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ABSTRACT

This paper derives the asymptotic power envelope for tests of a unit autoregressive root
for various trend specifications and stationary Gaussian autoregressive disturbances. A family
of tests is proposed, members of which are asymptotically similar under a general I(1) null
(allowing nonnormality and general dependence) and which achieve the Gaussian power
envelope. One of these tests, which is asymptotically point optimal at a power of 50%, is found
(numerically) to be approximately uniformly most powerful (UMP) in the case of a constant
deterministic term, and approximately uniformly most powerful invariant (UMPI) in the case of
a linear trend, although strictly no UMP or UMPI test exists. We also examine a modification,
suggested by the expression for the power envelope, of the Dickey-Fuller (1979) t-statistic; this
test is also found to be approximately UMP (constant deterministic term case) and UMPI (time
trend case). The power improvement of both new tests is large: in the demeaned case, the
Pitman efficiency of the proposed tests relative to the standard Dickey-Fuller t-test is 1.9 at a
power of 50%. A Monte Carlo experiment indicates that both proposed tests, particularly the
modified Dickey-Fuller t-test, exhibit good power and small size distortions in finite samples with

dependent errors.
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1. Introduction

There is now a large literature on the theory of tests for a unit autoregressive root in univariate
time series. In their seminal work, Fuller (1976) and Dickey and Fuller (1979) proposed tests in
autoregressive (AR) models of known finite order. These tests were extended to the more general
case that the series is integrated of order one (is I(1)) under the null hypothesis and of order zero (is
I(0)) under the alternative by Said and Dickey (1984) and, under more general conditions on the
disturbances (and using a different approach), by Phillips (1987a) and Phillips and Perron (1988).
These papers in turn spurred a profusion of research proposing alternative tests of the general I(1)
null against the I(0) alternative.

A natural way to compare these tests is to examine their power in large samples using the local-
to-unity asymptotic framework developed by Bobkoski (1983), Cavanagh (1985), Chan and Wei
(1987), and Phillips (1987b). Nabeya and Tanaka (1990) provide numerical comparisons of the
resulting asymptotic power functions for several leading tests (including the Dickey-Fuller (1979)
sum-of-coefficients test and the Sargan-Bhargava (1983)/Bhargava (1986) test) and found large
power differences among them. However, in the absence of results on asymptotically optimal tests
of the unit root hypothesis, power comparisons so far have stressed relative rather than absolute
performance. Without an absolute performance standard — an asymptotic power envelope — itis
unknown whether there remains room for substantial power improvements over extant asymptotically
valid unit root tests. This gap has practical significance: it is widely recognized by practitioners
that one of the main limitations of unit root tests is their poor power against alternatives of empirical
interest.

This paper undertakes two tasks. The first is to provide the asymptotic power envelope for tests
of the hypothesis that the largest autoregressive root (a) equals one, against the alternative k<1
These are developed for the general case that the observed series y, is the sum of a deterministic

part, d,, and a purely stochastic component u,. The asymptotic power envelope is derived by




considering the sequence of Neyman-Pearson tests of the unit root hypothesis against the local
alternative @ =1+ ¢/T in the finite-sample Gaussian AR(p+1) model, in which all the nuisance
parameters except o are assumed known. The envelope of the limiting power functions of this
family of tests (indexed by ¢) constitutes an asymptotic power bound in the Gaussian AR(p+1)
model It is shown that this bound can be achieved even if the innovation variance and {dt} are
unknown, as long as the deterministic component is "slowly varying," a condition which is satisfied
for example by a constant deterministic term and a constant with discrete finite breaks or shifts.
Thus the Neyman-Pearson power bound is the power envelope in this broader model.

If the deterministic component is 2 polynomial trend of linear or higher order, this power bound
cannot be achieved, so in this case we derive an asymptotic Gaussian power envelope by considering
the sequence of most powerful invariant (MPI) tests. The starting point for this analysis is the
family of exact MPT tests developed by Dufour and King (1991) in the Gaussian AR(1) model. An
explicit asymptotic representation for the Gaussian power envelope is given in the case of a linear
trend.

The second task is to develop new test statistics for practical use which achieve the Gaussian
power envelope and which are asymptotically similar under a general I(1) null with I(0) disturbances
which possess 2 general unknown dependence structure and which might be nonnormally distributed.
These are developed by considering asymptotic versions of the MPI tests in the two leading cases of
a constant and a linear trend, modified to be asymptotically similar. If ¥y in fact obeys a Gaussian
AR(p+1), these tests are asymptotically efficient in the sense that they achieve (at one point) the
Gaussian power envelope. One specific test proposed here, based on a statistic P defined in section
3, is an asymptotic point optimal invariant (POI) test with power function tangent to the power
envelope at a power of 50% and which is asymptotically similar under the general I(1) null.

The theoretical results indicate that a key feature of the POI statistics is their use of data which
are detrended by GLS under a local alternative which is chosen by the researcher. This suggests
reexamining currently available unit root tests, evaluated instead using the local GLS-demeaned (or

local GLS-detrended) data. The specific statistic studied here is the Dickey-Fuller (1979) t-statistic



with local GLS detrending, termed the DF-GLS statistic. As it happens, the power functions of
both the Py and the DF-GLS tests nearly fall on the power envelopes in both the demeaned and
linearly detrended cases, so that for practical purposes both of the proposed tests can be thought of
as approximately asymptotically UMP (demeaned case) and UMPI (linearly detrended case). The
power gains from using these tests can be large, particularly in the demeaned case. This parallels the
substantial power gains found by Saikkonen and Luukkonen (1992) in their study of asymptotically
POI tests for a unit moving average root.

The outline of the paper is as follows. The Gaussian power envelope is derived in section 2
The P-r and DF-GLS tests are developed, and their asymptotic properties are characterized, in
section 3. In section 4, the asymptotic Gaussian power envelope is evaluated numerically and is then
used as a standard by which to judge the asymptotic power of the proposed P and DF-GLS
statistics, as well as several leading test statistics previously proposed in the literature (the t-test and
sum-of-coefficients test studied by Dickey and Fuller (1979), Said and Dickey (1984), and Phillips
and Perron (1988) and the Sargan-Bhargava (1983) test, which is asymptotically equivalent to the
symmetric least squares test of Dickey, Hasza and Fuller (1984)). The finite-sample performance of
the P and DF-GLS tests in the demeaned and detrended cases when the disturbances have
nontrivial short-run dependence is studied in Section 5 in a Monte Carlo experiment. Section 6

concludes.

2. The Asymptotic Gaussian Power Envelope

The time series y, is assumed to have the representation,

@ yp=dgtu, t=1...,7,

where u‘=uut_1+vl,t=1,...,T



where {d,} are deterministic constants (which we refer to as the "trend” component) and v, is I(0)
The object is to test the null hypothesis that a =1 against the alternative <L In this section, v, is

assumed to satisfy a p-th order Gaussian autoregression, so that u, follows a Gaussian AR(p+1}
(2)  Gaussian AR(p+l) model: v, = ppvpy ¥+ ¢+ +ppv €y € idd NOoD) t=0,41,22, ...

where the roots of the polynomial p(L) = 1—X§=lpiLi are all outside the unit circle.

This section provides results on the Gaussian power envelope for unit root tests, under the
assumptions that p(L) is known and ug=0 In Section 2A, the asymptotic power function of the
Neyman-Pearson test, in which {dt} and o are assumed to be known, is derived, and these results are
extended to the case in which ¢ and (dt) are unknown but the trend is slowly-varying. Section 2B

considers the case where (dt) is a linear time trend.

A Known trends or unknown but slowly-varying trends
Suppose that p(L), (d(}, and o are known. Then the log likelihood for the parameter a is, except

for a constant,

3) 2{a) = A@) - 502Y ] (] - aul
= Ala)- xw'z)j}':p oteut + ] 2

where A(a) is the log likelihood for the first p+1 observations and, for t = p+1, p+2,..., T, uI =
yI-dI, where y; = p(L)y, and dI = p(L)d,. By the Neyman-Pearson Lemma, the most
powerful test of the hypothesis « = 1 against the alternative a = a rejects for large values of the log

likelihood ratio,

@ @210 = A@- A - 13 puld - DT ] geul.



In large samples, only values of a close to unity are relevant since distant alternatives will be
rejected with probability close to one. Thus we shall consider local alternatives, a = 14+¢/T, where
¢ is a fixed constant. Furthermore, we shall study the behavior of our tests using the local-to-unity
asymptotic nesting, developed and studied by Bobkoski (1983), Cavanagh (1985), Chan and Wei
(1987), Phillips (1987a, 1987b), and Chan (1988), in which the true value of a is a = 1+¢/T, where ¢
is a fixed constant. For fixed values of ¢ and ¢, A(1}A(a) is Op(T'l) because A has a bounded
continuous derivative at @ =1 In addition, for all ¢ in a compact set, T'lz’{zwzuI_IAuI =
H{T'lu'}z T ;3_ - T'li?zwz(AuT)z} = HT'luvI-z ko + op(l) Moreover, for all
¢ in a compact set, (T'ZE’{=p+2u 37T ur ) has a nondegenerate limiting distribution.
Thus, as ¢ ranges over moderate negative values, we obtain a family of asymptotically point-optimal

tests with critical regions of the form,
2 g 1,12
%) c“o” TZZT_p_‘_ZuTzl T T < b(c)

where the contant b(C) is determined by the condition that the tests have the desired size.

Because the asymptotic minimal sufficient statistic (T.22¥=p+2“t T u.&-z) has
dimension greater than the number of unknown parameters, there exists no UMP test even in large
samples. This extends the observation by Anderson (1948), that in the Gaussian AR(1) model no
exact UMP test of a=a against a<a exists, to the large-sample case with roots local to one.

The asymptotic size and power of the critical regions defined in (5) can be determined using the
asymptotic results in the literature concerning autoregressive roots which are local to unity. Let [+]
denote the greatest lesser integer function, so that T—H“ET-] denotes the random function on the
unit interval constructed as T’Hu[Ts}, 0<s=<1 Alsolet "=>"denote weak convergence on D[0,1}
Then a'lTJ‘uIT_] => W (+), where W (s) is the diffusion process on [0]] satisfying dW (s) =
cW(s)ds + dW(s), where W(s) is a standard Brownian motion (see Bobkoski (1983) and Phillips
(1987b)). This result and the continuous mapping theorem imply that the asymptotic minimal

sufficient statistic has the limiting representation, (T'22t=p+2ufl_21, T'lujrz) =>



UZUWE, WC(I)Z). (Throughout we adopt the notational convention that IWE denotes
fl=OWC(s)2ds, etc) Thus the asymptotic probability of rejecting a=1 using the point-optimal

rejection region (5) when in fact a = 1+¢/T is,
2wl = 2
® #(c)= PrE2 W2 - TW (1) < b©) .

Because the rejection regions defined by (5) are asymptotically equivalent to the rejection regions of
the Neyman-Pearson test, the asymptotic Gaussian power envelope Il(c) = =(c,c) is an upper bound
for the local asymptotic power function for any one-sided test fora=1

In practice it will rarely be the case that the trend {d;} or the scale parameter ¢ are known, in
which case uI/a = (yz - dlk)/a is not observable and the critical regions defined in (5) are not
feasible. However, if the trend is slowly-varying, then it is possible to construct simple critical
regions which are asymptotically equivalent to those in (5) but which do not require knowledge of

{d;} or o. Specifically, suppose that the trend satisfies,

Condition A (slowly-varying trend).

