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1. Introduction

For a variety of ethical and practical reasons, empirical researchers
have long been interested in alternatives to evaluation designs based on
random assignment. In medicine, the use of random assignment to evaluate drug
efficacy and medical interventions may require that potentially beneficial
treatments be denied to seriously i1l patients. Some physicians argue that
denial of a potentially beneficial treatment violates the "Patient Care
Principle” in medical ethics (Royall 1991). In the social sciences,
randomization of treatment raises some of the same ethical issues as in
medicine, and may be impractical because of cost considerations, or because of
political resistance to the randomization of social policy interventions
(Manski and Garfinkel 1991.)

Although random assignment of treatment is often represented as an ideal
research design, credible alternative designs and statistical methodologies
may be available. Hearst, Newman, and Hulley (1986) used the randomly
assigned priority for conscription generated by the Vietnam-era draft lottery
to estimate the effects of military service on the subsequent mortality of
veterans. Angrist (1990) used the lottery to study the effect of military
service on the civilian earnings of veterans. In a study of the effects of
test-preparation on Graduate Record Examination (GRE) scores, a randomly
chosen group of test-takers was encouraged, but not compelled, to prepare in
advance for the GRE (Powers and Swinton 1984.) A fourth example is a study of
the effect of maternal smoking on birth weight, in which a randomly selected
sample of pregnant smokers was enrolled in a course designed to encourage
participants to reduce or quit smoking (Permutt and Hebel 1984, 1989.)
Finally, in clinical trials, patients randomly assigned to the treatment group

may decline treatment, and some members of the control group may be able to



cbtain the treatment on their own.

A clinical trial with partial compliance is sometimes referred to as
randomization of "intention-to-treat" (Efron and Feldman 1991.) 1In his
discussion of the Powers and Swinton (1984) test preparation study, Holland
(1988) refers to the randomization of encouragement or assistance as an
"encouragement design." The smoking study by Permutt and Hebel also fits into
this category. Each of these examples is actually a special case of the
instrumental variables framework widely used in observational studies in
econometrics. In estimation based on the draft lottery, the randomly assigned
lottery number is an instrument for whether men born in certain years served
in the military. More generally, instrumental variables techniques can be
used to evaluate the effect of an intervention whenever a variable can be
found (the "instrument") that is associated with the outcome of Interest
solely by virtue of its association with treatment assignment.

Whether couched in the econometrician’s language of instrumental
variables or not, most of the literature on causal effects in evaluation
research is concerned with estimating the average effect of a binary
treatment. Since Rubin’'s (1974, 1977) influential formulation of the problem
of causal inference, causal effects in statistics have usually been defined as
the average difference between the outcomes of the treated and what these
outcomes would have been in the absence of treatment (Holland 1986).! 1In a

recent paper (Imbens and Angrist 1991), we extend the definition of causal

‘See, for example, Heckman (1990), Manski (1991), and Angrist and Imbens
(1991). Rubin (1974, 1977) and Angrist (1991b) are concerned with the average
causal effect of binary treatment in an entire population. Heckman and Robb
(1985) discuss both of these types of causal effects in the context of linear
econometric models. An important early formulation of the problem of causal
inference is Roy (1951).
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effects to include the notion of a Local Average Treatment Effect (LATE).
LATE is the average effect of treatment for those whose treatment status is
affected by exogenous variation in some third variable. For example, in the
smoking study, LATE is the average effect of maternal smoking on birth weight
for babies whose mothers quit or reduced their smoking as a consequence of
counseling and assistance. In the test-preparation study, LATE is the effect
of test preparation for students whose studying behavior was influenced by the
randomly assigned encouragement intervention. Finally, in Angrist's (1990)
study of the draft lottery, LATE is the effect of veteran status for men who
served in the military as a consequence of their draft lottery number.

In our previous paper, we showed that LATE for a binary treatment is
identified under a mild regularity condition satisfied in a wide range of
models and circumstances. Essentially, this condition requires that the
instrumental variable affect treatment status in a monoteone way. In the draft
lottery example, we require that men with lottery numbers putting them at risk
of conscription are at least as likely to serve as they would have been had
they had lottery numbers exempting them from conscription.? When the
monotonicity condition is satisfied, LATE is identified and can be estimated
using conventional linear instrumental variables and Two-Stage Least Squares
(TSLS) estimators.

The purpose of this paper is to extend the definition of LATE and the
corresponding identification and estimation results to the case of variable

treatments. For example, instead of estimating the effect of a certain drug

2Cigarette smoking is not a binary treatment and so LATE is not defined
in the Permutt and Hebel (1989) smoking study. But the monotonicity condition
can still be defined; it requires that women given anti-smoking counseling
smoke no more than they would have without the counseling. Permutt and Hebel
suggest this condition in an informal discussion of their results.
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treatment regime on health, we are interested in estimating features of the
entire dose-response function. The methodological points are illustrated
through two empirical examples. First, we briefly discuss the results in
Powers and Swinton's (1984) study of encouraged preparation for the GRE. Our
second illustration is based on a study of compulsory school attendance by
Angrist and Krueger (1991), which showed how compulsory attendance laws
interact with students’ quarter of birth to induce exogenous variation in
years of schooling. Angrist and Krueger used this exogenous variation in
schooling to estimate the effect of schooling in econometric earnings
functions. The causal effect identified in each of these examples is a
weighted average of points along the response function that would be

identified if treatment were randomly assigned.

