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ABSTRACT

The average effect of intervention or treatment is a parameter

of interest in both epidemiology and econometrics. A key

difference between applications in the two fields is that

epidemiologic research is more likely to involve qualitative

outcomes and nonlinear models. An example is the recent use of the

Vietnam era draft lottery to construct estimates of the effect of

Vietnam era military service on civilian mortality. In this paper,

I present necessary and sufficient conditions for linear

instrumental variables techniques to consistently estimate average

treatment effects in qualitative or other nonlinear models. Host

latent index models commonly applied to qualitative outcomes in

econometrics fail to satisfy these conditions, and monte carlo

evidence on the bias of instrumental estimates of the average

treatment effect in a bivariate probit model is presented. The

evidence suggests that linear instrumental variables estimators

perform nearly as well as the correctly specified maximum

likelihood estimator, especially in large samples. Linear

instrumental variables and the normal maximum likelihood estimator

are also remarkably robust to non-normality.
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The difference in civilian mortality experience between World War Two

veterans and nonveterans is a classic example of the confounding impact of

selection on estimates of treatment effects. The fact that World War Two

veterans have lower mortality than nonveterans the same age is usually

attributed to the military screening process (Seltzer and .Jablon 1974) and

not to any beneficial effects of wartime service. Recently, Alan Krueger

and I (Angrist and Krueger 1989) have shown that the higher earnings

enjoyed by veterans from World War Two cohorts are also an artifact of

selection bias. Using the fact that some World War Two veterans were

drafted according to a sequence determined by day of birth, we construct

Instrumental Variables (IV) estimates of the effects of World War Two

veteran status on earnings that are free of selection bias. These

estimates show that World War Two veterans probably earn less than they

would have if they had not served in the military.

Whenever some covariates related to both an outcome of interest and

the probability of treatment are unobserved or unaccounted for, the

likelihood of selection bias renders inferences based on simple comparisons

invalid. In such cases, IV estimation provides a powerful and flexible

method of correcting for omitted variables bias. IV estimates are

constructed by comparing the outcomes of groups with different values of an

(instrumental) variable that is related to the outcome of interest solely

by virtue of correlation with the probability of treatment. An important

recent example of this approach in epidemiology is the work by Hearst,

Newman, and Hulloy (1986) on the effects of Vietnam Era military service on

civilian mortality. Although Vietnam era veteran status is a consequence

of both self-selection and military screening, Hearst, Newman and Hulley

use the draft lottery to construct IV estimates of the effects of Vietnam
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era service that are free of selection bias. Similarly, I have used the

Vietnam era draft lottery (Angrist 1990) to estimate the effects of Vietnam

era service on civilian earnings.

In econometrics, most applications of IV estimators involve linear

models with continuous outcome variables. Applications in epidemiology,

such as the smoking study by Permutt and Hebel 1989), can also involve

linear models. But applications such as the Vietnam mortality example and

Hearst, Buehler, Newman, and Rutherford's (1990) recent study of

intravenous drug use among veterans involve limited dependent variables

that are usually fitted using nonlinear models. This paper discusses the

use of linear tv-techniques to estimate average treatment effects in such

nonlinear models.

Linear IV techniques are attractive for several reasons. First, the

source of identifying information is transparent to the consumer of applied

research: the instruments generate a natural experiment that assigns

treatment in a manner independent of unobserved covariates. Second, the

linear IV estimator does not require observations on individuals; sample

covariances are sufficient statistics for estimates of regression

parameters. In some applications, (e.g., Angrist and Krueger 1990a, and

below), these sample moments are actually taken from different data sets.

Third, consistency of IV estimates does not require consistent estimation

of the reduced form for endogenous regressors (Kelejian 1971). This is

particularly important in an evaluation context, where the reduced form for

an endogenous duimny variable is also likely to be nonlinear.

The paper is organized as follows. To further motivate the use of IV

in nonlinear qualitative response models, Section 1 presents an

illustration using the Hearst, Newman, and Hulley data on Vietnam era
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military service and mortality. Section 2 defines th average treatment

effect for a class of nonlinear models. Section 3 presents necessary and

sufficient conditions for linear IV moment conditions to identify average

treatment effects. Section 4 discusses the asymptotic bias of IV estimates

of average treatment effects when the identification conditions fail to

hold.

In an influential paper in econometrics, Beckman (1978) used a latent

index/simultaneous equations model with normally distributed errors to

develop estimation strategies for treatment effects in nonlinear limited

dependent variable models. A commonly encountered model of this type is

bivariate probit (e.g., Ashford and Snowden 1970, Amemiya 1978) which, like

most latent variable models, does not satisfy the identification conditions

required for linear IV techniques to consistently estimate average

treatment effects. Section 5 of the paper contains a detailed study of

average treatment effects in bivariate probit. Included in this section

are the results of a Monte Carlo sampling experiment that compares the

finite sample performance of Maximum Likelihood (ML) and IV estimates of

average treatment effects in correctly specified and misspecif led models.

The paper concludes in Section 6.

1. The Effect of Vietnam Veteran Status on Mortality

In addition to combat-related injuries, military service during the

Vietnam war may also affect civilian mortality because of wartime access to

narcotics, exposure to toxins like Agent Orange, and causes related to

Post-Traumatic Stress Syndrome such as suicide. Hearst, Newman and Hulley

(1986) showed that men with sequence numbers that put them at high risk of

being drafted in the Vietnam Era draft lotteries had elevated mortality

risk after their discharge from the military. They attribute this elevated
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risk to a higher probability of military service because between 1970 and

1973, the risk of being drafted was randomly assigned in a series of

lotteries based on dates of birth. Each date of birth in the cohorts at

risk of being drafted was assigned a Random Sequence Number (RSN) from 1-

365. The Selective Service called men for induction by RSN up to a ceiling

determined by the Department of Defense. Met born in 1950 were called up

to RSN 195, men born in RSN 1951 were called up to RSN 125, and men born in

1952 were called up to RSN 95.

