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ABSTRACT

It is well known that the distribution of statistics testing restrictions on the coefficients In ime
series regressions can depend on the order of intcgration of the regressors. In practice the order of
integration is rarely known. This paper examines two conventional approaches to this problem, finds them
unsatisfactory, and proposcs a new procedure.

The two conventional approaches -- simply to ignore unit root problems or to use unit root preiests
to determine the critical values for sccond-stage inference -- both often induce substantial size distortions.
In the case of unit root pretests, this arises because type 1 and 11 pretest emors produce incorrect
second-stage critical values, and because, in many empirically plausible situations, the first stage test (the
unit root test) and the second stage test (the exclusion restriction test) are dependent. Monte Carlo
simulations reveal size distortions even if the regressor is stationary but has a large autoregressive foot,
a case that might arise for example in a regression of excess stock retums against the dividend yield.

In the proposed altemative procedure, the second-stage test is conditional on a first-stage "unit
root” stalistic developed in Stock (1992); the second-stage critical values vary continuously with the value
of the first-stage statistic. The procedure is shown to have the correct size asymptolically and to have

" good local asymplotic power against Granger-causality altematives.
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1. Introduction

The asymptotic theory of inference in multivariate time serics models when regressors have one
or more unit roots is well understood (Chan and Wei (1988), Park and Phillips (1988), Sims, Stock
and Watson (1990)) This theory has been developed under the assumption that the number and
Jocation of unit roots in the system is known a-priori. Many inferences, such as tests of the number
of lags to include in an cquation, are typically unaffccted by the presence of unit roots in the
system. However, the null distribution of statistics testing certain quantitites of economic interest,
such as long-run effects of one variable on another, can depend on whether the regressor has a unit
root This poses difficulties in applied work, in which it is rarely known whether a scries actually
has a unit root. This in turn can lead researchers either to ignore the problems that arisc if a
regressor is integrated or to use pretesis (tests for unit roots or cointegration) to check if the
regressors are integrated or cointegrated.

This paper studies inference in a special case of this general problem, in which there is a single
lagged regressor x4 which is suspected but not known to have a unit root, that is, in which the
rescarcher is unsure whether the regressor is integrated of order 0 or 1 (i; 1(0) or 1(1), respectively)
One motivating example is an empirical relation which has recently received considerable attention in
the finance literature, in which the lagged dividend yield (the dividend-price ratio) appears to be
useful in predicting excess stock returns; see for example Fama and French (1989) and Campbell
(1991) and, for a review of this literature, Fama (1991) A typical regression in this literature is
monthly (or longer) excess returns on a portfolio of stocks against a constant, lags of excess returns,
and lags of the log dividend yicld for the portfolio; the finding is that the lagged level of the log
dividend yield enters as a significant predictor of excess rcturns. As emphasized in Campbell (1991)
and in Fama's (1991) review, the importance of this regression arises from its apparcntly strong
evidence against the “random walk” theory of stock prices. As several authors note, although finance

theories typically predict that the dividend yield will be 1(0) even though stock prices are I(1), for



actual portfolios the dividend yield is only slowly mcan-reverting and the evidence that it does not
have a unit root is weak. While our primary motivation is this dividend yield regression, this
regression is similar to regressions in the empirical consumption literature in which the growth rate
of consumption is regressed against the lagged level of labor income or its logarithm (Flavin (1981},
see Mankiw and Shapiro (1985) and Stock and West (1988) for discussions of the unit root issues in
this context) It is also closely related to money-income causality regressions, although unlike the
stock return and consumption examples, in the money-income case the null hypothesis (that money is
not a useful predictor of income) does not imply that the dependent variable (income growth) is I{0).

The purpose of this paper is twofold. The first is to examine difficulties with conventional
approaches to inference in this regression in light of the lack of asymptotic similarity of the t-test of
the significance of x, ;. One conventional approach is to model X, as stationary and to proceed with
inference using standard Gaussian critical values. Not surprisingly, if in fact the largest root of the
regressor process is near one, this approach can result in tests with sizes that far exceed levels:
results in Section 2 indicate that sizes of one-tailed 5% tests can exceed 30% for cascs that might
reasonably be found in practice. A second approach is to pretest to sce whether the regressor has a
unit root and, depending on whether a unit root is rejected or not, respectively to adopt Gaussian or
nonstandard critical values for inference in the second stage regression. This approach, however,
suffers from two difficulties: inferential errors in the first stage (type I and type 11 errors) will
result in second-stage tests not having the correct size, and the first-stage and second-stage test
statistics will, in many empirically plausible situations, fail to be independent. These difficulties
conspire to induce large size distortions in the two-stage procedure. For example, as shown in
Section 2, when a Dickey-Fuller (1979) t-statistic is used to pretest for a unit root in x;, a two-sided
second stage test with nominal level 10% can have size exceeding 30% for sample sizes encountered
in econometric practice.

The second purpose of the paper is to propose an alternative approach to this problem, referred
1o as the Bayesian mixture approximation. In this approach, inference on the second stage test

statistic is explicitly conditioned on a statistic ¢~ that is informative about the order of integration of
p y T g



x. This conditional distribution is computcd as the mixture of (wo asymptotic conditional
distributions for the test statistic, conditional on x, being K(0) or I(1), with the mixture probabilitics
being given by posterior probabilities that x is I(0) or 1(1), respectively p(1(0)¢) and P>
The proposed procedure has three desirable features. First, under the null that the regressor has no
predictive content, asymptotically the mixture distribution will provide the correct critical values,
" that is, for any fixed I(0) or I(1) model the test has the correct size (it is asymptotically similar)
Second, the (second stage) test has good power against local Granger causality alternatives.
Specifically, if d=0 then the local asymptotic power of the proposed test is the same as the likelihood
ratio test which imposes d=0 g-priori. If d=1, the proposed test can be compared to the test based
on the same regression, but using the correct I(1) unconditional (on $p) critical values; although
neither test dominates the other, the proposed test has higher power against most local alternatives.
Finally, the proposed procedure avoids the difficultics of defining priors over parametric
representations of x; within the 1(0) or I(1) classes (e.g. sec the debate between Phillips (1991a) and
his commenters) and instead entails defining priors over the point hypothescs "I(1)* and "1(0)". From
a classical perspective the proposed procedure can be seen as a device for approximating the’
distribution of the t-statistic when the researcher has no a-priori information on whether x_ is 1(0) or
(1} From this perspective, the argument in favor of the approximation is that it provides an
asymptotically similar test with desirable power propettics, thereby circumventing the pitfalls of unit
root pretesting in this application. The prior on I(1) can be considered a tuning parameter to be
chosen by the rescarcher, for example based on a Monte Carlo study of the effect of the choice of
prior on sizc or power in leading finite-sample modx:ls.1

The outline of the paper is as follows. Section 2 scts out the model under investigation and
documents the size distortions introduced by the two conventional second-stage test procedures
described above. The Bayesian mixture approximation, the construction of the posterior probabilitics
p(l(OkT) and p(I(l]éT). and the asymptotic propertics of the Bayesian mixture approximation arc
given in Section 3. Section 4 preseats results on the posterior probabilities when x has large but not
unit autoregressive or moving average roots, respectively the local-to-I{1) and local-to-1(0) cascs;

these results are then use to examine the performance of the Bayesian mixture approximation when



X, is local-to-I(1). The asymptotic power of this procedure against local Granger causality
alternatives is studied in Section 5. Numerical issues are discussed, and a Monte Carlo experiment

reported, in Section 6. Section 7 concludes.

2. The model and problems with conventional second-stage inference lechniques
A The model.

The data are assumed to be generated by the bivariate autoregressive system,

(21a) X, = pig ¥ a(L)xF1 + /J(L)yl_1 +ny,

(21b) Yy = by ¥ rx ¥y

where L is the lag operator, where n = (q“, "21)’ is a martingale difference sequence with E(nlq('|
T M) = }:” and with sup(Eq?( <mj=], 2,vand o(L) and A(L) have finite orders. If X,

is I(1), then one of the roots of (1-a(L)L) equals onc and the remaining roots are assumed to be
fixed and greater than one in modulus. If x, is 1(0), then all the roots of (1-a(L)L) are fixed and
exceed one in modulus. The null hypothesis to be tested is that y = 0.