2. Causal Effects

To fix ideas, we continue to refer to the study of the effect of test
preparation on GRE scores. The intervention in this case was the mailing by
the Educational Testing Service of test-preparation materials such as practice
exams, and a strongly worded letter designed to encourage the use of these
materials. The treatment of interest, however, was not the receipt of
preparation materials or the encouragement to use them, but the actual number
of hours of preparation.

Let Y; € X be the exam score given ] hours of preparation, for j = 0,
1, 2, .. ., J. Ve assume that the Y; are well-defined and that a full set
exists for each person, even though only one of the Y; is actually observed.
We also define D, € (0, 1, 2, . . ., K} for Z € {0, 1) to be the number of

hours of preparation by a test candidate conditional on the indicator for
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whether he or she received encouragement, Z. As with Y;, D; is assumed to
exist for each value of Z for each person even though only one D; is observed.
This setup is an innovation to the framework outlined by Rubin (1974, 1977)
because the Rubin framework is limited to counter-factual outcomes and binary
treatments.

Note that Y, is the test score of someone who doesn't prepare for the
GRE. One of the causal effects we are interested in is Y, - Y, the effect
of preparing one hour rather than zero hours. Given J+l levels of treatment,
there are (J+1 x J)/2 possible treatment effects, Y;-Y;, each of which can be
expressed in terms of the J linearly independent treatment effects for a unit
increase in treatment level, Y; - Y; ;. The sequence of Y; - Y;; defines the
true causal response function for each individual.

If the treatment level, D, is randomly assigned, then E[Y; - Y;.;] can
be estimated by subtracting the average response for individuals with
treatment level j-1 from the average response for individuals with treatment
level j. We assume that the level of treatment (hours of preparation) is not
randomly assigned, but determined at least partly on the basis of information
unavailable to the researcher. Because this information may also be related
to outcomes, comparisons of average outcomes for different treatment levels do
not consistently estimate the effect of a unit increase in treatment.

Initially we assume that Z can take on only two values, 0 and 1,
indicating assignment to the encouragement intervention or not.? D, is the
hours of preparation when not encouraged and D; is the hours of preparation if

encouraged. For each person in the sample of test candidates, we observe the

3The test-preparation study inveolved the random assignment of 4 different
types of preparation materials as well as encouragement to prepare for the
test, in a 5 x 2 factorial design.
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triple (Z,D,Y), where Z is the level of encouragement; D = Dz = Z - D; +
(1 - 2) - Dy is the hours of preparation, and Y = Y, is the candidate's
test score. Our principal identifying assumption (apart from assuming the
existence of Y;) is that Z is independent of all potential outcomes and
potential treatment intensities. In the test-preparation example, this
assumption is satisfied because encouragement is randomly assigned. Formally,

we have:

Assumption 1 (Independence).

The random variables Dy, Dy, Yy, Y3, . . ., Y; are jointly independent of Z.

It is important to note that this assumption alone is not enough to
identify a meaningful average treatment effect. Example 1 in Imbens and
Angrist (1991) shows that treatment effect heterogeneity can make comparisons
of people by intervention status (Z) meaningless. In this example E[Yl z],
E[Y|D], and E[Y[ D, Z] are all constant even though E[D] Z] varies with Z and
the treatment effect for every individual is strictly posifive. Therefore,
there is no way to estimate an average treatment effect from the observed
distribution of Y. The intuition for the result in this example is that while
the instrument causes a large group of people with small treatment effects to
shift from non-treatment to treatment, a small group with large treatment
effects is induced to leave treatment. On average, effects In the two groups
cancel each other out even though the instrument is correlated with treatment
status and all treatment effects are positive.

The most common way to get around this problem is simply to assume a

constant treatment effect, Yj - Y;.; = a for all j and all individuals.
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This is the assumption underlying most econometric applications using linear
regression models, ;s well as the application of instrumental variables
techniques by Permutt and Hebel (1989). In his comment on Holland’'s (1988)
discussion of causality, Leamer (1988) points out that given an independence
assumption such as Assumption 1, the problem of causal inference is trivial in
linear models with constant treatment effects. We believe the importance of
the Rubin’s "counter-factual"™ approach to causal inference is that in this
framework, treatment effect heterogeneity arises naturally from the assumption
of counter-factual individual outcomes. Use of a model with heterogeneous
treatment effects therefore helps clarify the definition of causality that
motivates evaluation research.*

Instead of restricting treatment effect heterogeneity, in this paper we
impose a non-parametric restriction on the process determining D as a function
of Z.3> This restriction can be characterized in the test-preparation example
as follows: We can allow the encouragement intervention to lead to different
increases in test-preparation time for different people, and we can allow the
intervention to have no effect for some people. But we assume that the
intervention never leads to fewer hours of test preparation. More generally,

we make the following monotonicity assumption:

*Af{gner and Zellner (1988), Holland (1986), and Rubin (1990) survey
alternative frameworks for causal inference,

SElsewhere (Angrist and Imbens 1991), we discuss bounds on treatment
effects attainable by imposing a priori restrictions on the difference between
two alternative weighted average treatment effects. A variety of other
results on non-parametric bounds for treatment effects are given by Manski
(1992.)



Assumption 2 (Monotonicity).

Pr(D, - Dy 2 0) = 1 or Pr(D; - Dy £ 0) = 1.