In their paper. Hearst, Newman and Hulley focus on comparisons of

mortality risk by draft-eligibility status. For example, they compare the

number of deaths of men born in 1950 with RSN below 195 to the number of

deaths of men born in 1950 with RSN above 195. This procedure can be used

to provide a valid estimate of the effects of military service on mortality

if draft-eligibility is correlated with civilian mortality solely by virtue

of its correlation with veteran status. Although not explicitly stated,

the assumptions and estimation techniques used by Hearst, Newman, and

Hulley can be interpreted as an application of IV estimation to the linear

model

(1.1) Yi_Qc+flSi+Xil

where y1 is a binary indicator of death in the study intervalS indicates

veteran status, fi is the treatment effect of interest, a is a cohort-

specific intercept, and x is an unobserved confounding variable.1

The key identifying assumption justifying IV estimation in this case

is that E(xil draft-eligibility status] — 0. Given this assumption, a

consistent estimate of can be obtained by applying the simplest IV

1Similarly, an estimator proposed by Robins (1989) is an application
of instrumental variables techniques to a linear model for survival analysis.
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estimator -- Weld's (1940) method of fitting straight lines -- to data for

a single cohort and race.2 To see this, note that because draft-

eligibility is uncorrelated with x, a consistent Wald estimate can be

computed by dividing the data by draft-eligibility status:

-e -n Ae n
(1.2) — (y - y )/(p - p ),

where is the probability of death, is the probability of veteran

status, and superscript e and superscript n denote the draft-eligible

and draft-ineligible samples. The instrument here is an indicator of

draft-eligibility status. Using data in the Appendix Table for white men

born in 1950, we have

— (.0204 - .0195)/(.3527 - d933) — .00564,

so that being a veteran raises mortality risk for this group by half a

percentage point -- a 25% increase in risk.3

An efficient linear combination of alternative Wald estimates of the

same parameter can be computed by Generalized Least Squares (OLS)

estimation of the equation

2The observation that Wald' s estimator is also an instrumental
variables estimator is usually attributed to Durbin (1954). The results in
Hearst, Newman and Hulley (1986) are actually for relative risk, in
contrast to estimates of the "risk-difference" generated by Wald's method.
It can be shown, however, that the Hearst, Newman, and Hulley relative risk
estimates are a simple transformation of Wald risk-difference estimates.

standard error for the Wald estimate is calculated easily under the

null hypothesis that ft — 0. All moments in this example are independent,
e -n e An

so the limiting distribution of (y - y )/(p - p ), is
- n) times the lLrniting gistribution of te numerator. The

denominators in y and y are N — 127,500 and N — 111,200. The sampling
variance of the Wald estimate is therefore

El,(r-5)2r [je(e))fle +

The estimated standard error is 0.00368
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(1.3) 3'crj — 0c +
floRcrj

+ crjl + 'cry

where the subscripts c, r and j index birth cohort, race and draft-

eligibility status, and the data are grouped into averages for cells

defined by these three variables. Since there are 3 birth cohorts, 2

races, and 2 eligibility groups, equation (1.3) is fit to 12 observations.

Angrist (1991) shows that CLS estimates of grouped equations such as (1.3)

are the same as Two-Stage Least Squares (TSLS) estimates that efficiently

combine all possible IV estimates. In this case, the TSLS instrument set

contains dummy variables for the full set of cohort, race and draft-

eligibility interactions. Because the estimating equation includes main

effects for cohort and race, the effect of veteran status is identified by

the exclusion of draft-eligibility status for each race and cohort from the

estimating equation.

Figure 1 presents a graphical version of equation (1.3) for suicide,

the major cause of death associated with veteran status in these data. The

figure graphs residuals from a regression of suicide probabilities on race

and cohort dummies, against the corresponding residuals for veteran status

probabilities. Thus, the slope of the line in the figure is an estimate of

- - in this case, equal to 0.258 percentage points, with a standard error

of 0.06

Although Figure 1 clearly shows a strong linear relationship, for a

variety of reasons most textbook discussions of limited dependent variable

models (e.g., Maddala 1983) argue that the linear model used in this

illustration is inappropriate for binary outcomes. Problems include the

fact that fitted values in the linear model are not bounded between zero

and one. Also, least squares etimation of a linear model does not reflect

the fact that a probability distribution is being parameterized,as would,
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say, ML estimation of a logit modeL. Note, however, that linear IV

estimation breaks down In logistic or other nonlinear regression models

because the IV moment condition falls to hold: the conditional expectation

of nonlinear transformations of a + as1 + xv is not equal to the

conditional expectation of the •outcome variable, even when conditional

variables are mean-independent of unobservables. Such problems

notwithstanding, part of the purpose of this paper is to offer formal

arguments that help rationalize linear IV estimation in nonlinear models.

2. Nonlinear Models vith Omitted Covariates

The general model of interest relates n observations on an outcome

variable, y1, to a treatment indicator, s, in the following manner:

(2.1) E(yl 5' U, Z1) — Fisi. U; fi]
(2.2) E[sil Z) — Ui; ,I,

where is an rxl vector of covariates unobserved by the econometrician,

21 is a qxl vector of potential instrumental variables, F and C are

functions, and fi and are parameter vectors. Observed covariates are held

constant by estimating in subpopulations (i.e., racial groups). A

nonlinear example of (1.1) is given in Rosenbaum and L&ubin's (1983) study

of the effect of an unobserved binary covariate on estimated average

treatment effects in a model for binary outcomes.

The n observations are assumed to be independent and identically

distributed. The development that follows can be applied to

heterogeneously distributed samples with few modifications. The vector

includes a constant and satisfies rank and independence conditions:
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Assumotion 1: (i) E(Zi'(s I)] — where the rank of G > 2,

(ii) U1 and are independent.

