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1. INTRODUCTION.

The field of macroeconomics has its share of econometric pitfalls for the unwary
applied researcher. During the last decade, macroeconomists have become aware of a new
set of econometric difficulties that arise when one or more variables of interest may have
unit roots in their time series representations. Standard asymptotic distribution theory
often does not apply to regressions involving such variables, and inference can go seriously
astray if this is ignored. In this paper we survey unit root econometrics in an attempt to
offer the applied macroeconomist some reliable guidelines. Unit roots can create
opportunities as well as problems for applied work. In some unit root regressions,
coefficient estimates converge to the true parameter values at a faster rate than they do in
standard regressions with stationary variables. In large samples, coefficient estimates with
this property are robust to many types of misspecification, and they can be treated as
known in subsequent empirical exercises. On the other hand, such estimates may have poor
finite~sample properties. A second goal of this paper is to indicate how applied researchers
can exploit unit root econometric opportunities in finite samples of the size typically
encountered in macroeconomics.

The early literature on unit roots concentrated orn the univariate properties of
macroeconomic time series. The seminal paper of Nelson and Plosser (1982), for example,
carried out tests for unit roots in 14 individual time series. There is a great deal of
subsequent work in this spirit, concerned for example with the persistence of fluctuations in
real GNP (Campbell and Mankiw (1987) Christiano and Eichenbaum (1989), Cochrane
(1988), Perron (1989a)). We begin this paper with a thorough review of the univariate
literature on unit roots in Section 2.

It is characteristic of macroeconomics, however, that different time series are related
by identities or behavioral models; therefore we emphasize multivariate unit root methods
in this survey. Consider for example the system of five variables (mt » Yy By i bt)' where

m, is the log nominal money stock, Y is log nominal output, p, is the log price level, i, is

thte short—term nominal interest rate, and b, is a long-term nominal bond yield. The
variables in this system can be combined to form an ex post real interest rate r, = it - Apt,
the nominal interest rate less the inflation rate. Now suppose that one wishes to analyze
the unit root properties of the nominal interest rate, the inflation rate, and the real interest
rate. Because of the identity linking these variables, if any two of them are stationary then

the third variable must also be stationary. Univariate unit root tests cannot take account



of this fact, whick complicates inference.

The five variables listed above may also be linked together by behavioral relationships.
Most practical work in macroeconometrics has the objective of estimating these
relationships and testing hypotheses about them. Three obvious examples are as follows.
First, one may wish to estimate a money demand function by regressing the log nominal
money stock on the log price level, log nominal output, and the nominal interest rate, or by
regressing the log real money stock on log real output and the nominal interest rate.
Second, one may wish to test for Granger causality from money to output (either in
nominal or real terms), in systems that may or may not include the nominal interest rate.
Third, one may wish to test a hypothesis about the relationship between short—term and
long-term nominal interest rates, such as the expectations theory of the term structure. It
turns out that each of these empirical exercises is importantly affected by unit root
econometric issues. At the end of this survey we return to these examples and show how
the principles we discuss apply to them.

The organization of the paper is as follows. After the univariate discussion in Section
2, we review multivariate methods in Section 3. Both the univariate and multivariate
sections of the paper first discuss alternative representations of time series with unit roots,
and then discuss testing procedures. Section 3 also discusses in some detail how one can
estimate cointegrated models. We do not attempt to provide a complete theoretical review
and we do not give full details of the various procedures!. Rather we discuss intuitively the
main econometric procedures that are currently available and their relative strengths and
weaknesses. We give extensive references to sources where further details can be found. We
also occasionally state some "rules" to help structure the discussion. These should be
viewed as useful guidelines or rules of thumb, and not as formal propositions. Throughout
the paper we emphasize two themes. First, the proper handling of deterministic trends is a
vital prerequisite for dealing with unit roots. Second, there are serious conceptual
difficulties in distinguishing unit root processes from stationary processes in finite samples.
Despite this fact, we argue that unit root econometric methods have many practical uses.

1 Recent theoretical surveys include Dickey, Bell and Miller (1986), Perron (1988),
Diebold and Nerlove (1990), Dolado, Jenkinson and Sosvilla—Rivero (1990), and
Phillips and Loretan (1989).
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2. REVIEW OF UNIVARIATE PROCEDURES AND ISSUES.
2.1. Representation of a time series with and without a unit root.

It is often useful to think of a macroeconomic time series y, as the sum of several
components with different properties. We begin by writing:

(2.1) Yy = TDt + Zt'

Here TDt is a deterministic trend in ' and Zt is the noise function or stochastic
component of Yy The unit root hypothesis concerns the behavior of the noise function, but
the specification of the deterministic trend is crucial in testing this hypothesis. In principle
a wide variety of specifications are possible, but the leading postulate is that TDt is linear
in time t, that is

(2.2) TD, = & + &.