The specification (21b) ignores the possibility of multiple lags of Xy, or of lagged y,, being
useful in prediction y, given xy.1- Our reason for focusing on this restricted system is that the
conceptual difficulties are associated with estimating the levels effect of the possibly integrated
regressor x.. It follows from results in Chan and Wei (1988), Park and Phillips (1988) and Sims,
Stock and Watson (1990) that, if additional lags of x, are included in this regression, then Wald tests
on these additional lags will have conventional x2 asymptotic distributions whether x, is 1(0) or I(1);
moreover, in the I(1) case this Wald statistic is asymptotically independent of the Wald statistic
testing the levels effect of x, (y=0) Thus only inference concerning this levels effect is affected by
the order of integration of Xy

It is useful to reparameterize (21) to isolate the largest root of (1-a(L)L} Factor (1-a(L)L) as
(1-pL)X1-a(L)L), where p is the largest real root of (1-a(L)L), and let & = (1-pL) By additionally

rewriting the effect of y, ; on x; in terms of deviations from its mean under the null, we have,



(22a) ) B" = I-‘x + &(L)Z\‘H + ﬂ(LXYl_l'l‘y) + 2,

(22b) Vo= by ¥ 1%ty

In terms of (22), the 1(1) hypothesis is that o =1 and the 1(0) hypothesis is that [o| <L It is [urther
assumed that, if p =1, ‘-‘x =0, while if [o| < 1, ‘.‘x is unrestricted. Define 0 to be 2x times the
spectral density matrix of (Axl. "2() at frequency zcro, and let § = 021/(011022)". Note that 0 is
identified and is consistently estimable under cither the 1(1) or 1(0) hypothesis, the latter being true
even if there are multiple largest real roots or no nonzero real roots under 1(0}

All regressions studicd below include a constant but no time trend, and the non-regression based
T statistic involves demeaning x,. In the second regression, this accords with conventional practice.
In firsi-stage inference on the order of integration of x,, this implicitly assumes that the I(1) model
of interest is difference stationary with no drift. The modification for first-stage inference when
X, is detrended rather than demeancd is straightforward and is briefly described at the appropriate

points during the exposition of the theory.

B. Size distortions introduced using Gaussian critical values or unit root pretests.

Two conventional approaches to inference in this problem are: (1) to use a standard normal
approximation to the distribution of t regardless of any information about the degree of persistence
in x,, and (2) 10 use conventional unit-root pretests to determine second-stage critical values. This
subsection examines the consequences of these approaches. To simplify exposition, the problems
with these two procedures are illustrated in a simple special case of (22a) in which there is no

feedback, X, follows an AR(1) process, and “1"“0'0- Specifically, let

(23a) X = oXp Yy

(23b) Y= 1% ¥y

where n satisfies the conditions stated following (22) In this simple model, 0 = E and the

(frequentist) asymptotic distribution of L is determined by p and, if p=1, by §.



Under the null hypothesis that y=0, the distributions of the demeaned Dickey-Fuller t-statistic
testing p=1 ('I“}') and the Granger causality t-statistic testing y=0 (with a constant in the

regression) are related by the expression,
. -2¢T 2 h 24
24) t, = §T(1-pXT L=t + 6t + (169 1+ op(l)

where 21 = (51 2% (0 ProXnymy M T oy AL 2 = TIIT 2,
$30 = Ty - Ty{Eip Xf = %, - % and Proknydny) = EyZiinyy 1 p=1, (e, 27)
=> (+¥, 2), where ## denotes the asymptotic representation of the demeaned Dickey-Fuller t-
statistic. z is a standard normal random variable, +* and z are independent, and "=>" denotes weak
convergence of random elements of D[01} If p=1 and §=¢1, then t7=6!&:; if p=1 and §=0, then
asymptotically t, is normally distributed and is independent of 'BF; and if p=land 0 <f§j <,
then Y is asymptotically distributed as a linear combination of independent #* and z statistics.
The distribution of 1, can be obtained using (24) when p is nearly one, in the sense that
p=1+c/T where c is a constant. This local-to-unity nesting has been studied extensively by Bobkoski
(1983), Cavanagh (1985), Chan and Wei (1987), Chan (1988), Phillips (1987), and Nabeya and Tanaka
(1990) (see Nabeya and Tanaka (1990) for a recent review of theoretical results) If p=1+¢/T, then
T'L'(x[-r. ri ) => E;‘lBg(-), where Bg(s)-Bc(s)-f‘l)Bc(r)dr, where B (s) is a diffusion process
satisfying dB (s) = cB(s) + dW(s) (c.g. Phillips (1987)), and where [+] denotes the greatest lesser

integer function. Under this local-to-I(1) nesting for Xp

@5 (1, e = GUGBLAWI B ds) + (161
c(JB¥(s)%ds)" + (FBLAWI 3B s,

where z is asymptotically independent of the functionals of B::‘. Thus, when p is local to one and
=0, the qualitative results concerning the distribution of l are similar to the p=] case:
asymp!oucally, when §=0, i is normally distributed mdepcndently of tpyp, but for nonzero §, t, has

a nonslandard distribution nnd in general t and tpyp arc dependent.



The representations (24) and (25) permit analyzing the size properties of the two naive
approaches to inference in this problem. First consider the case in which standard Gaussian critical
values are used to evaluate the significance of (T' If §=0 or if p is fixed and less than one, then l_'
bas an asymptotic N(0, 1) distribution and this inference is justified. However, if p=1 and §40, the
distribution is nonstandard Equally importantly, the local-to-unity result (25) indicates that iAf pis
large, §#0, and the sample size is moderate, then the distribution of L will be nonstandard and the
normal distribution will provide a poor approximation.

Table | presents evidence on the magnitude of these clfects, specifically sccond-stage rejection
rates when data are gencrated according to (23) with v=0, t, is computed by regressing y, onto (1,
x,1) and tests on 1, are performed using the standard Gaussian 5% and 95% critical values. As the
theory predicts, there are no appreciable size distortions when §=0, even if p is large. However, for
nonzero § the size distortions can be substantial. For example, when § = -9, p=95, and T=50, the
rejection rates are under 1% in the left tail and 22% in the right tail,

A sccond approach to inference on v is to pretest for a unit root in x, using a one-sided test. If
the unit root null is rejected for p<1, then the 1(0) standard normal distribution is used, while if the
unit root null is not rejected, then the I(1) distribution obtained from (25) with ¢=0 is used. In the
context of (1), a natural unit root pretest is the demeancd Dickey-Fuller t-statistic, 'EF' The
difficulty with this two-stage procedure arises when p is one or local-to-one and §#0, so that 4 and
t&: are asymptotically dependent; then inference on ‘1‘ conditional on 'BF' differs from
unconditional inference. Consider the extreme case {(p, §) = (1, -1), so that = "6(-" Then one-
sided (left-tail) failure to reject at the a level in the first stage ensures one-sided (right-tail)
acceptance at the a, level in the second stage for any ay<a;. First-stage rejection of p=1 using
t&; at the a) level (with critical value CDFm) leads to using using standard normal critical
values. As long as {DF;‘"M:Z,’“z (typically true because of the skewness of the +* asymptotic
distribution), first-stage rejection implies a sccond-stage rejection with probability one. Thus the
asymptotic size of a second-stage right-tailed test of nominal level ay is in fact a), as long as ay<a;
and {DF‘.n|>CZ;az'

This size distortion is found more generally if p is large and §+0, and is prescnt in two-sided as

well as onc-sided tests. Monte Carlo evidence on sizes obtained using this sequential testing



Table 1
Size of t-tests of y=0 vith standard Gaussian critical values

One-sided tests with nominal level 5%

Pr(t_<-1.645), p = Pr(t >1.645), p =
.6 .8 .9 .95 975 1 .6 .8 .9 .95 .975 1

§=-.9

T=50 0.02 0.01 0.01 0.00 0.00 0.00 0.10 0.13 0.16 0.22 0.28 0.38

T-100 0.03 0.02 0.01 0.00 0.00 0.00 0.08 0.10 0.13 0.17 0.23 0.39
§=-.5

T=50 0.04 0.03 0.02 0.02 0.01 0.01 0.07 0.09 0.11 0.13 0.14 0.18

T-100 0.03 0.03 0.03 0.02 0.01 0.01 0.06 0.08 0.09 0.12 0.12 0.19
§-0

T=-50 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.05 0.05 0.06 0.06

T-100 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05

Notes: The entries are rejection rates when t_ is cowmpared to *1.645. The pseudo-
data were generated according to (2.3) with 1. 1 d. N(O, ) errors, with 211 -22 =1 and
Eyg=6. t {s the t-statistic testing y~0 in a regression of Y onto (1, X ). ﬁased
on 5000 Honte Carlo replicacions.



procedurc for various valucs of p, § and T are summarized in Table 2 The first-stage test is a 20%
one-sided Dickey-Fuller (1979) t-test for a unit root with a constant and no lags of ax, in the
regression; the second stage test is cqual-tailed with nominal size 10%, that is, the 5% and 95%
quantiles of the I(0) or I(1) distribution are used, depending on the outcome of the first-stage
Dickey-Fulier test. As the theory predicts, when §=0 there is no size distortion introduced by the
pretest. However, when §#0, the size distortions can be large, with rejection rates exceeding 30%
for large values of p even with T=100.