This means that either D; - Dy > 0 for each person or D; - Dy £ 0 for each
person. Assumption 2 is not verifiable, since it involves unobserved
variables (only one of D; or Dy is observed.) Nevertheless, if J > 1,
Assumption 2 has the testable implication that the cumulative distribution
function (GDF) of D given Z = 1 and the CDF of D given Z=0 should not

C].’OSS.6

If J ~ 1, the CDF's cannot cross because the treatment is binary.
In section 4, below, we compare empirical CDF's given Z in two examples.
The main theoretical result of the paper is given below for the case
where D; - Dy > O:
Theorem 1. Suppose that assumptions 1 and 2 hold and that Pr(D; = j > Dy)
> 0 for at least one j. Then,
E{Y|2Z-1]-E[Y|2z=0] J

(@Y —‘_'ij'E[Yj‘ .i'll D;2j >Dy] = 8
E[D|z=1]-E(D]|Zz=0] j=1

wvhere
Pr(D; 2 j > Dy)
wy =
J
Z Pr(Dy 2 1 > Dy)
i=1
J
which implies that 0 < w; <1 and X w; =1,
j=1

so that B 1is a weighted average per-unit treatment effect that can be

estimated from a sample of (Y, D, Z).

SIf D; > Dy then Pr(Dy; > j) = Pr(Dy = j) for all j. This implies Pr(D >
jl 2=1) 2 Pr(D 2 j| Z=0) or Fp(j| Z=0) > Fp(j| Z=1) where F, is the CDF of D.
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Proof: Let I(A) be the indicator function for the event A. Define the
following indicators: 6z = I(FDZ -3) for Z=0,1 and 3 = 0,1,...,J; and Az =
I(D; > j) for Z = 0,1 and { = 0,1,2,...,J+1. Note that Azg = 1 and Az = O
for all Z. The indicators &6 and A are related by the equations Az = Zf-j 8z;

and 673 =~ Azy - Azy4; for Z =0,1 and § = 0,1,...,J.

In terms of the 6z;, Y can be written as:

J J
Y=2Z Y +(L-2) Yp=(2Z% 6y +((1-2)TY - )
1 ] J-O _1-0
Therefore,

E{Y|Z - 1] - E[Y| 2 = 0]

J J
“E(Z Yy -6,;]|2=1}1-E(Z Y-8 |2=-0)
j=0 j=0

Using the independence assumption, this can be written

J
E(ZYy -« [6y - 6g3] )
=0

J
=E {ZYy - [Ay - Agger - Aoz + Agyer] )
j=0

J
=E (2 [(Y; - Yy) © Ay - ded] + Yo o (Ao - Ago))
j=1
which reduces to
J

=E(Z (Y - Y1) 0 gy - ey )
j=1

because Azp = 1 for Z = 0,1. Now, note that Xy; > Ay by assumption 2 and that

Ay and Xg; equal zero or ome. Therefore, Ay - Xp; equals zero or one, and we
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can write the previous expression as
J
Z E[Y; - Yy, [AU = Agy = 1] - Pr(Ayy - Agy = 1)
j=1
J
(2) =32 E[Yy - Y50 | Dy 2j > Dl * Pr(D; > j > Dp).
j=1

Now we turn to the denominator of (1):

J J
D=Z Dy+(L-2)  Dyg={Z 23+ 6} + ((L-2) TJ - g}
j=0 j=0

Therefore, .
J J

E[D|Z~ 1] - E[D|Z=0] =E (X - 65 |Z=12)-E(Zj 6] 2Z=0)
3=0 -0

Again, using the independence assumption, this equals

J
“E(E] - (5yy - b0p) ).
=0

Substituting for A;; - XA, for 6,; this can be rewritten as

J J
E{Z] » (Mg - Agger - Aoy + Agge)) = E (2 (Agy - Agy))
§=0 ‘ jml
J
-3 Pr(d, 2] >Dp).
j=1

The requirement that Pr(D; > j > D) > O for some j means that the
instrument must affect the level of treatment, D. Also, note that in the
proof of Theorem 1, D is assumed to take on only integer values between 0
and J. The only restriction necessary, however, is that D be bounded and
take on a finite number of rational values. Then one can always use a linear

transformation to ensure that D takes on only integer values between 0 and J.



11
A linear transformation of D does not have any effect on the numerator of the
ACR. The denominator is multiplied by a constant. The linear transformation
therefore amounts to changing the units in which treatment intensity is
measured.

Theorem 1 is important because it shows that in a wide variety of models
and circumstances, it is possible to identify features of the distribution of
Yy - Yj-;. For example, the monotonicity assumption appears plausible in
research designs based on the draft lottery, and in designs based on randomly
assigned encouragement or intention-to-treat; the monotonicity assumption is
also mechanically satisfied in the latent index models commonly employed in
econometrics (Imbens and Angrist 1991.) We refer to the parameter f as the
Average Causal Response (ACR.) This parameter captures a weighted average of
causal responses to a unit change in treatment, for those whose treatment
status is affected by the instrument. Note that this group need not be
representative of the population.