We shall work primarily with the specification (2.2), but below we discuss some
alternatives that have recently been proposed. For simplicity, we assume that the noise
function Z, can be described by an autoregressive-moving average process :

(2.3) A(L)Z, = B(L)e, ,

where A(L) and B(L) are polynomials in the lag operator L of order p and q respectively
and e is a sequence of i.i.d. innovations?. The noise function Zt is assumed to have mean
zero, as the deterministic trend TDt includes the mean of Yy We also assume that the
moving average polynomial B(L) has roots strictly outside the unit circle. Equation (2.3)
summarizes the univariate dynamics of the process Zt‘ In this section we refer to the
system (2.1)<(2.3) as a data—generating process (DGP) even though it may simply
summarize the univariate implications of a more complex multivariate system.

2 One could, of course, allow more general processes to characterize the noise
function, such as "mixing type conditions" which permit some degree of
heterogeneity and a richer class of serial correlation (see, e.g. Phillips (1987) and
Phillips and Perron X1988)). However, the issues involved are easier to illustrate
using the traditional ARMA(p,q) framework.
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We can now distinguish two alternative models for ¥y In the trend-stationary model
the roots of A(L), the autoregressive polynomial, are strictly outside the unit circle so that
Zt is a stationary process and ¥y is stationary around a trend. In the difference-stationary
model, Zt has one unit autoregressive root and all other roots strictly outside the unit
circle. In this case AZ, = (1- L)Zt is a stationary process and Ay, is stationary around a
fixed mean. The unit root hypothesis is that Yy is difference—stationary. The
trend-stationary and difference—stationary models are often referred to as zero’th—order
and first-order integrated models, or I(0) and I{1) models, respectively3.

To understand the meaning of the unit root hypothesis, it is useful to further
decompose the noise function Zt into a cyclical component Ct and a stochastic trend TSt4.
The cyclical component is assumed to be a mean—zero stationary process, so that shocks to
Ct. have no long-tun impact on the level of Yy The stochastic trend incorporates all
random shocks that have permanent effects on the level of ¥4 The sum of the deterministic
trend TDt and the stochastic trend TSt is the overall trend. It is common in empirical
macroeconomics to try to isolate the cyclical component Ct by subtracting from Yy the
trend components TDt and TSt.

In the trend-stationary model, the decomposition of Zt into stochastic trend and cycle
is trivial, because Zt is already assumed to be stationary so it satisfies the conditions
assumed for the cycle Ct' In this case the stochastic trend TSt is zero and the cycle Ct
equals the noise Zt' In the difference-stationary model, things are more complicated. When
the polynomial A(L) in (2.3) has a unit root, we can write A(L) = (1 — L)A*(L) where
A*(L) has roots strictly outside the unit circle. The first difference AZ, follows the
stationary ARMA process A“(L)AZt = B(L)e,. Following Beveridge and Nelson (1981), we

can construct the following decomposition. Let (L) = A*(L)-IB(L) be the
-moving-average representation of the first difference of Z,. The notation ¥(1) denotes the

sum of the moving-average coefficients. We define y*(L) = (1 - L)_1[¢(L) -~ ¥(1)], and
find that AZ, satisfies AZ, = [¢(1) + (1 - L)y*(L)]e,. Then by applying the operator

3 For simplicity we focus our discussion on the case of I(0) versus I(1) variables,
which is the main case of interest to macroeconomists. This excludes the possibility
of multiple unit roots, but most of the issues we discuss apply equally well to that
case. For a general testing procedure allowing an arbitrary number of unit roots see
Pantula (1989) and Dickey and Pantula (1987).

1 Note that the possibility of stochastic seasonal nonstationarity is beyond the scope
of this paper.



(1- L)—1 we can write :
(2.4) Z, =TS, + C, = W1)S, + y*(L)e,

where §, = E;z e. is a zero mean random walk. Here the trend function for the variable Yy

contains not onleJ the deterministic trend TDt, but also a stochastic component ’I‘St =
¢(I)St which affects the intercept of the trend in each period. This stochastic trend is
obtained from the sum of the moving average coefficients for AZt, which is equivalent to
the long-run effect of a unit shock e, on the level of the noise Z,. The noise or cyclical

component is C, = Vf“(L)et, constructed to have no long-run effect on the level of Z,.

