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1. Introduction

During the last decade financial econometricians have become accustomed to run-
ning long-horizon regressions. In these regressions the dependent variable is an asset
return measured over a longer time period than the sampling interval. Thus with data
sampled monthly, the dependent variable might be a return measured over one or even
several years. The discrepancy between the return horizon and the sampling interval
leads to serial correlation in the regression error even under the null hypothesis that
the asset return is uncorrelated with the regressors. This is handled using the now
familiar asymptotic theory of Hansen (1982) and White (1984).

Long-horizon regressions were originally introduced for situations where asset re-
turns are not observed over short horizons. Thus Hansen and Hodrick (1980) studied
forward exchange rates and could only measure returns over a three-month horizon.
Long-horizon regressions allowed them to use all their weekly data rather than sampling
the data quarterly.

More recently long-horizon regressions have been used even when short-horizon
returns are observable. Fama and French (1988a) regressed stock returns on lagged
stock returns, measuring returns at horizons from one year to ten years, and found
stronger evidence of predictability at longer horizons. This regression, and the related
variance ratio tests of Cochrane (1988), Lo and MacKinlay (1988), and Poterba and
Summers (1988), have the feature that the choice of horizon s bound up with the
choice of forecasting variable. Other applications use the same forecasting variable at
all horizons. Fama and French (1988b, 1989) and Campbell and Shiller (1988b). for
example, regress stock returns on dividend-price and earnings-price ratios and interest
rates, again finding the strongest evidence of predictability at longer horizons. Volatil-
ity tests, which have generated striking results since their introduction by LeRoy and
Porter (1981) and Shiller ( 1981}, can be interpreted as regressions of weighted long-
horizon stock returns onto stock prices or stationary transformations of stock prices
(Campbell, Lo, and MacKinlay 1993, Campbell and Shiller 1988b, Scott 1985, Shiller
1989). Macroeconomists have used long-horizon regressions to detect predictable com-
ponents in nominal interest rates, real interest rates, and inflation {Campbell and
Shiller 1991, Fama 1990, Fama and Bliss 1987, Mishkin 1990a,b), and more recently in
exchange rates (Mark 1992),

These findings suggest that in finite samples, tests of predictability in long-horizon

regressions must have either greater power than short-horizon regression tests, or more
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serious size distortions, or perhaps both. Power and size have been explored for the
special’ case in which returns are regressed on lagged returns (Faust 1992, Lo and
MacKinlay 1989, Rjchardson and Smith 1991a,b, Richardson and Stock 1989), but this
case makes it hard to distinguish clearly the effects of changing the horizon from the
effects of changing the variable used to forecast returns.

In this paper I study the case in which returns are regressed onto a forecasting vari-
able, which remains the same no matter what horizon is used. Specifically, I construct
an example in which the forecasting. variable captures all predictability in one-period
returns and follows an AR(1) process, so that it is the optimal forecaster of returns
at all horizons.! I use this example to explore the properties of standard long-horizon
regressions, and also of weighted long-horizon regressions, in which more distant future
returns receive geometrically declining rather than equal weights in forming the long-
horizon return. Volatility tests are closely related to long-horizon regressions weighted
in this way.

The first result is that the regression R? statistic can increase with the return
horizon when the forecasting variable is variable and persistent. Of course, this does
not mean that long-horizon regression tests have statistical advantages. Indeed, at first
sight it seems implausible that there could be any statistical reason to lengthen the
horizon in the example studied here. The return and the forecasting variable form a
restricted first-order vector autoregression, and maximum likelihood estimates of the
coefficients are obtainable by single-period OLS regressions. The standard analysis of
power against a sequence of local alf.ernatives, as summarized in Engle (1984), then
implies that a one-period regression Wald test is asymptotically optimal.

A different asymptotic power analysis, however, gives a different result. Under a
fixed alternative model within the class studied here it is straightforward to calculate
approximate slope, a measure of asymptotic power due to Bahadur (1960) and Geweke
(1981), for regressions with any horizon. Approximate slope can be much higher for
long-horizon regressions than for short-horizon regressions when the AR(1) process
for the expected return is persistent, and when the correlation between the unexpected
return and the innovation in the expected return is negative. I use the loglinear approx-
imate asset pricing framework of Campbell and Shiller (1988a,b) and Campbell (1991)

! Mankiw and Shapirc (1986) and Stambaugh (1986} have used this example to study the finite-sample size of one-
period regressions, while Nelson and Kim (1993) have used it Lo study the finite-sample size of long-horizon regressions.
The question of power has received much less attention. Hodrick {1992) uses a related but more complicated VAR model
to study both size and power.
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to show that such a negative correlation is plausible, especially when the expected asset
return is persistent.

The approximate slope advantages of long-horizon regressions require that inno-
vations in asset returns are negatively correlated with future returns, but they do not
require negative serial correlation in realized asset returns. Returns can be white noise
and yet have a persistent predictable component which increases the approximate slope
of long-horizon regression tests. In the U.S. stock market, for example, long-horizon re-
gressions can have approximate slope advantages whether or not there is mean-reversion
in returns, as debated by Fama and French (1988a), Jegadeesh (1991), Poterba and
Summers (1988), and Richardson and Smith (1991b) among others.

I also consider some variations of the basic weighted or unweighted long-horizon
regression. One variation, sometimes used by Fama and French (1988b, 1989), is to
sample the data only once every K periods, where K is the horizon of the regression.
This simplifies statistical inference by eliminating the serial correlation of the regression
error, but its approximate slope in the AR(1) example is usually smaller, and never
much greater, than the approximate slope of a short-horizon regression.

A second variation, discussed by Cochrane (1991), Hodrick (1992), and Jegadeesh
(1991), is to run a short-horizon regression in which the regressor is backward-averaged
over a long period. The numerator of the coefficient in this regression is the same as the
numerator of a long-horizon regression coefficient. Nevertheless the backward-averaged
regression has smaller approximate slope than a basic short-horizon regression in the
AR(1) example of this paper.

A third variation, suggested by Hodrick (1992) and Bollerslev and Hodrick (1992),
is to run a long-horizon regression but to calculate the asymptotic standard error of the
regression coefficient imposing the null hypothesis that returns are unpredictable.? This
also eliminates the approximate slope advantages of the basic long-horizon regression.
If the alternative hypothesis is true, then there is less uncertainty at long horizons than
one would think from looking only at short horizons; approximate slope increases with
the horizon only when one allows the data to reveal this fact.

Of course, approximate slope is an asymptotic concept which is only useful if it
accurately predicts performance in finite samples. The paper runs some Monte Carlo

experiments to study this question. The Monte Carlo work here differs in two ways from

? Jegadeesh (1991) and Richardson and Smith (1991b) also impose the null hypothesis when calculating standard errors
for long-horizon regresions of returns on lagged returms. Bollerslev and Hodrick {1992) credit Lars Hansen with the basic
idea.
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previous Monte Carlo studies such as those of Bollerslev and Hodrick {1992), Campbell
(1991), Goetzmann and Jorion (1993), Hodrick (1992), and Nelson and Kim (1993).
First, most studiesin the literature use a single data generating process estimated from
" or calibrated to fit U.S. stock return data. The simple example of this paper allows
me to vary the parameters of the model and to compare the asymptotic and finite-
sample properties of long-horizon regressions. Second, most studies concentrate on size
whereas the emphasis here is on the power of long-horizon regressions.3

The organization of the paper is as follows. Section 2 develops the example that
is used to structure the investigation. Section 3 compares the R? statistics and ap-
proximate slopes of short- and long-horizon regressions. Section 4 gives Monte Carlo

results, and section 3 concludes.

¥ Bollerslev and Hodrick {1992) and Hodridk {1992) alsc have some discussion of power.
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2. A Simple Model with Time-Varying Expected Returns

The basic model considered here ignores constant terms for simplicity and writes
the log stock return ry4 as a coefficient A times an observable zero-mean variable r;

plus a random error vy :

Te4l = ATy + vgq. (2.1)

The variable z is assumed to follow an AR(1) process,

T4l = T + wy), -1<é<l (2.2)

When the AR coefficient 4 is close to one, the z; process is highly persistent. The shocks
vg41 and w4 form a serially uncorrelated vector but they can be contemporaneously
correlated, and the case of negative correlation is of special interest here.

Equations (2.1) and (2.2) imply that the univariate process for the log stock return
is an ARMA(1,1) with autoregressive coefficient ¢. The bivariate process for the stock
return and the forecasting variable is a first-order vector autoregression with zero coef-
ficients on the lagged stock return. This is a standard mode! in which Ordinary Least
Squares estimates of (2.1) and (2.2) are equivalent to Seemingly Unrelated Regressions
estimates (since the same explanatory variable appears in both equations).

The model (2.1) and (2.2) has five parameters: the coefficients A and ¢, and the
variances and covariances a?‘, 03, and oy,. Since the units of measurement for res1 and
z¢ are arbitrary, up to two of these parameters can be normalized. It is convenient to
normalize A = 1, so that the variable z; can be interpreted as the expected stock return.
A problem with this normalization is that it fails to represent the case of unpredictable
stock returns, A = 0; however this case is approached in the limit when o2 becomes

large relative to aa.



2.1. A Reparameterization

The economics of this example can be understood more clearly, and the example
can be parameterized in a more useful way, with the help of the loglinear approxi-
mate relation between dividends, prices, and returns proposed by Campbell and Shiller
(1988a,b) and Campbell (1991). Using this approximation, it is straightforward to
show that the stock price implied by the AR(1) example (2.1) and (2.2) is the sum of
two terms. The first term is the expected discounted value of future dividends, which
is close to a random walk, while the second term is a stationary AR(1) process. This
two-component description of stock prices is often found in the literature (Fama and
French 1988a, Poterba and Summers 1988, Summel.'s 1986).