A theoretical solution to this problem is to considcfscqucnccs of unit root pretests in which the
critical values are indexed to the sample size such that the type I and type Il error rates
simultancously tend to a limit of zero. Thus asymptotically the correct null distribution for (T would
be selected with probability one, and the conditions on the relative nominal levels and sizes listed
above (05<ay and -CDF‘,G|>C1',01) eventually would not hold. The drawback of this device is that,
without further refinement, it gives no guide to the actual first-stage critical values to use in samples
of the size typically found in empirical work, so that the difficulties outlined in the preceding

paragraphs would remain an accurate description of the pitfalls facing applied researchers.

3. The Bayesian mixture lpproxin.\a(lon

Qur proposed approach 1o this problem is to consider the distribution of t_’ conditional on a
statistic ¢ that is informative about the root p, or (less parametrically) about whether x, is 1(0) or
I(1) Because of the asymptotically different distributions under the I(1) and 1(0) cases, it is useful
1o treat the order of integration d as a dichotomous unknown parameter. Instcad of performing a
pretest on this unknown parameter, a Bayesian procedure is used to construct posterior probabilites
for d given ¢r. This approach can be developed for genceral ¢, as long as these posterior
probabilitics can be computed. In this paper, however, we focus on a specific class of ¢ statistics
developed in Stock (1992) Before turning to the proposed Bayesian mixture procedure, we first

briefly review the construction and propertics of these statistics.



Table 2

Size of t-tests of y=0 with critical values
selected by pretesting using a Dickey-Fuller t-statistic

Equal-tailed two-sided tests with nominal level 10%

....... p =+ - m e e e
6 8 9 95 .975 1.0
§=--.9
T=50 0.13 0.32 0.33 0.31 0.26 0.22
T=-100 0.11 0.12 0.30 0.34 0.28 0.23
§=-.5
T=50 0.10 0.16 0.17 0.17 0.16 0.16
T=100 0.11 0.11 0.18 0.17 0.16 0.15
§=0
T=50 0.12 0.11 0.10 0.12 0.10 0.1l
T=100 0.10 0.11 0.09 0.10 0.10 O0.11

Notes: Entries are rejection rates in the second stage test of y~0 when
critical values are chosen either from the standard Gaussian distribution or
from the appropriate I(1) asymptotic distribution, given §, depending on the
outcome of a preliminary Dickey-Fuller test for a unit root in x_ (from a
regression of Ax,_ on (1, xt-l))' The first stage test is one-siged agalinst
the stationary afternacive at the 20% level; the second stage test is two-
sided based on the nominal 5% and 95% percentiles of the marginal I(0) or
I(1) distributions of t_ . The data were generated according to (2.3) with
1.1.d4. N(0,Z) errors. gased on 2000 Monte Carlo replications.



A Construction of posterior probabilities for 1{1) and 1(0).

The construction of the proposed approximation relies on a class of statistics ‘T"(VT)‘
introduced in Stock (1992), which permit computing the posterior probability that x, is 1(1) or 1(0)
when prior probabilities are placed solely on the point hypotheses I(1) and 1(0), that is, without
reference to a specific prior distribution over parametric representations of the x, process. (For an
alternative approach see Phillips and Ploberger (1991)) For future reference, the construction and

asymptotic propertics of - are now bricfly summarized. Write x as,
(A1) x,=d +u

where d is deterministic and u, is purely stochastic. In the general case the 1(0) and I(1)
bypotheses are taken 1o refer to properties of partial sums of u,. Let Uo—l(x)=T LlTl]u and
Un(x)-T" uTa} let 1x(|)=cov(x',x‘_j) for a second order stationary process x,, and let W(+) denote
» standard Brownian motion process restricted to the unit interval. The two hypothesis are

respectively defined by:

(32) 0y Ugp => wW, where - Dear(ih 0<ug <=,
63 x  Upp=> wW, where of = [T v, (i) 0< v <=

The statistic VT statistic is constructed using detrendcd data x . Let x =X - d‘. where
d, is an estimator of d. Let V)= ST HL[;I;'\‘ g, where 2=
)::_‘Tk(m/!T)}xd(]mD and ixd(m) - T'lz'{_mﬂx‘:x?_m. The kernel k(+) is assumed
10 satisfy: k(w)=0 for jwizl k(w)=k(-w), 0<k(w}sl for Iwi<3; k(0)=1; and
'1):‘ 1k(u/ ek for all £>1, where k>0. It is assumed that the sequence L satisfies l%lanl‘ -
0, tp~e= Let Np = Tlfm-—l k(m/!T) Let the trend estimation error be §, = d ;. Let
Iz f=T ‘Z. 112 for a time series x, Dyp(3) =T’ Zs(T ]55. and Dy (3) = =T 6['“? The

estimated trend is assumed to satisfy the following conditions:



Detrending Conditions

A lf u, is }(0), then:
(i) (Uyp Dyp) => w(W, Dg) where Dy € C{01}
Gi) 2350 Bo

B.If u, is I(1), then:
() (U Dyp) => wi(W, D) where Dy e C[0]]
(i) las d = 0, (1)

The properties of specific functionals of V.. under the I(1) and 1(0) models for several detrending
processes have variously been studied by Kwiatkowski, Phillips and Schmidt (1990), Phillips (1991b),
and Perron (1991} These results are extended to the general detrending conditions A and B in Stock
(1992, Theorem 1), where it is shown that if ¥y is 1(0), then Vi => Wg, while if y, is I(1) then
NIV => V], where VS0 = [awdisasi(fiwdis)as)™, where wi(s) = wis) -

Dyfs) and WS(s) = W(s) - Dy(s)

The general detrending conditions are satisfied by polynomial detrending by ordinary least
squares (OLS) and by piccewise linear ("broken-trend”) detrending. We focus here on the case of
constants included in the regression so that a mean is subracted from the data. Accordingly, denote
the demeaned processes Wg and W‘l1 by Wh and WY, respectively, where Wh(s) = W(sk
sW(1) and WA(s) = W(s)- [ W(r)dr.

These results permit computing the posteriors that x, is I(1) or 1(0). Let ¢(-) be a functional
such that (i) ¢ is a continuous mapping from D[0]1] ~ al ; (ii) #(ag) = #(g) + 2lna, where a is a scalar
and g € D[0,1} and (iii) ¢(Wg) and é(\/‘lj) respectively have continuous densities fp and f; with
support (-, ) Let é1 = ¢(V) under these conditions, if x is 1(0) then 1 => ¢(Wg), while if
x, is (1), d-[-lnNT = ¢(V(l’) The posterior probability that the series is I(d), given the statistic
dis p(I(d]éT) = P(é'ﬂl(d))"dfp(ﬁ-). where 1y = p(1(d)) is the prior probability that the process is
I(d), d=0, L In large samples, p(¢-1{1(0)) and p(é{I(1)) respectively can be approximated by fo(é)
and fl“T‘l"NT)'

With these asymptotic approximations, the posterior probabilities can be computed as,

-10 -



(342) pIOWD) = [gldPy/plé7)
(34b) P(IU»T) = (- InNp)/p(é7)

A consequence of theorems 1 and 2 in Stock (1992) is that the posteriors asymplotically converge to
zero or one: if 0<Ily M <1, then it x, is I(0) then p(l(OkT) B1and p(](l]&T) B0, while if x, is
I(1), then p(KO¥-) B 0 and p(I() B L

B. Bayes mixture approximation to the distribution ofl,"
The consistency of the posteriors in (3.4) suggests using them to construct the asymptotic

approximation to the distribution of (T conditional on ¢ specifically,

09) P W) = (e 7, d=O)(I(OKT) + p(t o d=Dp((I(Né )

As is madc precise in theorem 1 below, under (22) with y=0 the conditional distributions p(l;'kT,
d=0) snd p(l_'k-r, d=1) asymptotically depend on only one nuisance parameter in the system (22), 6,
and so are readily computed for general systems.

The formulation (35) has three parallel motivations. The first comes from its asymptotic
properties. Because the posterior probabilitics are consistent for zero or one, depending on d,
p(l.'jAT) constructed using (3.5) has the property that the correct (ie, I{0) or I(1)) conditional
distribution of . is used asymptotically.

The second motivation comes from recognizing (35) as a mixture of the 1(0) and I(1)
distributions with probility weights given by the posteriors p(I(d)]oT). In finite samples, these
posteriors will in general be strictly positive and less than one; the greater the posterior weight on
d=1 for a realization of ¢, say, the greater the weight given to the d=1 conditional distribution.

