter estimates of the linear model. In our Monte Carlo simulations (not reported) we compared the
performance of the estimator with using 2, 5, 10, 25, and N groups when the data are not centered separately for
each partition. The simulation results suggests that in most cases performance is not very sensitive o choice of G.
However, we choose G=2 out of a concern that in actual applications centering the data separately for each partition
may cause problems when N is small and G is as large as 10.
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V. Evaluating the Performance of EWMD, OMD and IWOMD
In this section we provide a broader assessment of the performance of EWMD and OMD.
We consider the bias, root mean square error, median absolute error and standard deviation of

the estimators. !

We begin with the Monte Carlo experiments in which a variance parameter
is estimated from sample moments that are drawn from identical distributions. Second we
consider cases in which a variance parameter is estimated from moments drawn from different
distributions. Third we consider a case involving correlated moments. We defer discussion of

TWOMD until the end of the section.

V.l Models with identically distributed moments

In Table 1 we report the standard deviation (Std), root mean squared error (RMSE) and
median absolute error (MAE) of EWMD and OMD estimators of the variance parameter 6 as
well as the bias. In these experiments EWMD is OMD based on the true weights. The table
shows that OMD is not only biased, but always has a RMSE and MAE that are as large or larger
than EWMD . For example, in the case of the t(5) with 50 observations the bias in OMD is
-0.199. It has an RMSE of 0.223, about double the RMSE of EWMD.

Given that EWMD is “true” OMD in these experiments, it is initially surprising that for
the t(5) and the log normal cases, OMD has a smaller standard deviation than EWMD. The
source of bias in OMD—the correlation between the weight and the second moment—is expected
to reduce the sampling variance of OMD when the kurtosis of the underlying data is large

(Koenker et al, 1994). These are typically the cases where bias is large.

¥6 Although not reported in tables I, 2 and 3, we have also computed the S and 95'® percentile values of the
empirical distribution of each estimator. The values confirm that the distribution of the OMD cstimator is shifted
to the left relative to the location of 8, and that the OMD estimator often has a tighter distribution than EWMD or
IWOMD. See table 4 for limited evidence.
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V.2 Fitting Variance Parameters to Second Moments Based on Different Distributions

In Table 2 we report Monte Carlo experiments when 5 moments come from one
distribution and 5 from another. We report the bias, standard deviation, RMSE, and MAE of
6omp: Since Bgymp and Oryomp are unbiased estimators, there is no difference between the
standard deviation and RMSE. Therefore we only report the RMSE and MAE for these
estimators. In column 11 we present the theoretical asymptotic variance of EWMD relative to
OMD for each experiment. The values range from 1 when the exponential and t(5) are paired
to 35.7 when the log nommal and the uniform are paired. There are a number of general
conclusions from the table. First, the bias in OMD is serious when the sample size is relatively
small and at least one of the distributions is badly behaved. For example, in row 6 we set N to
50 and drew five moments from a normal distribution and five from a t(5) distribution. While
the theoretic asymptotic efficiency of EWMD relative to OMD is 1.56, OMD estimation imparts
a bias of -.132. The ratio of the observed variance of EWMD to the observed variance of OMD
is only 1.12, so the theoretical efficiency gain is not realized either. The log normal-uniform case
is another example. In this case the bias in 85p4p is -.246 when N is 50 and -.026 when N is
300. When both distributions are badly behaved, the bias is severe for small sample sizes, as
evidenced by the log normal-exponential cases and the t(5)-exponential cases. This result is not
surprising given the results of Table 1.

Second, EWMD frequently outperforms OMD in RMSE and MAE when both distributions
are badly behaved.!” EWMD does significantly worse than OMD in RMSE only when a very

well behaved distribution (the uniform) is paired with badly behaved distributions such as the log

17 For example, consider the exponential-1(5) for all sample sizes and the log normal-$(5) and expenential-log
normal when N is SO0 or less.
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normal, the 1(5), or the exponential. In most of the remaining cases EWMD dominates OMD in
RMSE and MAE. We also find that the relative performance of OMD improves substantially
with N for pairs of distributions that imply a large superiority for OMD in asymptotic
efficiency.!® This makes sense, because the bias falls and the accuracy of the weights
improves with N. Of course, the improvement with N is not a strong point in favor of OMD,
because when N is large the choice of estimator makes less difference in absolute terms.

Figure 2a summarizes the evidence on this point. For the simulation experiments of Table
2 with similar theoretical efficiency gains (between 1.125 and 1.5) we plot the bias squared (solid
line) and difference between the variance of EWMD and OMD (dashed line) against the average
variance of the sample variance. The MSE of the estimators are the same where the two lines
intersect. For a fixed efficiency gain, the OMD bias increases much faster than the difference
in variance as the precision of the sample moments increases. The figure suggests that the
realized efficiency gain of OMD dominates the bias only for very well behaved distributions with
smali fourth moments. In Figure 2b we exclude experiments with high values for the average
variance of the sample variance to be sure that these are not dominating the figure. Figures 2¢
and 2d are analogous to 2a and 2b (respectively) but consider cases in which the theoretical
efficiency gain is between 3.03 and 4.04.1% The story is the same in all four figures.

The figures as well as the detailed results in the tables suggest that the advantage of OMD

in RMSE over EWMD (when there is an advantage) is usually only a small fraction of the

18 For example, compare the RMSE and the standard deviations of EWMD and OMD as N increases from 50
to 1000 in the log normal- normal case in rows 31-35 and in the exponential-uniform case in rows 96-100.

9 The pairs of distributions are the uniform-t(5), the uniform-exponential, the ¥(5)-lognormal, and the
exponential-log normal.
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theoretical advantage. To get further insight we compare the performance of feasible OMD 10
the performance of "true” OMD based on a known, optimal weighting matrix {columns 9 and 10
of Table 2). When the sample size is 100 or more, the efficiency of EWMD relative to true
OMD is close to the value implied by the asymptotic theory.20 However, when the sample size
is 300 or less, the RMSE of OMD is usually substantially larger than the RMSE of true OMD.
The gap in RMSE between OMD and true OMD arises both because of bias in OMD and
because in most cases OMD has a higher sampling variance. Both bias and sampling variance
are more important when the theoretical efficiency gain from OMD is high (e.g., the log normal-
normal and log normal-uniform cases.) Bias is more important when the theoretical efficiency
gain is low but the distributions are badly behaved (e.g, the exponential-t(5).)

The high cost of estimating the weighting matrix suggests that there are large gains from
a priori information about the relative precision of different sample moments. A dramatic way
to make this point is to note that in some situations, researchers would be better off "throwing
away" some moments rather than including them with estimated weights. For example, the OMD
estimator in the log normal-normal experiment with 100 observations has a bias of 0.188 and a
RMSE of 0.227. EWMD also has a large RMSE in this case. If the 5 moments based on the
log normal are ignored and only the 5 moments based on the normal random variables are used
in OMD estimation, the bias and RMSE fall to .03 and .005 respectively. The optimal weights
are close to \zero for the log normal data. Prior information that one distribution is "bad" and the

other is "good” could lead to a substantial improvement in OMD relative to EWMD. However,

#0When N is 100, and the normal-i(5) pair of distributions are used, Var(8gypp)/Var(8gyp) is 1.57 while the
asymptotic ratio is 1.56. For the uniform-1(5) the corresponding ratios are 3.432 and 3.025. In the log normal-
normal case the ratios are 16.25 and 14.59, We obtain the variances from columns 1 and 4 of Table 2.
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estimating the weights leads to bias and in most cases a higher RMSE in OMD than EWMD.
V.3 Experiments involving Correlated Moments,

We next consider the behavior of the estimators when the sample moments are correlated.
There are two conclusions from this discussion. The efficiency gains become substantial only
when the correlations (or covariances) contain information on the parameters and the correlations
are included in the model. Second, EWMD continues to dominate OMD. Third, increasing the
size of the model while holding constant the number of moments that contain information on a
given sample moment leads to additional small sample bias.