More relevant here is the loglinear decomposition for returns derived by Campbell
(1991):

oo
vl = T ~ Eprgl = (Egy—E) Y P Ady )y
j=0

o0
~(Ep1 - E) D Pregisy- (2.3)
i=1

In this expression the discount factor p ~ 1/(1 + D/P), where D/P is the mean divi-
dend yield. Equation (2.3) says that unexpected stock returns must be associated with
changes in expectations of future dividends or real returns. An increase in expected
future dividends is associated with a capital gain today, while an increase in expected
future returns is associated with a capital loss today. The reason is that with a given
dividend stream, higher future returns can only be generated by future price appre-
ciation from a_lower current price. It is convenient to simplify the notation of (2.3)

to

V4l = Vdpp] — Urt+ls (2.4)

where vg ;1 is the change in expectations of future dividends in (2.3), and v, y4] is the

change in expectations of future returns.
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In the AR(1) example, with A normalized to one, the general stock return equation
(2.4) simplifies because the innovation in expected future stock returns, vy ¢y, is given

by pus41/(1 — pé). Thus equation (2.1) becomes

Put41
Ti4l = Tt + vggqyy — 1= 8" (

o
[&1]

Equations (2.2) and (2.5) form the reparameterized system. Since ugy1 and vy, can
be correlated, this reparameterization places no restrictions on the original system (2.1)
and (2.2).

Equation (2.5) can be used to calculate the variance of the one-period stock re-
turn. Write Var(zy41) = o2 and Var(ui41) = 02, and note that from (2.2) these are
related by 2 = (1 - ¢%)o2. Write Var(vg4,1) = 03, so that 03 is the variance of
news about all future dividends rather than the variance of the dividend itself. Also
write Cov(vg ey, ups)) = Cov(vd.441,2t41) = 04,. Then the one-period stock return

variance 1s

1 - 2p¢ + p? 2p
Var(rip1) = -—-—(1_'_07);——02 - 1—'_—50’4: + 0'3. (2.6)

This equation simplifies considerably if one uses the approximation p = 1 (which will
be accurate provided that ¢ << p). Equation ( 2.6) then becomes

2 ’

Varlriyt) = 7o—(0} - 0g) + o
2 2 2 -
= 1_¢(1—ﬂd:)°’z + a4, (2.7)

where 84, = adt/ag is the regression coefficient of dividend news on the expected return
at time ¢ + 1. To interpret (2.7), note that 03, the variance of dividend news, appears
with a unit coefficient. o2, the variance of the expected return, has a coefficient of
2/(1-¢); persistence in the expected return process increases the variability of realized

returns, for small but persistent changes in expected returns have large effects on prices

.



" and thus on realized returns. Finally a4,, the covariance between dividend news and
the expected return, has a coefficient of —2/(1 — ¢); a positive covariance between
dividend news and expected returns reduces the variance of the stock return because
good dividend news raises the stock price directly but lowers it indirectly through the
effect on expected returns. When By, = 1, the og4; and o2 terms exactly offset each

other so that the variance of stock returns is just the variance of dividend news a:‘}.

2.2. Serial Correlation and Predictability of Stock Returns

Within the AR(1) example it is straightforward to calculate the autocovariances

of realized stock returns:

Cov(ri41,req14i) = Covize,reyi) + Cov(viyy, riti)
= Cov(zy, r4yi) + Cov(viy, reys)

= il [o _ p1-¢%

The autocovariances of stock returns all have the same sign and die out geometrically at
rate ¢, consistent with the univariate ARMA(1,1) representation for stock returns. The
sign of the autocovariances depends on offsetting effects: The positive autocovariances
of expected returns appear in realized returns as well, but a positive innovation to
future expected returns causes a contemporaneous capital loss, and this introduces
negative autocovariance into realized returns. The latter effect dominates provided
that ¢ < p. In addition, a positive covariance between dividend news and expected
returns creates positive serial correlation in stock returns because capital gains from
good dividend news tend to be followed by predictably higher returns. Overall there is
some presumption that changing expected returns create negative autocovariances in
realized returns unless the covariance between dividend news and expected returns is
large and positive.

To see this more clearly, one can simplify equation (2.8) by again using the ap-
proximation p & 1 to obtain
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Cov(reg)rigt—i) = =06"1o(1 - fg). (2.9)

Equation (2.9) shows that stock returns will be negatively correlated unless 84, > 1.
White noise stock returns are obtained when 84, = 1; in this case stock returns cannot
be predicted from their own past history.

Even when stock returns are white noise, they can be predicted if one has knowl-
edge of the expected stock return z;. Consider the R? statistic obtained in a regression
of the one-period stock return ry1 on the variable z;. In population the fitted value
is just r; itself, with variance ag, while the variance of the return is given by equation
(2.6) or (2.7) above. Working with (2.7), the simpler expression that assumes p = 1,

the one-period regression R? statistic is

-1
0. _  Var(z) 2 o3
R) = ool = (Te A+ g (2.10)

As the ratio cr?j / ag increases. the one-period R? statistic declines to zero and stock
returns become unpredictable. For any given value of f;, there is a lower bound on

the ratio ag/ or% because

g = %dr o oa(1-¢) _ cd1-¢%) _ eqv1-¢'

- 0% 0'3 - Tu dr

Hence 03/0'2 > ﬁ:.‘;z/ (1 - 4%). As 03/03 decreases to this lower bound, the one-period
R? statistic approaches an upper bound, R-?na;( 1). When 4, = 1, the lower bound
on 03/02 is 1/(1 — ¢?) and the upper bound on the R? statistic is 1 — ¢2 under the
simplifying assumption that p = 1. When Sy, = 0, the lower bound on 03/03 is
zero and the upper bound on the R? statistic is (1 ~ ¢)/2 under the same assumption
that p = 1. Thus even in a limiting case in which there is no dividend uncertainty
at all, so that the stock is a consol with fixed payoffs and all stock price variation
is due to changing expect.ed returns, the one-period R? statistic is small when & is

large. The reason is that innovations to expected returns cause large unforecastable
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changes in stock prices when expected returns are persistent. This point is emphasized
by Campbell (1991).

Table 1 illustrates the mapping between the properties of stock returns and the
parameters of the original model (2.1) and (2.2). Panel A of Table 1 sets 3;, = 0,
while panel B sets 84, at whatever value eliminates the univariate autocorrelations of
stock returns. As already discussed, this value is one when p = 1, but the table sets
p = 0.995, appropriate for monthly data when the annual dividend vield is roughly 6%.
The zero-autocorrelation value of 3, is reported in parentheses in the left column of
panel B; it is approximately one for low ¢, but falls as ¢ approaches one.

Within each panel of Table 1, the rows represent different values of ¢ and the
columns represent different values of the one-period R? statistic as a fraction of the
upper bound RZ,,,(1).4 The upper bound itself is reported in the right column of the
table. As already discussed, this bound is (1 — ¢)/2 when 4, = 0 and p = 1, but it is
slightly different in panel A of Table 1 because the table sets p = 0.995. However the
exact upper bound does fall with ¢ in the way one would expect from the analysis of
the p = 1 case.

For each value of §;,, ¢, and RQ(I)/R;‘:,“(I), the table reports the implied cor-
relation p,, between unexpected stock returns ve4+1 and innovations in expected stock
returns ugy). In parentheses, the table also reports the relative standard deviations of
these two innovations, oy /¢y,. The main interest is in the lower right part of the table,
where the expected stock return is persistent (so ¢ is large) and the predictability of
stock returns is close to its upper bound (but small in absolute terms because the upper
bound is small when ¢ is large). In this part of the table vi+1 and uy ) are highly

negatively correlated, and ug41 has a small standard deviation relative to vy .

. ‘When 84, =0 and p = 1, the Iraction of R}, (1) equals one minus the limiting variance ratio for stock returns. Thus
in panel A the columl_u of Table 1 also represent the long-run unjvariate mean reversion of stock returns. In panel B, of
course, there is no univariate mean reversion at all because stock returns are univariate white noise by construction.
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3. Some Asymptotic Properties of Long-Horizon Regressions

A standard long-horizon regression with horizon K takes the form

Ttel vt = B(K)r + ey g g {3.1)

In the AR(1) example, with the coefficient A normalized to one, HEK)Y = (14+06+
o+ eh Ty = - sMy/1 - #). The error term ¢, i g depends on shocks arriving
between periods t + 1 and ¢ + (A — 1); thus it may be correlated with errors dated
t — (I —1) through ¢ 4 (I —1). The error term is serially uncorrelated if the regression
includes data sampled only every K periods, but is serially correlated when all the data
are used. I give most attention to the overlapping regression that uses all the data,
but below I also consider the non-overlapping regression that includes only one in i’
observations.

The standard long-horizon regression weights each 1-period return equally in form-
ing a K'-period return. An interesting alternative is a regression in which distant future
returns receive less weight than near future returns in forming the dependent variable.
For simplicity, I consider a regression with geometrically declining weights and an in-

finite horizon:

real + 2 g+ = BY(v)m et (1), 0<y<l (3.2)

In a finite sample, of course, the horizon cannot be longer than the remainder of
the sample period. But an infinite horizon simplifies the algebra considerably and is
practically equivalent to a finite horizon unless the discount factor 7 is very close to
one. Note that when vy = 0 (3.2) is just a standard 1-period regression. In the AR(1)
example the coefficient 3*(y) = 1/(1 ~ v4).

The geometrically declining weights in (3.2) are also of interest because they relate
to the large literature on volatility tests. Campbell and Shiller (1988b) and Campbell,
Lo, and MacKinlay (1993) show that a volatility test can be interpreted as a restriction
on the regression coefficient 8*(7) in (3.2), where the discount factor 4 equals p and

therefore downweights future returns only very gradually.
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The remainder of this section explores the way in which the asymptotic properties
of long-honizon regressions depend on the horizon I in (3.1) or the discount factor ~
in (3.2).