The third motivation comes from drawing an analogy between (3.5) and the Bayesian posterior
distribution for y. Suppose that we had available statistics Sp and ST' where Sp is informative for p

and (Sp, 57) are informative for 7. Let ¢ denote the vector of nuisance parameters (so that (v, p, #)



comprise the complete parameter vector) From a Bayesian perspective, one might be interested in

the posterior distribution of + given (Sp, Sv)'
(39) PO, S,) = [, [4P(S,, S v o, )0, o, 6)d0d0lp(S , S.)

Next make three assumptions: (i) the dependence of p(S.'jSF, 7 £, 8) on p reduces to whether p=1 or
i1, specifically, p(S IS, 7. 5, 8) = p(S_IS . v, d=L #)l(p=1) + PSS, v, d=0, #)1ak<1y (if)

p(Sph, #, 8) does not depend on ¢ or v, and depends on p only through p=1 or |1, specifically,
p(Sﬁh, 8, p)= p(Spld-l)l(pnl) + p(Sp|d=0)l(lp}<l); and (iii) the priors on y are flat and p(y, p, §)
satisfies p(v, p, 8) o p(#)p(d=1)§*(o-1) + p(#)p()1(p}<1), where f,p(a)dl-l, §*(+) is the Dirac delta
function, and flpklp(p)dp = p(d=0) where 0sp(d=0)<! and p(d=Oy+p(d=1)=L (An implication of
theorem 1 below is that assumptions (i) and (ii) are satisfied asymptotically for (Sp, ST) = (¢ t1))

With these assumptions (36) simplifies to,

(EY)] POIS . S.) & (Jp(S IS, 7, d=0, #)p(4)d6}p(d=05S )
+ {4p(S.J5, 7 d=1, 0)p(0)de)p(d=1S )

Except for the integration over 4, if (Sp, ST) =(¢T. (7). then the right-hand-side of (3.7),
evaluated at y=0, is the same as the right-hand side of (35) evaluated under the v=0 null. This
leads to the motivation of (35) as a large-sample approximation to the posterior (3.7). For the
system (22), the dependence of the asymptotic approximation of p(S.'LSp, ¥, d=0, 8) on # is limited
to the single parameter 6. While in principle one could integrate over a prior on this parameter, in
general prior beliefs about § are likely to be weak and in any event § is consistently estimable, so in
keeping with previous appeals to first-order asymptotic approximations we treat § as known. The
analogy between (37) and (3.5) would be more compelling werc (S,' ST) sufficient for (p, v), which
¢ lT) are not. For tractability in the gencral model (22) (in particular, to permit computation of
the posterior distributions on I(1) and 1(0)), however, we restrict attention (o the statistics (‘1\ l,')
The value of (35) is that it provides an approximation to the conditional distribution of t_y which

is readily computable, depends on only one nuisance parameter §, and asymptotically delivers the
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correct null distribution of 1 whether x is I(0) or I(1) as determined by the fixed paramcter p.

These properties are implicd by the following theorem.

Theorem |. Let (x, y() be generated according to (22) and let t_' be the t-statistic testing v=0
in (22) (with a constant included in the regression). Suppose that v = 0.
(a) If X, is 1{0), then
(i) (17, 1) =>(zp ‘(Ws)), where 5 isa standard normal random variable distributed
independently o]&(WS); and
fii) p(IOKT) B tand pii(ikep) Bo
(b) l[xl is (1) then
(M1, dacinNp) => (8 [SWH(saW ([ oW (52} + (1622, $(VA)), where
l_',-r-ll-r (0(1 oW (s)7ds - 7. 1
V;‘(,\) = f(A)W‘I‘(JHJ/U(IJW‘l‘(:HI)H and 2y isa standard normal random variable
distribused independenily of w¥; and

(ii} pUIOKppI R O and PR L

All proofs arc given in the Appendix.

Although the results in theorem 1 are presented for x; gencrated according to (22a), in fact they
apply more generally to x, satisfying cither the I(0) or I(1) conditions (32) and (33), of which the
parametric modcl (22a) is a special case. In addition, the results are readily extended to more
general deterministic terms than the constant considered here. For example, if x, is lincarly
detrended by OLS, then theorem 1 holds except that WX, Wh, and W/ are replaced by the
lincarly detrended counterparts.

These resuits provide a straightforward mechanism for computing asymptotic approximations to
the conditional distributions p(l,'k—r, @=0) and p(l,'k-r, d=1). Ia the 1(0) case, l,’ and # are
asymptotically independent, so this conditional distribution is simply a standard normal. In the I(1)
case, the limiting conditional distribution is nonstandard bul can be computed as p(l1, ‘T‘
lnN-ﬂd-l)/p(&T—lnNT{d‘l), where the joint distribution is computed using the limiting represcntation

in theorem 1(b) Despite the presence of nuisance parameters in (22}, only the long-term
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correlation § between (I-pL)xl and 14, enters the asymptotic distributions of (l_y, ‘T)' and then only
in the I(1) case. Because the (1) distribution is continuous in § and § is consistently estimable, in

practice inference can proceed by replacing § by its estimated value.

4. Performance Under Local-to-I(1) and Local-(o-1(0) Models

Onc might suspect that the first-order asymptolic results of Section 3, which hinge on whether
is equal 1o or less than one, might provide poor approximations when X, is I(0) but o is large or
alternatively when x is I(1) with a large moving average root. This section provides some
theoretical results concerning the resulting distributions when x, is local to (1) (1(0) with a large
autoregressive root) or alternatively is local to I{0) (I(1) with a large moving average root) This is
done by first examining the properties of the #--based posteriors and decision rules when X, is local
to cither (1) or 1(0} Next, the peformance of the Bayesian mixture approximation (35) is studied
when X is local to I(1)

A. First-stage posterior probabilities under local-10-1{0) and local-10-1(1) models.

The results of this subsection are developed for general polynomial trends with OLS detrending;
this contains the demeaning procedure considered in Section 3 as a special case. The trend

component d, is given by,
41) d' = zl’ﬂ

where zt=(l, t, l2, RN lq). where the unknown parameters g are estimated by regressing X, onto z,
10 obtain the OLS estimator 3 of 5. Thus g=0 corresponds to subtracting from x, its sample mean
and q=I corresponds to linear detrending by OLS.  For general q, under (4.) the detrended data
are x? = x;7,'A = w6, where § = z(‘():};lzlzl')'lzT(“lzlul.

The local-to-I(0) model considered combines the 1(0) model with the I(1) model, with a weight

on the I(1) component that vanishes at rate T. Specifically, let

42 x,=d, +u, up = ugp + HT“IT
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where ugr and u . are respectively I(0) and I(1) as defined in (32) and (33), and where Hp=h/T,
where h is a constant. This representation has a natural interpretation as a unobserved components
time series model, in which the I(1) component is small relative to the I(0) component. Because of
this analogy to unobserved components models, the two components here are taken to be
independent, although the results below are readily extended to the case of a nonzero cross-spectrum
between suy, and ug,.

The local companents model can be rewritten as a moving average model in first differences,
where the largest MA root approaches one at the rate T. In the special casc that suj and ug are
serially uncorrelated, the stochastic element in the local-to-1(0) model (42) has the MA(1)
representation, su, = n - fpny ), where 8. = 1- (h1“0(O)I1Aul(O))/T + O(T'z)

The local-to-I(1) model is the standard model in which the largest autoregressive root p is

nested as converging to onc at rate T:
(43) ye=ditu,u =g v, where pp = I+c/T

where ¢ is 2 constant and v, is 1(0) with spectral density at frequency zero cqual to Znuf (say)
Under this local-to-I(1) specification, UIT(') = T-H“I[T-l converges to a diffusion process, that is,
U => v B, where B (s) satisifies dB (s) = cB(s) + dW(s}

Theorem 2 summarizes the behavior of V. under these local processes with polynomial time
trends of the form (4.1), detrended by OLS. Because the lacal-to-I(0) specification is a combination
of both I{0) and I(1) processes, we make the distinction here between the limiting representations of
these two processes, that is, in the 1(0) casc Ugp => wyW, while in the 1(1) case Uy => v Wy,

where W, and W, are independent standard Brownian motions.