Since the efficiency gains of OMD are surprisingly small when the moments are
homoscedastic (but correlated) unless there are restrictions across the parameters of the mode!,
the interesting model for OMD involves correlated moments where the structure of the correlation
is known and aides in the identification of the paramf:ter.21 Generate Dp = (Zp + prH) [t
+p)%5 for p = 1 to 10 from a set of mean 0, variance 6, i.i.d. random variables Zy,....Zy,. The
D variables are mean § with variance 6, but Dp and Dpﬂ have a covariance of 9pl(l+p2). We

assume p is known, so the 10 sample variances and 9 first order autocovariances are functions

u Suppose one is estimating the variance of the annual change in eamings from a 10 years of panel data under
the assumption that the variance in the change in earnings is the same in the 10 years. This model for the eamings
variance is a subset of the stationary model we investigate using the Abowd and Card data below. Serial correlation
in the data will produce a corelation in the variance estimates from adjacent years. However, a correlation of 0.5
in the sample variances from adjacent years produces an efficiency gain of only 4 percent when the underlying data
are normally distributed. (The efficiency gain depends on the distribution and is lower for badly behaved
distributions.) Simultaneous estimation of a parameter for the earnings variances and a parameter for the first order
autocovariances without restrictions across parameters does not alter the theoretical efficiency gains. For example,
in the context of Abowd and Card’s "stationary model” discussed below, it appears that there is no gain in asymptotic
efficiency from simultaneously estimating the parameters of the model, which is standard practice. We should note
that we derived the theoretical efficiency gains for a case in which the sample variances are homoscedastic and the
covariances are homoscedastic. This does not rule out the possibility that when there is heteroscedasticy as well as
serial correlation, ther simultaneous estimation of the parameters of the stationary model leads to efficiency gains
over scparate estimation of the individual parameters from the moments directly relevant for the individual
parameters.
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of the single unknown population variance 8, which is set to 1 in our experiments. The mix of
variances and covariances in the vector of sample moments, m, implies heteroscedasticity in
addition to serial correlation.

Table 3 contains the simulation results from this model applied to a variety of
disuibutions, sample sizes, and implied values for Cov(Dp, Dp+|). The last column of the table
reports the theoretical efficiency of EWMD relative to OMD and suggests that the relative
efficiency gain from OMD is larger when the Zp are from a well behaved distribution. For
example, in the log normal case the relative efficiency is 1.08 when Cov(Dp.DpH)=.5. while in
the normal and uniform cases relative efficiency is 1.42 and 1.78. We were surprised by the
extent to which the relative efficiency depends on the distribution of the Zp given that the
distribution is the same for all ten random variables.

The results confirm our earlier finding that the bias in OMD is larger when the sample
size is small or the distribution is poorly behaved. For example, in the log normal case when
the sample size is 100 and p is .5, the bias is -.551, while the bias is -.074 in the corresponding
case for the normal. In the log normal case with N=300 and p=.5, the bias falls to -.338 (row
69). The table also shows that OMD is not only biased, but has a higher RMSE and MAE than
EWMD in every case except those involving the uniform with N greater than 100. In summary,
the experiments with correlated data reinforce our other experiments.

A comparison of the experiments in Table 1 with the experiments in Table 3 when p=0
provide some information about whether the size of the model, holding constant the amount of
information on a particular population moment, affects the bias in OMD that arises from

estimation of 2. When p=0 the experiments in Table 3 differ from those in Table 1 only in the
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fact that the dimension of m and X is 19x1 in Table 3 and 10x! in Table 1. In Table 3 the 9
elements of X corresponding to thc.Cov(Dp, Dp+l) are 0. Since Q is diagonal when p=0, the
OMD estimators of Var(D) with and without the 9 covariances are numerically identical if the
true Q is used.?? In practice, the bias in 8oMp is worse for every distribution and sample size
that we checked, including all of those that appear in both of the tables. For example, the normal
case when N is 50, the bias is -.074 in Table 1 (see row 4, column 5) and -.140 in Table 3 (row
31, column 3). In the exponential case when N is 50 the bias is -.279 in Table 1 and -.387 in
Table 3. Evidently, the additional elements of {2 and € add to the problem of bias arising from
covariance between {i and . These results are obviously limited to the experiments we
performed, but provide some suggestion that researchers should avoid unrestricted estimation of

the weighting matrix Q in large models.

22 Let e, denote the sampling error vector of the 10 variances and e, denote the sampling error vector for the
9 covariances. Let £, denote the 10x10 upper left submatrix of Q2 corresponding to var(m,) and Q_ denote the 9x9
lower right submatrix of £2 corresponding to var(m_). Let 919 be the estimator based on m, and m, and let 910
be the estimator based on m, only. The sampling error in 8, is

8 -0 = (X, 007X a)'x! oae €y

The sampling error when only m,, is used (Table 1) is
!/ a-l -1/ a-l
Bip -0 = [X, Q, X, X, Q. ¢,

Since the variances and covariances are uncorrelated when p=0, {2 is a block diagonal matrix. Consequently, when
the true €1 is used

-1
-t -1
Q 0 |Ix Q 0 |[le
By - [xj 0] ) ["} [xj 0] ) 1[1
0o o'|Lo o olle
I -1 - -
=x! ot xyix! e,
=®y - 9

Thus the "wrue OMD" versions of the two estimators are numerically identical,
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V.4 The Performance of IWOMD

We have already noted that the experiments with independent, homoscedastic moments
in Table 1 confirm that IWOMD is unbiased. We now provide a broader assessment of the
performance of this estimator. Columns 9-12 of Table 1 report the bias, standard deviation,
MAD, and RMSE of IWOMD for the homoscedastic model. The MAE and RMSE of IWOMD
are less than or equal to that of OMD in 33 of 36 cases and 30 of 36 of cases respectively. For
the t(5) distribution with 50 observations the MAE values are 0.201 for OMD and 0.125 for
IWOMD. The RMSE values are .223 and .202 respectively. On the other hand, the RMSE of
the IWOMD estimator is always greater than EWMD.

Comparison of the RMSE and MAE between EWMD and IWOMD provides evidence of
the cost of estimating the weighting matrix that is uncontaminated by the correlation between the
weights and the second moments. For poorly behaved distributions and small sample sizes, the
costs can be quite large. For example, for the t(5) distribution with N=50 the median absolute
error for EWMD is .071 and .125 for IWOMD, The difference corresponds to an increase of
more than 75 percent and the RMSE rises from .125 to .202. The difference dissipates as sample
size increases but there is still a 50 percent difference in RMSE for the same experiment using
500 observations to estimate each moment.