3.1. R? Statistics

Asymptotically. the R? statistic for the standard K-period regression (with either

overlapping or non-overlapping data) is given by

RQ(I\.) - Var(Etr';+1+...+Egr¢+]")- (3.3)
Var(rH_] 4+ ...+ T't+!\')
Dividing by the one-period R? statistic and rearranging, one obtains
RY(K) - Var(Eyrip1 + ...+ E; "t+l‘\')} { Var(ry,y) (3.4)
R2(1) Var(Eyrey)) Var(repr +. .+ regn)] '

The first ratio on the right hand side of (3.4) is just the square of the K'-period
regression coefficient divided by the square of the one-period regression coefficient. In
the AR(1) example this is (1 — ¢~)2/(1 - #)2, which is approximately equal to i'? for
large ¢ and small K. The second ratio on the right hand side of (3.4) depends on the
autocorrelations of stock returns. Cochrane (1988) and Lo and MacKinlay (1988) have

shown that

Var(rep1 + ... + 1y i) . K j ]
Var(re41) = K |1+2 J_Zl(l - —I%-)Corr(r¢+1,r,+1_j) . (3.3)

The autocovariances calculated in equation (2.9) can be used to evaluate this expression.
Unless a4, is large and positive, the autocorrelations of stock returns are all negative.
It follows that the ratio in (3.5) is less than K so its reciprocal in (3.4) is greater than
1/K.
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Putting the two terms on the right hand side of (3.4) together, one finds that if
expected stock returns are very persistent, the multi-period R? statistic grows at first
approximately in proportion to the horizon K. Intuitively, this occurs because forecasts
of expected returns several periods ahead are only slightly less variable than the forecast
of next period's expected return, and they are perfectly correlated with it. Successive
realized returns, on the other hand, are slightly negatively correlated with one another.
Thus at first the variance of the multi-period fitted value grows more rapidly than the
variance of the multi-period realized return, increasing the multi-period R? statistic.
Eventually, of course, forecasts of returns in the distant future die out so the first ratio
on the right hand side of (3.4) converges to a fixed limit; but the variability of realized
multi-period returns continues to increase, so the second ratio on the right hand side
of (3.4) becomes proportional to 1/K. Thus eventually multi-period R? statistics go
to zero as the horizon increases.

The exact expression for the multi-period R? statistic is algebraically complicated,
even when one uses the approximation p = 1 and considers only a 2-period horizon. In

this case tedious but straightforward calculations yield

RY(2) (1+¢)‘2[ (1 - ¢)(03/02) + A1 - B4,) 3.6)

RA1) ~ 2 (1= )2y +(1+ o)1 - Bz

The ratio in (3.6) approaches (1 + ¢) as 03/03 (and therefore B4.) approach zero, so a
2-period regression may have an R? statistic almost twice that of a 1-period regression
if expected returns are persistent and highly variable. On the other hand the ratio
approaches (1 + ¢)2/2 as 03/ o2 approaches infinity, so a 2-period regression may have
an R? statistic only half that of a 1-period regression if expected returns have only
small and transitory variation.

Table 2 gives exact numerical results for horizons beyond 2 periods. The table
is organized in exactly the same way as Table 1. For each set of parameter values,
the table reports the horizon that maximizes the R? statistic, and the ratio of the
maximized R? statistic to the R? of a 1-period regression. The different rows in Table
2 correspond to different values of the persistence parameter ¢. As one moves down the
table, ¢ increases and both the R2-ma.ximizing horizon and the maximized R2 increase.
The different columns in Table 2 correspond to different degrees of predictability in 1-

period stock returns, relative to the maximum predictability consistent with each value
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of ¢.- As one moves to the right, stock returns become more predictable and again
the R?-maximizing horizon and maximized R? increase. The extreme case in panel A
has ¢ = 0.98 and po dividend uncertainty; in this case the R? statistic of a 1-period
regression is only 1.5% but the maximum R? statistic is 42 x 1.5% = 63%, obtained
with a 152-period regression.

Turning to the weighted infinite-horizon regression, tedious but straightforward

algebra shows that when p = 1 the R? statistic is

1—1¢)? { o3 1 -
R = [(1_—:?'(%H[l—rp—ljw](l_ad’))] - B

Note that R? is now written as a function of the weighting parameter v rather than
of the horizon K; hence the one-period regression R? is written as R%(0) because
this is the case where ¥ = 0. Table 3 gives the value of v that maximizes R?, and
the maximized ratio R2(7)/R2(0), for p = 0.995 and the same parameter values used
before. As before, panel A of the table sets Ay, = 0. When expected returns are highly
variable, at the right of the table, the highest R? is obtained by setting v very close
to p in the manner of a volatility test. Note that when the 1-period R? statistic is
at its maximum in the right-hand column, the appropriately weighted infinite-horizon
regression has an R? statistic of unity. This is because in the right-hand column the

stock is like a consol whose long-run return is known with certainty.

3.2. Asymptotic Statistical Inference

Tables 2 and 3 show that increases in horizon can dramatically increase regression
R? statistics when expected returns are persistent. Despite this appealing property.
long-horizon regressions cannot be used without confronting some tricky statistical
issues. The basic problem with a long-horizon regression is that when one uses all the
data, the overlap in the dependent variable creates serial correlation in the residuals.
If standard errors and test statistics are calculated without taking account of this, they
greatly understate the true uncertainty about the regression coefficients.

Asymptotic statistical inference with serially correlated errors is by now well un-
derstood. The asymptotic theory is a special case of Hansen’s (1982) Generalized
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Method of Moments, and was first applied to regressions with overlapping residuals by
Hansen and Hodrick (1980). Hansen and Hodrick did not allow for heteroskedasticity
in the manner of White (1984), but it is now standard to do so. The heteroskedasticity
correction plays no role in the asymptotic analysis here, since the AR(1) example is
homoskedastic.

To state Hansen's result in appropriate generality, consider a regression of the form
i = X0 + e (3.8)

where X; and @ may be vectors and the error term e¢; may have arbitrary serial cor-
relation. We define W| = ¢1.X, the product of the equation error and the vector of
explanatory variables, and use the notation @ for the OLS estimate of 8 in (3-8). Then

the asymptotic distribution of 8 is normal, with mean 8 and variance-covariance matrix

given by
T.Var(8-8) = Z5'S9z57, (3.9)
where
Zy = E[XeX], (3.10)
o0
So = E[ Y, wmw_;] (3.11)
j=-o0

Sp is the spectral density matrix of Wy evaluated at frequency zero, or equivalently the
two-sided sum of all the autocovariances of W;.

In practice, of course, Sg and Zg are unknown. However they can be estimated
in the usual way by using sample moments in place of population moments. Zg can
be estimated straightforwardly by Zp = (1/T) 2'{:1 XX}, but estimation of Sp re-
quires that one truncate the infinite two-sided sum at some point K to get an estimate

St = Cr(0) + TEINCT() + Cr(5)), where C1(j) = (1/T) Ti- 41 WaW;_;- These
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estimates deliver asymptotically correct statistical inference provided that the trunca-
tion point A increases (but not too rapidly) with the sample size.

In the case of_the unweighted long-horizon regression (3.1) these results simplify
because the regression has demeaned variables and a scalar regressor, and because the
assumption that r; captures all predictability in returns implies that the autocovari-
ances of the equation error are zero beyond the regression horizon K. Thus if 3(I) is
the OLS estimate of 8(X') in (3.1), and wy x is the scalar product of the the explana-
tory variable and the equation error, wyy g = 1&gk g, We have asymptotically that

under the null hypothesis,

K-1
E[E"—_-_KHWHKWHK—J'] (3.12)

T.Var(A(K) - B(K)) =

a2

In the single-period regression case I’ = 1, (3.12) becomes Var(e;4) 1)/ Var(zy). the
standard expression for the variance of a regression coefficient estimate with a scalar
zero-mean regressor and serially uncorrelated residuals. Equation (3.12) can be used

to construct asymptotic standard errors for K-period regression coefficients.

3.3. Approximate Slope of Long-Horizon Regressions

The asymptotic theory summarized above can also be used to compare the power
of short- and long-horizon regressions to reject the hypothesis that stock returns are
unforecastable. A simple and intuitive measure of asymptotic power is the “approxi-
mate slope” of a test statistic, due to Bahadur (1960) and analyzed in greater detail by
Geweke (1981). Jegadeesh (1991) and Richardson and Smith (1991a,b) have recently
applied this concept to study regressions of returns on lagged returns over various
horizons.

Approximate slope is calculated assuming that a specific fixed alternative hypoth-
esis is true, and it measures the rate at which the null hypothesis becomes easier to
reject as the sample size increases. Formally, if one fixes the power of a test against a
given alternative hypothesis, the significance level s of the test decreases with sample
size T. Approximate slope is the limit of the ratio —2log(s)/T as T increases. Geweke
(1981) shows that the ratio of approximate slopes for two different test statistics can

be interpreted as the limit, as s declines, of the reciprocal of the ratio of the number
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of observations each statistic needs to reject the null hypothesis with a given probabil-
ity. Thus if test statistic A has approximate slope twice that of test statistic B, then
asymptotically stagistic 4 will require only half as many observations as statistic B to
reject the null hypothesis with given probability.