The weight attached to the average of Y; - Y,.; is proportional to the
number of people who, because of the instrument, change their treatment from
less than j units to j or more units. This proportion is Pr(D; > j > Dy).
In the test-preparation example, this is the proportion of people who study at
least j hours when encouraged, but would study less than j hours if not
encouraged. These weights can be estimated using a random sample of (Y,D,Z)
because

Pr(D; > j > D) = E(Ay; - Agy)
= Pr(D; 2 j) -~ Pr(Dy 2 j) = Pr(Dy < j) - Pr(Dy < j)

= Pr(D < j| z=0) - Pr(D < j| z=1).
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Thus, the weighting function is just the difference between the empirical
CDF’'s of D given Z.

A natural estimator of B 1is the sample analog of the left hand side of
(1). This estimator is an application of Wald's (1940) grouping method of
fitting straight lines, where the data have been grouped by the instrument.
Durbin (1954) appears to have been the first to point out that the Wald
estimator is also an instrumental variables estimator.

We conclude this section with a corollary that can be used to interpret
parameter estimates in models where a variable treatment is incorrectly
parameterized as a binary treatment. For example, Permutt and Hebel (1989)
discuss conditions sufficient to identify the effect of smoking when it is
assumed that all that matters for health is whether any cigarettes are smoked.
Similarly, econometricians sometimes estimate the effect of college and/or
high school graduation on earnings, ignoring the fact that dummy variables
indicating graduation are nonlinear functions of an underlying years-of-
schooling variable (e.g., Rosen and Willis 1979.)

The corollary is based on the smoking example, and shows that Wald
estimates constructed by treating cigarette-smoking as a binary treatment have
a probability limit proportional to the ACR. The factor of proportionality is

greater than or equal to one.

Corollary (Mis-specified binary treatment.) Suppose that the treatment of
interest is assumed to be an indicator function of D, say d = XAz =
I(D; > 1). Then, given Assumptions 1 and 2,

E[Y|Z=1]-E[Y]|2Z=0]

3 —— - ¢ - B = B
E[d|Z=1]-E{d|2=0]
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where
J
Z Pr(Dy 2 j > Dy)
E[D|Z=1] - E[D|Z=-0] j=1
¢ = - '
E(d]z=1] - E[d]z=0] Pr(D; > 1 > Dy)

so that ¢ > 1.

Proof: To establish the formula for B,, note that the numerator is the same

as in Theorem 1. The denominator can be written

E[Ai| 2=1] - E[Aqi| Z=0] = E[Ay; - Aoy} = Pr(D; > 1 > Dy).

That ¢ 2 1 is immediate from the formula for ¢. In fact, the only situation
where ¢ = 1 1s when then the instrument has no effect other than to cause

people to switch from D=0 to D=1, | ]

Thus, when a variable treatment is incorrectly parameterized as binary, the
resulting estimate tends to be too large relative to the average per-unit
effect along the length of the response function. On the other hand, the sign
of the ACR is still identified. This result is similar to the conventional
omitted-variables bias formula in a regression where the omitted variables are
actually functions of the treatment intensity other than the indicator

function, d.

3. Multiple Instruments
In many empirical applications, a number of instrumental variables are

available. For example, the experiment designed to encourage test preparation



14
involved the random assignment of 5 different types of test preparation
material (the fifth type was no material), as well as a letter encouraging the
use of these materials. The act of sending materials without a letter of
encouragement also led to an increase in hours of exam preparation. Assuming
that both encouragement and the sending of materials have no effect other than
to increase the number of hours of preparation, the interaction of 5 types of
preparation material with the encouragement letter in a factorial design
generates 9 potential instrumental variables.

The typical econometric application of instrumental variables techniques
imposes a constant-treatment-effect model, in which Yy - Y,y = a for all j
and all individuals. In this case, alternative instrumental variables
estimates of the same a can be combined into a single more efficient
estimate using Two-Stage Least Squares (TSLS.) 1In fact, one interpretation of
TSLS in the constant treatment effect model is that it is an instrumental
variables estimator where the instrument being used is the fitted value from a
regression of D on all the possible instruments.

The discussion in the previous section suggests that estimates of S
constructed using different instruments should be expected to differ. This is
because different instruments are associated with different weighting schemes
in the definition of the ACR. What does the TSLS estimator -- which combines
alternative instrumental variables estimates -- produce when it is applied to
the heterogeneous-treatment-effects model outlined in Section 2? We explore
this question for the case where K mutually orthogonal binary instruments
are combined to form a single TSLS estimate. This is a fairly general example
because any set of discrete instruments can be recoded as a set of mutually

exclusive indicator variables. Alternately, TSLS using K orthogonal
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indicators can be thought of as a means of exploiting a single K+l-valued
instrument, W. For example, in the test-preparation experiment, W indexes
the 10 treatment and control groups.
In general, a K+l-valued instrument can be used to form (K+1)xK/2

ACR's, defined as:

E[Y| W=k] - E[Y] W=£]
By = ; for k # 2.
E{D| W=k] - E[D| W=£]

We assume that each underlying binary instrument affects treatment the so that
the denominators are non-zero. Only K of the pg,, are linearly independent

and the different ACR’'s are related as follows:

E(D| W=k] - E[D| W=m] E[D| W=n] - E[D| W=£]

Bix
E[D] W-k] - E[D]| W=£) E[D| W-k} - E[(D| W=¢}

Theorem 2 below shows that the TSLS estimator constructed by using K
linearly independent dummy variables, &, = I(W = k), plus a constant as
instruments is a weighted average of the K linearly independent ACR's, Sy y-1.
Since each of the pB; y.; 1is a weighted average of points on the causal
response function, the TSLS estimate also converges to a weighted average of
points on the causal respouse function.