In Table 2 we report Monte Carlo experiments for IWOMD based on ten moments from
two different distributions. The detailed results show that IWOMD never outperforms EWMD
in RMSE or MAE when N is 50 or 100. As the sample size increases the two estimators
perform similarly, with TWOMD having an advantage in larger sample sizes for pairs of

distributions that imply a substantial asymptotic efficiency gain for IWOMD and OMD. The
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sampling variance of IWOMD is larger than OMD even though the asymptotic variances of
IWOMD and OMD are identical. As in the single distribution case, the cost of estimating the
weighting matrix is high. The experiments based on serially correlated data in Table 3 show that
IWOMD often dominates OMD in MAD and RMSE but usually does not perform as well as
EWMD unless the efficiency gain is above 1.4 and the sample size is above 300. In the
experiments based on the Abowd and Card data IWOMD performs much better than OMD but
is dominated by EWMD.,
V.5 Summary

The experiments based on independent and homoscedastic second moments in Table 1,
moments from 2 different distributions in Table 2, and correlated moments in Table 3 all indicate
first that 8q)¢p suffers from serious small sample bias in many cases, second that it is almost
always dominated by Ogynyp in RMSE and MAE, and third that there is a large cost to having
to estimate the weighting matrix, gy also typically dominates 8p,qpm, Which is unbiased

but has a larger sampling variance.

VI. An Empirical Example
It is difficult to know what to assume about the data and models used in practice.
Therefore we supplement our Monte Carlo analysis by applying the various estimators to Abowd
and Card’s (1987, 1989) analysis of the covariance of changes in log carnings and changes in log
hours from the Panel Study of Income Dynamics. The data are based on an eleven year (1969-
1979) sample of male heads of household. The sample consists of 1536 individuals with

compiete data for the period, annual hours continuousiy above 0 but less than or equal to 4680,
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and average hourly wages continually less than $100.23  All dollar values have been adjusted
to 1967 levels using the Consumer Price Index. Log hours and log earnings are adjusted for
labor market experience and year effects prior to computing variances.?*

The assumption of stationarity in first differences implies that the autocovariances and
cross covariances do not depend on time. The raw data for 1969-1979 provide 10 observations
per person on the changes in log eamings and in log hours. There are 210 unrestricted morment
estimates for various years and lags (10 hours variances, 45 hours autocovariances, 10 earning
variances, 45 hours autocovariances, and 100 hours/earnings covariances). The stationary model
has 39 unique parameters (1 hours variance, 9 hours autocovariances, 1 eamings variance, 9
earnings autocovariances and 19 hours/earnings covariances). Table 4 presents the EWMD and
OMD estimates of the covariance at time lags of 0, 1 and 2. The results of Abowd and Card are
presented as well.

The difference between EWMD and OMD is striking. There is a systematic tendency for
the absolute value of the EWMD estimates to exceed that of the OMD estimates. For example,
the OMD estimate of the variance of the change in log earnings is .086, which is less than half
of the EWMD estimate. The OMD estimate of the covariance of the change in hours and the
first lag of the change in log camings is .026 which is less than a third of the EWMD estimate

of .080. Altonji, Martins and Siow (1987) report the same phenomena for similar data on

% In constructing our sample we followed the data appendix in Abowd and Card (1987), who worked with
sample size of 1448, With their assistance we attempted to track down the differences between their sample and
ours. We gave up after a modest effort because the EWMD and OMD estimates are very similar for the (wo
samples. We thank John Abowd and David Card for their assistance.

24 The adjustment consists of scparate regressions of the change on log eamings and the change in log hours

on the 196_7 potential experience level (age - education attainment - 5) and time dummies. The remainder of the
procedure is performed using the residuals from the experience regression, which now have mean zero.
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earnings and hours as well as for data on changes in family income, wage rates, consumption,
and the hours of unemployment. The fact that the OMD estimates are consistently below the
EWMD estimates in absolute value is disturbing.

Note however that the IWOMD estimates are somewhat smaller in absolute value than
EWMD despite the fact that both estimators are unbiased. This may indicate that the
covariances are in fact nonstationary, since in the nonstationary case the true weights are likely
to be positively related to the absolute values of the variances and covariances. As a result,
OMD and IWOMD produce weighted averages of the true variances and covariances that will
be less than the simple average produced by EWMD.

We would like to compare the three estimators using a model of the Abowd-Card data
that we know is true by construction. To this end, we perform an experiment in which we treat
the Abowd-Card sample as a population and re-sample from it with replacement. We specify the
following “model” of the sample moments. Consider first the variance in hours. Let my .o be
the estimate of Cov(AHours,AHours, ) for a sample drawn from the population with
replacement. Then
My g = Xppr 80+ g t=1970...1979, 1=0.....9 (12)
where X | . is Cov(AHours,, AHours ;) for the “population”. The true parameter value for 6.
is 1 and the sampling error €, . has mean 0. We construct a corresponding model for the
variance of earnings and the covariance of hours and earnings (leads and lags). The observations
are stacked into the model
m=X0+¢ (13)

where m is (210x1), X is a (210x39) matrix of constructed “explanatory variables”, 0 is a (39x1)
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vector of parameters, and € is a (210x1) vector of sampling errors. All of the elements of the
wue 8 equal 12> The dimensions of the constructed model match the Abowd and Card
stationary model.

We draw samples of 500 observations (with replacemeat) from the pepulation of 1536
individuals, and estimate the 39 elements of 8 by EWMD and OMD. In Table 5 we report the
bias, standard deviation, RMSE, and MAE for a subset of the momeats. We focus our attention
on the results for autocovariances and cross covariances at lags 0, 1, and 2. The results are quite
striking. OMD is badly biased and has a much larger RMSE and MAE than EWMD. The bias
is typically between -.7 and -.85, which is very large relative to the true parameter value of 1.
These results indicate that main reason that the OMD estimates of the “stationary model” of
hours and earnings in Table 4 are smaller than the EWMD and IWOMD estimates is bias, not
mis-specification.

The RMSE of the OMD estimator typically exceeds the RMSE for EWMD by a factor
between 2 and 7. The MAE is also much larger for OMD. OMD does usually have a smaller
sampling variance, but its advantage in this dimension is not enough to make up for the large
bias. Using the diagonal of §), instead of the complete 0, in the stationary model in Table 4 and
the constructed model of Table 5 leads to a substantial reduction in the bias. (Not reported.) We
speculate that OMD performs particularly poorly when Q is a large matrix and the random
variables are correlated, which is consistent with the findings in Section V.3.

In summary, the results suggest that EWMD is the best estimator for fitting linear models

25 For example, if we order the cbservations so that the first 10 comespond to the observations on
Var(Ahours,, Ahours, .}, then the first 10 elements of m in are the "sample” estimates of the "population™ parameters
Var(Ahoursg7,Ah0urs, g70) ... Var{Ahours,gqg,Ahours gsg). The first 10 rows of the first column of X are
Var(&hours, g7,Ah0urs  g0) ... Var(Ahours, go0,4hours; o) for the "population”.

27



of the covariance structure of the PSID data on earnings and hours. It provides at least some
evidence that the small sample bias in OMD is a serious problem in applications. If anything,

the problem seems far worse in real world data with a large model than in our simulations.