Geweke (1981) also shows that for any test statistic that has a y2 distribution under
the null hypothesis, the approximate slope is the probability limit of the statistic under
the alternative hypothesis, deflated by the sample size. In the present application. the
approximate slope ¢(/\'} of a K-period regression test that §(K') is zero is just the
square of the population value of 3(X) under the alternative, divided by T times the

asymptotic variance of B(K) as given in equation (3.12):

B(K)?

o) = = .
T.Var(B(K) - A(K))

(3.13)

Thus K-period regressions can have asymptotic power advantages, in the sense captured
by approximate slope, if the squared regression coefficient increases with I faster than
the asymptotic variance in (3.12).

Approximate slope calculations in the AR(1) example are straightforward but are
even more complicated algebraically than the calculation of R? statistics. If one uses

the simplifying assumption p = 1 the approximate slope of a 1-period regression is

1
1 = . 3.14
W = e Ture—28/a=-a) (3.14)

while the slope of an unweighted overlapping 2-period regression. divided by the slope

of a 1-period regression, is

o2)  (1+ )2+ (1 - ?)e3/02) - 2(1 + ¢)Byx

= : 3.15
(1) (1+3¢%) +2(1 - ¢)(03/02) — 2(1 + 6)Ba: (319

The right hand side of (3.15) approaches (1 + ¢)2/(1 + 3¢?) as 03/0% (and therefore
B4z) approach zero. (1 + ¢)2/(1 + 342) slightly exceeds one when 0 < ¢ < 1, reaching

- a maximum of 1.33 when ¢ = 0.33; thus a 2-period regression may have a larger
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approximate slope than a 1-period regression if expected returns are highly variable. On
the other hand the right hand side of {3.15) approaches (1 + ¢)/2 as 03/03 approaches
infinity, so a 2-perjod regression may have an approximate slope only half that of a
1-period regression if expected returns have only small and transitory variation. The
importance of persistence can also be seen by noting that the right hand side of (3.15)
approaches (1 + aﬁ/ag —-284:)/(1 + 203/03 — 2f4z), which is always less than one, as
¢ approaches zero. Thus long-horizon regressions cannot have a greater approximate
slope than short-horizon regressions when expected returns follow a white noise process.

Table 4 gives approximate slopes for overlapping regressions with horizons bevond
two periods. For each set of parameter values the table reports the horizon that max-
imizes the approximate slope, and the ratio of the maximized approximate slope to
the approximate slope of a 1-period regression. Both the maximizing horizon and the
maximized approximate slope ratio increase as one moves down and to the right. In the
case where gy, = 0, ¢ = 0.98, and there is no dividend uncertainty, the regression with
the greatest approximate slope has a horizon of 153 periods and the approximate slope
ratio is 3.7. Taken together, equation (3.15) and Table 4 show that when expected
returns are highly variable and persistent the approximate slope, as a function of the
horizon, rises only slowly but continues to rise until the horizon becomes very long.
Table 4 also shows that the slope-maximizing horizon is generally slightly less than
the R%-maximizing horizon in Table 2, and the proportional increase in approximate
slope from using a long horizon is much less than the proportional increase in the R?
statistic.

Turning to the weighted infinite-horizon regression, the approximate slope is again

tedious but straightforward to compute when p = 1:

v - =N (3 a-nPa+e) . (-8 ]
() [ =42 (a%*(l—w)?(l-w a-on-a) o 19

Table 5 gives the value of 4 that maximizes ¢*, and the maximized ratio c*{v)/c*(0),
for p = 0.995 and the same parameter values used before. In the right-hand column the
maximized slope ratio is infinite because the weighted infinite-horizon regression has an
R? of unity and an infinite approximate slope. The slope-maximizing value of 7 is fairly

close to the R2—nlaxi1nizing value except at the far left of the table. Comparing the
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approximate slopes in Table 5 with those in Table 4, it is clear that weighted regressions
can have large approximate slope advantages over unweighted long-horizon regressions.
This, together with the result that v should be close to p when 84, = 0, may help to
explain the dramatic empirical results obtained with volatility tests.

The approximate slope advantages of overlapping long-horizon regressions are
striking for several reasons. First, in the example studied here both short- and long-
horizon regressions use the same forecasting variable z;. Previous work, notably
Richardson and Smith (1991a,b), has studied regressions of returns on lagged returns
in which the regressor changes as the return horizon changes. It is easy to see that the
return horizon can change the power of a regression when it changes the regressor. but
there is no such effect here.

Second, the approximate slope advantages of long-horizon regressions do not de-
pend on the existence of mean-reversion in realized asset returns. Long-horizon regres-
sions can have greater approximate slope even when realized returns are white noise.
To see this for the 2-period case with p = 1, set 84, = 1 to make realized returns white

noise and simplify equation {3.15) to obtain

o2 _ (1-¢*)(od/a2 - 1)

1) (342 —26 1)+ 21 - ¢)(02/02)’

{3.17)

When ag/ag is at its minimum of 1/(1 — ¢2), this expression reaches a maximum of
#%(1 + /(1 - ¢2)(l -34) 4+ 2&2), which exceeds one when ¢ lies between 0.366 and
one.

More generally, panels B of Tables 2 through 5 repeat panels A setting 34, to
make realized returns white noise. With p = 0.995 rather than one, the required value
of B4, is not exactly one but it depends only on ¢ and is reported in parentheses under
each value of ¢. In panel B of Table 2, shorter horizons maximize the R? of unweighted
regressions and the gain in explanatory power is less dramatic than in panel A. Panel
B of Table 4 shows that shorter horizons maximize approximate slope for unweighted
regressions than is the case in panel A; however the gain in approximate slope can be
much greater than before. When ¢ = 0.98 and dividend uncertainty is at its minimum,
for example, a 67-period regression can have an approximate slope almost 9 times
greater than a 1-period regression.

In panel B of Table 3, the highest R? for a weighted regression is obtained when
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" the weighting coefficient 7 is very close to ¢ rather than p as in panel A.% As before, in
the right hand column of the table the highest possible R? of a weighted long-horizon
regression is actually unity. Panel B of Table 5 shows that in this case approximate
slope is maximized in a weighted regression by setting ¥ = ¢. Just as in panel A, this
gives an infinite approximate slope.

Although the approximate slope advantages of overlapping long-horizon regressions
do not require mean reversion in returns, they do require that innovations in returns
are negatively correlated with future returns. Equation (2.8) writes the overall serial
correlation of returns as the sum of the serial correlation of the expected return z;
and the correlation of the return innovation v;4} with future returns. The former is
positive when ¢ > 0. The latter is negative unless dividend news and expected return
innovations are strongly positively correlated, and it must be negative if the overall
serial correlation is to be zero.

Long-horizon regressions only have approximate slope advantages when this cor-
relation of return innovations with future returns is negative. Intuitively, a regression
coefficient is precisely estimated when the regression error has low variance. The error
variance of a long-horizon regression is reduced if unexpectedly high returns early in the
forecast period tend to be associated with lower returns later in the forecast period, and
this is the source of the greater approximate slope of long-horizon regressions. More for-
mally, equation (2.9) shows that return innovations are uncorrelated with future returns
when B4, = 1 + ¢. Equation (2.10) shows that this requires 0'3/02 > {1+ ¢)/(1-¢)
When these conditions are imposed on the general formula for the approximate slope
ratio ¢(2)/¢(1), equation (3.15), the ratio can never be greater than one.5 Hence leng-

horizon regressions have no approximate slope advantages in this case.

3.4. Some Other Variations of Long-Horizon Regressions

This subsection considers several other variations of the basic long-horizon re-
gression. In the AR(1) example, it turns out that these variations offer little or no
advantage over a short-horizon regression.

As a first variation, consider using only non-overlapping data, that is, sampling

{Thin result can be obtained analytically when p = 1. In this case 84, = 1, 30 (3.7) simplifies considerably and it is
ur:.;mo:wud to show that R?(v) is maximized when « = ¢.
To show this, note that when 04, = 1 + ¢, the approximate slope ratio is one when 03 /a3 = 26/(1 + ¢). But this is
smaller than the lower bound on a} /o imposed by equation {2.10).
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the data every K periods when the regression horizon is Jv. This procedure is very
simple because the regression error is serially uncorrelated under the null hypothesis:
for this reason it hgs been used by Fama and French (1988b, 1989) among others. With
non-overlapping data the approximate slope ratio ¢(K)/e(1) is just

oK) A(K)?
o(1) — KVar(eryg i)/ Var(err11)

(3.18)

where the division by I reflects the fact that the K -period regression has only 1/K
times as many observations.

Straightforward algebra shows that when p = 1 the slope of a non-overlapping
2-period regression, divided by the slope of a 1-period regression, is

(3.19)

«2) (1+¢) (1+68)° + (1 — ¢?)(03/02) — 21 + ¢)By,
o)\ 2 J(1+362) +6(1 - $)2 + 21 — $)02/02) — 2(1 + 6)Bg,

This differs from the formula for the overlapping regression in two ways. The whole
formula is multiplied by (1 + ¢)/2, and there is an extra term &(1 - q&)2 in the denom-
inator. Both these differences reduce the approximate slope in (3.19), reflecting the
loss in efficiency from dropping the overlapping data. Both differences disappear as ¢
approaches one, because there is less extra information in the overlapping data when
the regressor is highly persistent.”

Even though the overlapping data contain little extra information when ¢ is close
to one, this information turns out to be critical in generating large approximate slope
advantages for long-horizon regressions. To see this, first consider the case where
B4z = 0. Under the simplifying assumption that p = 1, as 03/03 goes to zero the right
hand side of (3.19) approaches its maximum value of (1+ ¢)2/2(1 + ¢2) which is always
less than one. Thus in this case a long-horizon regression can have an approximate
slope advantage over a short-horizon regression only if it uses overlapping data. Now
keep B4, = 0 but set p = 0.995. Numerical calculations like those in Table 4 show that

in this case a non-overlapping long-hotizon regression can offer a gain in approximate

" Hansen and Hodrick (1980} originally made this point, which has been restated recently by Boudoukh and Richardson
(1993).
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slope, but it is extremely small. At the bottom right corner of Table 4 panel A. for
example, an overlapping long-horizon regression with the slope-maximizing horizon of
153 periods increages approximate slope by a factor of 3.71. For the non-overlapping
regression these numbers are 21 and 1.02 respectively. .