T'lz’fﬂ(Adt)z ~0and T'L’maxgl' T d]-0

Define the rejection region,
2125T Ti,12y512
v FT ey 13- ST e < 6

where 512 = T'lit—p+z(AYt) Note that (7) can be constructed without knowledge of {d,} or

o. Then the critical regions defined in (7) are asymptotically equivalent to those in (5), that is,

® ATy i ET yirz)/afz < @) -
PET T - wout - eTlue? < b@E) -+ 0



where the convergence is uniform for (¢, €) in a compact set.

Although the finite-sample distributions of the tests with rejection regions (7) depend on {d},
the asymptotic distributions do not. Thus, under the assumption of Gaussian errors in the AR(p+1)
model with p(L) known, the family of critical regions (7) constitute an essentially complete class of
asymptotically similar and efficient tests of the unit root hypothesis. That is, each member of the
family has an asymptotic local power function that is tangent to the (Neyman-Pearson) power
envelope II(c) and every point on the power envelope can be attained by a member of the family.

These results are collected in the following theorem.

Theorem 1. Suppose that y is generated by the Gaussian AR(p+1) model (1) and (2) with

ug = 0 and with p(L) known. Then, under the local-to-unity asymptotics where ¢ = T(a-1)

and ¢ = T(a-1) are fixed as T tends to infinity,

(a) If o and {d‘} are known, then the most powerful test of « =1 vs. e = a has local
asymptotic power function x(c,c) = Pr{¥(c,c) < b(c)] where ¥(c,c) = EZIWE - EWC(I)Z

and b(c) is a constant. An upper bound for the local asymptotic power function for any one-
sided test of « = 1 is given by the power envelope I{c) = n{c,c)

(b) If o and {d} are unknown but 0<o<= and {d,} satisfies condition A, then the local
asymptotic power envelope for efficient one-sided tests remains II{(c). Tests based on the

family of feasible regions (7) have local asymptotic power functions ={c,c).

All proofs are given in the appendix.

The results in theorem 1 are valid for ¢ and ¢ being finite constants, so they cover tests for
locally explosive alternatives as well as locally stationary ones. The focus of the paper, however, is
on the locally stationary case (c, ¢ < 0)

In addition to the case in which d, is a constant, condition A is satisfied by a variety of slowly-

varying or bounded trends. These include slowly-varying sinusoids (e.g. d[ = cos(2xkt/T) for finite



k), slowly increasing time trends (e.g. d, = t7, v<34); and a constant with finitely many shifts (e.g.
d =By + ﬂll(t>rT), where r € (01) and 1(+) is the indicator function). For each of these types of
trends, the power envelope is Ii(c) = =(c,c).

While the assumption uy=0 was made here for simplicity, we note that this condition is stronger
than is needed in either the no-deterministic or slowly-varying trend cases. This assumption was
used only to argue that A(a) - A(1) in (4) is op(l) for ¢ in a compact set. However, this holds
under weaker conditions on ug, for example that u, is a fixed finite constant. In this sense, the

power envelope in theorem 1 applies under more general conditions on ug

B. The power envelope with a polynomial time trend

The construction of asymptotically optimal tests of « =1 when dt is unknown and is not slowly-
varying (does not satisfy condition A) is more complicated. Consider, for example, the case of a
polynomial time trend,

©) 4=z, 7=t *

)
where g is a k+1 dimensional vector of unknown parameters. Although the critical region (5) still
has the local power function n(c,c), the feasible region (7) does not; the statistic
(T'2z-£=p+2yi_21, T'ly{-z) does not have the limiting distribution of (T'zz’f=p+2ut.21,
T'lu‘}z) Indeed, it is not possible to construct feasible tests that, for all g, attain the power
bound T(c) in the polynomial trend case for kL

We therefore restrict attention to a natural class of tests for this problem, those which are
invariant to the nuisance parameters 8 and o. The construction of finite sample POI tests for general
values of an autoregressive root has been studied in detail by Dufour and King (1951), who build on
the general results for POI tests in King (1980, 1988). As in the argument leading to (5), ignore the
terms involving the asymptotically negligible initial observations. Then the Gaussian AR(p+1) model

can be rewritten,



(10) yI=ﬁ’z{+uI,uI=auI_1+ €p t=piLp+2.. ., T

where ¢, is iid. N(O,uz) and ZI = p(L)zt. The assumption ug = 0 implies that up+1 is distributed
N(Q, naz), where « is a positive finite constant which depends on {p;, a}. Dufour and King's (1991)
results apply to the model (10) with p=0 and x a positive constant not depending on a. Because a =
1+¢/T and « has a bounded continuous derivative with respect to a at a = 1, the dependence of x on
a in (10) is asymptotically negligible and we can draw on their results to construct asymptotic POI
rejection regions for the Gaussian AR(p+1) model with trends of the form (9).

As Dufour and King (1991) discuss, the problem of testing a = 1 against the point alternative a =
a when y, obeys (10} is invariant to transformations of the form, yI - ayf +bz 1 (t=pH,..
., T), where a is a positive scalar and b is a finite (k+1)-vector. Among tests which are invariant to
this transformation, the exact MPI test rejects when the sum of squared residuals from the GLS
regression under the alternative is small relative to the sum of squared residuals from the GLS
regression under the null. That is, after dropping the asymptotically negligible terms involving

initial conditions, the MPI test rejects for small values of
T c =12
a MY =5t p 1T E D G -aTE D

where S’I and iI are the GLS-transforms of yI and ZI, respectively, under the local

alternative, and yI and i{ are the GLS-transforms of yI and z1L under the null (that is,

Iﬂyl 1 and similarly for ZI, and

ig+1=y;_ﬂand,for!=p+2,..‘,T I
?;_H = yg)+1 and, for t=p+2,..., T, I I yt _1 and similarly for zt), and
I I (Zt =p+itt ZT) Et—p+lzty¥

Rejection regions based on (11) can be constructed without knowledge of 8 or g, but require

where 3! = (ETzPHiIiI’)'lZ’{___pﬂi

knowledge of p(L)
The two leading cases of the polynomial time trend are a constant-mean (k=0) and a linear time

trend (k=1) When k=0 and a = 1+¢/T, rejection regions based on (11) are asymptotically equivalent

-9.



to those based on (5), so the POI test in the k=0 case achieves the power bound in theorem 1 (This
is a consequence of theorem 3 in the next section,) In the case of a linear trend, the estimation of
By is not negligible asymptotically, and a different local power function is obtained. This result is

summarized in the next theorem.

Theorem 2. Suppose that y, is generated by the Gaussian AR(p+1) model (1) and (2) with uy
=0 and with p(L) known. Let Mr} defined in (11) be the MPI statistic for testing a =1 vs.
a=4a when d, = gy + g1t. Then, under local-to-unity asymptotics where ¢ = T(a-1) and ¢ =
T(a-1) are fixed as T tends to infinity, T(M{--E) converges weakly to the random

variable,

¥°c?) = V2 + v (1)
= 20 JIW (srsW O ds + (1-)fTW (5} 3 [rW (r)dr] ds)

where A = (1-5)/(1—E+'€2/3) and V (s) = W (s) - sQAW (1) + (1-0)3 [TW (r)dr}. The local
asymptotic power function is x7(c,c) = Pr[¥"(c,;c) < b”(c)] where b"(€) is a constant. The
envelope 1'(c) = x"(c,c) is an upper bound for the local asymptotic power function for any

one-sided invariant test of o = 1 in the presence of a linear trend.

3. Efficient and Nearly-Efficient Tests for a Unit Root

If p(L) is unknown, the rejection regions in section 2 are infeasible, since the transformed series
y’{ = p(L)y, and zI = p(L)z, cannot be constructed. More generally, in empirical work there is
typically no reason to think that v, obeys a Gaussian AR(p). Rather, the null and alternative
hypotheses of interest are a=1 vs. ja] < 1, where the maintained hypothesis is that v, is a general 1(0)

process.

-10 -



The operational definition of this maintained hypothesis that v, is a general I(0) process used
henceforth is that the scaled partial-sum process constructed using Vg say yT(-) = T'L’}:s[:’l;lvs,
converges to a positive constant times a standard Brownian motion. This will be true under much
weaker conditions than those employed in section 2 For the remainder of the paper we therefore
assume this convergence, and in addition assume that A is covariance stationary with consistent
sample autocovariances. (Covariance stationarity is assumed for convenience and could be weakened,
cf. Phillips {1987a,b]) Specifically, we henceforth assume that y, is generated by equation (1) and

that vy satisfies,

Condition B.
. . .. . . . T -1T
@ 1,0 R 7,(j) for finite fixed j, where v (j) = Evtvt»j and 7,(j) =T Zt=j+1vtvt-j'
(b) v => wW, where W is a standard Brownian motion on [0]] and w is a constant with

0 <w<wand w2 = ZT,;EVV(]).

We also drop the assumption that uy=0 and instead assume simply that the initial disturbance uy

has a finite second moment:
Condition C.  Eul <=,

This includes includes the special case that uy is fix:ad.1
Section 3A considers the construction of tests which have local power functions x(c,c) and, in
the detrended case, »"(c,c), when A7 obeys condition B. If Vi obeys a Gaussian autoregression with
finite but possibly unknown order p, these tests are asymptotically efficient. Section 3B considers
the construction of alternative test statistics which seem likely to have asymptotic properties
comparable to the efficient tests but which arguably will have better finite-sample performance.
These tests are constructed for the two leading cases of polynomial time trends, d, = gy and d, =

BgtAt A natural requirement for tests of the general I(1) null is that they be invariant to

211-



transformations of the form y, » ay, + b’z,. For example, it is natural to apply unit root tests to the
logarithms of the original data; then invariance to a change in the units of measuring the original
data is equivalent to invariance to an additive constant in their logarithms. To our knowledge all
unit root tests which are used in practice have this invariance property. This section therefore

considers only finite-sample invariant tests.

A. Asymptotically POI tests of the general I{1) null

The asymptotically POI tests are constructed in two steps. First, we consider the behavior of
Dufour and King’s (1991) POI tests of the (1) null, (incorrectly) constructed under the assumption
that v, is iid. N(O,az) and uy=0, when in fact v, is a general 1(0) process and u; satisfies condition
C. In general these tests will depend on nuisance parameters describing the v, process, and they will
not be asymptotically similar. However, the asymptotic representations of these statistics suggest a
natural correction. Second, we provide statistics based on this correction and show that they are
asymptotically similar, asymptotically efficient, and consistent against fixed alternatives.