Let the points of support of W be ordered such that ¢ < m implies
E[D| W=£] < E[D] W=m]. Finally, note that using K dummies, &, = I{(W = k),
plus a constant in TSLS estimation is the same thing as instrumental wvariables

estimation using E[D[ W] plus a constant as instruments. Then we have:
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Theorem 2. Suppose that E[D| W] and a constant are used as instruments to
construct instrumental variables estimates of f; in the equation
(4) Y=9+ 8D+ €.

The resulting estimate has probability limit

E(Y - (E[D| W] - E[D])} K
5y By= = Z by x-1,
E{E[D|W] - (E[D|W] - E[D])} k=1
K
S x, (E[D|W=2] - E[D})
2=k

where u = (E{D|W=k] - E[D|W=k-1})

K
Z x, E[D|Ww=¢}(E[D[W=2] - E[D])

2=0
K
and =x, = Pr(W=£]. Moreover, 12 y 20 and 3 p = 1.
k=1

Proof: The denominator of the formula for p, is the same as the denominator of
the expression for By. To evaluate the numerator, we can write
(6) E{Y| W=2] = By -1 (E[D|W=2] - E[D|W=2-1]) + E[Y| W=2£-1]
2
= Z By,x-1 (E[D|W=k] - E[D|W=k-1]) + E[Y| W=0]
and )

%) E(Y - (E[D]| W] - E{D])) = E(E[Y| W=2] « (E[D] W=£] - E[D])).

Substituting (6) for E[Y[ W=£] in (7), the numerator is

K 13
£ % x(E[D| W=£]-E[D]) By x-1(E[D|W-k]-E[D|W-k-1])
2=0 k=1
K K
- I E I(1Zks?) - m(E[D| W=£]-E[D]) By x-1(E[D[W=k]-E[D|W=k-1])
=0 k=1
K K
- T 2 m(E[D| W=2]1-E[D]) By x-1(E[D|W=k]-E[D|W=k-1]).

k=1 £=k
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This establishes the right hand side of (5). The weights, #j, are non-
negative because the points of support of W are ordered such that E[D| W=k} >
E[D| W=k-1]. To show that the weights sum to one, note that the sum of the

numerator of the pu.'s 1is

K K
- Z  Z x(E[D]| W=£]-E[D]) (E[D|W=k]-E[D|W=k-1]).
k=1 f=k

Reversing the order of summation as before, this equals

K ¢
(8) £ % x (E[D| W=2]-E[D]) (E[D|W=k]-E[D|W=k-1]).
2=1 k=1
Now,
2

T (E[D|W=k]-E{D|W~k-1]) = E[D| W=2] - E[D]| W=0],
-1

so that (8) can be written

K
(8) T n,(E(D| W=£]-E[D]) (E[D] W=2] - E[D| W=0]).
=1
This equals
K
9 ¥ = (E[D| W=£]-E[D]) E[D|W=¢]
£=0
because
K
2 x(E[D| W=£]-E[D]) E[D| W=0] = -xo(E[D| W=0}-E[D)) E[D| W=0]
2=1
Expression (9) is the same as the denominator of . [ |

Theorem 2 provides a useful interpretation for conventional TSLS
estimates. Just as the simple Wald estimator of Theorem 1 provides a weighted
average effect along the length of the causal responmse function, TSLS

estimates provide one way of combining a set of different weighted average
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effects into a new weighted average.

One reason for reporting TSLS estimates as well as Wald estimates is
that the TSLS estimate may have lower sampling variance than any single Wald
estimate. The TSLS estimate also provides a summary statistic that combines
estimates based on different weighting schemes. However, standard errors for
TSLS estimates in the model outlined here should take account of the fact that
there is a different treatment effect for each instrument. In practice, this
means that the TSLS residual (Y - 4 - B,D) is likely to be heteroscedastic
(conditional on Z). White (1982) provides a heteroscedasticity-consistent
covariance-matrix estimator that can be used in this case.

TSLS estimators are usually associated with an over-identification test
statistic that equals the objective function implicitly minimized by the
estimates (Newey 1985). 1In a constant-treatment-effect model estimated by
TSLS, the statistic provides an over-identification test for the null
hypothesis that all the instruments are orthogonal to the regression error
term, The constant treatment effect is over-identified because any single
instrument would be sufficient for identification. But in the model outlined
here, it no longer makes sense to talk about over-identification; in
principle, each instrument can lead to a different estimate even though all
the instruments satisfy the independence assumption. In fact, Theorem 1
provides one explanation for why estimates of causal effects such as the
return to schooling may differ in different studies.

The conventional TSLS instrument-error orthogonality test statistic may
still be worth computing, however, because it provides a summary measure of
how much different weighting schemes affect estimates of the ACR. Angrist

(1991) has shown that when the instruments are a set of mutually exclusive
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dummy variables as in Theorem 2, then the over-identification test statistic
is the same as a Wald statistic for the equality of a full set of linearly
independent Wald estimates. In other words, the statistic provides a test of
the null hypothesis Hy: B¢ k-1 = Bx-1,xk2 = - . . Bi1,0. The Wald statistic
combines the differences between pairs of Wald estimates in a quadratic form,
with weighting matrix equal to the inverse of the covariance matrix of the
estimates.” In the context of the model outlined here, the test statistic
should be large when there is substantial treatment effect heterogeneity. But
it is important to note that the test statistic may also be large for the same
reason a conventional over-identification test is falled: some of the

instruments do not satisfy the independence assumptions.