Next consider the case where Jy, is set to eliminate serial correlation in realized
returns. Under the simplifying assumption that p = 1, as 03/03 approaches its mini-
mum value of 1/(1 — ¢?) the right hand side of (3.19) approaches its maximum value
of (1+ ¢)¢2/(4/(1 +¢)+2(1+ gb)(é2 — 1)), which exceeds one when ¢ lies between
0.521 and one. Thus in this case a non-overlapping long-horizon regression can have an
approximate slope advantage over a short-horizon regression. Numerical calculations
setting p = 0.995 show that the gain in approximate slope is much reduced by using
non-overlapping data. At the bottom right hand corner of Table 4 panel B, an overlap-
ping long-horizon regression with the slope-maximizing horizon of 67 periods increases
approximate slope by a factor of 8.88; for the non-overlapping regression these numbers
are 46 and 1.96 respectivelvy.

These calculations show that contrary to Boudoukh and Richardson (1993), the
case for running long-horizon regressions depends on using all the data rather than
sampling the data to eliminate the serial correlation of the regression error term.

A second variation of the standard long-horizon regression is a backward-filtered
short-horizon regression. This keeps the short-horizon return as the dependent variable

but uses a backward moving average of z; as the regressor:

reel = HRK)ze+...+z_g) + Y4l K- (3.20)

The numerator of the regression coefficient #({ i) in (3.20) is the same as the numerator
of the regression coefficient 4(K) in (3.1), because the covariance of z measured at one
date and r measured at another date depends only on the difference between the two
dates. Hence 8(K) = 0 in (3.20) if and only if S(K) = 0in (3.1).

Cochrane (1991) seems to argue, on the basis of this fact, that long-horizon re-
gressions have no advantages over backward-filtered regressions of the form (3.20). He
writes: “Intuitively, the filtered right-hand-variable regression [(3.20)] has better power
than the raw [short-horizon] regression because a slow-moving right-hand variable can

pick up a slow-moving component on the left-hand side. This increase in power is
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the same as the increase one obtains by aggregating the left-hand variable [in a long-
horizon regression]” (p. 476. words in square brackets added for clarification). In the
context of the AR(1) example, however, it is easy to see that the backward-filtered
regression (3.20) can have no advantages, because it merely replaces the optimal fore-
casting variable z; with an inferior forecasting variable that averages z; and its own
lags. Hence the characteristics of long-horizon regressions are not the same as those
of backward-filtered regressions. A backward-filtered regression should be used when
there is reason to believe that a moving average of some observed variable is a bet-
ter proxy for the expected one-period stock return than the observed variable itself;
the analysis of approximate slope suggests that a long-horizon regression should be
used when there is reason to believe that the return contains a variable and persistent
predictable component.

A third variation, proposed by Hodrick (1992) and Bollerslev and Hodrick (1992), is
to run a long-horizon regression but to impose the null hypothesis when calculating the
asymptotic standard error. The basic long-horizon standard error calculation assumes
only that the autocorrelations of the regression error are zero beyond lag k' — 1, which
is true under both the null and the alternative. But the null hypothesis also implies
that the regression error epy g g =41+ .- + 744k, and that these returns are serially
uncorrelated. Thus the cross-product wyip = zeepag gk = ze(repr + .- + revn).
Substituting into equation (3.12) and simplifying, one obtains an alternative asymptotic

variance formula as

Var{ry, ) Var(zgpy + ...+ 254 1)
. )
Ty

T.Var(B(K) - B(K)) (3.21)

If one uses this formula in place of (3.12), the approximate slope of a A-period regres-

sion relative to a l-period regression becomes

oK) _ _ BE)Ver(zey1)
c(1) Var(zeq + ... + 24 k)’

(3.22)

which declines with the horizon K. When R = 2, equation (3.22) implies ¢(2)/c(1) =
(14 ¢)/2 < 1. Thus the Bollerslev and Hodrick (1992) and Hodrick (1992) estimator

eliminates the approximate slope advantages of the basic long-horizon regression. If
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the alternative hypothesis is true, then uncertainty is less at long horizons than one
would think from looking only at short horizons; long-horizon regressions have greater
approximate slope_only when one allows the data to reveal this fact.

This result may also be relevant for the results of Jegadeesh (1991) and Richard-
son and Smith (1991b). Both these papers study regressions of returns on lagged
returns, and both calculate standard errors imposing the null hypothesis. Richardson
and Smith (1991b) require that the return horizon be the same for the regressor and
the dependent variable, while Jegadeesh (1991) relaxes this restriction. Jegadeesh finds
that approximate slope is maximized for a long-horizon regressor but a short-horizon
dependent variable. This may be due to the fact that Jegadeesh uses standard errors

which impose the null hypothesis.
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4. Monte Carlo Results

In this section I undertake a preliminary exploration of the finite-sample size and
power properties of long-horizon regressions. While finite-sample performance is always
the question of ultimate interest, and asymptotic theory is at best a guide to such
performance, there are several reasons why in this case it is particularly important to
explore finite-sample performance directly through Monte Carlo experiments.

First, it is well-known that the standard error correction of Hansen and Hodrick
(1980) performs poorly when the degree of overlap is large relative to the sample
size. Related standard error corrections, such as that of Newey and West (1987), also
deteriorate in these circumstances.

Second, Stambaugh (31986) has analyzed one-period regressions of the type studied
here and has quantified the finite-sample bias in their coefficient estimates. In the

notation of this paper, Stambaugh’s result is

1+3¢] Ouy (4.1)

B - sl = - |2

1
o}

where u is the innovation in the expected return and v is the unexpected stock return.
The term in square brackets is the standard formula for downward bias in an AR(1)
coefficient estimate; equation (4.1) shows that the effect of this on the bias of B( 1)
depends on the covariance structure of « and v. Using (2.5) to break the unexpected

stock return into its components, (4.1) can be rewritten as

Bpm - sl = - [P (25 - 1) (42

When S84, = 0, this simplifies to (1 + 3¢)/(1 — ¢)T. It is easy to see that the finite-
sample bias is increasing in ¢; thus one-period regressions are most seriously biased
in precisely those cases where long-horizon regressions have the greatest asymptotic
advantages. This result is troubling even though it does not directly concern the
properties of test statistics or long-horizon regressions.

A third reason to be particularly concerned about finite-sample behavior is that
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the analysis of approximate slope differs from standard asymptotic analysis. Approx-
imate slope is calculated for fixed alternatives, and long-horizon regressions only have
increased approxirgate slope under alternatives that are sufficiently different from the
null hypothesis. But these are precisely the alternatives under which it is easiest to
reject the null hypothesis using a one-period regression. Thus in very large samples
any gain in power may be unnecessary, since even a one-period regression can reject
the null at any conventional significance level; power advantages in smaller samples are
essential if there is to be a practical argument for using long-horizon regressions.

Another way to understand this point is to note that T times the R? statistic of
a one-period regression is asymptotically distributed x2(1) under the null hypothesis
that returns are unpredictable. Tables 2 through 5 give the probability limit of the R?
statistic of a one-period regression for each alternative model; this should be roughly
the median R? statistic that will be obtained in repeated finite samples under the
alternative. We can compare T times this value with 3.8, say, the 5% critical value of a
Y2(1), to get a feel for the finite-sample power of a one-period regression. For example.
consider the alternatives at the far right of each table, for which the one-period R?
statistic is at its maximum. When ¢ = 0.5 in panel A, R%(1) = 0.254 and T R?(1) = 3.8
for T = 15, suggesting that a one-period regression will reject at the 5% level half the
time with 15 observations. When ¢ = 0.9, R%(1) = 0.055 and T R%(1) = 3.8 for
T = 69, so now almost 70 observations are needed for a one-period regression to reject
with 50% probability. When ¢ = 0.95 and 0.98, similar calculations show that 127 and
253 observations are needed. Only in these last two cases do one-period regressions
have low power in samples of typical size, and in these cases long-horizon regressions
must have very long horizons to get substantial power advantages.

Since the asymptotic critical values of long-horizon test statistics may be incorrect
in finite samples, it is important to calculate empirical critical values under the null
hypothesis before evaluating the ability of these statistics to reject the null when a
particular alternative hypothesis is true. Unfortunately, this task is not straightforward
because the hypothesis that returns are unpredictable is consistent with any time-series
behavior for the regressor and any correlation between innovations in the regressor and
innovations in returns. Empirical critical values are likely to be different for different
unpredictable-return processes.

The Monte Carlo study reported here deals with this problem as follows. Starting

with a process for zy, the alternative hypothesis is that returns satisfy equation (2.5):
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Fiel = L+ U] = I+ vg et — puis1 /(1 — po). To generate empinical critical values,

one-period returns are first generated from the unpredictable process

PuL+]
Ti41 = U4l = U4l 1__:¢- (4.3)

This is equivalent to setting A = 0 in the original return equation {2.1). These one-
period returns are then cumulated to get multi-period returns. Short- and long-horizon
returns are regressed on zy, and unpredictability is tested. The empirical distribution
of the test statistics gives empirical critical values.8

Table 6 reports the results of this procedure for two alternative processes. In panel
A the alternative process has 84; = 0, ¢ = 0.95, and R?(1) equal to its maximum value
of 0.030. Sample sizes of 100 and 200, and horizons of 1, 2, 5, 10, 20, and 40, are
considered. The horizon is arbitrarily restricted to be no greater than 20% of the
sample size, and so a 40-period horizon is used only when T' = 200. 10.000 replications
are used in the Monte Carlo experiment. Panel B is similar except that the alternative
sets By; = 0.822 to make realized returns white noise, R2(1) equals its maximum
value of 0.098, and sample sizes of 50 and 100 are considered. All test statistics are
calculated using Hansen-Hodrick standard errors unless these are negative (a very rare
occurrence), in which case the correction suggested by Newey and West (1987) is used.