VIL Statistical Inference
We conclude that EWMD is almost always preferred to OMD when & must be
estimated. However, the fact that sampling error in €1 leads to bias in OMD raises concern about
the use of the conventional asymptotic t-statistics, standard errors, and confidence intervals as the
basis of statistical inference in the EWMD case, because these rely heavily on i. Also, to the
extent that departures from normality in the second moments and the estimators are substantial,
confidence intervals and test statistics based on the asymptotic standard errors must be treated
cautiously.26 In this section we begin by examining the distribution of the estimators and then
consider bootstrap methods and conventional asymptotic t-statistics as a basis for statistical
inference.
In Table 6 we examine inference about the parameter 8 for a subset of the "two

distribution” experiments of Table 2. The distribution of the estimators is determined for each

26 Graphs of the kemel smoothed density of the EWMD and OMD estimators, and of the second moment
estimates suggest substantial departures from normality for the exponential, t(5), and especially the log normal when
N=100. Aside from the question of statistical inference, this raises the issues of whether in some situalions
alternatives to the least squares criteria used by EWMD, IWOMD, and OMD deserve consideration given that least
squares is inefficient when there are large departures from normality. There would seem to be two directions in
which we might proceed. The first is to use more tobust methods to combine the second moments. The lower
sampling variance of OMD in some cases noted above may reflect the fact that it implicitly provides less weight than
the least squares criteria dictates to sample realizations for elements of m that are in the right tail. We have
experimented with some modifications to IWOMD that involve symmetric trimming of the smallest and largest
estimate of 6 attained for the various groups prior lo averaging them. Trimming reduces the dispersion of IWOMD
but simultaneously introduces bias due to the asymmetric distribution of IWOMD, The second direction, suggested
by Koenker et al (1994), is to fit the models to statistics that are more robust than the second sample moments. We
leave this to future research.
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design from 5,000 replications of the experiment. The first column corresponds to the
experiment involving 5 moments from a t(5) distribution and 5 moments from a normal
distribution with a sample size of 100. The symmetric 90 % sampling interval is 0.90 to 1.11.
The corresponding confidence interval for IWOMD is .87 to 1.15. Both intervals are roughly
centered around the true value of 1, although the IWOMD interval is slightly skewed. The OMD
interval is from 0.83 to 1.027. Note that it is smaller than either of the other intervals but it is
shifted to the left. The 90 percent interval barely contains the true value of 1. In the log normal-
exponential case with 100 observations per moment, the OMD interval runs from .45 to .90,
These values confirm the negative bias in OMD.,

For each replication of the experiment in Table 6, we compute an asymptotic t-test of the
null hypothesis that the OMD or EWMD parameter equals 1. The rows labeled "Reject t test"
report the fraction of time the test rejects when a 90% confidence level is used. The rejection
rate is close 1o but slightly above 10% in the case of EWMD for both sample sizes of 100 and
sample sizes of 500, except when the log normal is one of the two distributions used in the
experiment. In these cases the rejection rates are between 20 and 25 percent when N is 100 and
between 16 percent and 19 percent when N is S00. The asymptotic t-test for the OMD estimator
rejects 93 percent of the time in the log normal-exponential case with N=100. Ft seriously
over-rejects in most of the other cases, even when N is 500.

The table also presents evidence for EWMD on the performance of a test based on a 90%

symmetric bootstrap confidence interval, which is one alternative to inference based on the
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asymptotic t-statistics.2” When N is 100 the EWMD bootstrap confidence interval excludes
the true value of | more than ten percent of the time in all cases and in a few cases performs
substantially worse than the asymptotic t-test. For example, in the 1(5)-normal case with N=100,
the bootstrap based test rejects 16.2 percent of the time and the test based on the asymptotic t-
statistics rejects 11.8 percent of the time. When N=500 the two tests perform about equally well.

There are two key lessons from the table. First, inference based on asymptotic normality
and the use of Q) is satisfactory in most cases and is almost always better than inference based
on the bootstrap. Difficulties arise in the cases involving the log normal. Second, the bias of
the OMD estimator leads to substantial over rejection. 2

We have also investigated inference based on the asymptotic formulae and on the
bootstrap for the experiments based on the Abowd-Card data. In the case of the stationary model
in Table 4, the estimated standard errors based on the two approaches are very close. (Not
reported). For the covariance model of hours and earnings in Table 5, we report the rejection
rates for tests at the .10 significance level of the null hypothesis that the parameter is 1 for the
asymptotic t-statistic (column 3). In the case of Var(AEamings,), the actual size of the
conventional asymptotic t test is .142. The size is typically about .125 for other moment

parameters. Column 4 of Table 5 reports on the performance of a test based on a 90%

27 We constructed the bootstrap confidence interval for EWMD as follows. For each of 1,000 Monte Carlo
samples of size N, we draw with replacement 500 different bootstrap samples of size N. We then computed EWMD
estimator using each of the 500 bootstrap samples. The 5th and 95th values of the EWMD estimator form the 90
percent confidence interval estimate for the particular Monte Carlo sample. The entry " boot test” for EWMD in
Table 5 is the fraction of Monte Carlo samples for which the 90 percent confidence interval estimate does not contain
the true vaiue of 1. We use an analogous bootstrap procedure to produce the “boot test” result for WOMD in Table
6. Hall and Horowitz (1994) provides a discussion of bootstrapping methods in the GMM setting,

28 We also include TWOMD in our examination of statistical inference in Table 6. We find that inference from

[WOMD with a bootstrapped confidence interval performs substantially better than OMD but not as well as EWMD
with either a bootstrap confidence interval or an asymplolic t-test.
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symmetric bootstrap confidence interval. In the case of Var(AEarnings,), the actual size of the
test is .112, and the typical result is that bootstrap based tests also reject a bit too frequenty.
The results based on the Abowd-Card data are similar to the Monte Carlo experiments in Table
6 in that both the bootstrap and asymptotic confidence intervals over reject. Whether or not the
departure of the actual size from the true size is serious would seem to depend on the
applic:ation.29 We view these discrepancies as small enough to permit one to use either method

as the basis for inference in most situations.

VIII Conclusion

In this paper we provide a theoretical argument and Monte Carlo evidence showing OMD
is biased in small samples. For a given sample size the bias depends on the distribution of the
underlying data. The bias is worse when the data are drawn from distributions with heavy tails.
The problem goes away as thc sample size gets large but does not go away (and may get worse)
as the number of moments available to fit a model increases or as the size of the medel increases
holding constant the number of moments that are informative about a given parameter. Our
findings using the Abowd-Card data are particularly striking. We also present an estimator called
IWOMD, which is an unbiased split sample alternative to conventional OMD and is
asymptotically equivalent to it. However, in most cases we consider, the asymptotic efficiency
gain of IWOMD relative to EWMD is overwhelmed by the extra noise introduced by estimated

weights,

¥ we did compute the actual 5th and 95 percentile values of the EWMD estimator and compare them to the
eslimators based on the asymptotic standard errors and the bootstrap. While it is easy to look for bias in these
estimators, it is not clear how to summarize the accuracy of interval estimators.
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upon EWMD and OMD by using a priori information about which sets of moments are likely
to be highly correlated or particularly noisy to reduce the dimensionality of . Third, both
IWOMD and EWMD have instrumental variables interpretations that suggest it may be beneficial
to look for a way to combine the two estimators into an IV estimator that converges to EWMD
as the number of moment conditions p becomes large with N fixed and to IWOMD and OMD
as N becomes large with p fixed.