Theorem 2. Let d( be given by (4.1) and deirending be by OLS.
(a) 1f y, is local 10 1(0) as specified by (42),then V-p => W3 where wd )= win) +
rf oW sds. where r = huyfug, W) = Wy - vme, winy = w,(A)-e(A)'M"i; M, v,

and € are respectively (q+1)x(q+1), (q+1)xL, and (q+1)x1, with elements Mij - Ji(i+j-1), ui(A) - Ai/i,

215 -



L and 6,9 are (q+1)x with ;= Wl INi- D[ 5 W sids, =1, ... q+1 and

and §,(3) = xi'
V=J ()W, (s)ds.
(6) 1f y, it is local 10 I(1) as specified by (43) then NV => V3, where v(2) =

faﬂ‘g(:)d:/(flaﬂg{r)zdr)H, where Bg{x) =B (1) - E(A)’M'lftl)f(s)Bc(.r)d:.

This theorem permits studying the posteriors under the local alternatives. First consider the
local-to-1(0} alternative. For funclionéls $ discussed in Section 3A, V1) => ﬁ(Wg'r(,\)) = Op(l).
50 fo(#(V-p)) = O(1) but £)(¢(Vp) - lnN) B 0. For priors 0 < Np My <1, p(I(0)¢p) B 1 and
p(](lk—r) R 0, that is, under the local-to-1(0) alternative x, will be classified as 1(0) with probability
tending to one. Similarly, under the local-to-I(1) alternative, o(VT) - lnN-r = ¢V )= Op(l), so
that p(1(O)}é) Boand pIOMT) B1and x, will be classified as I(1) asymptotically.

.ll is instructive to note that this asymptotic misclassification of these processes contrasts with the
bch;vior of classical hypothesis tests based on ¢1. To be concrete, suppose that a onc-sided test
with asymptotic level a of the I(0) hypothesis is performed by rejecting if #1 > ¢, where c_ is the
upper 100(1-a) percentile of the distribution of ﬂ(Wg) Then the asymptotic probability of
rejecting the local-to-I(0) alternative is Pr[‘(WgJ) >¢,} Because ng’r) - Op(l), in general
this pfobabilily will exceed the level but will be less than onel Classical tests will have nontrivial
- indeed, possibly high — power against these local-10-1(0) alternatives, but in large samples the
Bayesian decision rules will classify them as [(0) with probability one for any nonlr'ivial choice of
priors. The same conclusions apply to the local-to-1(1) model, for the same reasons: classical tests
will have nontrivial power against this alternative, even though asymptotically the Bayesian decision
rules will classify a local-to-I(1) process as I(1) with probability one.

This contrast with classical tests highlights the source of the asymptotic misclassification by this
Bayesian procedure. Because the rate of convergence of #(V) differs by InN- under the null and
alternative hypotheses, one could perform classical hypothesis tests of (for example) the I{0) null
against the I(1) alternative, using a sequence of critical values €T indexed to the sample size such
that T ™" but that c‘ﬂ-—lnNT - - If u is truly I(0), the test would reject with asymptotic

probability 0, but if u is truly I(1), it would reject with unit asymptotic probability, so that this too
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would form a coasistent classifier. Because ¢(V) = Op(l) under the local-10-1(0) alternative, this
classifier would also reject the local-to-1(0) model with probability zero asymptotically, although it
would reject the local-to-I(1) model with asymptotic probability one. The cost of eliminating the
Type I error is to introduce asymptotic misclassification in a vanishingly small neighborhood of the

1(0) and 1(1) models.

B. The Bayesian mixture approximation under local-to-1{1) models.

The results of Theorem 2 permit analyzing the distribution of . for x; generated according to a
local-to-I(1) process, so that the largest root of x, is local-to-I(1)} Specifically, let p in (32a) be
nested as o = 1+c/T, where ¢ is a constant, and let 4 in (32a) be given by the sequence ‘-'x,T -
o(1-a(1))u /T for gencral nonzero [a!. Asymptotic representations for the various statistics are

given in the next theorem.

Theorem 3. Suppose that (x,. y,) are generated according 10 (22) with p = 1+¢(T and shat the
null hypothesis Hey v = 0 is true. Then:

(@)(1_, $-InN-p) => (5] SBY WS B %) + (163, VY ) where

V‘{.C(A) - faBz(IHJIU(l)Bg(J)dJ)H, 23 a standard normal ram.iom variable

distributed independenily o j(B‘c‘, W), and B::‘-Bc- f(l)ﬂc(:)d:, where B (1) satisfies dB (s)
=cB_ (s) + dW(s).

(6) p(HIM1) B 1and pricofe) R 0.

The result (a) implics that asymptotic joint distribution of (lT. ‘T)' and therefore the distribution
of l,y given 1 is different when c#0 than in the unit root case ¢=0 (given in theorem 1(b)) The
result (b) implies that the local-to-I(1) process will be misclassified as I(1) with probability one, so
that the mixture distribution (35) will asymptotically place all weight on the I(1) conditional
distribution. Taken together, these two results imply that, when p is local to one, the Bayesian
mixture approximation will yield the incorrect asymptotic distribution. The magnitude of the
resulting size distortions in local-to-1(1) models is investigated numerically in the Monte Carlo

analysis in Section 6.
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5. Power of the proposed tests against local alfernatives
We now turn to an investigation of the theoretical power properties of the test of y=0 against a
local sequence of y#0, performed using the Bayesian mixture approximation (35) As a
simplification, the local power is analyzed for a special case of (21) in which only the first lag of x,

and y, enter the cquation for x, That is, (x,, y,) are assumed to be gencrated by,

(5.1a) X, = pX 1+ By g

(51b) Ye = v1%01 ¥ 20

Although the constants equal zero in (51), the statistics are computed in the demeaned case for
comparability to the previous results.
Because of the different orders in probability of x,, the local alternatives in the 1(0) and I(1)

cases differ: for some constant g,

(52) <l yp=gT"
(53) Itlhl=t yp=gT

The asymptotic representations of the relevant statistics are summarized in the next theorem.

Theorem 4. Suppose that (x, y,) are generated according to (5.1).
(a) 1f1pk<1 and v is given by (52), then
(i) 11 =>71+ (7x(0)/1122}L’g. where 1 is a standard normal random variable.
(ii) p(IOM)® 1and pli(lipp) By
(b) 1f p=1 and T is given by (53), then
(i NT)=> (gl [1B% (s sz, ) + s L8R saw ([ 85 s Py + (163
i) (1, $-AnNT) => (g{0, [gBE(5) ds/Zyy 0B 0B ds} +(1-6%) 7,
¢(v‘l“c)). where V‘l"c(x) = 3B::‘(:)d:/{f })B‘c‘(:)d:)". oy = zu+25212+p71;22, zisa
standard normal random variable distributed independently of (BY, W) and BE=B (s} | (I)Bc(:)d.r.

where B (s) satisfies dB (s)= cB(s)+dW(s) with c=fpg.
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(ii) p(i(1p)® 1and pii0}pp) % 0.

The result in the [g<1 case is conventional. Because the posterior probabilitics asymptotically
place alt mass on the I(0) distribution, the local asymptotic power function for a two-sided level o
test with Gaussian critical values tc, _ is O(-qu-g(-'x(OyT.n)H)'l-o(-chi»g(‘yx(Oy}:n)l’). where @ is the
cumulative normal distribution, the same local power function that would arise were it known o-
priori that [pl<1 so that Gaussian critical values would be used at the outset for the 1, test In this
sense, if {pk<1 the use of the Bayesian mixture distribution results in no asymptotic loss in power of
the second stage test regardless of the priors.

The results for the p=1 case are more unusual and arise from the maintained possibility of
feedback from y, to x,, which results in x, being local to I(1) This implies that the mixture
distribution asymptotically places all weight on the I(1) conditional distribution. In addition, in this
case y, is local-to-}(0). The results of Scction 4 imply that a posterior odds ratio based on ¢
would, with high probability, classify y, as I(0) Thus finite-sample evidence based on the ¢
classificr that y is 1(0) does not imply that y=0, but merely implies that y is not too large.

For [§)<1, in the p = 1 casc the local asymptotic power function of the two-sided equal-tailed test

of y=0 is given by

(59 PIReject Hy v=0 |7y = §/T] = E(0((cy,,,(3) - 88, - 674M(1-69)")
+ 0y () + 88, + 5740162,

where § = ¢(V4 ) 0 = (O 3B dsrzy ), 74 = UABE WIS B ) ds)",

and c“n(a) and cu,‘u(‘) are respectively the lower and upper %a quantiles of the conditional
distribution P(l.'l‘-r"t d=1) The difference between (54) and the local power function of the test
based on . when it is known a-priori that x, is 1(1) is that the critical values of the latter test do not
depend on ¢, that is, the crilica.l values in (54) arc replaced by the constant critical values El,‘n
and Eu,l‘a taken from the marginal I(1) asymptotic distribution of (1' For §=0, these two tests have
the same critical values and thus the same local asymptotic power, but for §#0 their power functions

will differ and must be compared numerically.
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The local asymptotic power functions of these two tests — the proposed conditional test and the
test based on . when p=1 is known a-priori — are plotted in figure la for § =-5 and in figure 1b
for § = -9, in both cases for g=0 and 3= (so nu/!‘,zz=l). Neither test dominates the other,
although for alternatives with moderate power the proposed test has higher power than the test based
on the unconditional d=1 critical values. If p=1 is known a-priori, then the neither test based on (T
is optimal relative to the system likelihood ratio test which imposes the g=1 restriction. The power
function of the system likelihood ratio test, computed for g=0, is also plotted in figure 1 (the short-
dashed curve)3. For §=25 the power loss of the proposed procedure is moderate relative to the
system likelihood ratio test; for §=29 it is substantial. In sumina:y il p=1 and |§] is large,
substantial power is lost by not imposing this restriction a-priori, but if this restriction is not
imposed and tests are based on (22b), the proposed procedure often outperforms the test based on

the marginal I(1) null distribution of 17.