The first three columns of the table show the empirical critical values for 0.5%,
1%, and 5% tests of unpredictable stock returns. These critical values increase strongly
with the horizon. The remaining columns of the table report rejection rates, based on
empirical critical values. In some parts of the table there is a very slight tendency for
the rejection rates to increase with the horizon, but overall the table does not make a
good case for power advantages of long-horizon regressions.9
Table 7 repeats Table 6 for weighted long-hornizon regressions. Here the dependent

variable regressed on r; is always a weighted sum of returns from t to the end of

3 This procedure closely matches the properties of single-period returns under the altemative hypothesis, but does
not well match the properties of multi-period returns under the alternative hypothesis. A procedure that avoids this
problem is Lo generate both single- and multi-period returns under the alternative hypothesis, then subtract the predictable
components from these returns. | implemented this procedure in an earlier version of this paper. It gives smaller empirical
critical values for long-horizon regressions, and hence stronger evidence for power advantages of long-horizon regressions,
than the procedure described in the text. The difference between the results of the two procedures is particularly marked
for unweighted long-horizon regressions.

*1 also studied the finite-sample behavior of non-overlapping long-horizon regressions. but to save space these results
are not reported. The rejection rates of non-overlapping regressions fall with the horizon, slowly at first and then sharply
when the horizon reaches 10% or 20% of the sample size.
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the sample. The weight for return ry ;. is 4'. Standard errors are corrected using
the Hansen-Hodrick correction with K* autocovariances, where I'* is either T/5 or
the smallest numbher such that 7[‘.‘ < 0.05, whichever is smaller. This procedure
for choosing the number of autocovariances is both consistent and roughly in line with
empirical practice. As in Table 6, Newey-West standard errors are used only if Hansen-
Hodrick standard errors are negative, something which occurs very rarely.

Table 7 shows that weighted long-horizon regressions have striking power advan-
tages even after correcting for finite-sample size distortion. The most dramatic results
are found in panel A where 8y, = 0 and returns are mean-reverting. Here a one-period
regression rejects the null only 3% of the time at the 0.5% level, while a weighted re-
gression with weight 0.995 rejects 87% of the time. In panel B there is a less dramatic
but still marked increase in power with the horizon of the regression. Interestingly.
in this panel there is a detectable peak in power around 4 = 0.95; this is what the
approximate slope calculation in Table 5 would imply.

The results in Table 7 suggest that weighted long-horizon regressions may have
important practical advantages in detecting predictable components of asset returns.
However these results rely on empirical critical values that were calculated knowing the
true value of the persistence parameter ¢. In practice the econometrician does not know
¢ but must estimate it. If the empirical critical values for long-horizon regressions are
more sensitive to ¢ than are the empirical critical values for short-horizon regressions.
then the need to estimate ¢ may be a serious difficulty in implementing long-horizon
regression tests.!0

Table 8§ confirms that indeed the empirical critical values for regression tests do
increase more rapidly with ¢ when the horizon is long (that is, when the discount factor
7 is close to one). The table reports the 5% empirical critical value of a long-horizon
test statistic for the standard set of 4 values and ¢ ranging from 0.90 to 0.999. Variation
in ¢ over this range raises the 5% critical value of a short-horizon (v = 0) test from 2.3
to 2.9, but it raises the critical value of a long-horizon (y = 0.995) test from 6.2 to 58!

This sensitivity of critical values to persistence certainly complicates the imple-
mentation of long-horizon regression tests, but it does not altogether eliminate their
advantages. In practice an econometrician will use a bootrap procedure, first estimat-
ing @, then calculating critical values appropriate for that ¢, and finally running the
long-horizon regression test. (Mark (1992) is a recent example of this approach.) A

18] am grateful to Jim Stock for making this point.
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Monte Carlo study, reported in Table 9. shows that this boostrap procedure can have
good finite-sample properties.

The simulated procedure first estimates ¢ by OLS regression of z; on its own first
lag. In panel A the estimated ¢ is used without any correction, while in panel B the
estimate is adjusted upwards by (1 + 3¢)/T, the standard formula for downward bias
in an AR(1) parameter. An empirical critical value appropriate for the estimated &
is then calculated. In practice this would be done by a Monte Carlo study, but it
is computationally too burdensome to simulate the properties of this. Instead [ first
calculated Monte Carlo critical values for ¢ =0.8, 0.9, 0.95, 0.98, 0.98. and 0.999. and
then used linear interpolation for intermediate values of ¢.

The left hand side of Table 9 reports the rejection rates of this procedure when
the null hypothesis is true, that is when returns are generated by equation (4.3) and
have no predictable component. The right hand side reports the rejection rates under
the alternative hypothesis that returns are predictable, with a one-period R? statistic
of 3% and perfect negative correlation between the innovations ug41 and vy4). The
properties of short- and long-horizon regressions are compared for two values of ¢, 0.95
and 0.999. Throughout the table the sample size T is 100, and 10,000 replications are
used.

The left hand side of Panel A of Table 9 shows modest size distortions for the
unadjusted bootstrap procedure when the true value of ¢ is 0.95, and more serious
distortions when the true value of ¢ is 0.999. The distortions worsen with the regression
horizon. These results are not surprising, as the downward bias in estimated ¢ will
have more serious effects when the true value of ¢ is very close to one. Fortunately the
simple bias correction in panel B seems to eliminate most of the size distortion in the
bootstrap approach.

The right hand side of Table 9 shows that long-horizon regression tests continue to
offer large power advantages even when bootstrapped critical values are used. Focusing
on panel B, a test with ¥ = 0.995 rejects the null at the 0.5% level 56% of the time
whereas a standard short-horizon test rejects at this level only 3% of the time. The
long-horizon 0.5% test has a higher rejection rate even than a 1% or 5% short-horizon

test.
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5. Conclusion

In this paper I have tried to fill a surprising gap in the vast literature on long-
horizon regressions. These regressions have become enormously popular with financial
econometricians because of the striking results that they often generate. Despite this,
there has been almost no theoretical work on the power properties of long-horizon
regressions, so empirical work has proceeded without adequate motivation.!}

I have used a simple AR(1) example to study the behavior of long-horizon regres-
sions. When expected returns are both variable and highly persistent, a short-horizon
regression will have a very low R? statistic but much higher R? statistics can be ob-
tained at longer horizons. Under the same conditions approximate slope, a measure of
asym‘ptot.ic power, is increasing with the horizon over some interval. It is noteworthy
that these results do not depend on mean reversion (negative serial correlation in real-
ized returns), although they do depend on negative correlation between innovations in
the regressor and in returns.

The paper also explores weighted long-horizon regressions, in which more distant
future returns are downweighted relative to near future returns. These regressions are
closely related to volatility tests, and they turn out to have even greater approximate
slopes than the standard unweighted long-horizon regressions.

Long-horizon standard error corrections are known to have serious size distortions
in finite samples. In addition, the circumstances under which long-horizon regressions
have approximate slope advantages are also circumstances under which short-horizon
regression coefficients have serious finite-sample bias. Accordingly I use Monte Carlo
methods to see whether power advantages are available in finite samples. I first assume
that the true persistence of the regressor is known. In this case unweighted long-horizon
regressions do not seem to offer any significant power gains over short-horizon regres-
sions, but weighted long-horizon regressions perform extremely well. I next assume
that the econometrician does not know the persistence of the regressor but must es-
timate it. In this situation a bootstrap approach works well if one corrects for the
downward finite-sample bias in the OLS estimate of the persistence parameter. Once
again weighted long-horizon regressions offer striking power advantages.

The analysis of this paper can be extended in several directions. First, it would

11 Jegadeesh (1991) and Richardson and Smith (1991a,b) have studied the approximate slopes of regressions in which
long-horizen returns are regressed on lagged long-horizon returns, but these are special in that both the regressor and the
dependent variable change with the horizon. In addition, these authors compute standard errors under the null rather
than the alternative,