In the special case that ViTep €y iid. N(O,oz), the POI tests (Dufour and King, 1991, theorem 5)
are based on the statistics,

12 My = 5%5%, where = T'lz¥=lé% and 5% = T'lz'{;lé%

where €, and ¢, are the residuals from the GLS regression of y, onto z, under a =1and a = a,
respectively:

L e g T - s n- ..
13) é=9,-P1, where 3=(3,47,%)) I(Efﬂztyt)

where (¥, ¥, .-+, §7) = (¥ Y - -+, Ayp) and (Zy, 29, ..., 2) = (2 82y, .. -,
az) and

-12-



) E=§,-BZ, where = (Q1oid )V i)

where (¥}, ¥5, - - -, ¥1) = (¥, (1-aL)y,, . .., (I=L)y) and (2, Z,,..., ) =(z
(15L)zy, .., (SLyzy). 2
To avoid confusion, henceforth superscripts "s" and "r" are used to denote the 7, = 1 and z, = @,
t) cases, respectively. Thus Ml‘l‘- and M{- respectively refer to (12) evaluated in the demeaned
and linearly detrended cases. Similarly, define the GLS-detrended processes Yt =Yy - Bgand
Yy =Y¢-Bo- Byt
Under the general I(0) null, if a = 14+¢/T then (w']T Z[T Iy S 1% U[T. })—> (W(+),
W (+)), where W is the diffusion defined in section 2, a result proven by Bobkoski (1983) for 2
iid and by Phillips (1587b) for v, satisfying mixing conditions. Theorem 3 provides asymptotic

representations for the MT statistics under the general I(1) null and local alternatives.

Theorem 3. Suppose {v,} satisfies condition B, u; satisfies condition C, a = 14¢/T, and a =
1+¢/T, where ¢ and c are finite constants.

(a) In the no-deterministic case, 2R 7,(0) and TM 1) => (wl/yv(O))\P(c,E'), where ¥(c,c)
is defined in theorem 1

(b) (demeaned case) If k =0, then FL3 7,(0) and T(M“ ) => (w2/1v(0))W“(c,E), where
V(o) = ¥(cc)

(¢) (linearly detrended case) If k = 1, then 2 B 74(0) and T(MT <) => (u2/7v(0))w'(c,3)

where ¥'(cZ) is defined in theorem 2

If w2=7v(0), then the asymptotic representations in theorem 3 are equivalent to those in theorems
1and 2 However, in general the limiting representations, and thus the critical values for the MT
tests, depend on w2/7v(0), so that these tests are not similar asymptotically. The representations in
theorem 3 nevertheless provide a framework for constructing a test which is asymptotically
equivalent to the POI test but is asymptotically similar under the general I(1) null. Let o be a

consistent estimator of uz, in the sense that &2 satisfies:

-13 -



Condition D.
(a) If @ =1+ c/T where c is a finite constant, then 62 R w2.

(b) If a is fixed and jo| <1, then 6:2 B d, where d, 0 < d < =, is some constant.

Two families of estimators satisfying condition D — sum-of-covariance estimators and autoregressive
spectral estimators — are discussed in section 5.

The proposed test statistics are,

(153) Pr= o a Ly’

2 = .2 .2 .
(15b) Ph= (00 & a1 e’ where z = 1in (13) and (14)
(15¢) PL=(31 4625 I e/ where z = (1, 9 in (13) and (14)

where §, and ¥, are defined following (13) and (14). The statistics P, P4, and P differ

from T(M - @), T(M% - a), and T(MT-- @) only by an estimated scale factor; that is, P =
(BZIQZ)T(MT - a), etc. This modification corrects for the factor w2/-7v(0) in theorem 3. It

follows from Theorem 3 and condition D that, if a = 1+c/T where ¢ is a fixed finite constant, the

test statistics in (15) have the asymptotic representation,

(16a) P =>1(cc)
(16b) PE => u(c7)
(16¢) PL=>¥"(cE)

where ¥ and ¥ are given in theorems 1 and 2, respectively. These tests are asymptotically similar,
and their null representations are obtained by setting ¢=0 in (16)3
Tests based on P and P—‘I‘- have power function =(c,c) This is the power function in theorem

1, and it follows that, if v, in fact obeys a Gaussian AR(p), then the tests are as efficient

-14-



asymptotically as the Neyman-Pearson test. If k = 1, the test has power function =" (c,c) and thus
achieves the Gaussian power envelope for invariant tests in theorem 2.

An implication of (16) is that the Gaussian power envelope forms a lower bound for the power
envelopes of unit root tests when the errors are nonnormally distributed but nonetheless obey
condition B. To be concrete, suppose up = au, 4 + €, g = 0, and € - iid. F‘, If F( satisfies
the Lindeberg condition, then the partial sum process constructed from €, obeys an invariance
principle (e.g. Hall and Heyde (1980), theorem 4.1) and condition B(b) is satisfied with Wt = 70>
If condition B(a) is also satisfied, then for this process a test based on M. will be asymptotically
valid and will achieve the asymptotic Gaussian power envelope. It follows that the asymptotic power
envelope constructed for the true distribution of ¢, cannot lie below the asymptotic Gaussian power
envelope.

Although point-optimal invariant tests are not always consistent against fixed alternatives, the

proposed tests are. This follows from the next theorem.

Theorem 4. Suppose that conditions B-D hold and that a takes on a fixed value, say ay, where

by <1 Then PrEBo, PARO and P10

The consistency of the tests follows from noting that ¥(0,c) and ¥'(0c) are Op(l) and are positive

with probability one so that the critical values of P, P"Iﬁ and P—I- are positive.

B. Alternative tests based on GLS derrending

A key feature of the invariant tests is that the trend parameter vector g is estimated by GLS
under the local alternative. In the demeaned case, this estimator is 'BO =
(y7 + AT _,(AaL)y (1 + (T1X12)P) because T(1) = <, large weight is placed on
the initial observation. A straightforward calculation reveals that, under the null and local
alternatives, T-k(ﬁo‘ﬂo) E 0, so the effect of this GLS-detrending is asymptotically negligible on the

detrended process (that is, maxtTJ’ly‘t‘ -uy B 0, which is an implication of appendix lemma
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A2(a)) In contrast, previously proposed unit root tests in the k=0 case, which are necessarily less
efficient than P-‘I‘, involve estimators of g such as the sample mean which are not asymptotically
negligible. This suggests that the performance of existing unit root tests statistics could be improved
by evaluating them using the locally GLS-detrended series y‘t‘ or y: as appropriate.

Because of its relatively good size properties in Monte Carlo studies (e.g. Schwert (1989)), a
natural statistic to modify in this way is the Dickey-Fuller (1979) t-statistic. In the demeaned case
the test statistic, which we term the DF-GLS* statistic, is the standard t-statistic testing ag = 0 in

the regression,

an ayk =agyky+ Zﬂ?:lajAy‘t‘_j + error
where no intercept is included because the data are already demeaned by GLS under the local
alternative ¢. In the detrended case the statistic, termed the DF-GLS statistic, is the same except
that y¥ is replaced by the locally GLS-detrended series Ve

The local-to-unity asymptotic representations of the DF t-statistic has been derived by Bobkoski
(1983), Cavanagh (1985), and Chan and Wei (1987) for p = 0 when the regression is correctly
specified (that is, u-au, ; is iid. or a martingale difference sequence), by Phillips (1987b) and
Phillips and Perron (1988) for the case that v, is a general I(0) process but p=0 (so the regression is
misspecified);, and by Stock (1991) for finite fixed p in the correctly specified case (v is an AR(g),
q = p) The results in Stock (1991, appendix A) can be extended to the DF-GLS statistics, with the
modification that the GLS-detrended processes have the limits given in our lemma A2 The limiting

representations are,

2 21
(18a) DF-GLS* => (fWH (Wil fw aw + ¢}
(18b) DF-GLS” => ([VHH(vy v aw + ¢}

where V, is defined in theorem 2
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In the demeaned case (18a), the DF-GLS¥ statistic has the same null and local-to-unity
asymptotic representation as the conventional Dickey-Fuller t-statistic in the no-deterministic case
or, equivalently, the case that g is known a-priori. Thus, as long as ¢ is a finite constant, neither
the null distribution nor the asymptotic power of the DF-GLS¥ statistic depend on the value of ¢
used in the GLS detrending. In the detrended case (18b), the null and local-to-unity asymptotic
distributions depend on the detrending value ¢, and asymptotic critical values for the DF-GLS™

statistic must be computed numerically.

4. Critical Values and Asymptotic Power Functions

This section presents numerical results on the asymptotic power envelope, the asymptotic power
functions of several leading test statistics in the literature, and the asymptotic power functions of the
new P and DF-GLS statistics. All tests have asymptotic level 5%. The computations are based on
the limiting representations given in theorem 1, theorem 2, (18z), and (18b), in which the limiting
functionals of W, are replaced with discretized realizations generated by Monte Carlo simulation of a
Gaussian AR(1) with a = 1+c/T and T=500, using 20,000 Monte Carlo rep]ications.4

The resulting power envelope is used to provide an absolute standard by which to assess the
performance of three leading tests for a unit root. The first is the Dickey-Fuller sum-of-
coefficients test (the 5 test). In the AR(L) case, the statistic is T(&-1), where & is the OLS
estimator of a in the regression of y ontoygy, t= 2,..., T. This statistic was extended to the
general 1(1) null by Phillips (1987a) in the no-deterministic case (the Z statistic) and by Phillips and
Perron (1988) in the constant and linearly detrended cases, using an additive correction in which w2
is estimated using a weighted sum-of-covariances (SC) spectral estimator. The results of Said and
Dickey (1984) can be used to justify an alternative extension based on a multiplicative correction
using a sum of coefficients in an AR(p), the order of which increases with the sample size. The

second statistic is the Dickey-Fuller t-statistic (7), which was extended to the general I(1) null by
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Said and Dickey (1984) and Phillips (1987a)/Phillips and Perron (1988). The third statistic is the
Sargan-Bhargava (1983) statistic in the no-deterministic and demeaned cases and Bhargava’s (1986)
extension of this statistic to the linearly detrended case (the SB statistic) The SB statistic was
extended to the general I(1) null by Stock (1988) using an AR spectral estimator and by Schmidt and
Phillips (1992) using a SC spectral estimator. Each of these statistics has an asymptotic
representation under the local alternative in terms of functionals of W, which are here used to T
compute the local power functions using the same method as is used to compute the asymptotic
power envelope.

Figure 1 presents the Gaussian power envelope in the no-deterministic case. Also presented are
the power functions of the 4, 7, and SB tests and the locally most powerfu! invariant (LMPI)
statistic in the Gaussian AR(1) model, which rejects for small values of (T'}’yT)z/&z. With the
exception of the LMPI test, which has very low power for all but the the smallest values of ¢, all the
tests have effectively the same asymptotic powers and each lies very close to the power envelope.
Consequently we focus on the cases with deterministic terms, which are in any event of greater
practical interest.

The Gaussian power envelope and the power functions of the p, 7, and SB tests are plotted in
figures 2 and 3 for the demeaned and detrended cases, respectively. These figures also respectively
plot the asymptotic power functions of the P-‘I‘- and P—I— statistics, where ¢ was chosen so that the
power functions are tangent to the power envelope at a power of 50%. Numerical investigations
indicate that this tangency occurs at approximately ¢ =-7 in the demeaned case and ¢ = -135 in
the detrended case. These statistics will respectively be referred to as the P!I‘(S) and P-}(.S)

S

statistics.” Also plotted are the asymptotic power functions of the DF-GLS* and DF-GLS"
statistics.