Assumption 1(1.) Is the standard requirement that potential instruments be

correlated with regressors. The are potential instruments because

equation (2.1) implies

(2.3) E(yi - F(si Di; fill
— 0

by the law of iterated expectations, and because is independent of

unobservables by A2(ii).

In many econometric applications, attention is focused on

identification strategies for theoretical parameters in the outcome

equation (fl's) such as marginal rates of substitution. But in evaluation

studies, the substantive question motivating applied research concerns the

effect of treatment on an outcome, as opposed to the magnitude of

structural parameters that arise in economic theory. I therefore focus on

the identification of average treatment effects. For model (2.1) the

average treatment effect is defined as follows: -

(2.4) — E( F[1, U; fi] - F[O. U1; fi) }.

The average treatment effect in this model is primarily of interest

because of its relationship to the Holland-Rubin (Holland 1986, Rubin 1914)

definition of an average causal effect. The Holland-Rubin definition of

causality is based on the notion that for each individual we can conceive

of outcomes that would occur with and without treatment. The average

causal effect is the expectation of an outcome variable when all
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individuals in a given population receive treatment minus the expectation

of an outcome variable when no individuals receive treatment. The

fundamental problem of causal inference is that in practice, we. never

observe outcomes for any single individual both with and without treatment

(Holland 1986). Nevertheless, we can sometimes estimate average causal

effects. The parameter is an average causal effect as long as the

average of y given i and is an unbiased estimate of the average of

if all members of the population with a given value of U had the same

value of s. Rosenbaum and Rubin (1983) call this property strone

ignorebilitv f Liven For example, s is strongly ignorable given

if it is randomly assigned conditional on U.

3.1 Identification Conditions

The identification conditions for IV estimation of involve the

additive separability of F and C, defined as follows:

Asstuantion 2: (i) i' Uj; fi) —
fi) + f2(U; ,

(ii) C[Z. ui;
— g1(Z; y) + g2(U; y).

where f, f2, g1, and g2 are functions.4 Assumption 2 characterizes the

class of models for which average treatment effects can be estimated using

linear IV techniques. This result is formalized in the following

proposition:

Proposition 1: Let Jr1 be the average treatment effect defined in (2.4).

4Because s is binary, we could replace li' fi) with f10 +
where f10 and f11 are constants.
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Then for some constant and for all y, U1 and Z1 satisfying (2.1),

(2.2). and Assumption 1(11):

E[yil Z) —
+

riE[siI zil

if and only if either or both Assumption 2(i) and Assumption 2(u) holds.

Proof. Sufficiency of 2(i) is immediate because of the independence of U

and Z. To establish sufficiency of 2(11). write (1.3) as

(3.1) E[Yil Z) — Et u' U1; iI Z1
) —

K0 + E[r1s11 Z)

where

— E( FLO. U1; Pit — F[l, U1; fi] - F[O, U1; fi).

Note that

E(,r1s11 Z1j
— E( ,r1E[s11 Z, U1) I

— E( w1(g1(Z1; ) + g2(U1; i)] I Z)
—

g1(Z1; 7)E(w1I ZJ + Er1g2(U1; 7)1 Z).

But independence of U1 and Z implies that E[r1g2(U1; i)I Z) is a

constant, say, Also, E(w11 Z1) — rl. the average treatment effect, and

g1(Z1; 'y) — E[sI Z1J - E[g2(U1; ,)I Z1J
—

E(s1J Z1)
- "2'

Therefore,

E(,r1s1j Z1) — (E(s1I Z] - "2"1 + "1'

so that sufficiency holds for —
,c0

+ -

Necessity is established by showing that the proposition cannot hold

for some Z satisfying (2.1), (2.2) and Condition 1 when neither 2(i) or

2(11) hold. Suppose that 2(i) does not hold, that — (1 zj'. where

Is a single dummy variable, and that 2(11) does not hold because

G[Z., U1;
—

g1(Z1; ) + g2(U1; 'y) +
z1g3(U1; 'y),

where g3 is a function of U1. Then,
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(3.2) E[y11 Zi) —
it0 + w1E(sil Z1)

+ zE[iv1g3(U; -yfl,

and E(rg3(U; i)J is a constant that is not generally equal to zero. This

completes the proof.

In practice, the plausibility of either Assumption 2(i) or Assumption

2(u) has to be considered on a case by case basis. For example, latent

index models other than the uniform-linear probability model are unlikely

to be additively separable. On the other hand, over a limited range that

is generally around the median, many cumulative distribution functions are

approximately linear. If the variation in the outcome equation or in the

expectation of the endogenous regressor is close to this range, linear IV

estimation may give a good approximation to the true average treatment

effect in models with dummy endogenous variables.

The usefulness of Proposition 1 for econometricians should also be

evaluated in light of the fact that economic theory usually provides little

guidance as to appropriate parametric distributional assumptions. In some

circumstances, restrictions on functional form might be easier to

rationalize and test than a distributional assumption. For example,

standard instrument-error orthogonality test statistics (e.g., Mewey 198Th)

may have the power to detect failure of the functional form assumptions

required to identify average treatment effects. Moreover, if the

underlying distributions or functional forms are iuisspecified, it becomes

an empirical question 'hether linear IV estimators do a worse job than ML

estimators. This is among the questions investigated in Section 5.

It should also be noted that many of the existing non-parametric

procedures developed by econometricians for the estimation of latent

variable models cannot be used to estimate average treatment effects. For
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example, Stoker's (1986) average derivative estimator cannot be used to

estimate the effect of discrete explanatory variables. Newey's (l985a)

application of Manski's (1975) maximum score estimator to binary response

models with endogenous regressors consistently estimates the coefficients

on discrete endogenous regressors up to scale. Similarly, Newey's (1986)

non-parametric estimator for limited dependent variable models with

endogenous regressors consistently estimates ratios of index coefficients.