-30-



be desirable to link the approximate slope analysis used here to more conventional
asymptotic theory, perhaps by using the concept of “point-optimal”™ tests. Second.
one might relax the assumption used here that returns are homoskedastic. Stambaugh
(1993) finds that conditional heteroskedasticity increases the advantages of long-horizon
regressions. Third, it would be interesting to study the properties of long-horizon
statistics calculated from estimates of a VAR system. Campbell and Shiller (1988a.b)
and Campbell (1991) find that such statistics reject very strongly the hypothesis that
stock returns are unpredictable, and they report some Monte Carlo evidence that this
is not due merely to size distortions, but the power properties of the statistics remain

unclear.
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TABLE 1

Implied Moments of VAR Innovations

Puv
(Uu/av)
A: By =0
R%(1)/R%,,.(1)
¢ 010 025 050 075 090 095 100 | R%_ (1)
0.100 | -0.239 -0.393 -0.595 -0.780 -0.912 -0.955 -1.00 0.453
(0.217) (0.355) (0.538) (0.706) (0.825) (0.864) (0.905)
0.250 | -0.254 -0.414 -0.619 -0.799 -0.921 -0.960 -1.00 0.378
(0.192) (0.313) (0.468) (0.604) (0.695) (0.725) (0.755)
0.500 | -0.277 -0.446 -0.654 -0.825 -0.933 -0.966 -1.00 0.254
(0.140) (0.225) (0.330) (0.416) (0.471) (0.488) (0.505)
0.750 | -0.297 -0.474 -0.682 -0.844 -0.942 -0.971 -1.00 0.129
(0.076) (0.121) (0.174) (0.215) (0.240) (0.248) (0.255)
0.900 | -0.308 -0.489 -0.697 -0.854 -0.946 -0.973 -1.00 0.055
(0.032) (0.051) (0.073) (0.090) (0.099) (0.102) (0.105)
0.950 | -0.312 -0.494 -0.702 -0.857 -0.947 -0.974 -1.00 0.030
(0.017) (0.027) (0.039) (0.047) (0.052) (0.054) (0.055)
0.980 | -0.314 -0.497 -0.704 -0.858 -0.948 -0.974 -1.00 0.016
(0.008) (0.012) (0.018) (0.022) (0.024) (0.024) (0.025)
B: Zero-autocorrelation 8,
R*(1)/RZ,.;(1)
#(B4r) | 010 025 050 075 090 095 1.00 | R2,.(1)
0.100 | -0.032 -0.049 -0.069 -0.083 -0.091 -0.093 -0.096| 0.990
(0.994) | (0.312) (0.489) (0.684) (0.823) (0.901) (0.923) (0.945)
0.250 | -0.078 -0.121 -0.165 -0.195 -0.211 -0.215 -0.220 | 0.937
(0.992) | (0.292) (0.452) (0.619) (0.731) (0.791) (0.808) (0.824)
0.500 | -0.153 -0.230 -0.304 -0.348 -0.370 -0.376 -0.382 | 0.750
(0.985) | (0.229) (0.345) (0.455) (0.522) (0.555) (0.564) (0.573)
0.750 | -0.224 -0.328 -0.418 -0.468 -0.491 -0.498 -0.503 | 0.437
(0.966) | (0.131) (0.192) (0.244) (0.273) (0.287) (0.290) (0.294)
0.900 | -0.266 -0.385 -0.484 -0.537 -0.562 -0.568 -0.574 | 0.190
(0.909) | (0.056) (0.081) (0.102) (0.113) (0.119) (0.120) (0.121)
0.950 | -0.282 -0.410 -0.518 -0.577 -0.604 -0.612 -0.619| 0.098
(0.822) | (0.029) (0.042) (0.053) (0.059) (0.062) (0.063) (0.064)
0.980 | -0.297 -0.442 -0.574 -0.651 -0.689 -0.699 -0.708 | 0.040
(0.602) | (0.012) (0.018) (0.023) (0.026) (0.028) (0.028) (0.029)




TABLE 2
Choosing Horizon to Maximize R?

R* = argmaxy, RY(K)

(RYK*)/R¥(1))
A: By, =0
R2(1)/ RE,(1)
¢ 010 025 050 075 090 095 100 | R%,.(1)
0.100 1 1 1 1 2 2 5 0.453
(1.00) (1.00) (1.00) (1.00) (1.02) (1.06) (1.11)
0.250 1 1 1 2 2 3 8 0.378
(1.00) (1.00) (1.00) (1.09) (1.18) (1.23) (1.33)
0.500 2 2 3 3 4 5 14 0.254
(1.15) (1.20) (1.29) (1.48) (1.68) (1.80) (2.00)
0.750 5 5 6 7 10 12 28 0.129
(1.94) (206) (2.33) (2.76) (3.24) (3.50) (3.99)
0.900 | 12 13 15 20 26 31 58 0.055
(4.47) (4.79) (5.49) (6.65) (7.92) (8.62) (9.86)
0.950 | 25 27 32 40 52 61 92 0.030
(8.72) (9.36) (10.8) (13.1) (15.6) (16.9) (19.1)
0.980 | 65 69 78 96 117 130 152 0.016
(21.4) (22.9) (26.2) (31.3) (36.3) (38.8) (42.0)
B: Zero-autocorrelation §y,
R*(1)/R3,4:(1)
8Bs;) | 010 025 050 075 090 095 100 | Ri,(1)
0.100 1 1 1 1 1 1 1 0.990
(0.994) | (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
0.250 1 1 1 1 1 1 1 0.937
(0.992) | (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
0.500 2 2 2 2 2 2 2 0.750
(0.985) | (1.13) (1.13) (1.13) (1.13) (1.13) (1.13) (1.13)
0.750 4 4 4 4 4 4 4 0.437
(0.966) | (1.87) (1.87) (1.87) (1.87) (1.87) (1.87) (1.87)
0.900 | 12 12 12 12 12 12 12 0.190
(0.909) | (4.29) (4.29) (4.29) (4.29) (4.29) (4.29) (4.29)
0.950 | 24 24 24 24 24 24 24 0.098
(0.822) | (8.35) (8.35) (8.35) (8.35) (8.35) (8.35) (8.35)
0.980 | 62 62 62 62 62 62 62 0.040
(0.602) | (20.6) (20.6) (20.6) (20.6) (20.6) (20.6) (20.6)




TABLE 3
Choosing Discount Factor to Maximize R?

¥* = argmaxy R%(y)

(R*(y*)/R*(0))
A: B4, =0
R*(0)/R2,2(0)
¢ 010 025 050 075 09 095 1.00 | RZ,..(0)
0.100 0.148 0.218 0.342 0.507 0.671 0.759 0.994|  0.453
(1.02) (1.05) (1.13) (1.28) (1.51) (1.67) (2.21)
0.250 0.285 0.347 0.461 0.594 0.737 0.804 0.994] 0.378
(1.09) (1.14) (1.25) (1.46) (1.76) (1.96) (2.64)
0.500 0.525 0.568 0.641 0.738 0.834 0.875 0.995  0.254
(1.38) (1.47) (1.67) (2.02) (2.51) (2.84) (3.84)
0.750 0.763 0.781 0.819 0.868 0.917 0.941 0995  0.129
C{2.39) (2.58) (3.01) (3.75) (4.81) (5.49) (7.73)
0.900 0.903 0.914 0931 00949 0966 0.977 0995  0.055
(5.53) (6.00) (7.11) (8.98) (11.7) (13.4) (18.2)
0.950 0.952 0.959 0966 0975 0983 0.98 0995  0.030
(10.8) (11.7) (13.9) (17.6) (22.8) (26.0) (33.2)
0.980 0.982 0982 0986 0989 0.992 0994 0995 0.016
(26.5) (28.7) (33.7) (41.7) (51.6) (56.7) (64.2)
B: Zero-autocorrelation 84,
R*(0)/ Rk (0)
KB} | 010 025 0350 075 090 095  1.00 | R%,.(0)
0.100 0.102 0.102 0.102 0.102 0.102 0.102 0.102] 0.990
(0.994) { (1.01) (1.01) (1.01) (1.01) (1.01) (L.01) (1.01)
0.250 0.253 0.253 0.253 0.253 0.253 0.253 0.253|  0.937
(0.992) | (1.07) (1.07) (1.07) (1.07) (1.07) (1.07) (1.07)
0.500 0.498 0.498 0.498 0.498 0.498 0498 0.498 0.750
(0.985) | (1.33) (1.33) (1.33) (1.33) (1.33) (1.33) (1.33)
0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750[  0.437
(0.966) | (2.29) (2.29) (2.29) (2.29) (2.29) (2.29) (2.29)
0.900 0.902 0902 0.902 0902 0.902 0.902 0.901]  0.190
(0.909) | (5.26) (5.26) (5.26) (5.26) (5.26) (5.26) (5.26)
0.950 0.948 0.948 0948 0.948 0.948 0948 0948  0.098
(0.822) | (10.3) (10.3) (10.3) (10.3) (10.3) (10.3) (10.3)
0.980 0.980 0980 0980 0980 0980 0980 0980  0.040
(0.602) | (25.2) (25.3) (25.3) (25.3) (25.3) (25.3) (25.3)




TABLE 4

Choosing Horizon to Maximize Approximate Slope

K* = argmaxy (')

(e{ K™)/c(1))
A: B4, =0
R¥(1)/ Rk qc(1)
¢ 0.10 025 050 0.75 090 095  1.00 | RZ,.(1)
0.100 1 1 1 1 1 2 5 0.453
(1.00) (1.00) (1.00) (1.00) (1.00) (1.07) (1.20)
0.250 1 1 1 1 2 2 8 0.378
(1.00) (1.00) (1.00) (1.00) (1.13) (1.22) (1.48)
0.500 1 1 1 2 3 4 13 0.254
(1.00) (1.00) (1.00) (1.06) (1.23) (1.38) (1.84)
0.750 1 1 1 3 6 9 27 0.129
(1.00) (1.00) (1.00}) (1.06) (1.26) (1.45) (2.08)
0.900 1 1 1 6 16 24 55 0.055
(1.00) (1.00) (1.00) (1.06) (1.29) (1.53) (2.33)
0.950 1 1 2 14 35 49 89 0.030
(1.00} (1.00) (1.00) (1.07) (1.37) (1.67) (2.68)
0.980 1 1 3 48 94 117 153 0.016
(1.00) (1.00) (1.00) (1.15) (1.67) (2.19) (3.71)
B: Zero-autocorrelation 3y,
R*(1)/RZ%,2(1)
#(daz) | 010 025 050 075 090 095  1.00 | R, (1)
0.100 1 1 1 1 1 1 1 0.990
(0.994) | (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
0.250 1 1 1 1 1 1 1 0.937
(0.992) | (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
0.500 1 1. 1 2 2 2 2 0.750
(0.985) { (1.00) (1.00) (1.00) (1.11) (1.56) (1.97) (3.00)
0.750 1 1 2 4 4 5 5 0.437
(0.966) [ (1.00) (1.00) (1.06) (1.43) (2.40) (3.29) (6.08)
0.900 1 1 5 9 12 12 13 0.190
(0.909) | (1.00) (1.00) (1.08) (1.61) (2.90) (4.20) (8.04)
0.950 1 1 10 19 24 25 26 0.096
(0.822) | (1.00) (1.00) (1.09) (1.66) (3.05) (4.45) (8.56)
0.980 1 1 24 49 61 64 67 0.040
(0.602) | (1.00) (1.00) (1.09) (1.69) (3.13) (4.58) (8.88)