In contrast to the results for the no-deterministic case, the power functions of the various tests
differ widely. A useful way to summarize the power differences is in terms of the Pitman or

asymptotic relative efficiencies (ARE's) of the tests. Although the limiting distributions are

nonstandard so the ARE’s cannot be computed as a ratio of variances as is done when /T-Gaussian
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Asymptotic power functions of selected families of unit root tests:
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Asymptotic power functions of selected families of unit root tests:
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Figure 3

Asymptotic power functions of selected families of unit root tests:
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E: Dickey-Fuller/Phillips-Perron 7  tests



asymptotic theory prevails, the ARE’s at a given power can nonetheless be computed as the ratio of
the values of ¢ at which the various tests achieve the specified power (see Nyblom and Makelainen
(1983), appendix A1) In the demeaned case at a power of 50%, the ARE’s of the SB, , and 7
tests are, respectively, 140, 153, and 191, relative to the power envelope. That is, in the
demeaned case the asymptotic power loss from using the 7 family of tests (the Dickey-Fuller 7 test
or the Phillips-Perron Z_ test), relative to the POI test, is equivalent to discarding almost half the
sample; the asymptotic power loss from using the 5 family of tests is equivalent to discarding one-
third of the sample.

The Pff-(j), DF-GLS¥, P,}(j), and DF-GLS” statistics have power functions that are very
close to the power envelope, so close that they are difficult to distinguish visually in the plots. By
construction, the ARE of the P%(j) and P{(S) statistics is 1 at a power of 50%. This ARE is
very close to one at other powers as well.

Table 1 presents asymptotic critical values for the P%(S), P-’['(S), and DF-GLS" statistics,
respectively computed by Monte Carlo integration of ¥(0,c) and ¥7(02) and of (18b) with c=0.
For the P%(S) statistic, ¢ = -7.0 was used; for the P—}(S) and DF-GLS” statistics, c=-135
was used. Also included in Table 1 are finite-sample critical values of this statistic under the
Gaussian AR(D) null with a =1, when the P{5) statistics are computed using 2 = 5% and the
DF-GLS statistic is computed with p=0 in (17). Although the T = 50 and T = 100 quantiles differ
somewhat, there are only small differences between the T = 200 and T = = cases. The limiting
local-to-unity distribution of the DF-GLS¥ statistic does not depend on T and its asymptotic critical

values can be found in the first panel of Fuller’s (1976) table 852.

5. Finite Sample Performance

This section studies the finite-sample size and power of the PT and DF-GLS statistics and, to

provide a basis for comparison, the Dickey-Fuller (1979) t- and sum-of-coefficients tests, in a
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Table 1, Critical Values for the P?(.S). P;(.S), and DF-GLS” Tests

A. Demeaned: PL(.5)

50 1.87 2.39 2.97 3.91
100 1.95 2.47 3.11 4,17
200 1.91 2.47 3.17 4.33
500 1.95 2.53 3,22 4.38

@ 1.99 2.55 3.26 4. .48

B. Detrended: p.}(.s)

50 4,22 4.94 5.72 6.77
100 4.26 4.90 5.64 6.79
200 4.05 4,83 5.66 6.86
500 4.05 4,80 5.62 6.93

@ 3.96 4.78 5.62 6.89

C. Detrended: DF-GLS'

50 -3.77 -3.46 -3.19 -2.89
100 -3.58 -3.29 -3.03 -2.74
200 -3.46 -3.18 -2.93 -2.64
500 -3.47 -3.15 -2.89 -2.59

© -3.48 -3.15 -2.89 -2.57

Notes: The Pé(.S) statistic is given by (15b) with c=-7.0; the P;(.S)
statistic is given by (15c) with c=-13.5. The critical values for T = 50,
100, 200, and 500 were computed by Monte Carlo simulation of these statistics
with 92 = 52, in which case P; simplifies to P#-T(M#-E) and P;

simplifies to P;—T(M;-;). The DF-GLS” statistic is computed as described

in the text surrounding (17); its finite-sample critical values were computed
with p=0 in (17). The pseudo-data were generated according to a Gaussian
random walk, The "T =~ «" line provides asymptotic critical values, computed
using the asymptotic representations (16) (PT statisties) and (18) (DF-GLSf
statistic), where the functionals of Brownian motion were computed using their
discretized counterparts based on a Gaussian random walk with T=500. Entries

are based on 20,000 Monte Carlo replications.



Monte Carlo experiment consisting of 13 designs (data generating processes or DGP’s). In each, y, =
v, where Uy = auy g tvt= 1,2,...,T. Five values of « were considered, corresponding to ¢ =

0, -5, -10, -20, and -30 under the nesting a = 1+c/T. The DGP’s are largely ones studied elsewhere

in the literature, and the specific design is taken from Stock (1992), to which the reader is referred
for details and for results for test statistics not considered here.

Four classes of DGP’s are examined:

(19a) Gaussian MA(1Y Ve= € -fegy u0=0, §=248250,-5-8
(19b) Gaussian AR(1y vy =4év  + e, uy=0, ¢= 35,-5

3 2
(19) GARCHMA(ly v =1,-80y §=hie, ug=0, by =wy+ 65h 1+25¢7 4
(19d) Gaussian MA(1), ug unconditional: v, = ¢ - fe g, U - N(0, v, (0)), 6 = 5,0,-5

where in each case ¢, - iid. N(0, 1). The Gaussian MA(1) DGP (19a) has received the most

attention in the literature and was the focus of Schwert’s (1989) and Phillips and Perron’s (1988)
studies. DeJong, Nankervis, Savin and Whiteman (1992) suggested studying the Gaussian AR(1)
model, in part because it can capture more realistically the nonzero sample autocovariances found in
macroeconomic time series data. The GARCH DGP introduces conditional heteroskedasticity in the
innovations, a phenomenon often found in financial data. The GARCH parameters sum to 09, so
this DGP introduces considerable persistence in the heteroskedasticity although fourth moments of ¢,
still exist. This model is taken from Lumsdaine (1991), who chose it as representative of the

empirical models in Baillie and Bollersiev (1989). For the simulations, wp =1 and hy =1 (the unit

root test statistics considered here are invariant to vy, which is in effect a scale parameter).

Because a constant (or constant and trend) are included, the null distributions of the test statistics
in this Monte Carlo study are invariant to the initial condition. However, as pointed out by Evans
and Savin (1981, 1984) and studied by Schmidt and Phillips (1992) and DeJong, Nankervis, Savin and
Whiteman (1992), the power of unit root tests typically depends on uy. This dependence is
investigated in the final design by drawing u; from its unconditional distribution, N(0, v,(0)), where

-yu(0)=(1+52-29a)/(1-a2) and only values of k<1 are examined.
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Two spectral estimators for the P-‘I‘- and P-I- tests are considered: a SC estimator and an AR

spectral estimator. The AR estimator is given by,
-2 -2 - \2
(20) YR = T
where {éj} and 53 are obtained from the OLS regression,
= P =
21) Ay =6g+agy, + zjzlajAyt_j ‘e, t=23...,T.

Three choices of lag length p are studied: p = 4, p = 8 and p chosen using the BIC, where the
maximum number of lags is 8 and the minimum is 3. The resulting estimators are respectively
denoted AR(4), AR(12), and AR(BIC) (The Dickey-Fuller tests were also evaluated for these three
choices of p) Stock (1988, lemma 1) shows that, when p is chosen to satisfy Berk’s (1974) rate
conditions, the AR estimator satisfies condition D(b)

The SC estimator is given by,
2 S = Lk gk (/2 ) (m)
@) ¥5C = L= - KM/ D) 15(m

where 7,(m) = (T—m)'lzwtrzim‘_ﬂ(xt-x X Xb k(+) is a kernel weighting function, and Aé
is the residual from the regression of ygonto (1, ¥1.1) (demeaned case) or y, onto
(1, t, y, 1) (linearly detrended case), and where the Parzen kernel is used. Three methods for the
selection of the truncation parameter ‘lT are used: ‘ET =4, IT =12, and ‘CT estimated according to
Andrews’ (1991) optimal automatic procedure (his equations (62) and (64)) The SC estimators are
respectively denoted SC(4), SC(12), and SC(auto). It follows from Phillips and Ouliaris’s (1990,
theorem 5.1) more general result that under suitable rate conditions on 2, the SC estimator satisfies
condition D(b)

The results are summarized in Table 2 for the demeaned statistics and in Table 3 for the

detrended statistics. In both cases, tests with asymptotic level 5% are studied and T = 100, For each
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statistic, the first column provides the asymptotic size (always 5%) and power. The remaining
entries for o=l are the empirical size, that is, the Monte Carlo rejection rate based on the asymptotic
critical value. The entries for fof<1 are the size-adjusted power.

These results suggest six conclusions. First, the main prediction of the asymptotic results in the
previous section — that the P+ and DF-GLS statistics have significantly better (size-adjusted) power
— is borne out by the Monte Carlo results. As suggested by the asymptotic results, this power
improvement is greatest for the demeaned statistics. For example, in the § = 0 case (model (19a);
table 2, third column of results), the #¥, 7*, P4, and DF-GLS¥ tests (AR(BIC) choice of p)
respectively have power of 22, 37, 59, and 60 against a = .9; againsta =58, these powers are
59, 76, 91, and .93. The values of the size-adjusted powers depend somewhat on the value of the
nuisance parameter ¢ in model (19a); for example, for § = 8, the power of the DF-GLS¥ test rises
to 68, while for ¢ = -8 it drops to 56. However, the relative improvements in size-adjusted
powers for the P and DF-GLS statistics over the p and 7 statistics are present typically for all
values of the nuisance parameters in each of the conditional models (models (19a-c)). In the
detrended case, the improvements in size-adjusted power are smaller but remain substantial. For
example, in the § = 0, a = 9 case, the 57 and 77 statistics (AR(BIC)) have powers of 20 and .15,
respectively, while the DF-GLS” and PT.(AR(BIC)) tests have powers of 24 and 3,
respectively. This improvement in size-adjusted power is present for the other values of the
nuisance parameters as well (models (19a-c)).

Second, the choice of spectral estimator has a large effect on the size of the P!I‘- and Pfr tests,
with the AR estimator exhibiting much smaller size distortions than the SC estimator. For example,
in model (19a) in the linearly detrended case, the P-;- test with the SC(auto) estimator has sizes of
49% and 1% with ¢ = 5 and § = -5, respectively, while the size for the AR(BIC)-based test is 5%
and 10% in these two cases. These findings mirror similar results found for other unit root test
statistics; see DeJong, Nankervis, Savin and Whiteman (1992) and Perron (1991) for discussions.