4. Empirical Examples
4.1 Test-Preparation

In this section we discuss estimates of the ACR in two examples. The
first is the Powers and Swinton (1984) test-preparation study. Assuming that
the randomly assigned encouragement intervention satisfies independence and
monotonicity restrictions, the experimental data can be used to estimate
features of the causal relationship between test preparation and test scores.
For example, an estimate of the ACR for the effect of test preparation on the
GRE Analytical test score can be computed from data reported in the Powers and
Swinton article. The mean Analytical score for those who received the letter

encouraging preparation was 531.8 and the mean score for those not encouraged

'Multiple use of the label "Wald" may be confusing here. A Wald estimate
is the sample analog of equation (l). A Wald statistic for the null
hypothesis Hy: § = 6, is the quadratic form: m(4*) = n[§*-8,]'®2[8"-4,],
where 0" is an estimate of the parameter § in a sample of size n, and & is the
limiting covariance matrix of the estimate.
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was 509.7. The mean hours of preparation for the Analytical section was 3.37
for those encouraged and 2.8 for those not encouraged. The ratioc of the
difference in scores to the difference in hours of preparation is 38.8, that
is, an average causal score response of 38.8 points per hour of preparation.®

The anatomy of this estimate can be explored using data from Table 2 in
Powers and Swinton (1984), which shows the frequency distribution of hours of
preparation for the Analytical GRE according to whether subjects were assigned
to receive encouragement or not. To simplify discussion of the ACR in this
example, we have assumed that actual hours of preparation can be described by
a discrete variable, D, taking 5 values corresponding to the five intervals
reported by Powers and Swinton. The Powers and Swinton intervals are for the
number preparing 0 hours, positive hours less than 1, 1-2 hours, 3-5 hours,
and 6 or more hours, and are listed in column 1 of Table 1 here. Column 2 of
Table 1 lists the discrete treatment intensities assumed to correspond to
these intervals; D can be 0 hours, .5 hours, 1.5 hours, 4 hours, or 6 hours of
test preparation.

Column 3 reports the cumulative frequency distributions of D by
encouragement status. For example, where Powers and Swinton report the number
preparing O hours, columns 3 and 4 record the number preparing less than .5
hours. Note that the empirical GDF of D given no encouragement, Pr(Dy<j),
always exceeds the CDF given encouragement, Pr(D;<j). This is a necessary

(but not sufficient) condition for the monotonicity assumption to be satisfied

SUnder the null hypothesis of no treatment effect, the asymptotic
standard error for the ACR is given by the standard error of the numerator
divided by the denominator (Angrist 1990.) This is 6.96 for the estimate of
38.8 points of GRE-score improvement per hour of study. Standard errors for
the general case must be computed using conventional TSLS formulas requiring
micro data.
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by the encouragement intervention. The ACR weighting function is reported in
column 5. This is simply the difference between columns 3 and 4, normalized
to sum to 1.

The last two columns of Table 1 show which increases in treatment
intensity the ACR weights apply to, and which part of the sample is
contributing to the weights. The ACR weights act to combine four separate
causal effects: the effect of moving from zero to .5 hrs of study, the effect
of moving from .5 to 1.5 hours of study, the effect of moving from 1.5 to 4
hours of study, and the effect of moving from 4 to 6 hours of study. The
first effect is weighted by 16.4 percent, and, as shown in column 7, this
represents the fraction of the sample caused by encouragement to move from
zero to .5 or more hours of study. The bulk of the weight falls on the middle
two treatment effects, for moving from .5 to 1.5 hours of study and from 1.5
to 4 hours of study. The weights here represent the fraction of the sample
induced to move from less than 1.5 to 1.5 or more hours of study (39.7
percent) and the fraction induced to move from less than 4 to 4 or more hours
of study (33.1 percent.) Only 10.8 percent of those whose treatment status
was affected by the encouragement letter moved from less than 6 to 6 or more
hours of study. This fraction weights the effect of moving from 4 to 6 hours
of study in the computation of the ACR.

Finally, note that Powers and Swinton also compute the regression of the
average GRE Analytical score on the average hours of preparation for each of
the 10 treatment and control groups underlying the test-preparation
experimental design. The coefficient on average hours of test preparation in

this 10 observation bivariate regression is a version of the TSLS estimator
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described in Theorem 2.° The slope estimate is 30.74 points of GRE-score
improvement. This estimate implicitly combines the Wald estimate of 38.8
points in a weighted average with the 8 other estimates that can be computed

from pairwise comparisons of treatment and control groups.

4.2 Compulsory School Attendance

In two recent papers, Angrist and Krueger (1991, 1992) show that
students’ quarter of birth interacts with compulsory attendance laws and age
at school entry to generate exogenous variation in years of completed
schooling. State compulsory attendance laws typically require students to
enter school in the Fall of the year in which they turn six, but allow
students to drop out of school when they reach their 16th birthday. This
induces a relationship between quarter of birth and educational attainment
because students born in the first quarter of the year enter school at an
older age than students born in later quarters. Students who enter school at
an older age are allowed to drop out of school after having completed less
schooling than students who enter school at a younger age.