But neither of the Newey procedures recovers enough information to estimate

the average effect of treatment on outcomes. Heclcman's (1990) results on

the nonparametric identifiability of treatment effects may also be of

limited practical use because these results require continuously

distributed regressors.

4.1 The Large Sample Bias of IV Estimates

Equation (3.1) can be used to make some general statements about the

asyniptotic bias of IV estimates of the average treatment effect in models

where neither F or C are additively separable. Here it is useful to note

that, as a consequence of (3.1), the model can be written using a random

coefficients notation:5

(6.1) "i — si + i5i +

where — F[O, U; P1 and E(ciI 11 — 0. Therefore,

5Heckman and Robb (1985) also discuss instrumental variables
estimation of a random treatment effect. In their discussion of random
coefficients models for treatment effects, Heckman and Robb suggest that
consistent estimates be obtained through by applying a combination of
behavioral (latent index) and distributional assumptions that can be used
to compute the theoretical conditional expectation of trtatment given
instruments and covariates.
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(4.2) y — K0
+ wS +

LCj + (K - "s) + siOri -

Since and ("i - 'c0) are uncorrelated with Z, TSLS estimates of

converge to

(4.3) + p11w [ (E S -

Wi)

where — Z1(Z'Z)Z's - i, and is the sample mean of s.

The TSLS estimate of is consistent under A2(i) because is

identically equal to ir1. The TSL.S estimate of is consistent under

A2(ii) because plim S 1s1(ir1 -
w1) ] is zero in this case, even though

is not equal to for all i. To see this, let 6 be the vector of

population regression coefficients for a regression of s on and let

equal Z minus its mean. We have

plim S (sj(wi - w1)1]/n —
E(E[si(wi

- 'l Z1Ji1)6,

by the weak law of large numbers. But E[sj(r1 - 1)I Z1] is constant under

A2(ii) and E(ii) — 0.

To evaluate expression (4.3) for the general case, note that

plim S j2/n —

and

plim S (s1(w1 - ri)i]/n — E[C(Z. U; 7W -
,r1)z1)6.

The asymptotic bias of a linear IV estimate of the average treatment effect

is therefore

(4.4) [6IE(1hip&)JE(C(Z, U1; 7)(W1
- wi)i16.
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The bias formula can be simplified further if G(Z. Ui: ) is linear

and is a scalar:

(4.5) G(Zi. Ui;
— + + 72"i +

where is Ut minus its mean. Expression (3.4) can now be written,

(4.6) [73/11IE(ui(ni - wl)I.

because & — in this case. This version of the bias formula is useful

because it highlights the role of both the interaction between U1 and in

C. and the covariance of the treatment effect with unobserved

characteristics, in determining the asymptotic bias of IV estimates. The

interaction term 73 is a measure of the non-separability of G, while

-

it1)) is a measure of the non-separability of F. The bias

asymptotic is also inversely proportional to a measure of the quality of

the instruments,

4.2 Optimal Weighting and Choice of Instruments

Properties of the conditional variance of residuals determine the

appropriate Generalized Least Squares (CL.S) weighting matrix for IV

estimators. Write

— [a. + (#c
-

ir0) + s1(w.
-

it1)),

for the compound error term in equation (4.2). If the outcome variable is

continuous and estimation is based on Assumption 2(1) so that —

then it may be reasonable to assume that Vj is homoscedastic. In this

case, conventional TSLS is the most efficient way to use the elements of
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as instruments, and TSLS covariance formulas will give asymptotically

correct standard errors for estimates of average treatment effects. But if

estimation is justified by A2(ii), the presence of the terms (,c - "s) and

- "li in i' suggests that will be heteroscedastic even if is

homoscedastic.

Chamberlain's (1987) results on efficient estimation under conditional

moment restrictions imply that the optimal instruments are a function of

both and the conditional variance of residuals given Z. For estimation

of the coefficient on a dummy variable with independent observations, the

optimal instruments are (Newey 1989):

(4.8) D(Zi] — #(Zi) * [1 E(sil Zi)]'.

where (Zi) — E[L#2I zi]. Estimates computed using D[Zi] as instruments

asymptotically attain the variance bound for conditional moments

estimation. As a practical matter, however, it often infeasible to use the

optimal instruments because both E[sil Zi) and (Z) are unknown. An

important exception to this is when Z is discrete with finite support.

With discrete Z, the optimal IV estimator is a feasible weighted least

squares estimator. This estimator can be computed by using a full set of

dummy variables to indicate each value of as instruments in White (1982)

TSLS estimation.

6Suppose that Z can take on j — 1,.,., J values and let K
denote a matrix of J dummy variables that indicate each value cf Z. That

is, Ri — l(Zi — j). Using K as the matrix of instruments, White's TSLS
estirnaor can be interpreted as instrumental variables estimation with

instruments equal to R(E RiRi'øi2/n][R'X/n]. where X — (& 5). This

simplifies to K * where (j/) is a matrix with J rows each
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5.1 Average Treatment Effects in Bivariate Probit

An important special case of the problem considered in this paper is

the estimation of treatment effects in models with qualitative or binary

dependent variables. Qualitative response models with endogenous

regressors have generated a large theoretical and applied literature.

Ashford and Snowden (1970) are usually credited with introducing a

bivariate probit model in biometrics and Ainemiya (1976) developed a minimum

chi-square estimator for this model. Bivariate probit is also among the

latent index/simultaneous equations models outlined by Heckman (1978). A

variety of econometric aspects of the model are considered by Amemiya

(1978) and Newey (1987), and some applications are described in Haddala

(1983). The latent index approach to qualitative response analysis is

popular in econometrics because the indices correspond to unobserved

utilities in the theory of discrete choice.