Third, among the tests which use the autoregressive spectral estimator, using the AR(8) rather

than AR(4) reduces the size distortion for the 7 and DF-GLS tests but increases it for the 7 and
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Table

2. Size and Size-Adjusted Power of Selected Tests
of the I(1) null:

5% level tests, demeaned case (zt - 1), T =100

Monte Carlo Results

Test Ay, - - - -- HA(L), §= - ~ - - - AR(1), ¢= GARCH MA(1), #@= Uncond’l MA(1), é=
Statistic a Power -0.8 -0.5 9.0 0.5 c.8 0.5 ~0.5 ~0.5 0.0 0.5 -0.5 Q.0 0.5
E:(.S) 1.00 .05 0.c8 0.11 0.11 0.10 0.31 0.13 0.11 .11 0.12 0.11 0.11 0.11 90,10
AR(4) .95 .32 0.25 0.24 0.24 0.28 0.18 0.22 e.25 0.25 0.25 0.25 0.15 0.16 0.17

.90 .78 0.50 0.48  0.51 0.54 0,41 0.45 0.51 0.50 0.50 0.51 0.32 0.33 0.35

.80 1.00 0.81 0.81 0.84 0.86 0.78 0.74 c.80 0.80 0.82 0.82 0.59 0.62  0.65

.70 1.00 0.92 0.82 c.93 0.94 0.82 0.87 0.90 0.91 0.01 .92 0.73 0.78 0.80

P:(.S) 1.00 .05 0.18 0.20 0.20 0.18 0.20 0.22 0.20 0.21 0.20 0.18 0.20 0.20 0.18
AR(S) .95 .32 0.18 0.18 c.19 ¢.18 0.15 0.18 0.17 .18 0.18 0.17 0.13 0.13 ©.13
.90 .76 0.31 0.31 0.32 9.32 0.30 0.31 0.28 0.30 0.30 0.30 0.24 0.25 0.25

.80 1.00 0.47 0.48 0.50 0.51 0.51 Q.46 0.46 0.48 0.48 0.49 0.40 0.42 0.43

.70 1,00 0.56 0.57 0.59 0.60 0.47 0.55 0.53 .56 0.57 0.58 0.49 6.51 0.52

P;(.i) 1.00 .05 0.14 0.11 0.10 0.11 0.42 0.11  0.10 0.13  0.11 0.2 0.11  0.10 o.11
AR(BIC) .95 .32 0.24 0.27 0.28 0.28 0.19 0.26 0.27 0.28 0.26 0.27 0.17 0.17 0.17
.80 .76 0.50 0.57 0.5% 0.59 0.41 0,52 0.56 0.54 0.5 0.57 0.37 0.37 0.3%

.80 1.00 0.82 a.8% ¢.91 0.92 0.7¢9 0.8 0.88 0.88 0.88 0.89 0.87 0.68 0.69

.70 1.00 0.82 0.87 0.98 0.98 0.94 0,63 0,96 0.95 0.86 0.98 0.81 0.83 0.8

P:(.i) 1.00 .05 C.04 0.04 0.06 0.37 0.93 0.02 0.23 0.04 0.07 0.38 0.04 0.06 0.37
sCiy) .95 .32 0.30 0.31 0.32 0.20 0.23 0.29 0.31 0.29 0.30 0.29 0.18 0.18 0.17
.90 .76 0.68 0.89 0.72 0.70 0.28 0.68 0.73 0.87 Q.70 0.68 0.40 0.44 0.38

.80 1.00 0.58 0.98 0.99 0.98 c.12 0.97 0.9¢ 0.97 0.98 0.87 0.74 0.79 0.67

.70 1.00 1.00 1.00 1.00 0.99 0.02 1.00 1l.00 1.00 1.00 .99 0.86 0.%0 8.73

P:(.i) 1.00 .05 0.02 0.02 0.07 0.50 0.98 0.01 0.33 c.03 0.08 0.51 0.02 0.07 0.50

3C(12) .95 .32 0.29 0.29 0.29 0.27 0.15 0.28 .29 0.20 0.30 0.28 0.17 0.17 0.15
.90 .76 0.64 ¢.63 0.70 0.62 0.0¢9 0.50 0.68 0.64 0.88 0.59 0.36 0.40 .33

.80 1.00 0.96 0.97 ¢.08 0.84 0.01 .92 0.97 0.95 0.98 0.80 0.83 0.73 0.49

.70 1,00 1.00 1.00 1.00 0.78 0.00 0.98 0.99 0.99 1.00 0.74 0.76 0.85 0,45

P:(.}) 1.00 .05 0.04 0.04 0.08 0.31 0.88 0.03 a.18 0.04 0.97 0.34 0,04 0.06 0.31
SC(auto) .95 .32 0.30 0,30 0.32 0.31 0.3¢0 0.29 0.31 0.30 0.31 0.01 0.17 0.19 0.18
.90 .78 0.67 0.68 0.74 e.7n 0.5¢ 0.64 0.73 0.58 0.6% 0.70 0.39 0.44 0.41

.80 1,00 0.97 0.s8 0.%¢ 0.99 0.72 0.96 0.99 0.87 0.98 0.98 0.72 0.80 0.70

70 1.00 1.00 1.00 1.00 1.00 0.71 0.99 1.00 1.00 1.00 1.00 0.85 0.91 .72

Df'GLS“ 1.00 .05 0.05 g.07 0.07 0.08 0.33 0.07 0.07 0.06 0.07 0.00 9.07 0.07 0.08
AR(4) .95 .32 e.25 0.25 ¢.27 8.30 0.31 0.25 0.27 0.27 0.26 0.26 0.135 0.16 0.17
.90 .78 0.53 0.54 ¢.s? 0.85 0.69 0.51 0.59 0.55 0.56 0.50 0.32 0.35 .37

.80 1.00 0.87 c.88 0.9l 0.96 0.97 0.83 0.92 0.88 0.39 0.9 0.60 0.62 C.63

70 1.00 0.96 0.97 0.98 1.00 1.00 0.94 0.99 0.86 0.57 0.%8 0.71 0.74 0.71

DY'GLS“ 1.00 .05 9.05 0.08 0.06 0.06 0.12 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06
AR(3) .85 .32 0.1 .23 £.23 0.23 .30 0.23 0.24 0.22 0.22 0.23 0.14 0.14 ¢.13
.90 .75 0.42 0.43 Q.45 0.47 0.62 0.42 0.46 0.43 0.44 0.47 0.25 0.25 0.24

.80 1.00 0.68 0.70 c.72 0.79 0.82 0.66 0.74 0.89 0.71 0.78 0.40 0.40 0.37

.70 1.00 0.80 0.82 0.84 0.91 0.98 0.77 0.87 0.82 0.82 D.90 0.46 D.47 0.42



Table 2, continued

Test Asy, - - -~ HA(L), = - = - - - AR(1), #= GARCH MA(1), = Uncond’l MA(1), &=
Statistic « Fower -0.8 -0.% 6.0 0.5 0.8 -0.5 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5
or-as®  1.00 .08 0.1c 0.08 0.07 0.11 0.45 0.07 0.08 0.08 0.08 0,11 .08 0.07 0.11
AR{BIC} .95 .32 0.26 0.27 0.28 0.30 0.30 0,26 0.28 0.26 0.27 0.26 0.17 0.16 0.17
.90 .75 0.56 0.5%¢ 0.860 0.67 0.68 0.54 0.62 0.57 0.5% 0.61 0.37 0,37 0.37

.80 1.00 .87 0.92 0.93 0.97 0.98 0.86 0.85 0.80 90.92 0.85 0.66 0.68 0.6%

.70 1,00 0,96 0.96 ©0.9% 1.00 1.00 0,85 1,00 0.8 0.88 1.00 0.7¢ 0.80 0.7%

or - )‘ 1.00 .05 .07 0.09 6.10 0.12 0.50 0.10 0.10 0.10 0,11 0.14 0.08 0.10 0,12
AR(4) .85 .19 0.16 0.16 0.16 0.16 0.14 .16 0.17 0.16 0.16 0,12 0.14 0,14 0.5
W80 LS 9.32 0,32 0.33 0.37 0.3 0.29 0.35 0.33 0,34 0.3% 0.3z 0.33 0.35

J80 B4 0.63 0.65 0.6% 0.79 0.73 0.58 0.72 0.65 0.87 0.78 0.85 0,69 0.79

.70 1.00 0.83 0.84 0.38 0.93 0.74 0.74 0.91 0.8 0.86 0.94 0.84 0.88 0.94

oF - }“ 1.00 .05 0.1s 0.17 0.17 0,17 0.30 0.17  0.17 0.17 9.18 0.17 .17 0,17 0.17
AR(8) .85 .19 0.14 Q.14 0.14 0.14 v.12 0.15 0.15 .15 0,14 0.14 0.12 ©0.13 0.13

.90 .45 0.23 0.22 0.23 0.26 0.25 0.23 0.25 0.24 0.24 0.25 0.22 0.24 Q.25

.80 .94 9.38  0.37 0.39 0,45 0.38 .37 0.az 0.39 0.0 0.44 0.38  0.41 0.45

.70 1.00 0.47 0.45 0.48 0.54 0.30 0.44 .50 0.47 0.49 0.52 0.45 0.49 0.54

IF - p“ 1,00 .05 0.13 0.1¢ 0.08 0.313 0.82 0.0 D.08 0.1 0.10 0.14 0.10 0.08 0.13

AR(BIC) .95 .1® 0.17 0.18 0.17 0.17 0.13 0.17 0.17 0.17  0.17 0.17 0,15 0.16 0.1s

.90 A5 0.33 0.35  0.37 0.40 ©0.31 0.32  0.36 0.34 0.36 0.30 0.35 ©.36 0.38

.80 .94 Q.87 0.73 e.76 0.83 0.77 0.64 0.78 0.608 0.74 0.82 °.73 0.76 0.85

.70 1.00 0.85 0.91 0.93 0.98 0.91 0.81 0.85 0.28 0.91 0.97 0.80 0.93 0.88

DY-V“ 1.00 .05 0.04 0.03 0.05 0.06 0.30 0.05 0.05 0.08 0.05 ¢.06 0.05 0.05 0.08

AR(4) .95 .12 0.07 0.0% 0.09 0.11 0.13 0.09 0.11 0.10 0.11 0.12 0.09 0.10 .12
.90 31 0.14 0.18 g.20 0.25 .32 0.18 0.23 0.21 0.22 0.27 0.19 0.21 0.26

.80 .85 0.37 0.44 0.49 0.68 0.77 0.39 0.57 0.48  0.33 0.67 0.46 .51 0.67

.70 1.00 0.58 0.86 0.73 0.8¢ 0.85 ¢.57 0.8 0.70 0,76 0.89 0.67 0.74 0.90

or-r* .00 .08 0.05 0.05 0.05 0.05 0,09 .05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

AR(8) .95 .12 0.07 0.08 0.08 0.08 .12 0.08 0.09 c.038 0.08 0.08 0.09 0.09 0.0%

.$0 .31 0.12 0.1% 0.14 0,16 0.26 0.13 0.16 0.14 0.14  0.17 ©.14 0.15 0.18

.80 .85 ©.24 0.26 0.28 0.38 0.58 0.24 0.32 0.28 0.2 0.37 0.28 0.28 0.38

.10 1,00 .33 0.37 ©¢.3% 0.53 0.8 0.33  0.47 0.39 0,42  0.35 0.38  0.41  0.55

DP'Y“ 1.00 .05 0.08 0.06 0.06 ©.08 0.46 0.06 0.05 0.07 0.06 0.08 Q.06 0.08 c.08
AR(BIC) .95 .12 .11 0.10 0.10 ©0.13 0.13 0.10 o0.11 0.10 0,10 0.13 .11 0,11 0,13

.90 .31 0.23 0.22 0.2z 0.31 0.31 0.20 0.25 0.23 0.23 0.29 0.24 0.24 0.32

.80 .85 ¢.55 0.56 0.59 0,77 0.78 0.46 0.865 0.54 0.58 0.73 0.57 0.6¢ 0.77

.70 1.00 0.76 0.79 0.83 0.96 0.98 0.67 0.89 0.77 0.82 0.93 0.80 0.84 0.986

Notes to table 2: For each statistic, the first row of entries are the
empirical rejection rates under the null, that is, the empirical size of the
test. The remaining entries are the size-adjusted power under the model
described in the column heading. The column, "Asy. Power," gives the local-to-
unity approximation to the asymptotic power function for each statistic. The
entry below the name of each statistic indicates the spectral density estimator
used. S8G(autc) is the Andrews (1991) automatic bandwidth estimator with the
Parzen kernel. &AR(4), AR(8), and AR(BIC) are the AR estimator with p=4, p=8,
and p selected by the BIC automatic selector (subject to 3sps8), respectively.
The size in the final three columns was computed with uy = 0; for the |a|<1
cases in the final three columns, u, was drawn from its unconditional
distribution. Based on 5000 Monte garlo replications.