Angrist and Krueger (1991) estimate the coefficient p in the following
equation:

(10) Y =9+ pE + ¢,

91f the grouped regression residual is homoscedastic, then the
coefficient estimated from the bivariate grouped regression is the same as the
TSLS estimate described in Theorem 2. More generally, weighted least squares
estimation using data grouped by the value of discrete instruments is the same
as TSLS estimation in micro data using these instruments (Angrist 1991.) The
regression weights should equal the reciprocal of the residual variance in the
grouped regression.
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where E 1is years of schooling and Y is the log of weekly wages.!® The
coefficient p can be interpreted as a percentage "return" to a year of
schooling and is usually on the order of 6-8 percent in econometric studies.
But naive estimation procedures such as comparisons of average earnings by
schooling level or Ordinary Least Squares (OLS) do not necessarily generate
estimates with a causal interpretation. This is because those more educated
may be people who, perhaps because they are more able, would have earned more
even if they had not gotten more schooling.

Theorem 1 shows that even though schooling is not randomly assigned, the
average causal response of earnings to schooling can be estimated if there are
instruments available satisfying exclusion and monotonicity conditions. Even
in the absence of a true experiment, a "natural experiment" may generate
instruments satisfying these conditions. The premise underlying the
estimation strategy in Angrist and Krueger (1991) is that age at school entry
and compulsory attendance laws interact to generate variation in schooling
that is likely to be unrelated to determinants of labor market outcomes other
than education. This exogenous variation is then used to comstruct
instrumental variables estimates of the effect of schooling on earnings. The
instruments are dummy variables indicating quarter of birth.

A simple application of this idea compares the education and earnings of
men born in the first quarter to the education and earnings of men born in the
fourth quarter. Calculations underlying Wald estimates based on a first
quarter/fourth quarter comparison are laid out in Table 2. Panel A of the

Table shows results tabulated from data on the wages and earnings of men in

Pangrist and Krueger (1991) estimate variations on this equation that
include additional covariates.
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the 1970 Census and Panel B shows results tabulated using data from the 1980
Census. In both data sets, men born in the first quarter earn slightly less
and have slightly less schooling than men born in later quarters. The ratio
of differences in earnings to differences in schooling generates a Wald
estimate of the return to schooling of 5.3 percent using the 1970 Census and
8.9 percent using the 1980 Census. These estimates are within sampling error
of the OLS estimates of 8 percent and 7 percent in the two Census data sets.

Angrist and Krueger use linear regression models with constant
coefficients (like equation 10), to Interpret estimates of the return to
schooling based on quarter of birth. In constant coefficient models, the
independence assumption requires only that the regression error term be mean-
independent of quarter of birth. Monotonicity (Assumption 2) is not required
because there is no treatment effect heterogeneity.

In the context of the model outlined in Section 2 of this paper, the
Wald estimates in Table 2 should be interpreted as the average effect of a
one-year increase in schooling, for people whose schooling is influenced by
quarter of birth. This is a small group, not necessarily representative of
the entire population. To identify the ACR for this group, the monotonicity
condition requires that men born in the fourth quarter get at least as much
schooling as they would have had they been born in the first quarter. If this
condition 1s satisfied, we can get some idea of the size and characteristics
of the group contributing to the ACR through the ACR weighting function.

The CDF’s of schooling by quarter of birth for men in the 1970 and 1980
Censuses are graphed in Figures 1 and 2. Both figures show that the CDF for
men men born in the fourth quarter lies below the CDF for men born in the

first quarter. The weighting function underlying estimates of the ACR in
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Table 2 is proportional to the difference between the CDF of schooling for men
born in the first quarter and the CDF of schooling for men born in the fourth
quarter. For each level of schooling, j, this difference is the fraction of
the population whose schooling is switched by quarter of birth from less than
j years to at least j years.

Figures 3 and 4 show differences in the CDF of schooling by quarter of
birth. In each figure, the difference between the CDF of schooling for men
born in the lst and fourth quarters is plotted, along with 95 percent
confidence bands at each point.}! ACR weighting functions for estimates

based on compariscons between first and fourth

quarter births are the CDF
differences plotted in the figures, normalized to sum to ome.

The figures show that the groups contributing most to estimates of the
ACR based on quarter of birth are those with 8-12 years of schooling. There
is a sharp decline in the weighting function at 12 years of schooling. A
maximum of a little over 2 percent of the sample was induced by being born in
the fourth quarter to complete 1llth grade, but much smaller fractions were
induced to complete higher grades. This is not surprising since compulsory
attendance laws affect young students and cannot compel students to go to
college. Some weight is contributed by college attenders, however, perhaps
because some students forced by accident of birth to graduate high school
later decide to go on to college after all.

Figures 5 and 6 plot the contrast between schooling CDF's for birth
quarters 1-3 relative to fourth-quarter births. The figures show that

schooling CDF's are ordered by quarter of birth. This is evidence that any

liThe difference between CDF’s by quarter of birth is the difference
between two independent sample proportions. The confidence bands are
calculated using the conventional formula for a difference in proportions.
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adjacent pair of quarters can be used to define a binary instrumental variable
that satisfies the monotonicity assumption. TSLS using three quarter of birth
dummies is a weighted average of the three possible Wald estimates based on
adjacent quarters of birth. TSLS estimates of the return to schooling in this
case are .062 (standard error = .016) in the 1970 Census and .103 (standard
errer = ,020) in the 1980 Census, These are similar to the Wald estimates
based on a comparison of first and fourth-quarter births.