Bivariate probit with endogenous dummy regressors can be motivated by

the following latent index model:

(5.1) y — 1 if y — ft0 + li - 1'li - uiA] > 0

— 0 otherwise

(5.2) — 1 if s — -7 + 7lZi - "2i - >

— 0 otherwise

where eli' q2j, and u. are independent, normally distributed random

containing the average of X given Z — j, divided by the variance of X given
Z — j. For continuous in a homoscedastic model, Newey (1989) proposes a
number of asymptotic approximations to the optimal instruments.
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variables. The treatment indicator, s, is endogenous because the compound

error terms,

* *
'7li — - u1A and '12i —

UI,

are correlated. Note that this formulation preserves the definition of

endogeneity implicit in the previous sections: if all relevant covariates

were observed, then the effect of treatment on y could be estimated using

single equation techniques.

The compound error tens in (5.1) and (5.2) are also normally

distributed, with covariance matrix:

2 22 2a +a cA
[1 I.

where a, a, and a2 are the variances of ,j1, and u1. If a —

2 2 * *
"2

—
0u' then the correlation between and is parameterized by A

as

(5.3) p — (1Jj2) * (1/1(1 + A2)).

The average effect of treatment on y in (5.1) is

(5.4) E( •[(fi0 + fl + u1A)/a1) - '((fl + uA)/c)

where •[) is the standard normal cumulative distribution function. This

expression simplifies further because the assumption of bivariate normality

leads to a closed form for the expectation. Using the convolution

properties of the normal distribution (see, e.g. • McFadden and Reid

(1975)). expression (5.4) can be written
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(5.5) — •[
(fl0 + fl1)/J(a + 02)?) - '' o"°i2 + 02)?)

Note that ML estimation identifies the standardized coefficients,

+ irA) and fl1/j(o + 2)?) Therefore, ML estimates of can be

computed by evaluating (5.5) at the coefficient estimates.

5.2 Finite Sample Behavior
*This section compares ML and IV estimates of in a small sampling

experiment designed to mimic situations encountered in econometric

applications. In each experimental design, the true treatment effect is

set at 10 percent, which is in the range of the estimated effects of

manpower training on employment rates in four social experiments (Ham and

LaLonde 1990). The instruments are drawn from a discrete uniform

distribution with 8 points of support in increments of 1. Angrist (1990)

uses a discrete uniformly distributed instrument to estimated the effects

of military service, and Angrist and Krueger (1991) use a discrete

uniformly distributed instrument to estimate the monetary returns to

education. The number of replications for each experiment is 500, and

results are presented for samples of 400 and 800 observations.7 These

sample sizes are in a range commonly encountered in econometric evaluation

research (e.g., LaLonde 1986). The resulting bias calculations should

provide an upper bound for applications like the mortality example in

Section 1, where the treatment effects are so small that the outcome

equations are approximately linear.

The base design sets ft0 equal to zero, and to •1(.6) 0.25,

7The computations were made using LINDEP on microcomputers. Maximum
Likelihood estimates were computed using the DFP algorithm from starting
values of zero in each replication.
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so that the treatment effect consists of a movement from 0.5 to 0.6 . In

equation (4.2), is set to zero, to 0.25, and the instrument ranges

from -3.5 to 3.5 . The resulting first-stage equation generates variation

in Etsil Zi] from t(.875) — .81 to G(- .875) — .19 . The errors are all

normally distributed. The variances o, a, and 2 equal 1/2, and A

is equal to 1, so that the compound error terms have unit variance end a

correlation coefficient of 1/2. This base design represents a promising

scenario for IV estimation: variation in both F and C Is close to the

median, so that F and C should approximately satisfy Assumptions 2(1) and

2(11). Moreover, the Instrument is highly correlated with the endogenous

regtessor, tracing out 60 percent of the distribution of q.

Table 1 presents experimental results for the base design. Columns 1-

7 report the mean, standard deviation (SD), root mean squared error (RNSE),

mean absolute error (MAE), lower quartile (LQ), median (MD), and upper

quartile (UQ) of the estimates from 500 replications. Rows of the table

report statistics for maximum likelihood estimates (MLE), just-identified

IV estimates using only Z1 and a constant as instruments, TSLS estimates

using 8 dummies to indicate each value of Z. as instrumet ts (Dummy IV),

TSLS estimates using 8 dummies In White's (1982) efficient estimator

(Efficient IV), and Ordinary least Squares (OLS) estimates of a linear

probability model. The MLE's are consistent and efficient for the

bivariate probit model. The IV estimator is consistent under Assumptions

A2(i) or A2(ii); Dummy IV is consistent and asymptotically efficient under

A2(i) if is homoscedastic; Efficient IV is consistent and

asymptotically efficient under A2(i) or A2(iI).8 The OLS estimates are

8Only one set of just-identified IV estimates are presented because
instrumental variables estimates in just-identified modes are unaffected
by the choice of weighting matrix.
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identical to estimates of the average treatment effect that would arise

from single equation probit estimation using s as a regressor.

The means of the IV and ML estimates are within sampling variance of

each other in both the 400 and 800 observation samples. The Dummy IV and

Efficient IV estimates are biased towards the OLS estimate, which is nearly

4 times larger than the true treatment effect.9 The bias of the Dummy and

Efficient IV estimates is considerably worse in the smaller sample. The

contrast between the just-identified IV estimates and the Dummy or

Efficient IV estimates illustrates the trade-off between increasing bias

and increasing efficiency as the number of instruments increase. In both

samples, the MLE's have the lowest RASE. Other than the OLS estimates, the

MLE's are also most efficient, although the various IV estimators have only

modestly larger sampling variance. The Efficient IV estimates are always

slightly more variable than the asymptotically less efficient Dummy IV

estimates. The quartiles do not indicate a significantly larger number of

extreme values for the IV estimates than for the MLE's.