Table 3. Size and Size-Adjusted Power of Selected Tests
of the I(l) null: Monte Carlo Results

5% level tests, detrended case (zt - (1, t)), T - 100

Test Asy. - - - - HA(1), = - - - - - AR(1), ¢= GARCE MA(1), #= Uncond’l HA(1), 6=
Statistic o Power -0.8 -0.5 6.0 0.5 0.8 0.5 -0.5 -0.5 0.0 0.5 -0.5 0.0 0.5

P;(.S) 1.00 .08 .05 0.08 0.08 0.05 0.19 0.11 0.07 0.08 0.08 0.06 0.08 0.09 0.05
AR(4) .95 .10 0.17 c.18 0.18 0.18 Q.14 0.17 0.17 0.17 0.17 0.18 0.13  0.14 0.14
.90 .27 0.32 0.33 0.34 0.37 0.32 0.30 0.34 0.33 0.34 0.36 0.28 0.29 0.31

.80 .81 0.58 0.82 ©0.65 0.70 0.69 0.55 0.51 0.61 0.63 0.66 0.55 0.57 o0.62

.70 .89 Q.75 0.78 0.81 0.85 0.89 0.70 0.75 0.77 0.78 0.82 2.71 0. 0.78

P;(.S) 1.00 .05 0.16 0.18 o.13 0.14 0.13 0.21  0.17 0.19 .19 0.13 0.18 0.18  0.14
AR(8) .85 .10 0.15 0.16 0.16 0.16 0.13 0.15  0.15 Q.14 0.15 0.15 0.13  0.13 0.3
.80 .27 0.28 0.25 0.26 0.27 0.25 0.25 0.24 0.23 0.25 0.25 ¢.23 0.24 0.25

.80 .81 0.40 0.41 0,41 0.44 0.45 0.38 0.38 0.37 0.40 0,42 0.38  0.39 D0.42

.70 .99 0.48 0.48  0.50 0.53 0.42 0.45 0.48 0.48 0.48 c.5 0.46 0.48 0.50

P;(.S) 1.00  .0% .13 0.1 0.07 0.05 0.29 0.10  0.05 0.11 0,08 0.06 0.16  0.07 0©.03
AR(BIC)} .95 .10 ¢.18 0.17 0.17 0.18 0.15 0.16 0.15 .17 0.8 0.17 0.14 0.14 0.14
.90 .27 .36 0.36 0.36 0.39 0.32 0.31  0.35 0.34 0.3 0.37 0.2¢ 0.30 0.32

.80 .81 9.65 0,68 0.72 0.77 0.70 0.60 0.88 0.66 0.68 0.73 0.61 0.63 0.88

.70 .98 0.82 ©0.86 o0.88 0.92 0.0 0.76  0.84 0.8 0.84 0.89 0.78  0.81 0.8

P;(.S) 1.00 .05 0.01 0.01 0.04 0.59 1.00 0.01 0.39 0.02 0.05 0.62 0.01 0.04 0.359
SC{4) .95 .10 0.11 0.11 0.12 0.11 0.08 0.12 0.11 0.11 0.1 0.11 0.10 0.10 0.11
.90 .27 0.30 0.30 0.32 0.30 0.08 0.28 0.30 0.28 0.0 0.27 0.23 .25 0.22

.80 .81 0.78 0.78 0.85 0.74 0.02 0.722 0.8 0.74 0.80 0.66 0.52 .70 0.53

.70 .99 0.98 .97 c.99 0.86 0.00 0.94 0.08 0.96 0.s8 0.80 0.85 0.82 0.64

P;(.i) 1.00 .05 0.00 0.00 0,03 0.77 1,00 0.00 0.37 e.00 0.03 0.77 0.00 0,03 0.77
SC(12) .95 .10 0.10 0.11 0.12 0.11 0,08 0.1 ¢.11 ¢.11 0.12 o0.11 0.09 o©.10 0,00
.90 .27 9.25 D0.26 0.32 0.22 0.02 0.24 0,26 0.27 0.29 0.20 0.21 ©0.25 .16

.80 .81 0.65 0.68 0.81 0.35 0.00 0.57  0.61 0.68 0.74 0.31 0.51 0.6 0.2%5

700 .98 ©.87 0.91 ©0.96 0.29 0,00 0.83 0.71 0.89 0.93 0.25 0.73 0.85 0.20

P;(.S) 1.00 .05 0.01 0.0l 0.04 Q.40 0.99 0.0¢ .28 0.01 0.05 0.51 0.01 0.04 0.49
SC(auts) .95 .10 0.12 0.11 0,12 0.12 0.10 0.11  0.12 0.11 0.11 0.13 0.10 0,10 0.0
.90 .27 .30 0.30 0.32 .33 0.22 0.27 0.32 0.30 0.30 0.30 0.23 0.25 0.24

.80 .81 .77 0,79 0.35 0.35 0.41 0.68 0.86 0.76 .81 0.80 0.62 0.70 0.83

.70 .99 0.97 0.97 0.99 0.98 0.39 0.93 0.99 0.97 0.98 0.97 0.87 0.93 0.82

or-aLs” 1.00 .05 0.03 0.05 0,06 0.08 0.37 0.06 0.06 0.05 0.06 0.08 ¢.05 0.06 0.08
AR(4) .95 .10 0,10 0.11 0.11 0.10 0.11 0.10 0.11 0.10 0.10 0.10 0.08 0.09 0.09
80 .27 0.22 0.22 0.23 0.25 0.27 0.19 0.25 0.22 0.23 o0.24 0.27 0.18 0.19

80 .81 0.50 0.51 0.55 0.64 0.67 0.42 0.59 0.51 0.5 0.61 0.40 0.42 0.48

.70 .98 0.71 0.73 0.77 c.a8 0.32 0.80 0.02 0.72 0.78 0.86 0.58 Q.51 0.65

DF'GLS' 1.00 .05 0.04 Q.05 0.05 0.04 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0,05 0.04
AR(8} .95 .10 o.o8 0.09 0.09 0.10 .11 0.08 0.08 ©.08 0.08 0.00 0.08 0.08 0.09
.90 .27 0.186 0.17 0.17 0.20 0.25 0.13 0.18 0.15 0.18 0.18 0.13 0.13 0.15

.80 .81 0.30 .31 0.33 0.40 0.53 0.28 0,35 0.31 0.32 0.38 0.22 0.23 0.26

.70 .90 0.41 Q.42 C.45 0.36 0.63 0.37 D.48 0.43 0.45 0.53 0.30 .31 0.33



Table 3, continued

Test Asy, - - - - MA(1), @= - - - -~ AR(1), ¢~ GARCE MA(1), o+ Uncond’Ll MA(1), #+=
Statistic o FPowsr -0.8 -0.5 0.0 0.5 c.8 -0.5 0.5 -0.5 0.0 0.5 -0.5 c.0 0.5
DP—GLS' 1.00 .05 0.11 0.08 0.07 90,11 0.58 0.06 ©.07 0.08 0.06 0,11 0.08 0.07 ©0.11
AR(BIC) .95 .10 0.11 0.10 0.10 0,11 0.12 0.10 0.0 0.10 0,10 0,11 0.08 0.00 0,09
.80 27 0.23 0.23 0.24 9.28 0.27 ¢.22 0.25 0.23 0.24 0.26 .12 0,18 0.21

.80 .BL 0.53 ©¢.57 0.61 0,72 0.70 0.48  0.83 0.56 0,59 0.69 0.46  0.49 0,54

.70 .99 0.75 0.80 0.84 0.94 0.91 0.89 0.38 0.78 0.82 0.91 0.67 0.71 ©0.78

or - ;’ 1,00 .08 .11 0.15 ©.16 0,20 0.70 0.16 0.17 0.15 0.17 ©0.21 0.15 0.16 0.20
AR(4) .95 .10 0.09 0.09 0.09 0.09 .09 0.09 .10 0.09 Q.09 0.10 0.08 0.08 0.08
.90 .23 0.17 0.17 0.18 0.19 0.1? 0.16 0.19 0.17 0.17 0.20 0.16 0.17 0.18

.80 70 .37 0.38 0.43 0.51 0.42 0.33 0.45 0.38% 0.3% 0.49 0.37 0.41 [

.70 .97 Q.55 .57 0.64 0.78 0.53 0.48 0.68 0.58 G.60 0.75 0.57 0.63 0.75

oF - 'r 1.00 .05 0.28 0.31 0.31 0.31 0.48 0.30 0.2 0.30 0.30 0.31 0.31 0.31 0.31
AR(8) .95 .10 0.08 0.08 0,08 90,08 .08 0.07 0.08 0.08 0.08 0,07 .07 ©0.08 0.08
80 22 0,12 ©0.11 0.12 90.12 ©0.12 0,11 0.12 0.12 0.12 ©0.12 0.11 0.1z 0.13

.80 .70 .18 0.16 0.18 0.20 0,15 0.15 0.18 0.18 0.20 0.2 0.1 ©0.18 ©0.22

.70 .97 c.22 g.20 0.22 0.25 0.14 0.18 e.22 0.22 0.23 0.23 0.20 0.22 0.23

DF - ‘1 1.00 .05 .21 0.16 ©0.13 0.21 0.8l 0.13  0.13 0.16 0.13 0.21 0.16 ©0.13 0.21
AR(BIC) .85 .20 0,09 0.08 0.10 0.10 0.08 0.10 0.09 .09 0,10 0.10 0.09 0.08 0,10
.90 .23 0.18 0.18 0.20 0.22 0.17 0.18 0.20 0.18 0.19 0.21 0.18 0.18 0.20

.30 70 0.42 0.45 0.48 0.58 i 0.47 0.39 0.50 0.43 0.47 0.58 0.43 0.48 0,57

.70 .97 0.82 c.67 0.74 0.87 0.73 0.57 0.78 0.65 0.71 0.84 0.86 0,73 0.88

DP'T7 1.00 .03 Q.03 0.0% g.05 ©.06 0.37 0.05 0.05 0.035 0.05 0.07 0.05 0.05 0.08

AR(4) .95 .08 g.07 .07 ¢.07 0.08 .09 Q.08 0.00 0.07 0.07 0.08 0.07 0.08 0.08
.90 .19 @.10 c.12 0.13 0.18 0.18 0.13 0.15 0.11 0.13 0.15 0.12  0.14 0.17