Fourth, our Monte Carlo evidence is focussed on cases in which the model of the second
moments is linear in parameters. Many applications of OMD involve models in which the
parameters of interest are nonlinear functions of the second moments. (For example, Abowd and
Card estimate factor models that are nonlinear in the second moments.) In these cases, bias is
likely, but the sign and severity is not likely to be easy to predict. For example, if a factor
loading parameter is estimated as the covariance divided by a variance, then downward bias (in
absolute value) in the two moments may partially cancel out, and the direction and size of the
parameter bias will depend on the relative bias in the two moments. A large scale Monte Carlo
study using some of the nonlinear models that are popular in the literature is warranted.

Fifth, Monte Carlo evidence is needed on the validity of model mis-specification tests
based on OMD and EWMD, an issue that we have not explored. Six, we suspect similar biases
in maximum likelihood and quasi-maximum ﬁkeﬁ]}ood estimation of covariance structures. This
should be investigated.

We wish to emphasize that our basic concern—feasible GMM estimators are biased in
small samples because of correlation between the moments used to fit the model and the weight

matrix—applies in situations involving moments of any order. This is not a new point, since it
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Our conclusion is that EWMD is almost always preferable to using OMD when thc-
optimal weighting matrix is unknown, especially when bias is an important concern. This is true
even in situations in which OMD is far superior in asymptotic efficiency. At a minimum,
researchers should estimate models by both OMD and EWMD or both OMD and IWOMD and
worry about bias in OMD if the parameter estimates differ substantially. Discrepancies between
OMD and EWMD may be a risky basis for Hausman type model mis-specification tests for
models of second moments.

If one is going to use EWMD because of small sample considerations, the issue of how
to do statistical inference arises. The limited Monte Carlo evidence in Table 5 and Table 6
suggests, perhaps surprisingly given our evidence on bias in OMD, that in most cases the
standard asymptotic formula provides a satisfactory basis for inference when using EWMD. The
use of the asymptotic formula seems to be superior to using bootstrap methods, although the
bootstrap performs slightly better in the examples based on the Abowd and Card data.
Hypothesis testing in the case of OMD is a disaster in small samples with poorly behaved
diswributions because the sampling distribution of OMD is shifted -far away from the true
parameter value.

Throughout the text we identify a number of extensions of our Monte Carlo studies. Six
broader issues deserve mention. First, perhaps the use of robust estimation methods to estimate
the weighting matrix or to estimate the moments being modelled (see Koenker et al, 1994) may
lead to an OMD estimator that is superior to conventional OMD and IWOMD. Second, it is
clear from the performance of true OMD that a priori information about the appropriate

weighting matrix is valuable. There may be many situations in which researchers may improve
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is well known, for example, that feasible generalized least squares is biased in small samples in
many situations. However, it has not gotten the attention it deserves in the burgeoning literature

that involves GMM.
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Appendix
This appendix establishes that Cov(ep,mp) is negative provided that the distribution of Dip2
is skewed to the right, with E.[(Dip2 - E(Dipz))3] > 0. Assume that the underlying data, Dip’ are
known to have mean zero. Let Hjp represent the j‘h population moment of Dip and let mi, be the

jlh sample moment of Dip‘ computed as

PR I
mjp='ﬁi§Dip‘ M

To simplify the notation we suppress the p subscripts in what follows, so that m,; is a sample
mean and m, is a sample variance. The notation m, should not be confused with my, used in the

text to represent the p‘h element of the vector of second moments. Note that

and
m2 = plz + £ , (3)

where € is the sampling error. The variance of m is
Var(m;) = L My - 2) 4
I~ I
The variance of m, is
1 2
Var(m,) = ﬁ(p,;-uz) . &)

which is estimated as
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i 2
o= mg-m) )

The covariance between € and w depends on the skewness of D? as shown by

Cov(e,0) = E(ew)-E(e)E(w)
= E(ew)
E(myw) - E(pw)

(N-1) (Hahg - llg)

1 3
oM " M) N2 ©)

(N-1)
N3

ﬁN‘;_) E [(02-pp?]

3
(Pe—3nn4+21,)

where the last equality follows from the fact that

u6-3u2u4+2u3 |

E[ (0*-2D %)) (D2py) )

E[ (D*-2D %y, + 1) (D2-py) ) E[is® 2-py)]
- E[©2-p)’]

(10)

Thus, the expectation of Cov(e,) is positive if the distribution of D? is skewed to the right.
This restriction is satisfied for all of the distributions we consider. It is not satisfied if the
density of D is symmetric and the density is concentrated near the minimum and maximum of
D. For example, consider the density dF(D) = ciDI* when -D, <0 <D, and 0 otherwise,
where ¢ normalizes the CDF to 1 and a>0. When o>0 the density has a minimum at 0 and
maximums at -Dy, and Dy. We established numerically that the sign of E[(D2 - Pz))B] is less than
zero when oc>1 and that there is a small positive bias in 8y, When this distribution is used in

an experiment analogous to those in Table 1. The intuition is that when o is large the "unusual”
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observations on D are those near the mean of 0. These correspond to low values of D? but
substantial values of (D2-p2)2. which is the contribution to the weighting matrix. Consequently,
second moments with negative sampling errors receive too little weight, and 84y, is biased

upward.
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Table 2 Perlformance of Estlmators of a Varlance Parameter Using 10 Sample Varlances Prom 2 Distributions

1) oD % dTrue’ OMD Rel.
’

3ed, - k|7 — EIL.