TABLE 5

Choosing Discount Factor to Maximize Approximate Slope

1% = argmaxy ¢(7)

(e(¥*)/<(0))
A: Bg, =0
R%{(0)/R2,,.(0)
¢ 010 025 050 075 090 095 1.00| R%,.(0)
0.100 0.051 0.127 0.276 0.459 0.654 0.746 0.995  0.453
(1.00) (1.02) (1.10) (1.35) (2.05) (2.89) (.)
0.250 0.048 0.135 0.297 0.498 0.697 0.787 0.995  0.378
(1.00) (1.02) (1.10) (1.34) (2.01) (2.82) (.)
0.500 0.052 0.144 0.338 0.580 0.782 0.852 0.995 0.254
(1.00) (1.01) (1.08) (1.31) (1.93) (2.69) (.)
0.750 0.055 0.158 0.420 0.730 0.886 0.952 0.995  0.129
(1.00) (1.01) (1.06) (1.25) (1.85) (2.61) (.)
0.900 0.060 0.171 0.545 0.881 0.952 0972 0995 0.055
(1.60) (1.00) (1.03) (1.22) (1.89) (2.77) (.)
0.950 0.064 0.190 0.694 0944 0.978 0985 0995 0.030
(1.00) (1.00) (1.08) (1.61) (2.90) (4.20) (.)
0.980 0.069 0238 0914 0981 0.991 0993 0995 0.016
(1.00) (1.00) (1.03) (1.38) (2.66) (4.71) (.
B: Zero-autocorrelation 8y,
R}(0)/R%42(0)
¢(Bgz) | 010 025 050 075 090 0.95  1.00 | R%,.(0)
0.100 0.012 0.028 0.050 0.072 0.091 0.095 0.100  0.990
(0.994) | (1.00) (1.00) (1.00) (1.02) (1.08) (1.18) (.)
0.250 0.022 0.066 0.129 0.192 0.227 0.239 0.250| 0.937
(0.992) | (1.00) (1.00) (1.03) (1.13) (1.48) (206) (.)
0.500 0.052 0.142 0.284 0408 0.467 0485 0.500] 0.750
(0.985) | (1.00) (1.02) (1.10) (1.43) (2.64) (4.64) (.
0.750 0.084 0.247 0.530 0.677 0.727 0.739 0.750| 0.437
(0.966) | (1.00) (1.02) (1.18) (1.79) (3.98) (7.57) (.
0.900 0.110 0381 0.782 0.862 0.890 0.895 0.900]  0.190
(0.909) | (1.00) (1.02) (1.20) (1.97) (4.70) (9.17) (.
0.950 0.114 0468 0.887 0.933 0.945 0947 0.950| 0.098
(0.822) [ (1.00) (1.01) (1.21) (2.03) (4.92) (9.66) (.)
0.980 0.123 0.575 0954 0.973 0978 0.979 0980 0.040
(0.602) | (1.00) (1.01) (1.21) (2.06) (5.05) (9.94) (.




TABLE 6

Monte Carlo Simulations, Unweighted Regressions
¢ =0.95, R%(1)/R%,,,(1) =1

A: B34, =0
Empirical Size-adjusted
critical values rejection rates

0.5% 1% 5% 0.5% 1% 5%

T=100 K=1 3.8 3.1 2.4 0.02 0.10 0.38
2 4.1 3.3 2.6 0.02 0.10 0.37
5 5.2 4.0 2.9 0.02 0.09 0.33
10 6.6 5.1 3.7 0.02 0.10 0.32
20 7.7 6.2 4.6 0.04 0.13 0.36

T=200 K=1 3.4 2.9 2.2 0.17 0.46 0.88
2 3.6 2.9 23 0.14 0.47 0.87
5 3.8 3.2 24 0.15 0.41 0.84

10 4.7 3.7 2.7 0.10 0.33 0.78
20 5.6 4.5 3.2 0.16 0.36 0.73
40 7.0 5.3 3.9 0.12 0.38 0.76

B: 0-autocorrelation 34,
Empirical Size-adjusted
critical values rejection rates

0.5% 1% 5% 0.5% 1% 5%

T=50 K=1 4.0 3.2 2.5 0.01 0.04 0.18
2 4.6 3.7 2.8 0.01 0.04 0.16
5 6.4 5.1 3.7 0.01 0.04 0.15
10 9.3 7.1 5.1 0.02 0.05 0.15

T=100 K=1 3.6 3.1 24 0.03 0.10 0.33
2 3.8 3.3 2.5 0.03 0.10 0.32
S 4.6 3.8 2.8 0.03 0.09 0.29
10 5.9 4.8 3.5 0.03 0.09 0.28
20 7.8 6.1 4.4 0.03 0.10 0.28




TABLE 7

Monte Carlo Simulations, Weighted Regressions
6 = 0.95, R2(0)/R2,,.(0) =1

Empirical

critical values

A: g4, =0

Size-adjusted

rejection rates

0.5% 1% 5% 0.5% 1% 5%
T=100 + = 0.00 3.7 3.1 24 0.03 0.12 0.38
0.75 5.7 4.6 3.3 0.03 0.12 0.37
0.90 8.2 6.4 4.4 0.05 0.14 0.40
0.95 11.0 8.2 5.5 0.13 0.26 0.56
0.98 14.2 10.4 71 0.39 0.57 0.77
0.995 | 17.0 12.5 8.7 0.87 0.96 0.99
T=200 0.00 3.5 29 2.2 0.13 0.46 0.87
0.75 4.6 3.7 2.8 0.15 0.47 0.87
0.90 5.9 4.5 3.2 0.18 0.43 0.81
0.95 7.0 5.5 4.0 0.27 0.53 0.83
0.98 9.5 7.2 4.9 0.57 0.76 0.90
0.995 | 10.6 8.4 6.0 0.90 0.97 0.99
B: 0-autocorrelation fy,
Empirical Size-adjusted
critical values rejection rates
0.5% 1% 5% 0.5% 1% 3%
T=50 ¥ =0.00 3.8 3.2 2.5 0.01 0.04 0.15
0.75 7.1 5.8 4.1 0.01 0.05 0.16
0.90 10.3 8.1 5.9 0.02 0.07 0.21
0.95 13.3 10.7 7.6 0.03 0.09 0.26
0.98 18.2 14.2 9.7 0.03 0.10 0.26
0.995 | 22.7 16.6 11.6 0.02 0.08 0.20
T=100 0.00 3.7 3.1 2.4 0.02 0.09 0.35
0.75 5.7 4.6 3.3 0.03 0.09 0.35
0.90 8.2 6.4 4.4 0.04 0.12 0.37
0.95 11.0 8.2 5.5 0.07 0.18 0.41
0.98 14.2 10.4 7.1 0.09 0.23 0.45
0995 | 17.0 12.5 8.7 0.07 0.17 0.36




TABLE 8

Sensitivity of Empirical Critical Values
for Weighted Regressions

to the Persistence of the Forecasting Variable

5% empirical critical value

d =

0.0 095 098 099 0.999

T=100 v =000! 23 2.4 2.7 2.8 2.9
0.75 3.0 3.3 3.7 3.9 4.2

0.90 3.9 4.4 5.0 5.5 6.1

0.95 4.6 5.5 6.8 7.9 9.4

0.98 5.4 71 101 13.0 19.0

0.995 | 6.2 87 150 233 58.0

T=200 0.00 2.9 2.2 2.5 2.6 2.9
0.75 2.6 2.8 3.1 3.3 3.7

0.90 3.1 3.2 3.6 3.9 4.5

0.95 3.5 4.0 4.6 5.1 6.2

10.98 4.2 4.9 6.3 7.6 10.9

0.095 | 4.8 6.0 94 131 30.1



TABLE 9

Empirical Size and Power of a

Weighted Regression Bootstrap Procedure
T =100

A: No bias adjustment

Rejection rate

Rejection rate

under Hj under H 4
0.5% 1% 5% 0.5% 1% 5%

¢=095 v =000 0.00 0.02 0.07 0.03 0.14 0.41
: 0.95 0.01 0.02 0.08 0.16 0.29 0.56
0.98 0.01 0.03 0.10 0.42 0.58 0.76

0.995 0.02 0.05 0.11 0.84 0.90 0.96

¢ = 0.999 0.00 0.00 0.01 0.07 0.01 0.03 0.11
0.95 0.01 0.03 0.09 0.02 0.06 0.16

0.98 0.02 0.05 0.14 0.07 0.14 0.26

0.995 0.11 0.15 0.23 0.14 0.17 0.21

B: Bias adjustment
Rejection rate Rejection rate
under Hy under H 4
0.5% 1% 5% 0.5% 1% 5%

$=095 ~ =000 0.00 0.01 0.05 0.03 0.11 0.31
0.95 0.01 0.02 0.06 0.10 0.19 0.39

0.98 0.01 0.02 0.06 0.24 0.34 0.51

0.995 0.01 0.03 0.07 0.56 0.63 0.71

¢ = 0.999 0.00 0.00 0.01 0.05 0.01 0.03 0.09
0.95 0.00 0.01 0.06 0.01 0.03 0.11

0.98 0.01 0.02 0.07 0.02 0.05 0.15

0.995 0.02 0.03 0.07 0.04 0.07 0.10