.80 .61 0.24 0.28 0.32 0.4 0.49 0.25 0.386 ©0.27 ©.30 0.4 0.28 0.32 0.4

70 .94 C.40 0.45 0.53 0.71 0.78 0.39 0.59 Q.44 0.51 0.88 0.45 6.52 0.7z

DF'1r 1.00 0% 0.04 9.05 ¢.05 0.04 D.iO .04 0.04 0.04 0.05 0.04 0.05 0.05 0.04
AR(8) .95 .09 0.08 0.07 0.07 0.07 0.08 0.06 0.07 0.06 0.06 0.07 0.07 0.07 0.07

.90 .19 0.09 0.09 0.10 0.11 0.14 0.09 0.10 0.09 0.08 0.11 .10 0.1 0.11

.80 .81 0.15 0,168 0.17 0.22 0.33 0.15 0.20 0.16  0.16 0.23 0.17  0.19 .24

00 L84 0.21 0.22 ©0.25 0.3% 0.53 0.20 ©0.28 0.23 0.23 0.3 0.23 0.26 0.36

BF'V, 1.00 .08 9.10 Q.07 0.05 0.09 c.58 Q.05 0.06 0.07 0,08 0.09 Q.07 .05 0.089

AR(BIC) .95 .09 o.ce 0.08 0.08 0.08 D0.08 0.08 0.08 0.08 ©0.08 0.09 .08 0,08 0,08
.90 .19 .16 0,14 0.15 0.18 0,17 0.14  0.15 0.14 0.1 0.18 0.15 0.15 0.18

.80 .61 £.36 0.3 0.39 0.51 0,50 0.30  0.42 0.34 0,37 Q.48 0.35 0.39 0.52

.70 .94 0.57 0.58 0.64 0.81 .80 0.48 .68 0.55 0.60 0.78 0,58 Q.64 0.81

Notes:

see the notes to Table 2.



P tests. Using more lags reduces size-adjusted power in each case. The AR(BIC) estimator seems
to provide a good compromise, with sizes which usually fall between the AR(4) and AR(8)-based
tests and with substantially better size-adjusted power than the AR(8)-based tests.6

Fourth, although there is no uniform ranking of the tests in terms of their size distortions, it is
possible to make some general observations about relative size performance. We restrict the
comparisons across tests to the tests using the AR(BIC) lag choice. Among these tests, in both the
demeaned and detrended cases the 7 and DF-GLS tests have the lowest size distortions, with the
test typically best. In the demeaned case, the P—“l'- and 5* tests have sizes between 8% and 14% for
all cases in models (19a-c), except for the extreme case of § = -8 for which all tests have size
exceeding 40%. In the detrended case, the ;3' test has large size distortions in all cases, with size of
at least 13%, but the P—’r test has smaller distortions, with size almost as good as DF-GLS'.

Fifth, in the demeaned case, the size-adjusted power is typically lower for each statistic than
implied by the asymptotic power. This gap is greatest for alternatives farthest from the null
hypothesis. Similar results are found in the detrended case, with the exception of the Pr’i-s!atistic,
which has size-adjusted power above the asymptotic power envelope for alternatives a 2 9. For ail
tests in all cases, the introduction of GARCH errors has little effect on the size or size-adjusted
power.

Sixth, the powers of the p, P and DF-GLS tests deteriorate substantially when u, is drawn
from its unconditional distribution (model (19d)) Under the local nesting for T large, T'Huo =
Op(l), so condition C is violated, the results in theorem 3, (16), and (18) do not obtain, and in
particular the power functions of the P-(5) statistic need not achieve the power envelope.7 Even
50, in the detrended case (model (19d), # = 0), the size-adjusted power of P{- and DF-GLS"
exceeds that of 57 and 77 for all values of a considered. In the demeaned case, the sizc—adjusted
power of P% and DF-GLS* exceeds that of 7* and ¥ for close but not distant alternatives.

Because (21) does not contain t as a regressor, the AR spectral estimator (20) is invariant in the
demeaned case, but it is not invariant to changes in By in the detrended case under the alternative;

>

the P—'I/AR statistic in the detrend case as calculated for table 3 is not strictly invariant (although



P-‘l‘- in table 2 is) A strictly. invariant version of PII‘ can be constructed by including t as a
regressor in (21). For c near zero, the size-adjusted Monte Carlo power of this alternative P—’r
statistic is near the envelope, falling off for more distant alternatives (for model (19a), 6 = 0, the
size-adjusted powers are .10, 20, 43, and 61 for a = .95, 90, 80, .70, respectively, for the same

design parameters as in tables 3, AR(4) spectral estimator). The size of this alternative P-}
statistic, bowever, is unsatisfactory, 20% for the § =0, ‘model (19a), AR(4) estimator case. Although
the P—} statistic reported in table 3 is not invariant; these results (and additional simulations)
suggest it might be preferable to the strictly invariant version if g; is thought to be small.

These Monte Carlo results suggests that the DF-GLS statistic with BIC lag choice represents a
reasonable tradeoff between size and power. Except in the extreme 8 = -8 case, its size is between
6% and 11% in the both the demeaned and detrended cases. The size-adjusted power of the DF-

GLS statistic is in general comparable to that of the P statistic, except for alternatives close to zero
in the detrended case when the P—} test is more powerful. The size-adjusted power of the DF-

GLS statistics always exceeds that of the » and 7 statistics (except for distant alternatives in model
(19d)), in some cases by a large margin, particularly in the demeaned case. The Monte Carlo results
indicate that the size and power of both the DF-GLS and P statistics are sensitive to the choice of
AR parameter p. This suggests that investigations of alternative methods for selecting p might result

in improved performance of these two tests.

6. Conc lusi. and Ext

Although their asymptotic representations might seem complicated, it should be stressed that the
P, P—’I‘\ and P-’I'- statistics can be computed in three simple steps. First, the sum of squared
residuals is computed from the GLS regression of y, onto z, under the null a=L Second, y, is
regressed onto z, using GLS under the alternative a = 1+¢/T, where ¢ = -7 for the demeaned case

and ¢ = -135 for the detrended case. Third, the ARVspectral estimator is computed using (20)

.24 .



after running the "Dickey-Fuller" regression (21) The test statistic is then constructed according to
(15} The DF-GLS¥ and DF-GLS” statistics are even simpler to compute: after GLS-demeaning or
GLS-detrending with a = 1+¢/T, the modified Dickey-Fuller t-statistic is computed by running

the regression (17}

The numerical finding that, as a practical matter, the power functions of the P{5) and DF-GLS
tests effectively lie on the asymptotic Gaussian power envelopes in both the demeaned and linearly
detrended cases indicates that there is little room for improvement upon these tests, as measured in
terms of asymptotic power, at least if v, obeys a Gaussian AR(p) In this sense, these tests can be
thought of as approximately asymptotically UMP in the demeaned case and UMPI in the detrended
case.

The Monte Carlo results suggest that, on balance, the DF-GLS* and DF-GLST statistics have the
best overall performance in terms of size and size-adjusted power. The results also confirm previous
findings that test performance in finite samples is sensitive to the choice of spectral estimator. This
suggests that more work on the small-sample properties of these statistics, such as the recent
investigations by Perron (1991) and Nabeya and Perron (1991) of estimators of the AR root, and in
particular on the choice of spectral estimator, could result in improvements in both size and size-

adjusted power.

-25-




Appendix

Proofs of Theorems

Proof of Theorem 1.

(a) To show the op(l) result in the text preceding (5) use T'l):-{=p+2(Auz)2 =

T e * Tl = T et 2T popigul e * °zf'32¥=p+2(“1-1)2-

Because (T’l}:'f=p+2ui.lc‘, T—z):'{;p +2(uI_1)2) = 020- W dW, IWE), the second two terms in the
expression converge to zero in probability so T'12¥=p+2(AuI )2 = T'lz¥=p+2c% + op(l) =2+ op(l)
As discussed in the text, the result then follows from the Neyman-Pearson Lemma and the

continuous mapping theorem.

{b) To show that (5) and (7) define asymptotically equivalent regions, it suffices to show that
O T - ol 20 DT uf) B0 ana i 512- 52 R0

But {2 - w2 = {2+ uldll s (maxpy | o907+ Aolimexi g ol

t = p+l,..., T. Moreover, since |d1£| <@ +lpy+eeet ]pr )maxs=t_p’ . ,tldsL condition A
implies T"*max,_py | 74fj~ 0. Since T} => W (1) and T”{f:P el =>

JWJ, (i) and (i) follow. As for (i), note that, for fixed c, T‘lszﬂ(AuI)2 R 42 from the

proof of part (a). But

Ty} - Bl el = ET T pugoufad] + T o pa(edt
<21l e T opagadT + T pad]

Thus, because T'lz'{=p+2(Ad¥)2 -0 by condition A, (iii) follows. DO

Our proofs of theorems 24 rely on two preliminary lemmas. The first provides an alternative

expression for the statistic M defined in (12) in terms of 3-3 and the GLS-detrended series



y? =¥¢- P’z The second lemma provides asymptotic representations for 3 and the
corresponding detrended series y‘ti for general z,, as long as Z includes a constant. This includes

the two leading cases 'z, = f and f'z, = f + fqt.