The decomposition (2.4) can be used to develop measures of the importance of the
stochastic trend TS, for the behavior of the variable y,. Campbell and Mankiw (1987)
propose that the coefficient (1) is a natural measure of "persistence" in ¥y» because it is
the ratio of the long—run effect of an innovation e, to the immediate effect. When (1) > 1,
the long-run impact of a univariate shock to ¥y is greater than the immediate impact;
when #(1) < 1, on the other hand, shocks tend to die out. The case where y, is a random
walk has ¢(1) = 1, while the trend-stationary model for y, is the limiting case where (1)
= 0. Cochrane (1988) proposes a related measure of persistence, which is the ratio of the
variance of innovations in TS, to the variance of innovations in ¥y Itis straightforward to

show that this variance ratio can be written as ¢'(1)202/°'Zy~ The quantity ¢(1) is also
closely related to the spectral density of the change in Yy evaluated at frequency zero. We
use the notation h Ay(0) to denote this spectral density. Then we have h Ay(0) =Y 1)203,
the numerator of Cochrane’s variance ratio.

The trend-stationary and difference—stationary processes described above can be
thought of as reduced form models. It is possible to derive these processes as reduced forms
of a structural unobserved components model (see Harvey (1985), Clark (1987,1989) and
Watson (1986), among others). Consider for example an unobserved components model
that represents ¥ 38 the sum of a random walk with drift and an independent stationary
process. When the innovation variance of the random walk is zero, y, is trend-stationary.
More generally, the reduced form of this model is a difference—stationary process with
constraints (see Clark (1987) and Watson (1986)). Of particular relevance is the constraint
that ¢(1) in (2.4) is less than 1, i.e. that the long term effect of innovations is no greater
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than the immediate effect. (Of course this constraint can be relaxed in more general
unobserved components models.)

More recently, various nonlinear structural models have been proposed. These yield
nonlinear reduced forms rather than the linear trend—stationary or difference—stationary
reduced forms discussed so far. They try to capture the idea that two fundamentally
different types of shocks are present. Some, which might be called "big shocks", occur
infrequently and affect the trend function of the series in a permanent way. The others, call
them "regular shocks", occur every period and may or may not affect the level of the series
permanently. The unit root issue, in this context, centers on whether the "regular shocks"
have a permanent effect on the level of the series.

One such class of models has been proposed by Hamilton (1989). His structural model
makes ¥y the sum of a nonlinear trend function and a linear ARIMA process with a root on
the unit circle. The trend function is a random walk with a drift that switches between low
and high values according to a first-order Markov process. Lam (1990) has derived a
computational algorithm for a slightly more general version of this model where a unit root
is not imposed a priori on the linear part of the process. Unfortunately technical difficulties
are such that no procedures are yet available to test whether the linear part of the process
does have a unit root or not.

Perron (1989a) has suggested that a time series structure with very infrequent changes
in slope can be a useful approximation in empirical applications, indeed a simple one—time
change in slope can be enough to characterize many series of interest. By restricting the
number of changes in slope a priori, one can circumvent the technical difficulties with unit
root tests in the Hamilton-Lam framework and obtain asymptotically valid tests of the
null hypothesis that the linear part of the process contains a unit root. In this restrictive,
but empirically useful, framework the reduced form of the series is described by (2.1) with
the deterministic component given by TD, = x + &4t + 6,(t - Tg).1(t > Tg), where 1(-)
is the indicator function and Tp is the time of the change in the slope of the trend
function. If a unit root is present in Zt the trend function also contains a stochastic
component in a manner similar to the usual difference-stationary process.

A similar model can be derived for series with infrequent changes in intercept. Again,
it was argued in Perron (1989a,1990a) that such a model with a single change can be a
useful approximation in practice. In this restricted framework, it becomes possible to test
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the unit root hypothesis for the linear part of the process by specifying the deterministic
component of the trend function as

(2.5) TD, = ko + £ 1(t > Tg) + &.

Thus the reduced form models described in Perron (1989a) can be viewed as
approximations to structural models where infrequent changes in the intercept and/or slope
are modeled stochastically as in Hamilton (1989) or Chen and Tiao (1990). The implicit
assumption is that, in the given data set of interest, there is only one such "big shock". Of
course, with other types of series or a longer span of data, it may be necessary to allow for
more than one change.

2.2. Testing for a unit root.

We begin by considering the simplest case where the noise component Zt (the series ¥y
less its deterministic trend) is an AR(1) process with no moving average component, i.e. zZ,
= ¢Zt—1 +e. This process can be rewritten as
(2.6) AZ, = 72, +e,
where * = ¢ — 1. Here the null hypothesis of a unit root is given by » = 0, while
trend-stationarity implies that » < 0. This simplified framework is not realistic for most

empirical applications, but it makes many of the issues easier to discuss. Later we outline
how the procedures are modified if allowance is made for additional serial correlation.