The discussion in Section 4.1 suggests that IV estimators should

perform more poorly when the treatment effect shifts the distribution of

the latent index at a point farther from the median, and when the

instruments shift the distribution of the first-stage latent index at a

point farther from the median. Table 2 reports results from a design the

same as the base design, except that the treatment effect consists of a

movement from 0.85 to 0.95 . This constitutes a larger deviation from

A2(i) than in the base design, although A2(ii) is still approximately

satisfied. All the estimates in Table 2 tend to be somewhat lower than the

91n a bivariate example, Nelson and Startz (1990) show analytically
that the finite-sample central tendency of consistent instrumental
variables estimates is biased towards the probability limit of OLS estimates,
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true effect, whereas in the base design they Care higher. As expected, the

IV estimates are farther from the true effect than the MLE's, but the Dummy

and Efficient IV estimates are closer. This may be because a positive

small sample-bias in these estimates offsets negative asymptotic bias.

Table 3 reports results from a design the same as the base design,

except that the eight values taken by the instrument shift Etsil Z) in the

lower tail of the latent index distribution, from 0.05 to 0.35 This

constitutes a stronger violation of A2(ii), leaving A2(i) approximately

satisfied. All the estimates are now more variable, and the Dummy and

Efficient IV estimates are substantially upwards biased in the 400

observation sample. Zut in the larger sample, in spite of a larger bias,

the Dummy and Efficient IV estimates have lower RI'ISE than the ML estimate.

Overall, the evidence from Tables 1, 2 and 3 suggests that IV estimators do

not perform appreciably worse than the correctly specified ML estinator,

especially in large samples. -

Table 4 reports results from a design that combines the upper tail

treatment effect of Table 2 with the lower tail first stage of Table 3.

The combined violation of assumptions 2(i) and 2(u) leads to a

considerable deterioration in the finite sample performance of all the IV

estimators. In fact, OLS now has lower RMSE than any of the IV estimates.

However, the MLE performs equally badly, with a mean that tends to be half

the size of the true treatment effect. Moreover, roughly half of the MLE

replications failed to converge from starting values of zero. MLE's for

the convergent subsample (in parentheses) also have a larger MAE than the

IV estimates.

Tables S and 6 report the results of sampling experiments in which

'°The instruments range from -3.5 to 3.5, — -1.02, and — 0.181
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bivariate probit and IV techniques are used to estimate average treatment

effects in models where the underlying error distributions are non-normal.

Table 5 presents results from the base design where the underlying error

distributions are x2(l) instead of N(O,.J.5). The compound error in this

case is distributed as x2(2). because it is the sum of two x2(l) random

variables. Table 6 presents results from a modified base design where the

treatment effect consists of a movement from 0.4 to 0.5. and the underlying

error distributions are uniform on [0,1), so that the compound error terms

are triangular on [0,2) with a mode of one." The design used to produce

Table 6 comes close to satisfying both A2(i) and A2(ii). The additive

separability assumptions are not satisfied exactly in spite of the uniform

distribution of '7li and because the indices, o + - uiA and '1 +

- u, are not guaranteed to be between zero and one.

Results from the models with chi-square error distributions show the

IV and NLE estimators with almost identical means. The MLE still has lower

sampling variance, however, and lower mean squared error. Results from the

models with uniform error distributions show the IV estimator closer to the

true effect of 10 percent than the tILE. In the uniform designs, the median

of the IV sampling distribution is also closer to the true effect than the

median of the tILE sampling distribution. Again, however, larger sampling

variance raises the mean squared error of the IV estimator above that of

the MLE.

In both Tables 5 and 6, there is upward bias in the Dummy and

Efficient IV estimates, although the bias of the Dummy and IV estimates

11As in Table 5, for the design reported in Table 6 the compound error
terms are the sum of u and the ' For Table 5, design parameters are:
ft0 — 1.3871, ft1 — l.83h, — 0, y — 3/8; for Table 6 design parameters
are: — j.8, ft1 — 1 - j.a? , — 05, — 0.1
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falls with increasing sample size, while the bias of the KLE does not. In

smaller samples, the simple IV estimator has lower bias than the tILE but is

less efficient. The contrast between the results in Table 4 and the

results in Tables 5 and 6 suggests that approximate additive separability

is more important than distributional assumptions for the small sample

performance of k2. ilL and IV estimates. The tILE is remarkably robust to

non-normality in both examples considered here, and remains efficient

relative to all the IV estimators.12 However, in some applications, (e.g.,

Angrist 1990, Angrist and Krueger 1990a, and the example in this paper) the

required micro data are not available and the tILE cannot be computed. In

such cases an IV estimator that can be computed from second moments offers

an attractive and feasible alternative.

6. Summary and Conclusions

Even with valid exclusion restrictions such as generated by the draft

lottery, the ability to answer evaluation questions in any field turns on

functional form restrictions or distributional assumptions. This paper

outlines functional form restrictions necessary and sufficient for linear

IV techniques to provide consistent estimates of average treatment effects.

The additive separability restrictions required for linear IV estimates to

be consistent are unlikely to bold exactly, even for models with continuous

outcome variables. But in many circumstances, the restrictions may hold

approximately. This point is illustrated here using a Monte Carlo study of

a bivariate probit model. In a number of examples, IV estimates of the

12The robustness of ML may be related to Ruud's (1986) result showing
that for a large class of regressors, maximum likelihood with a
misspecified distribution consistently estimates univariate index
coefficients up to scale.
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average treatment effect do net perform appreciably worse than estimates

computed using the correct likelihood function.