Row Distribution Obs. RHSE HAE Plas Std, PRMSE MAE RMSE  NAE RHSE  MAB
[§1] (2) 13 (4) 15} 6) 17) (9} 9} 110) (1)
1 cil0),c(5) 50  0.096 0.064 -.157 0.096 O0.184 0.159 0.158 0.094 0.09%¢ 0.083 1.26
2 ©(10},ti5} 100 0,068 0,043 -.091 0.064 0.112 0.057 0,099 0.064 0.064 0.041 1.2¢
3 c{10),t(5) 300 0.044 0.028 -.037 0.037 0.053 0.040 0.049 0.030 0.039 0.026 1.76
4 £(10),t45) 00 0.034 0.022 -.024 0.030 0.039 0.02? 0.037 0.023 0.030 0.019 1.26
5 e(10},¢(5) 1000 0.021 0.0l14 ~.015 0.019 0.028 0.017 0.022 0.014 0.019 0.013 1.26
6 Normal,ci5) S0 0.094 0.056 -.132 0.089 0.159 0.137 0.161 0.086 0.07% 0.05) 1.56
7 Noraal,c{S} 100 0.065 0.041 -.071 0.060 0.093 ©.072 0.095 0.053 0.055 0.0)¢ 1.56
§ Normal,t(5) 300 0.038 0.024  -.030 0.03) O0.044 0.032 0,041 0.026 0.032 0.022 1.56
9 Hormal,cl5) 500  0.031 €.020 -.018 0.025 0.031 0.022 0.030 0.01% 0.625 0.017 1.56
10 Hormal,tiS) 1000 0.023 0.014 -.010 0.017 0.020 0.084 0.022. 0.01) 0.0i% 0.012 1.56
16 Unltorm,ci5) 50 0.094 0.056 -.06% 0.073 0.100 0.067 0.J20 0.071 0.054 0.036 3.03
17 Uniform,ti5! 100 0.067 0.938 -.033 0.044 0,055 0,036 0.064 0.037 0.039 0.02¢ 3.03
18 Uniform,ti5} 300 0.0)8 0.024 -.0)2 0.023 0,026 0.018 0.028 0.019 0.022 0,015 3.03
19 uUnlform,c(5) s00  0.032 0.018 -.007 0.018 0.0 0,013 0,020 0.013 0.018 0.011 3.0
20 unltorm, ti($) 1000  ©0.021 0.013 -,005 0.012 0.013 0.009 0.013 0.009 0.012 0.008 3.03
21 uniform.Normal S0 0.054 0.036 ~.031 0.060 0.067 0.045 0.073 0.046 0.049 0.032 1.23
22 uniform,Normal 100 0.037 0.025 -.0i6 0.0)7 0.040 0.037 0.042 0.020 0.034 0.02) 1.23
23 Uniform,Normal Joo  0.0621 0.004 -,006 0.020 0.021 0.014 0,020 0.01d 0.019% 0.01) 1.23
24 Unlform, Normal 500 0.017 0.011 -.004 ©0.015 0.016 0.010 0.016 0.011 0.015 0.010 1.23
25 Unllorm, tormal 1000 0,012 0,008 -.002 0.011 0.011 0.000 ©0.051 0.008 0.01%F 0.007 1.23

'

26 LogNormal,t(5) 50 0.357 0.140 -.443 0.169 0.474 0.436 0.753 0.301 0.169 0.0% 4.04
27 LogNormal,ci$) 100 ©0.226 0.115 -.276¢ 0.117 0.303 0.267 0.354 0.171 0.118 0.07 6.04
28 LogHormal,tiS) 300 0.126 0.071 -.127 0.073 0.14¢ 0.323 0.105 0.079 0.066 0.045 4.04
29 LogNormal,ti5] 500 0.101 0.056 -.085 0.051 0.100 0.08% 0.13% 0.057 0.051 0.033 €.04
30 LogNormal,t(5] 1000 0.077 0.041 -.051 0.036 0.063 0.049 0.06) 0.035 0.03% 0.024 4.04
31 LogNorma),Mormal 50 0.326 0,33 -.3d4 0.185 0.390 0.324 0,969 0.390 0.089 0.05%9 14.59
32 LogNormal,Normal 100 0.242 0.3110 ~.189 0.127 0.227 0.176 0.4323 0.150 0.064 0.04) 14.59
33 LogNormal,Normal 306 0.138 0.074 ~-.064 ©0.052 0.08) 0.061 0.121 0.051 0.036¢ 0.024 14.5%
34 LogNormal,Normal 500 0.099 0.052 -.037 0.0)5 0.051 0.037 ©0.076 0.032 0.028 0.019 14.59
35 LogNormal,Normal 10006 0.680 0.042 -,018 0.022 0.029 0.020 ©.03% 0.019 0.020 0.0%) 14.%59
36 Logiormal,Uniform S0 0.351 0.132 -.246 0.174 0.301 0.211 1.208 0.260 0.057 0.038 35.72

37 LogNormal,Uniform 100 0.39% 0.106 -,107 0.09% O0.145 0.087 0.296 ©0.110 0.0)% 0.028 35.12

3% LegNormal,Uniform Jo0  0.115 0.06% ~-.026 0.031 0.041 0.037 0.055 0.027 0.02) 0.015 )¥5.72
39 LogNormal,Uniform S00  0.092 0.05% ~-.0l5 0.022 0.027 0.018 ©0.031 0.01¢ 0.0i% 0.013 135.72
40 LogNormal,Unltorm 1000  0.096 0.045 -.007 0.014 O0.0146 0.010 0.01% 0.021 0.013 0.009 135.72
41 Dp,t(5) 5¢  0.121 0.081 -.235% 0.3121 0.264 0.2)4 0.24% 0.152 0.3121 0.08) 1.00
42 Exp,t(5) 100 0.086 0.059 -.140 0.082 0.182 0.140 0.134 0,082 0.088 9.059 1.00
43 Bxp,t(35) o0 ©.053 0.3} -.062 0.049 0.07% 0.065 0.072 0.043 0.05) 0.033 1.00
4 B, e(s5) SO0  0.05) 0.026 -.042 0.03% 0.057 0.045 0.060 0.034 0.053 0.026 1.00
45 be.cis) 1000 9.027 0.018 -.024 0.026 0.035 0.02¢ 0.031 0.020 0.027 0.018 1.00
46 Bxp,Noraal SO 0.101 0.066 ~-.162 0.110 0.200 0.15¢ 0.19 0.120 0.0801 0.05) 1.56
47 Bxp,Normal 100 0.071 0.050 ~-.081 0.071 0.107 0.c81 0.101 0.06) 0.057 0.04% 1.56
48 Exp,Normal 300 0.041 0.029 -.028 0.0)6 0.04¢ 0,033 0.041 £.027 0.034 0.023 1.56
49 Bxp,Normal 500 0.032 0.021 -.Q17 0.027 0.031 0.022 ©0.02% ©0.020 0.026¢ o0.0l8 1.56
50 Bxp.Normal 1000 0.022 0.014 -.008 0.01% 0.01% 0.013 018 . 0.017 ¢.011 1.5¢6
51 Bp,Unlform S0 0.095 0.065 -.085 0.092 0.126 0.078 0.16) 0.091 0.054 0.0)6 3.03
$1 B, Uniform 100 0.066 0.044 -.036 0.048 0.060 0.041 0.069 0.041 0.0)80 0.026 3.03
$) Exp,Unktorm 00 $.0% 0.025 ~-,010 ©0.024 0.02¢ 0.018 0.026¢ 0.018 0.02) .0.015 3.03
54 B, Unltorm S00  0.030 0.021 -.007 0.018 0.019 0.012 0.01% 0.012 0.017 0.011 3.0)
55 Bp.Unltorm 1000 0.021 0.014 -.002 0.012 0.012 0.008 0.012 0.008 0.012 0.008 3.03
56 B, LogNormal 50  0.316 0.154 -.471 0.16) 0.4%% 0.473 0.680 0.320 0.170 0.122 .04
57 Bxp,LogNormal 100 9.241 0.105 ~-,32) 0.127 0.351 0.321 0.503 ©.190 0,119 0.075 4.04
59 Exp,LogNormal 300 0.139 0.073 -.154 0.065 0.175 0,154 0.237 0.100 0.070 0.047 4.04
59 B, LogNormal 500  0.108 0.060 -.100 0.06) 0.118 0.100 0.129 0.066 0.055 0.0)6 4.04
60 Exp,LogNormal 1000  0.067 0.04F -.057 0.043 0.071 0.056 0.087 0.04% 0.037 0.024 4.04
HNotes

71T Estimates based on 1,000 replications.
2. The relative offlciency of EWND (column 11) Ls the ratlo of the asymptotic variances of EWMD and OMD.
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Table 3 Performance of Estlimators of a Varlance Parameter
Using Correlated Varlances and Covarliances

EWND OMD INOMD Rel.