6. Numerical issues and Monte Carlo results
A The specific - statistic and numerical issues

The specific ¢ statistic used here is one of the statistics studied in Stock (1992f
61 (V) = In([{veas) = @I T_ .

With some modifications, this statistic appears in different literatures variously as a test for random
coefficients (Nabeya and Tanaka (1988)), as a test of the null of a unit MA root against a MA root
less than one (Saikkonen and Luukkonen (1990)), as test of the I(0) hypothesis against the I(1)
alternative (Kwiatkowski, Phillips and Schmidt (1990)), and as a test for breaks in determinisic trend
components in an I{0) time series (Perron (1991)), and it is also related to the Sargan-Bhargava (1983)
test of the unit root null; see Stock (1992) and Perron (1991) for references. The primary
motivation for using this statistic here is that, of the three ¢ functionals studied in the Monte Carlo
in Stock (1992), (6.1) appeared to have the highest rates of correctly classifying a series as 1(0) or

I(1) in the demeaned case of interest here.
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Figure L Asymptotic power of tests of y = 0 against the local alternative 1= g/T
when x, is 1(1), for L =2Zp and g=0 for (A) 6 = 05 and (B) § = -09.

Key: solid line: Bayesian mixture approximation test
long-dashed line: test based on t_ using the I(1) marginal null distribution of l‘Y
short-dashed line: system likelihood ratio test imposing p=1.
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Figure L Asymptotic power of tests of y = 0 against the local alternative 1= g/T
when x, is I(1), for £} = £y and =0 for (A) § =-05 and (B) § = 09.
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The cvaluation of the conditional distribution (3.5) requires computing the posterior probabilities
p(I(O)dT) and p(I(1)¢) and compulting the conditional distributions p(lykT, d=0) and p(11l¢1-, d=1)
All computations reported here place cqual weight on the I(1) and 1(0) hypotheses, that is, Il = II; =
05. The spectral density of x, at frequency zero, wz, used to construct VT‘ was estimated using a

Parzen kerne! with lag truncation parameter £ = min(}-[, 2 ('I"/lOO)'w), where IT is Andrews’

max
(1991) data-dependent estimated lag length for the AR(1) model for the Parzen kernel. (Note that
% satisfics the rate conditions for the asymptotic representations of V'I‘) For the results computed

here, 2 was set to 10. Given priors Iy and I, the posteriors are computcd using kernel density

max
estimates of the asymptotic distributions fgand f; for a given functional ¢. For additional
discussion, see Stock (1992)

The conditional distributions of p(lTléT.l(O)) and p(lTHT,l(l)) are computed using the limiting
representations in Theorem L. In the 1(0) case, the limiting conditional distribution is simply N(0,1}
In the I(1) case, L and ¢-p-InN. are asymptotically dependent random variables for §#0. The
conditional distribution p((_'k—l~=¢, d=1) for a vatue of ¢ is computed using a nearest neighbor
algorithm implemented using 16,000 Monte Carlo replications of (¢--InN-., l_'), generated under the
I(1) model with T=400. The mixture distribution was computed by drawing randomly from the
independent N(0,}) K(0) distribution and this nearest ncighbor estimate of the I(1) conditional
distribulion.4

The quantiles of the mixture distribution p(17]¢-1<:¢) for the casc n0=nl=05, §=09, and NT =
2665 (corresponding 1o £ =5 and T=100 for the Parzen window) are plotted in Figure 2 as a
function of ¢. For low 4, the posteriors place most weight on 1(0) and the critical values are close to
the N(O, 1) critical values. As ¢ increases, more weight is placed on the I(1) distribution and the
critical values shift up sharply.

As discussed in Section 3, the mixture distribution depends on one nuisance parameter, the long-
run correlation §. In practice § is unknown and would need to be estimated. As noted in Section 3,
however, § can be estimated consistently whether x| is 1(0) or I(1} In the Monte Carlo analysis, we
therefore adopt the expedicnt of treating § as known. An extension for future rescarch is to study

the effect of estimating § on the finite sample performance of (35)
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Quantiles of p(l7|¢T=¢) as a function of ¢ based on the Bayesian mixture approximation for
T=100 and 6 = 09. Quantiles are upper 5%, 10% (doticd line), median, and lower 10% (dotted

line) and 5%. The first-stage statistic ¢ was computed using & = 5 with a Parzen kernel.



B. Monte Carlo Results.

The Monte Carlo experiment studies the model examined in Section 2B for which the two naive
procedures were found to work poorly. Specifically, the data were generated according to (23) with
211=£22=land212=6.

The performance of the statistic #-r is examined in Table 3, which reports the mean posterior
probabilities from the first stage estimation. These results support several of the theoretical
predictions in the preceding sections. For p<8, the posteriors tend to zero monotonically as T
increases, so that the series are being correctly classified as 1(0) For p=1, the mean 1(1) posterior
increases to 899 for T=400, again correctly classifying the series. Where the procedurc has
difficulty is for p large: the mean I(1) posterior initially increases with T rather than decreases for p
=90, 95, and 975, although in cach case for T sufficiently large the posteriors eventually decline.

Table 4 summarizes size results for the equal-tailed 10%-level test of v=0 for various values of 5,
#,and T using the Bayes mixture approximation conditional critical values. For T=100, the largest
discrepency is the size of .168 in the § = -9 case with p=L Overall, the distortions are much less

than for either of the conventional approaches analyzed in Tables 1 and 2.

7. Coaclusions

These preliminary results suggest several conclusions. First, the Monte Carlo evidence in Section
2 indicates that conventional approaches to the choice of critical values for second-stage inference,
either by ignoring unit root problems altogether or by pretesting using a unit root test, can lead to
substantial over-rejections when the null y=0 is true.

Second, the proposed Bayesian mixture approach has the desirable property that it asymptotically
sclects the correct I(0) or I(1) distribution for fixed 1(0) or I(1) models. The use of the first-stage
statistic 41 has no effect on the local asymptotic power of the second stage test if in fact x, is 1(0),
and the numerical results of Section 5 indicate the proposed procedure has better power against most
alternatives than the test of y=0 based on critical values from the marginal I(1) distribution of L

Third, the Monte Carlo evidence is encouraging and suggests good size properties for two-sided

tests based on these procedures for a wide range of values of p, including p close to but less than
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Table 3

Mean posterior probabilities p(I(1)|¢T) for first-stage inference

T T
T 0 .6 .8 .9 .95 .975 1.0
50 .089 437 471 490 489 486 488

100 .027 L334 405 .514 .588 .629 .655

200 .006 .193 .262 404 576 .694 .815

400 .001 .102 .146 .261 471 .675 .899

Notes: The x_ pseuo-random data were computed according to (2.3a) with the
indicated value of p. The ¢p functional used is given in (6.1). The
process V. was computed using demeaned data as described in Section 3A. The
Parzen kernel wasused to estima&s the spectral density with lag truncation
parameter f.—min(2., 10(T/100) "°, where IT is Andrews’ (1991) automatic

lag truncatIon estimator (detalls are glven in Sectlion 6A). For a given
value of 45, the posterior probabilities were computed using a kernel
density algorithm (based on 16,000 pseudo-random realizations of the
limiting Brownian motion functional) described in Stock (1992). Prior

probabllities are p(I1(0))=p(I(1))=0.5. Based on 5000 Monte Carlo
replications.