These results suggest that linear IV estimation of average treatment

effects in nonlinear models can often be justified. Of course, in some

applications a variety of estimation strategies are available and all

estimation strategies that derive from the same exclusion restrictions

should probably be considered. Perhaps the most important reason for

presenting IV estimates, however, even when more sophisticated techniques

can be used, is that IV techniques are the observational investigator's

version of classical experimentation. Instead of an experimenter randomly

assigning treatment, the instrumental variables naturally assign treatment

in a manner independent of other characteristics related to outcomes. I

believe this source of identifying information is easily understood and

communicated to non-specialists, and that findings from simple and

comprehensible empirical strategies are most likely to affect public health

and social policy.
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Table 1: Base Design

sample Estimator Mean SD ENSE MAE MD UQ
(1) (2) (3) (4) (5) (6) (7)

400 MLE 11.36 10.92 1L00 8.75 3.63 11.12 18.53

Iv 12.06 11.55 11.73 9.33 4.21 11.75 19.65

Dummy IV 14.13 11.15 11.89 9.40 7.12 13.80 21.10

Efficient IV 14.54 11.45 12.32 9.77 7.22 14.35 22.30

01.5 38.04 4.69 28.43 28.04 34.73 38.19 41.35

BOO MLE 9.59 7.71 7.72 6.15 4.20 9.75 14.70

IV 10.38 8.35 8.36 6.68 4.66 11.20 15.80

Dummy IV 11.66 8.08 8.25 6.66 6.28 12.10 16.70

Efficient IV 11.84 8.21 8.41 6.80 6.32 12.40 17.10

OLS 37.58 3.05 27.80 27.60 35.50 37.60 39.80

NOTES: The treatment affect consists of a movement from 0.5 to 0.6 . The
instrument (Z) is discrete, uniformly distributed with 8 points of

support in the range (.3.5, 3.5]. The first stage coefficients, 10 and
were chosen to generate variation in E(silZi) from 0.2 to 0.8

MLE estimates are maximum likelihood estimates for bivariate probit. IV
estimates use and a constant as instruments. Dummy IV estimates use a
full set of dummies for each value of as instruments. Efficient IV
estimates uses a full set of dummies in the optimally weighted two-stage
least squares estimator. The OLS estimate is the Ordinary Least Squares
coefficient from a regression of on s, and is the same as the single-
equation probit estimate of the average treatment effect.
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Table 2: Upper Tail Treatment Effect

Sample Estimator Mean
(1)

SD
(2)

RUSE
(3)

MAE
(4)

1J
(5)

MD
(6)

UQ
(7)

400 MLE 8.96

(9.12)

8.58

(8.75)

8.64
(8.79)

6.56

(6.66)

4.42

(4.26)

9.37

(9.89)

14.7
(14.9)

IV 8.88 8.16 6.24 6.47 3.36 9.07 14.1

Dummy IV 9.89 7.84 7.84 6.17 4.62 10.30 14.8

Efficient IV 9.81 8.41 8.41 6.70 4.24 10.20 15.4

OLS 21.3 3.25 11.60 11.30 19.10 21.20 23.6

800 KLE 9.71 5.26 5.27 4.02 6.86 10.20 13.1

IV 8.94 5.30 5.40 4.23 5.61 9.10 12.6

Dummy IV 9.49 5.22 5.24 4.12 6.26 9.49 13.0

Efficient IV 9.70 5.45 5.46 4.29 6.38 9.80 13.4

0LS 21.3 2.31 11.50 11.30 19.60 21.40 22.8

NOTES: The treatment effect consists of a movement from 0.85 to 0.95. Other
design features are as described in Table 1.

in the sample of 400 observations, 23 out of 500 maximum likelihood
replications failed to converge. Reported statistics are evaluated for
all observations, including the last completed iteration for non-
convergent estimates. Results for the convergent subsample are reported
in parentheses.
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Table 3: Lover Tail First Stage

Sample Estimator Mean
(1)

SD
(2)

WISE
(3)

MAE

(4)
LQ

(5)
MD

(6)
UQ
(7)

400 FILE 11.76

(11.76)

21.50
(21.60)

21.6
(21.7)

17.7

(17.7)

-3.50

(-3.50)

10.6
(10.6)

27.2

(27.2)

IV 9.50 26.60 26.6 20.1 -6.14 10.8 24,5

Dummy IV 15.19 22.50 23.1 17.8 2.00 15.5 29.4

Efficient IV 15.42 22.90 23.5 18.1 1.98 15.9 29.2

OLS 40.82 5.18 31.3 30.8 37.40 40.9 44.6

BOO tILE 10.40 17.40 17.4 14.2 -1.25 11.7 22.5

IV 9.48 18.10 18.1 144 -1.97 10.5 21.0

Dummy IV 12.70 16.80 17.0 13.6 1.60 13.3 23.5

Efficient IV 12.80 16.90 17.1 13.7 1.60 13.6 23.9

OLS 40.60 3.64 30.8 30.6 38.00 40.8 43.4

NOTES: The treatment effect consists of a movement from 0.5 to 0.6 . The
instrument (Zr) is discrete, uniformly distributed with S points of

support in the range [-3.5, 3.5). The first stage coefficients, y and
were chosen to generate variation in E(sjjZi) from 0.05 to 0.35.

ofher features of the design are as in Table 1.

In the sample of 400 observations, one out of 500 maximum likelihood
replications failed to converge. Reported statistics are evaluated for
all observations, including the last completed iteration for non-
convergent estimates. Results for the convergent subsample are reported
in parentheses.