3td., td., ELL.
Row Dlsc. Obg. Cov RMSE  MAE Blasg std. RMSE MAE RMSE

{11 (2) {3 {4) (s} (6) 7 {8) (9}
1 (5} S0 ¢.00 0.137 0.075 -.280 0.099 0.297 0.28) 0.322 0.160 1.00
2 o (5} 50 ¢.25 0.118 0.074 -.284 0.097 0.300 9.287 0.258 0.160 1.06
3 t(5) S0 0.50 ©0.140 0.078 -.,282 0.0%% 0,299 0.286 0.286 0.159 1.17
4 ¢{%5) 100 0.00 0.098 0,055 -.172 0.071 o0©.186 0.177 a.133 0.081 1.00
S £iS) 100 0.2% 0.068 0,058 -.174 0.070 0.188 0.124 0.133 0.087 1.06
6 tis5) 100 0.50 0.091 0.059 -.173 0.073 0.188 0.174 '0.124 0.079 1.17
7 (s} 300 0.00 0.055 0.031 -.081 0.042 0.091 0.081 0.079 0,042 1.00
8% 300 0.25 0.052 0.032 -.081 0.041 0.091 0.082 0.063 0,040 1.06
9 t(5) 300 0.50 0.054 0.034 -.078 0.044 ©.090 0.081 0.062 0.03% 1.17
10 t{5) S00 0.00 0.038 0.024 -.056¢ 0.033 0.065 0.057 0.047 0.032 1.00
11 ¢[5) SO0 0.25 0.043% ©.025 -.056 Q.03 0.065 0.057 49,051 ©.031 1.0¢
12 t{5) S00 0.50 0.045 0.027 -.053 0.034 0.06) 0.054 0.0590 0.031 1.17
13 t(5) 1000 0.00 0,029 0.018 -.033 0.024 ©0.041 0.034 0.034 0.021 1.00
14 ti5) 1000 0.25 0.030 0.018 -.033 0,024 0.041 0,035 0.034 0.021 1.06
15 ©.5) 1000 0.50 0,031 0.019 -.031 0.025 6.040 0.032 0.034 0.020 1.17
16 t{10) 50 0.00 ¢.076 0.050 -.191 0.0%1 0¢.212 0.189 0.194 0.121 1.00
17 ©{10} 50 0.25% 0.082 0.056 -.191 0.092 ¢§.212 0.189% 0,192 0.127 1.15
18 ©{10) 50 0.50 0.093 0.061 -.197 0.095 90.219 0.19 0.204 0.136 1.32
19 ¢ {i0} 10C 0.00 0.05% 0.036 -.106 0.062 0.123 0.104 0.084 0.054 1.00
20 £(10) 100 0.2%5 0.059 0.039 -.108 0.060 0,121 0.198 ©€.084 0.054 1.15
21 ¢(10) 10C¢ ©.50 0,067 0.045 -.111 0.065 0.128 0.115 0.0808 0.061 1.32
22 t(10) 300 ©.00 0.030 0.021 -.040 0.032 0.051 0.041 0.037 0.025 1.00
23 L(10) 300 0,25 0.035 0.02¢ ~.040 0.033 0.052 0.042 0.03% 0.026 1.15%
24 {10} 300 0.50 ©.038 0.025 -.041 0.035 0.054 0.042 0.041 0.028 1.32
25 ¢ (10} SQC 0.00 0.023 0.016 -.025 0.024 0.035 0.026 0.028 0.019 1.00
26 £(10) 500 0.25 0.026 0.018 -.026 0.025 0.036 0.027 0.029 0.020 1.16
27 t(l10) 500 0.50 0.029 0.020 -.025 0.027 0.037 0.028 0.029 0.020 1.32
28 t(l0) 1000 0.00 0.017 0.012 -.011 0.017 0.021 0.015 0.019 0.013 1.00
29 t(lo) 1000 0.25 0.018 0.012 -.012 0.018 0.021 0.015 0.019% 0.01) 1.15
30 t(10) 1000 0.50 0.021 0,015 -.013 0.019 ©.023 0.016 0.020 0.014 1.32
31 Normal S0 0.00 0.06F 0.041 -.140 0.081 0.162 0.139 0.159 0.0%9 1.00
32 Normal 50 0.25 0.073 0.050 -.143 0.085 0.166 0.140 0.162 0.102 1.22
33 Normal 50 0.50 0.081 0.054 ~-.157 0.090 0.181 0.157 0.170 0.111 1.42
34 Normal 100 0.00 0,048 0.031%1 -.074 0.053 0.091 0.072 0.069 0.047 1.00
35 Normal 100 0.25 0.049% 0.032 -.070 0.053 O0.088 0.071 0.0638 0.047 1.22
36 Normal 100 0.50 0.060 0.941 -.081 0.057 0.099 0.08¢ 0.074 0.047 1.42
37 Normal 300 0.00 0.026 0.0168 -.024 0,028 0.037 0,028 0.030 0.031 1.00
38 Normal 300 0.25 0.028 0.020 -.024 0.037 0.036 0.026 0.030 0.021 1.22
39 Normal 300 0.5¢ 0.034 0.023 <027 0.030 0.040 0.0231 0.033 0.021 1.42
40 Normal 500 0.00 0.020 0.013 ~.01% 0.021 0.026 0.018 0.022 0.015 1.00
41 Normal 500 0.25 0.022 0.015 -.014 0.021 0.025 0.018 0.022 0.015 1.22
42 Normal S00 0.50 0.026 0.017 -.016 0.023 0.028 0.020 0.025 0.017 1.42
43 Normal 1000 0.00 0.014 0.9010 -.007 0.014 0.016 ¢©.011 0.015 0.011 1.00
44 Normal 1000 0.25 0.015 0.010 ~.007 ©.014 0.016 0,011 0.015 0.010 1.22
45 Normal 1000 0.50 0.018 0.011 -.009 0.016 0.018 0.012 0.016 0.011 1.42
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Table 3

Performance of Estimators of a Varlance Parameter
Using Correlated Variancee and Covariances