Lemma Al
(@) If d, = 0, then T(Mpa) = [C2T 7231 %, - T y2Ys™
(b) if d, = p'z, where the first component of z, is equal to unity, then
T(Mre)=(Byp + aByp + B3T)/[72, where
By = (v9 = (B-8yz2,(3-2)
By = (B-BNT 1 _p02,62XB-B), and

By = T8 08 % - eT (092 - o

Proofof lemma Al
(a) Write T(My - @) = T(6%5°/6 - €. When d, =0, T(6%6%) = E2T 231 _oy2, -

ZET'li'{:zy[_lAyt and Té% = y% + Z'{zz(AY()z- The result then follows from the identity,

2 2 T T 2
YT ¥ = 2L =¥ 118V  L=p(ay)”
(b) If the first component of z is unity, then il has first component equal to one and it (t>1) has
first component equal to zero. Thus, by the orthogonality conditions of least squares,
é;=y-Fz;=0and Z'{=2Azlét =0, Hence T42 can be written as,

T5? = L ogley oz = L1 pley Boz) - BN gz 2 XB-H)

The result follows from straightforward algebra. O
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Lemma A2
Suppose y, is generated according to (1) where d, is given by (9), v, satisfies condition B, u,
satisfies condition C, and a = 1+¢/T, where c is a fixed constant.
(@) If k = 0, then T*(B-fyu;) => u[c2[ W, - TW (1)] and
T yfr = wW(e)
(o) If k =1, then T*(B-pyuy, By-By) => w85, ) and
TJ‘yET'] => wV (+), where V (s) = W (s)-5}s and
By =CHIW_ - TW (1) - (1LTHEHAW (1) + (1-N)3[1W ()dr}
B = W (1) + (1-2)3[rW (r)dr,
and A = (1-3)/(1-E+52/3) Furthermore, TH(El-ﬁl) => W(1-A)3[TW o - W (1}

Proof of lemma A2,

(a) Under condition C with a = 1+¢/T, T'ku[-r_] =>wW (-} By direct calculation,

By = [y - STL L 8y Ty, VM1 + 2T AT
= gy + [y - ST T (e BT hu, )1 + 21T
(A1) =g+ uy + CT 258 g - T upeup) - ST H(T-Du ML + ST 4T

Thus, T*(ByBgr;) => u[E2/ W, - EW (D} It follows that T"*(B-pg) B 0 s0
THyr. )= Toypr. - T Bpp) => wW (-

(b) Defining (&, by, .- ., ) = (uy, (1-aL)uy, ..., (l-aL)u), we can write the least
squares normal equations as Z-f=1itit'(l§‘ﬂ) = Z'{=1itﬁt' After multiplying the first
equation by T”" and the second equation by TJ’, performing the summations, and grouping terms

according to magnitude, we can rewrite this system as the pair of equations,

(A2 T@psp + GEHEIT Ry = Ty + T2 ugy - 5T % + 0, )
(A3  QTHEATEAY = Toup - ST, phtsu) + T2 T _tu ) + op
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But using the identity Z'{;zmut = Z¥=2tu‘ - Z’{=2(t-1+1)ut_1 = T“T'ul'z.{;zut-l’ equation

(A3) can be rewritten as,
A8 aEEIT ) = T up + ETE ] ptugy + 0,0

Employing the continuous mapping theorem, we obtain the limiting representations £ and 8.

Because T}i(“al'ﬂl) => wp] with c=0, the representation for Tk(ﬂl-ﬁl) follows immediately. O

Except for asymptotically negligible initial terms, the likelihood function for yI,
t=p+l,..., T, is the same as the likelihood function for Ypt= 1,...,T when p=0and

w= 0. Hence, theorem 2 is essentially a special case of theorem 3.

Proofof Theorem 3.
(a) When there is no deterministic component, ¥y = U But, under local-to-unity asymptotics where
¢ = T(a-1) and ¢ = T(a-1) are fixed as T tends to infinity, T'Hu['] =>wW _(+) Thus, by the

representation given in lemma Al(a) and the continuous mapping theorem,
AT(Mpa) => W2 - oW (1] = wPU(cR)

Also,

2 ) T 2 -1 2 T -
=T {u] + L p(6u) ] =T [u] + Zt=2(vt +cT 1“t-1)2]

712 -1¢T 2¢T 3T 2
=T uj+T Zt=2v%+2c'r Zt=2ut-1vt+°2’r3§:t=2ut-l'

7

The final two terms in this expression converge in probability to zero. Under condition C, T_lu%

B 0 and, under condition B, T*31_v? B v,(0) Thus T(M ) => (w7, (0)Uc)
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(b) In the representation TMa)=(B)1 + aByp + B3T)/52 given in lemma A1(b), note that
when k=0, By = (Eo-/.‘io—ul)2 and By = 0. The result in lemma A2(a) implies that By Boand
that T'ky‘[‘-r.] =>wW (). Because T"’yg R0, it follows from the continuous mapping theorem
that &ZI‘(MT-E) = wzw(c,E) From the proof of lemma Al(b), we have Fr
T'lz'f___z(Ayt-B'Azt)z = T'12¥=2(Aut)2 (where the second equality follows from az, =0,

t=2,..., T) which by the argument in part (a) converges in probability to v (0}

(c) Again we use the representation T(Mp-a) = (By + ;BZT + B3T)/?72 given in lemma Al(b)
and the limiting distributions given in lemma A2 For the linear time trend case, we have BIT =
(,Bo-ﬁ0+B1-ﬁ1-u1)2 B 0 from lemma A2(b). Moreover the 2x2 matrix Z’{=2A2[Azt’ is zero except

for the (22) element, which is T-L Thus, from lemma A2(b), B = (T-l)(Bl-}?l)2 =

r

PENB[W (s - WO Finally,

By => W (W(6) - AW (D) + (1-1)3fW (o)l ds - w212 (30 W (o) - w (O
Collecting terms, we find &ZT(MTE) => uzwr(c,E), where

¥7(e8) = V2 + ATV (1)
= EZ{AﬂWC(s}sWC(l)]st + (l-A)f[WC(s) - 3sfTW C(r)dr]zds}.

where V (s) = W (s}sp]. Finally,

=TT (au)? - 215 T _ymu,82(3-6) + (B-8X(T L1 p0z,02XB-6)
=TT _(oug? - 2T upugX3,8p) + (B ATV,

The last two terms converge in probability to zero so again &2 B 7,0} O



Proof of Theorem 4.

(i}dy=0case. From lemma Al(a), we have P = [EZT'ZZ'{;ZU%_I - ET'lu%]/éaz since,

with no deterministic terms, y, = u, Under the fixed alternative, ur = Op(l) and T-lz-{=2u%_1
converges in probability to a constant. Under condition D, o2 converges to a nonzero constant.

Hence, PT Bo

(i) d;= By case. From lemma A1(b) and because By =0 when k=0, P—‘f = (B1T+B3T)/C:2.
2 _ =2 2:T =1 - .

From (Al), By = (By-Bgup)” = [czr Zt=2“t-1 -cT (uT—ul)]2 + Op(T 1). Since
T-IZ.{=2“[-1’ ur, and u; are stochastically bounded, BIT By

To show that By B 0, it is sufficient to show that (T‘L’y‘l‘, T'Hyff\ T'zz’{;z(y‘t‘_l)z) Eo
Now T™¥ = Ty - T%3-6g) t=1,..., T. In addition T Bbg) = T"(Byby) +
T’k(ﬁo-ﬁo) = (T'an—)11 + TJ’u1 20 from the previous argument concerning By Because u is
stochastically bounded, we thus have (T‘L’y‘l‘, T'L’y-‘x‘-) B 0. Turning to the final term,

2T 2 -2¢T 2 -2oT -2 2
T L=V = T T pmpuy + 2BpAPT Ly gty + (T-DT “(By-8)% B 0 from the
previous results; thus Byr B 0. Because i2Bd>0 by condition D, it follows that P%R 0.

(iii) dt =Byt Byt case. The proof for the linear trend case follows that of the k=0 case. Again we

T - 2. . - N . .
write Pp = (B + aBy + By)/w”. It is readily verified that the op(l) terms in (A2) and
(A.4) in the proof of lemma A2 are op(l) under a fixed alternative as well as under the local-to-
unity assumption of lemma A2 From (A2) and (A.4) we see that Tk(ﬁo»ﬂo-ul), Tk(ﬂl—ﬂl), and
TH(BI'IBI) all converge in probability to zero for fixed o<1 since u, is stochastically bounded.

2 .
Thus Byp = (u+fg-By+ey-Py)” B 0 and Byp = (X342 B 0. Finally, T™y] =
e K X = -k 2T

T - TRy - TXBBYUT, s0 (T™], T, 157,67 ) B0 Thus
B}T Ro and, with condition D, P!rR 0 o
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Footnotes

L More specific assumptions on v, which imply condition B are provided by Herndorff (1984) for
the case that v, is a mixingale (see Phillips (1987a) for a discussion) and by Hall and Heyde (1980)
and Phillips and Solo (1992) for the case that v, is a linear process. A condition like assumption C,
which ensures that the initial condition is Op(l), is standard in this literature. Assumptions with the
same effect are made by, for example, Chan and Wei (1987), Phillips (1987b), Perron (1989), and
Nabeya and Tanaka (1990}

2. Dufour and King’s (1991) theorem 5 applies to their invariance group G2 For the null a =1

their G2 is equivalent to the invariance group for the transformation y, - ay, + b’z in the case that
z,=( 1) iz =1 then the two invariance groups are equal only if Dufour and King’s (1991)

g+ 18 restricted to be zero, although the MPI test (12) nonetheless obtains from their theorem 5 and
in any event is readily derived from first principles in the z, =1 case. Also note that Dufour and
King’s (1991) augmented regression under the alternative (with projection matrix Min their

notation) reduces to our GLS equation (14) when a constant is included in the regression and in their
notation d; =1 (which is equivalent to ug =0 here), see the discussion preceding their equation

(16}

3. Inder and Grose (1990) proposed an alternative generalization of the Dufour-King statistics to the
AR(pHl) case. Their procedure involves estimating p(L) under the null hypothesis and using the
p(L)filtered series (an estimate of uI) to construct the M statistic. They do not, however,

provide any distribution theory, either finite-sample or asymptotic, they provide no results
concerning efficiency or consistency, and they only consider the no-deterministic case d,=0. Their

procedure represents an alternative which merits further investigation.

4. Monte Carlo standard errors are less than .0013. In his comparison of three methods for
evaluating large-sample local-to-unity distributions, Chan (1988) concluded that the Monte Carlo
method was preferred. Presumably greater accuracy could be obtained by extending the techniques
in Perron (1989) or Nabeya and Tanaka (1990) to the statistics here, but such an extension is beyond
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the scope of this paper.

5. One motivation for the choice of 50% as the tangency point is that it is about such alternatives
that previous evidence is likely to be the least conclusive, so it is here that the researcher would like
to maximize power. In the unit roots problem, DeJong, Nankervis, Savin and Whiteman (1992)
examined the alternative a = 85, which they considered representative of the stationary alternatives
of practical interest. With T =100, this corresponds to ¢ = -15, which is close to the value of € for

the POI(S) test in the detrended case. There is precedent in the POI testing literature for choosing
50% tangency points (e.g. Shively (1988)) An alternative choice, used by Davies (1969) and Shively
(1988), is tangency at power of 80%. King (1988, section 33) lists several alternative approaches for
selecting among POI tests (also see the comment on King (1988) by Potscher (1988)) Although this
ambiguity about the choice of tangency point is present in theory, as discussed in this section it turns

out to have little practical impact in our problem, at least asymptotically.

6. In personal communication, Pierre Perron suggested we examine lag length selection using
sequential likelihood ratio statistics. The results in tables 2 and 3 were also produced for this
selector, with maximal lag length & minimal lag length 1, and 10% rejection level. In most cases,
the sizes of these tests were slightly larger, and the power slightly less, than with the AR(BIC)
selector, for both the demeaned and the detrended statistics. These tendencies were more
pronounced for P and / than 7 and DF-GLS. Notably, however, the power of the LR selector
appears to improve the size-adjusted power of the DF-GLS statistic relative to BIC, at least for

small values of 4.

7. Replace condition C by the assumption that T';’uo B n, where n can be random or fixed, and
consider the demeaned case. Then instead of the limit given in lemma A2(a), T‘Hy‘[‘T_] =>M(-),
where M (s) = wW (sH{exp(cs}D)n. If ug is drawn from its unconditional distribution and V=€
€, 1id N(O,az), then n - N(O, -a2l2c) and n and Wc are independent. Then w = ¢ and the local-
to-unity representations of the PfI‘- and DF-GLS* statistics are obtained by replacing W, by M_ in

the expression for ¥(c,c) and in (18a), respectively.
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