27



Table 4: Upper Tail Treatment Effect and lover Tail. First Stage

Sample Estimator Mean SD RMSE MAE 1L MD Uq
(1) (2) (3) (4) (5) (6) (7)

400 MLE 4.87 13.7 14.6 9.39 3.90 4.66 915
(5.42) (20.9) (21.4) (14.4) (2.69) (13.6) (194)

IV 1.43 19.2 21.0 16.3 -10.5 2.01 13.7

Dummy IV 4.72 16.8 17.6 13.6 -5.00 5.52 15.7

Efficient IV 4.31 17.3 18.2 14.3 -6.85 5.26 16.2

OLS 17.0 2.30 7.34 6.98 15.4 16.9 18.7

800 MLE 3.97 13.8 15.1 9.60 3.96 4.62 12.1
(3.55) (18.9) (20.0) (13.2) (0.33) (10.93) (16.4)

IV 3.67 13.5 14.9 11.7 -4.51 3.62 12.0

Dummy IV 5.38 12.3 13.1 10.4 -2.54 5.15 13.1

Efficient IV 4.76 12.8 13.8 10.9 -3.01 4.73 13.3

OLS 17.0 1.53 7.17 6.97 15.9 17.0 18.1

NOTES: The treatment effect consists of a movement front 0.85 to 0.95 . The
instrument (Zr) is discrete, uniformly distributed with 8 points of
support in the range [-3.5, 3.5). The first stage coefficients, m and
'1,, were chosen to generate variation in E(sjlZi) from 0.05 to 0.35.
This design combines features of the designs in Tables 2 and 3.

In the samples with 400 observations, only 216 out of 500 maximum
likelihood replications converged. In the sample with 800 observations,
only 266 out of 500 maximum likelihood replications converged. Reported
statistics are evaluated for all observations, including the last
completed iteration for non-convergent estimates. Results for the
convergent subsample are reported in parentheses.
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Table 5: Chi-Equare Error Distributions

Sample Estimator Moan

(1)

SD

(2)

RMSE
(3)

MAE
(4)

IJ
(5)

liD

(6)
UQ
(7)

400 1'tL 12.8 11.5 11.6 9.44 4.62 12.5 20.1

Iv 12.7 12.4 12.7 10.3 4.43 13.1 20.8

Dummy IV 15.0 11.8 12.8 10.4 6.43 14.9 23.5

Efficient IV 15.6 12.3 13.5 10.9 6.71 15.5 24.2

OLS 39.3 4.82 29.7 29.3 36.1 39.5 42.5

800 MLE 12.6 7.99 8.41 6.62 7.42 12.2 17.6

IV 12.9 8.60 9.08 7.21 7.28 12.9 18.6

Dummy IV 14.1 8.33 9.28 7.46 8.35 14.3 19.6

Efficient IV 14.4 8.47 9.54 7.65 8.55 14.5 20.1

OLS 39.4 3.22 29.6 29.4 37.0 39.40 41.5

NOTES: The treatment effect consists of a movement from 0.5 to 0.6. The
instrument (Zi) is discrete, uniformly distributed with 8 p2ints of

support in the range (, 8). 11 error2distributions are x (1), so that
the compound errors, and 712 are x (2). The first stage
coefficients, and generaL variation in E(si!Zi] from 0.11 to 0.78.
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Table 6: Uniform/triangular Error Distributions

Sample Estimator Mean
(1)

SD

(2)

WISE
(3)

MAE

(4)

1L
(5)

MD
(6)

UQ
(7)

400 MLE 8.97 11.4 11.4 9.32 4.59 7.96 16.4

IV 9.55 12.4 12.4 10.1 5.60 9.14 18.0

Dummy IV 12.2 11.5 11.7 9.47 4.39 12.6 20.0

Efficient IV 12.6 11.9 12.2 9.80 4.26 12.8 20.4

OLS 38.4 4.37 28.7 28.4 35.2 38.6 41.5

800 MLE 8.91 8.18 8.25 6.64 3.07 8.69 14.3

IV 9.88 8.99 8.99 7.18 3.85 10.2 15.6

Dummy IV 11.3 8.78 8.88 7.09 5.56 11.3 17.0

Efficient IV 11.5 8.91 9.04 7.22 5.54 11.5 17.1

OLS 38.9 3.17 29.1 28.9 36.8 38.9 40.9

NOTES: The treatment effect consists of a movement from 0.4 to 0.5. The
instrument is discrete, uniformly distributed with 8 points of

support in the range (, 8). *11 error distributions are UN(01] so that
the compound errors, and q are Triangular on [0,2). with a mode of
1. The first stage coetficien?s, o and -y1, generate variation in
E[silzi) from 0.iB to 0.76.
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Appendix

Mortality and Veteran Status by Race, tear of Birth, and Draft-Eligibility

Race Year
Draft-

a
Eligibility

Number of
Deaths b
(Suicides)
(1)

Probability
of Death

c
(Suicide)
(2)

Probability of

Militar
Service

(3)

White 1950 yes
no

2601 (436)
2169 (352)

.0204 (.0034)

.0195 (.0032)
.3527
.1933

1951 yes
no

1494 (279)
2823 (480)

.0170 (.0032)

.0168 (.0029)

.2831

.1466

1952 yes
no

1079 (207)
2976 (514)

.0154 (.0029)

.0149 (.0026)
.2310
.1257

Non-White 1950 yes
no

536 (60)
493 (46)

.0346 (.0039)

.0365 (.0034)

.1957

.1354

1951 yes
no

350 (33)
612 (63)

.0376 (.0035)

.0344 (.0035)

.2014

.1514

1952 yes
no

235 (26)
663 (66)

.0309 (.0034)

.0309 (.0031)
.1449
.1287

a Determined by lottery number (RSN) cutoff: RSN 195 for men born in 1950. RSN
125 for men born in 1951, RSN 95 for men born in 1952.

b
From California and Pennsylvania administrative records, all deaths 1974-1983.

Data sources and methods documented in Hearst, Newman and Hulley (1986).
NOTE: Sample sizes differ from Hearst, et al. • because non-Us-born are included.

c Equal to number of deaths divided by Population At Risk (PAR) estimated from
the 1970 census, 1% public use sample State files. PAR is the number of men in each
birth cohort and race group. Estimates of PAR by draft-eligibility are computed
assuming a uniform distribution of lottery numbers.

d Relative frequencies estimated from the Survey of Income and Program
Participation. Data sources and methods are documented in Angrist (1990)

e Suicide is lCD 950-959.9. Total suicides — 2268 whites, 294 non-whites.
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