Table 4

Size of t-tests of y=0 with critical values
computed using the Bayesian mixture approximation (3.5)

Nominal level 10%

......... B T T
] T 0.0 .6 .8 .9 95 975 1.0
-0.9 50 .077 .057 .054 .057 .060 .070 .105
100 .093 .071 .072 .069 .068 .083 .168
200 .089 075 .079 .093 .098 .094 .141
400 .102 .089% .091 105 .135 .167 .160
-0.5 50 .101 .082 .085 .096 .101 .095 .119
100 .108 .087 .095 .088 .093 .095 .121
200 .093 .083 .094 .099 .096 .094 .110
400 .101 .098 .098 .110 .119 1122 116
0.0 50 .106 114 110 .109 1122 .111 .115
100 .100 .10S .106 .106 .103 .108 .102
200 .101 .099 .107 .106 .097 .103 .103
400 .098 .105 .097 .103 .101 .105 .110
Notes: The data were generated according to (2.3). The first-stage ¢
statistic was computed as described in the notes to Table 3. The critIcal
values for t_ (the t-statistic on x__, In the regression of ¥, onto

(1, xt-l)) wére computed as described in Section 6A.

Carlo replications.

Based on 5000 Monte



onc. This is somewhat surprising, since the theoretical results of Section 4 indicate that the size of
the second stage test will be incorrect, cven asymptotically, when x, is local to I(1), for the ¢ statistic
and models studied here, these initial results suggest that this might not pose an important problem
in practice.

The work presented here is preliminary in several regards. The Monte Carlo analysis has focused
on a single ¢ functional and uscs only {flat priors; the use of a different functional or informative
priors might improve the finite sample performance. In addition, the performance of the second-
stage statistic should be investigated for a wider range of x, processes than the AR(1) specifications
considered here. Finally, the extension to including additional lags of x| or y, as regressors in the
sccond stage regression, while conceptually straightforward, is of considerable practical importance
since such lags are typically included in empirical practice. These and related problems are areas of

ongoing research,
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Appendix A
Proofs of Theorems

Proofof Theorem 1.
(a) First write X, in the form (31} By assumption, (1-a(L)L) is invertible, so under Hgp x, = (-
a(l))'lﬂx + (l-o(L)L)'l(qu+(ﬂ(L)q2(_l) = by + v, say. Because the roots of g(L) are outside the
unit circle and n, is a- martingale difference sequence, standard arguments imply that V—‘I‘- =2 Ws.
In addition, t, has a N(0,1) marginal distribution. To show the asymptotic independence of lT and
#1» note that (21} is a special case of the system analyzed by Chan and Wei (1988), so that their
theorem 22 implies (T"L L0 lp 15 0]k 1) ) <> (2%B() ¢), where B is a
standard bivariate Brownian motion, ¢ is distributed N(0, 97y (0)) and where W(-) and ¢ are
lndepcndem. With this result, the asymptotic independence of L and ¢ follows by the consistency
of « u !‘,22. T'lz(zlx% ¢ and from writing V-[( ) in terms of the partial sum process

“):s (T- l
(b) Write Xpasx =xg+v, where X0 is a fixed initial condition and by, =
(l-&(L)L)'l(qn+ﬂ(L)q2t_l). Now v, is I(1) as defined in (33), so (V) => #(vh o) (Stock (1992,
theorems 1 and 2); this also follows, with minor modifications, from Kwiatkowski, Phillips and
Schmidt (1990), Perron (1991), and Phiilips (1991b)).

The joint representation of (¢t ) is obtained using now-conventionat frequency zero projection
arguments.. Note that T'Hv[T 0= T ):s (s +o0 (1), where ¢, = (1a(1)) (q“+ﬂ(1)q2(),
and that 0 is the variancc-co?ariance matrix of ((l. "2() Define W to be the limiting standard
Brownian motion such that T'HZSIT"(S => n;’lW( *} In addition, let 7,, = ny - Plnykey) =

nu 021rl‘ so that ((l. "2(’ are a martingale difference sequence and E(((nzl)—O With this

notation, t'r can be written,

=0y 021(1‘ lzl-lxl lf()/(Thzzml(" 1) 222)

U e Ltatx )"
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Now (T_H"{T-} T ) => 0] W) 33,G(0)), where £y = 0y, - o410,

and W(-) and G(-) arc independent standard Brownian motions. In addition, 2’.22 R Iyy =y 50 .
(A1) (=>4 FWHSW(sH(WH(s)2ds)™ + (1-69) fWHIGH( WH(s)Pds) ™.

The argument in Phillips (1991c) or Saikkonen (1991) imply that the second term in (A1) is
independent of the first term and has a N(0,1) marginal distribution, which leads to the

representation given in the statement of the theorem. o

Proof of Theorem 2.
L q I

Throughout, let Ty=diag(1, T,..., T*) and let My =T Tt Li=2ZIp - The

i+j-2

nonstochastic gxq matrix M- has typical element M. = T'l T (VT , which has the limit
9xq T T,ij t=1

MTJi - U(i+j1) = Mii whether x, is 1(0) or I(1)
@ Let U = LT, and tet D=1 T s The desired result will follow

if it can be shown that (i) (U|, D) satisfics detrending condition A(i), and (ii) 62 B vg These are
shown in turn.

. . . ¢ [Ta)
(i) By direct calculation, U = Uy + THTUIT' where UI-I(X)ﬂT Timp UpUT)

Because TH=h, Up => wgW,, where Wr(A) =W+ rfawl(s)ds, where 1 = hu/uy Now D—I(A)
= v Mip where v = T etz and oy = T 17 2, = op + by,

where & = T'HZT 11z uy and ¥ _T~3/2ZT 1z, = flé s)U,{s)ds, where

T £ =1TT 40 2nd ¥ e=1TT %1 = Jodp{9)Uyp{sds,

{T(A) - Ti‘lz[TA] From theorem 2 of Stock (1992), (OT, ¥ v MT) - (uoo, w¥ v, M), where

o is (qH1)x1 with &; = WD) - (-Df 2 Welshds, i = 1., g1, ¥ = J{E()W,(s)ds where

€0 = A" and v is (q+1)x1 with v;(3) = Aii=1,...,q+L. Thus Iy => ug(@ + r¥) and Dq(-)

- uOD(-), where D(}) = v(A)’M'l(Q + v} This verifies detrending condition A(i) Let Xg—r{x) -

LTS = Upa) - Dpa) so that V() = 51X 00 Define W) = Wein) -
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v(yM e and Wi(s) = W) - €0yM ™%, It follows that Xg() => Uowg'r(-), where
W L) = Wo(a) + rfdWy(s)ds - s(apM e + 1) = W) - efWS(s)ds, where the second
cquality uses v(3) = faf(s)ds

. 2
(ii) Letw 2= m-—!rk(m“T)T Zl=1m|+lul“|-m and u =

2t
nFJTk(m“T)T Zt=1m}+l“0t"0(m Now

(g Y Y W
AT 2
=1 Tak g k(mi2p)T 't Smp1HTY Y g+ H(81090 nf o009 e |
+| Yrg-lrk('““T)TJZL{m}ﬂ“l‘({ml + (84U m e |
(A2) s e THET w0+ T AT 1 g 1)

by b
+ep2fu e 17 + s 1)

Because [T, | => JiW (5)2ds, and Jug, | B Ty (O the first term in (A2) B 0 if (4741)THE
-+ 0 and (21T+1)T Hp = 0. Thesc in turn follow from the rate condition LIlnT/T ~+ 0. Because
gl - Bug s HT'“III + ZHTIuOJ l“](l Ro, fud B 1y,{0) 50 the second term in (A2) Roir
lTﬂSlI B 0, which is condition Aii)

To show A(ii), write Ts | = FT'Mfer, from which it follows that T|6f =>
u%(N—rW)‘M'l(HrW) This result and the rate condition L%lnT/T ~ 0 1ogether imply that
l%ﬂ&tl B 0, thereby verifying A(ii) so that both terms in (A2) B 0. Because 6(2) R wp it follows
that 2 B g Thus Vr(3) = 'X81(3) => W () the desired result.
(b) Itis first demonstrated that conditions B(i) and B(ii) hold for u, given by (43) Concerning
condition B(i), write DlT = (T(A)’M-'r]iT. where the terms are defined in the proof of part (a)
Now (61, M, ¥1) => (£ M, w¥), where ¥ = [J¢(s)B (s)ds. Thus Dy(+) => Dy(-) where Dy()
= €0YM ¥, which verifies B(i) Let X3 () = T"‘ymI = Up3(3) - Dy {3), 50 that V4(3) =
SxY1s)s. 1t follows that X3(+) => v BX), where BY3) = B_(3) -
oML fle()B ()ds.
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Condition B(ii) follows from writing HTHMlII = f(lﬁ-[-(l)dx. where Sp(3) =
ifM—i-léi(l)éi(A)’MilvT, where &) = T’r—'rlAz[T” Direct calculation shows that
St => S, where S(3) = AWM e (A)EOIM Y where €)= (@ 120, ., 9y, 50 fas | R
0, verifying B(ii)