The TSLS over-identification test statistics take on the values 2.35 and
2.85 in the two Census data sets. Both statistics have chi-square
distributions with 2 degrees of freedom under the null hypothesis of constant
treatment effects and instrument-error orthogonality. These values therefore
cast little doubt on the constant treatment effect and independence
assumptions. Finally, the fact that the various instrumental variables and
TSLS estimates are so close to the OLS estimates suggest that naive
comparisons of earnings by the level of educational attainment may have a

causal Interpretation after all.

5. Summary and Conclusions

This paper defines the average causal response to variable treatments
such as drug dosage, cigarettes smoked, hours of study, and years of
schooling. The definition is motivated by Rubin’s notion of counter-factual
outcomes In evaluation research, and by our previous definition of Local
Average Treatment Effects for binary treatments. We show here that a weighted
average of per-unit casual responses to a change in treatment intensity is
identified in a wide variety of models and circumstances. The average

response we can 1ldentify is for those individuals whose treatment status is
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affected by an instrumental variable that is independent of potential outcomes
and potential treatment intensities. The monotonicity condition imposed when
deriving this result requires only that the instrumental variable affect
treatment intensity in the same direction for each unit of observation.

We have presented a number of formulas for the weighting function that
underlies instrumental variables estimates of average causal effects. These
formulas can help empirical researchers understand which observations are
contributing to a particular estimate. But we have not presented new
estimators, and, for researchers already using exogenous variation to estimate
treatment effects and causal responses, there Is little here that should
affect empirical practice. Rather, our results provide a useful
interpretation for some of the simple estimators commonly employed in applied
research. We also hope these results help build a bridge between the
econometric literature on evaluation and the evaluation literature in
biometrics, sociology, and other disciplines.

Finally, the most important issue in evaluation research is probably not
treatment effect heterogeneity, but whether the source of identifying
information -- be it an intervention involving experimental random assignment,
or a natural experiment -- is really associated with the outcome of interest
solely because of association with the treatment. After having made the case
for this link, however, it is important to recognize that data can only be
informative about the effect of treatment on those whose treatment status is
affected by the intervention. The Average Causal Response discussed in this
paper does this by setting out specific formulas for the anatomy of the causal

response to a variable treatment.
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Table 1: Encouraged Test Preparation

Hours of Preparation for the Analytical Section of the GRE®*

Hours of Cumulative dsn. ACR Treatment Weighting
preparation function weights effect for: for:
Encouraged:

Actual No Yes
hours j Pr(De<j) Pr(D;<j)
(1) (2) 3) (4) (5) (6) (7

0 0.0 0.0
] .5 8.32 2.53 16.4 0 ->.5 Dy < .5 <D
<1l 1.5 28.5 14.5 39.7 .5 -> 1.5 Dy 1.5 D
1-2 4 57.1 45.4 33.1 1.5 >4 Dy < 4 LDy
3-5 6 80.2 76.4 10.8 4 -> 6 Dy < 6 £ Dy
> 6 100.0 100.0
mean score 509.7 531.8
GRE analytiecal:? (2.9) (2.7)
mean hours of
preparation: 2.80 3.37
sample: 2,127 1,865

*Column (1) shows the intervals for which hours of preparation are reported in
Powers and Swinton (1984, Table 2.) Column (2) shows the value of the
variable treatment intensity assumed when reporting the cumulative
distribution function. Columns 3 and 4 of the table show the cumulative
distribution of hours of preparation by encouragement-group. Column (5) shows
the ACR weights, equal to (3)-(4) normalized to sum to one. Column (6) shows
the increase in treatment intensity to which the weight applies to. Column
(7) shows the sub-population the ACR weight refers to.

PStandard errors in parentheses.
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Table 2: Compulsory School Attendance

Panel A: Wald Estimates for 1970 Census -- Men Born 1920-1929*

(1) (2) (3)
Born in Born in Difference
lst Quarter 2nd, 3rd, or (Std. Error)
of Year 4th Quarter (1) - (2)
of Year
In (Wkly. Wage) 5.1485 5.1578 -0.00935
(0.00374)
Education 11.3996 11.5754 -0.1758
(0.0192)
Wald est. of return 0.0531
to education (0.0196)
OLS return to 0.0797
education® (0.0005)

Panel B: Wald Estimates for 1980 Census -- Men Born 1930-1939

(¢9) (2) (3
Born in Born in Difference
lst quarter 2nd, 3rd, or (std. error)
of year 4th quarter (1) - (2)
of year
In (Wkly. Wage) 5.8916 5.9051 -0.01349
(0.00337)
Education 12.6881 12.8394 -0.1514
(0.0162)
Wald est. of return 0.0891
to education (0.0210)
QLS return 0.0703
to education (0.0005)

“The sample size is 122,223 in Panel A, and 162,515 in Panel B. Each sample
consists of males born in the U.S. who had positive earnings in the year
preceding the survey. The 1980 Census sample is drawn from the 5% sample, and
the 1970 Census sample is from the State, County and Neighborhoods 1% samples.
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A detailed description of the data sets is provided in the Appendix to Angrist
and Krueger (1991.)

PThe OLS return to education was estimated from a bivariate regression of log
weekly earnings on years of education.
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