EWMD oMD ™ Rel.
Sed., EE%%?"""‘ Etf.
Row Dist. Obs. Cov RMSE MAE Blas 5td. RMSE MAE RMSE MAE
(1) (2) (3) [4) {5) {6) (¥4 {8) {9
46 Uniform 50 0.00 ©0.041 0,027 -.052 0.056 0.076 0.057 0.101 0.062 1.00
47 Upiform 50 0.2 0.050 0.033 -,052 0.056 ©.076 0.051 ©.102 0.065 1.5
48 Uniform 50 6.50 0.068 0.046 -,082 0,060 0.106 0.08¢ 0.118 0.076 1.78
49 Uniform 100 0.00 ©.028 0.019 -.022 0.033 0.039 0.028 ©.038 0.026 1.00
SO Uniform 100 0.25 0.038 0.025 -.023 0.034 0.041 0.029 0.038 0.026 1.5
S1 Upiform 100 0.50 0.049 0.032 -.037 0.044 0.058 0.042 0.051 0.034 1.78
52 Yniform 300 0.00 0.0}7 0.011 -.007 0.018 C.019 0.014 0.01% 0.013 1.00
53 Uniform 300 0.25 0.021 0.014 ~-.007 0,017 0.018 0.012 0.018 0.012 1.53
§4 Unitorm 300 0.50 0.027 0.01%9 -,012 0.022 0.025 0.0i7 0.062) 0.016 1.78
S5 Uniform 500 0.00 ©.013 0.009 -.005 0,013 0.014 0.009 0.013 0.009 1.00
$6 Uniform 500 0.25 0.016 0.010 -.004 0.013 0.014 0.009 0.014 0.009 1.5
57 Uniform SO0 0.50 0.921 0.015 -.007 0.017 0.018 0.012 0.017 0.011 1.78
58 Uniform 1000 0.Q0 0.009 0.006 -.002 0.009 0.009 0.006 0.009 0.006 1.00
5% Uniform 1000 0.25 6.011 0.007 -.002 0.009 0.010 0.007 ©.010 0.006 1.53
60 Uniform 1000 0.50 0.015 0.009 -.003 0.0i1 0.012 0.007 0,011 0.007 1.78
61 LogNormal 50 0.00 0.415 0.217 -.688 0.056 0.695 0.69¢ 1.146 0.390 1.00
62 LogNormal S0 0.25 0,375 0.208 -.683 0.097 0.690 0.691 0.900 0.388 1.0%1
€1 LogNormal 50 0.50 0,401 0.214 ~-.660 0.093 0.667 0.671 0.833 0.365 1.08
64 LogNormal 100 0.00 0.277 0.169 -.551 0.098 0.560 0.552 0.559 0.269 1.00
65 LogNormal 100 0.25 ©0.382 0.16) -.550 0.100 0,559 0.558 0,562 0.267 1.01
66 LogNormal 100 0.50 0.320 0.164 -.53S 0.094 0.543 0.546 0.470 0.254 1.08
67 LogMormal 300 0.00 0.192 0.103 -.360 0.086 0.371 0.368 0.330 0.153 1.00
68 LogNormal 300 0.25 0.200 0.105 -,352 0.086 0.362 0.357 0.325 0.14% 1.01
69 LogNormal 300 0.50 0.175 0.102 -,338 0,082 0.348 0.343 0,253 0.140 1.08
70 LogNormal 500 0.00 0.136 0.081 -.283 0.074 0.293 0.205 0.197 0.113 1.00
71 LogHormal 560 0.25 0.138 0.087 -.280 0.075 0.290 0.286 0.206 0.118 1.0t
72 LogNormal 560 0.50 ©.165 0.078 -.269 0.073 0.278 0.274 0.244 0.107 1.08
73 LogNormal 1000 0.00 0.094 0.055 -.197 0.061 0.207 0.199 0.138 0.084 1.00
74 LogNormal 1000 0.25 0.110 0.060 -.196 0.062 0.205 0.198 0.138 0.081 1.0l
75 LogNormal 1000 0.50 0.1%0 0.058 -.188 0.059 0.197 0.190 0.256 0.081 1.08
16 Exp 50 0.00 0.128 0.082 -.)87 0.124 0.406 0,393 0.309 0.198 1.00
77 Exp 50 0.25 0.129 0.087 -.377 0.12%1 0.396 0.378 0,320 0.202 1.06
78 Exp S0 0.50 0.132 0.090 -.353 0.113 0.370 0.357 0.296 0.187 1.17
79 Exp 100 0.00 0.090 0.065 -.236 0.089 0.253 0.237 0.155 0.097 1.00
80 Exp 100 0.25 0.092 ©0.063 -.232 0.090 0.249 0.233 0.170 0.113 1.06
81 Exp 100 0.50 0.100 0.066 ~.225 0.093 0.243 0.230 0.152 ©.093) 1.17
82 Exp 300 0.00 0.052 0.034 ~-.100 0.054 0.114 0.104 0.072 0.049 1.00
83 Exp 300 0.25 0.051 0.032 ~-.098 0.052 0.115 ©0.096 0.072 0.048 1.06
84 Exp 300 0.50 0.056 0.039 -.094 0.053 0.108 0.095 0,074 0.048 1.17
85 Exp 500 0.00 0.040 0.025 -.065 0.042 0.077 0.065 0.052 0.635 1.00
86 Exp 500 0.25 0.040 0.026 -1064 ©0.043 0,077 0.066 0.055 0.039 1.06
87 Exp 500 0.50 0.045 0.029 -.061 0.043 0.074 0.062 0.052 0.034 1.17
88 Exp 1000 0.00 0.028 0.01% -.035 0.039 0.045 0.035 0.035 0,022 1.00
89 Exp 1000 0.25 0.030 0.021 -.035 0.030 0.046 0.035 0.034 0.024 1.06
90 Exp 1060 0.50 0.031 0.021 ~-.033 0.029 0.044 0.033 0.035 0.024 1.17
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Notes to Table 3

stimates based on 1,000 replicationsg.
The relative aefticiency of EWMD (column 9) is the ratlo of the asymptotic varlance
of EWMD to the asymptotic variance of OMD.

Data are generated as D = (z + PpT,,1) * (1 4 pl'"'s for p=1to 10 from a set of
mean 0, varlance I, 1.1.d. rafdom v riablae Z from the e;maltled disgtribution. The
column labelled *Cov* reports the Cov (D ) = 8p/(1epl).
We assume p is known, so the 10 sample vgrlgnces and 9 first order covariances are
funcrions of the slngle unknown population variance 0.



Table 4 Estimates of the Abowd-Card Statlonary Covarlance Structure
of the Changes in Log Hours and Log Earninge for a PSID Eleven Year Sample

LAG: =0 LAG: T=} LAG: t»2

Cov (ABazuings,, AEarnings,_)

EWMD 0.175 -0.060 -0.008

OMD 0.086 -0.026 ~-0.008

IWOMD 0.149 ~0.060 -0.007

EWMD (Abowd and Card) 0.172 -0,060 -0.007
Cov(AHours,, AHours._.)

EWMD 0.131 ~-0.047 -0.006

oMD 0.060 -0.022 -0.005

IWOMD 0.111 -0.043 -0.005

EWMD (Abowd and Card) 0.117 -0.035 -0.011
Cov(AHours,, ABarnings,..))

EWMD 0.080 -0.026 -0.008

oMD 0.026 -0.002 =-0.005

IWOMD 0.060 -0.024 -0.006

EWMD {Abowd and Card) 0.073 «0,023 =0.006
Cov(ARarnings,, Adbours,_)

EWMD 0.080 -0.024 -0.0012

aMD 0.026 -0.005 -0.00)

IWOMD 0.060 -0.016 -0.001

EWMD (Abowd and Card) 0.073 ~0.020 -0.002
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Figure 1 Relationship Between Sampling Varlance and OMD Bias

Based on 10 Momentse from 7 Distributione and S Eample Sizas
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Figure 28 Descompositon of the Mean Squared Error of EWMD and OMD
txpasriments with efflicienecy gealne between 1.13% and 1.9%
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Figure 2¢ Decompositicn ?li' the Mean Squared Ervor c;f EWMD and OMD
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