Next write N—inl‘V-I(,\) = BI"HAT(A)‘ where Ap{}) = T'y2):$[1i”yg and By =
Tigie ‘TkT(m)ﬁyd(]mD/):l;F 1K) Now Ap(a) => uy J38%s)ds. To show that
B has the desired limit, it remains only to show that B - T'2XT=1(y?)2 B 0. This was shown
in lemma A1 of Stock (1992) when u is I(1} The only part of the proof of that lemma which
requires modification for the local-to-I(1) casc is demonstrating that the term DJT B 0. From (A1)
in Stock (1992), Dy £ 0 if Jas | £ 0 (just shown) and if fau, || = OL,(1} This final relation is now
shown. Because (l-pTL)u( = Ve
bl - Byl = vy + GopDug gl - v )

s 2o Wu v " + o) hu )

Now (pT-l)zﬂu‘[] = cz'l"lf(l)Un(s)zds Bgand fvdd R 7,(0) by assumption. Thus fau| R 1,00

so Dyr B0 and lemma A1 holds, completing the proof. O

Proof of Theorem 3.
(3) Under the stated assumptions, algebraic manipulations permit rewriting x, as x, = Bt v, where
B is constant and vy satisfies (IApLXl-&(L)L)Vt = f’(LXY:-x'Py) + 0y, where vy = 0. Thus
b _ ot [Te] [Tes,, - -1 _ i [Te] [Te}s
T = T T o P OSULY (g 8Ly ) = T 'Ly b+ 0,0
where £ = (16(1))“(qh+p(l)q2() Note that (((, "21) is a martingale diffcrence sequence with
variance-covariance matrix fi As in the proof of theorem 1(b), let 62‘ =Ny - (0910, 8 ¢ Then
. . . EY .-
@bl AT b gLl 0 => (@] B () £52G(+)) where dB (5) = ¢B (s)ds

+ dW(s) and G is a standard Brownian motion distributed independently of W. The argument
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leading to (A.1), applied here, yields,
(A% L =>s BEds)W(sV(SB¥(s)2ds)" + (1-62) [BA()AG(sV( BE(5)7ds)™.

As in (Al), the independence of G and (W, B, B::‘). and the N(0,1) distribution of the second
term in (A3) conditional on B”, yield the representation given in the statement of the theorem.
(b) It was shown in the proof of (a) that x has the local-to-I(1) representation (43), so the results
of Theorem 2(b) apply. The consistency of the posterior probabilities follows according to the

remarks following the statement of theorem 2. O

Proofof Theorem 4.
i . . 2

Substitute (53) and (5.1b) into (5.1a) to obtain, (1-pL-fy L )x%_l = v, where v = g, +8n, ;.
(aXi) For T sufficiently large, if [}<1 then for any finite g the roots of (1-pL-ﬂ7TL2) will both be
outside the unit circle, so that x is I(0) in the sense (32) and in particular T'lz’{“l(x‘(‘_l)z B
7,(0) Thus, under the local nesting (52), t_ = (Z! =l"‘t‘-l(7T"‘t‘~l+”21))/

T s o2 b -1¢T u 2 L] T _u T u H
(a7 = (T T 0 2™ + (ET o mg VT g p720)
= g(~,x(0)/52lk‘ + z, the stated result.
(ii) Because X, is I(0) in the sense (32) for T sufficiently large, the results of Stock (1992) apply
and, for the reasons discussed in Section 3A, the posteriors are consistent as stated.
(bXi) When p=1, (l-pL-ﬂ1TL2) can be factored, (I-r)L)X1-r,L), where 1y =1+ vpand ry = v,

L} -1 . . -

where v = 5{(1+4pyp) 1) Let €1, = (bupLY(ay, + Brgy) Then, with xg =0, T H"l'r-l -

e [T T- 2 Mo [T T}
T zs‘=1 l(1+u-1-)[ }sz,s' Now vp = gg/T+ (T %) s0 T Zs[=l l(]+uT)[ lSETJ .

- . =
™ [;I‘l Iexp(ﬂg([T-]»s)/T)ft B0, where ¢ = 1y tBnye ThusT 1.1 E?ch(')v where
B, is defined in the statement of the theorem, and where W is defined by T-stl;rl.]fs o>

L]
W

To obtain the representation for t“l' note that Q converges to the covariance matrix of (SN

and write 0= g('['-z):’};l(x‘l‘_l)z/%z)H + (T'IET=1x‘l'_ln2l)/(']"22T=1(x‘:_l)zfqz)H,



The first term has the limit g(nuf(l)B'é(s)zds/Zn)H, where Q) = ).‘.n+2£212+ﬁ21}22. The
behavior of the sccond term is the same as in theorem Xb) Combining this result for the first term

with (A3), we have,

(A4t => gl [IBE() asim )" + 6 [BE(dsIW(SH( B (s ds)”
+ (162" [BY)IG(sV(f BA(s)%ds) "

As in theorem 3, G is distributed independently of (B‘é, W), so the final term in (A4) is has a
standard normal distribution and is independent of the other terms, which yiclds the representation
stated in the theorem.

(i)} It was shown in the proof of b(i) that that x, is local-to-I(1), so the results of theorem 2(b)

apply and p(I(1ig) ® 1 and p(1O}p) B0 0
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Footnotes

L The results in this paper complement those in Toda and Phillips (1991), who consider the

problem of sequential inference when some of the variables are cointegrated. Toda and Phillips’
(1991) theory maintains that the series are cointegrated and studies sequences of Wald tests of the
null of no Granger causality in a vector autoregression, and infercnce is always xz. Their problem
differs from the one considered here: our second stage regression always examines a levels effect of
the regressor and the issue is whether standard or nonstandard distributions should be used to

evaluate the significance of the estimated coefficient.

2 The nonstandard distribution of VT under the null and the alternative make it difficult to make
general statements about the power function of such a test against the local alternative without
resorting to numerical calculations. An illustrative case, however, is for the statistic ¢(VT) -
In(V-l-(l)z) in the case of no detrending. Under the I(0) null, this statistic has representation
ln(W(l)z), which has a critical value of In(x%p), where xf,’a is the a-level X% critical value.

Under the local alternative, ¢(VT) => In((WO(l) + rf(l)wl(s)ds)z), which is distributed as the
logarithm of (1+r2/3) times a standard x%- The power of this test of 1(0) against the local-to-1(0)
alternative is therefore 1'20(()‘%;0/(“"2/3»5)' where &(+) is the standard normal cdf. This power

function has its minimum at r=0 and is monotone increasing to 1 as r increases.

3. This power function is derived as follows. The Gaussian MLE for v in (5.1) with p=1 and g=0

can be obtained using the triangularized system, ax,=ny, and Y=8 +1xl_l+dAxl+62l, where d =

y
}:212'}1, so dax, = Proj(nzllv;“) and '-’2l = nzl-Proj(nzllq“), sec Phillips (1991c), Saikkonen

(1991), and Stock and Watson (1989, Section 2} Then L is asymptotically N(0,]) and the local
asymptotic power against yp=g/T is E(O(-ck‘a-g(l-sz)-l'eo) + o(-cka+g(l-62)"’60)l where 8,=0,
evaluated at ¢=0 as defined following (54) and Ciyo i the ha Gaussian critical value. All power

functions in figure 1 were computed by Monte Carlo integration of the relevant expression (eg.

(54)) over (3, ¢, ?‘C‘) for ¢=0 with 5000 Monte Carlo replications.

4. Specifically, 16,000 pseudo-random realizations from the limiting joint distribution were
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computed using pscudo-data generated from (22) with p=1, f(L) = 0, a(L) = 0, I =In= LI,

= §, and Lp=1L With the exception of §, from theorem 1(b) the choice of parameter values does not
affect the asymptotic distribution of (¢ - InN-, 'T) These can be interpreted as discretized
approximations (discretized to 400 cquispaced points) to the limiting Brownian motion functionals in
Theorem I(b) For a given value ¢, the mixture conditional distribution (3.5) was estimated by
drawing K realizations, p(I(0)¢=¢)K from a standard normal distribution and p(l(l]d—r-d)l( from
the conditional distribution p(t.'b-r=4, d=1}, these latter p(l(l]éT)K draws were computed as those !
for which the associated ¢ were the p(I(D¥-PK nearest neighbors of ¢. Critical values of ' for
#~¢ were computed using the resulting Monte Carlo empirical mixture cdf for a grid of ¢ (grid size
05), which was then smoothed by Gaussian kernel regression to reduce Monte Carlo error. Critical
values for arbitrary ¢ were computed by linear interpolation of the resulting table. These tables

were constructed for various values of §. The results reported here use K=750.
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