2.2.1. Basic tests of the null hypothesis of ¢ unit root.

In testing the unit root hypothesis, it is important to draw a clear distinction between
the maintained data generating process (DGP), and the regression equations that are used
to test the null hypothesis. An important issue that often causes confusion is the
appropriate treatment of the deterministic trend in ¥y in these regression equations.

We use the notation DV, for the set of variables that appears in the deterministic
trend under the maintained DGP. In most applications DV, = {1}, a constant, or DV, =
{1, t}, allowing a first—order polynomial in t. However DVt can be more complicated; for
example, the nonlinear structural model with a deterministic change in the intercept at
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date Tg has DV = {1, ¢, l(t—TB)}. Since we are interested in the properties of the noise
function, a natural strategy is first to "detrend" the series and analyze the time series

behavior of the estimated residuals. We use the notation yt for the residuals of a projection
of y, on a set of deterministic regressors DR,. The unit root hypothesis can be tested by

estimating the pair of regressions :

(2.7) y, =7'DR +7§,; Ay, =75, 1 +u,,

and using the t—statistic for testing = = 0, denoted t;- The natural choice of regressors DR,
is just the set of variables DVt that appears in the deterministic trend under the
maintained data generating process; however we discuss below what happens when DRt
differs from DVt.

When the deterministic trend is linear in time (DVt = {1} or {1,t}), this two step
procedure will be asymptotically equivalent to a conventional one step procedure where
deterministic regressors DR: are included in the autoregression,

(2.8) Ay, = T'DR} + T + Uy

and where DR: = DRt' The regressors DR‘: must include all the elements of DRt for this
asymptotic equivalence to hold. In particular, consider the case where DV, = DR, = {1,t}.
The one-step procedure will be asymptotically equivalent to the two—step procedure only if
the regressors DR} in (2.8) include the trend t. The coefficient on this variable is -éx,
which is zero under the null hypothesis of a unit root but is nonzero under the alternative
hypothesis that ¥y, is trend—stationary. Thus the trend t must be included to enable the
regression equation (2.8) to nest both the null hypothesis and the alternative hypothesis.

When the deterministic trend function TDt is nonlinear, the relationship between the
one step procedure (2.7) and the two step procedure (2.8) is more complicated. In the case
of a trend with a single change in intercept as described in (2.5), where DVt ={1,¢, 1(t -
TB)}, the two step procedure with DRt = DVt is equivalent to the one step procedure
with DR} = {1, t, 1(t - Tg), D(Tg),}, where D(Tg), is one for t = Tp + 1 and zero
otherwise. The extra regressor D(TB)t must be included in the one step procedure to allow
a proper nesting of the null and alternative hypotheses, but this is not necessary in the two
step procedure. In the case of a trend with a change in slope, the two step and one step
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procedures may not be equivalent even asymptotically. For simplicity, in what follows we
discuss the properties of two step procedures, which are also the properties of one step
procedures in the usual case of a linear deterministic trend.

Once deterministic regressors have been chosen, we can test the implications of the
unit root hypothesis for the regressions (2.7) or (2.8). We shall concentrate on the behavior
of the t-statistic for testing # = 0 in (2.7) or (2.8) even though it is not the only statistic of

interest in this unit root context. For example, the "normalized bias" Tx also provides a
valid test statistic as it is independent of nuisance parameterss.

The first important point to note is that the asymptotic distribution of e under the
null hypothesis of a unit root, depends on the deterministic terms included as regressors.
Assume for the moment that the included deterministic regressors contain at least all the
deterministic components in the data generating process for ¥y

Rule 1 : Suppose that the deterministic regressors DRt used to construct yt in (2.7) contain
at least the deterministic variables DV, included in the maintained data generating
process. Then under the null hypothesis of a unit root, the asymptotic distribution of te is
non-normal and varies with the set DRt. In the case where the maintained DGP has a
linear trend, the same result holds for regression equation (2.8) when the deterministic
regressors DR: include at least the variables DV,.

Critical values for the asymptotic distribution of t. can be found in the following
sources for different sets of included deterministic regressors. For DR, = {e}, {1} or {1, t},

see Fuller (1976) ; for DR, = {1, ¢, t2, ..., t? ; p=2,..., 5}, see Ouliaris, Park and Phillips

(1989) ; for DR, = {1, 1(t > Tg)}, see Perron (1990a) ; for DR, = {1, t, 1(t > Tg)}h {1, ¢,

5 Asymptotic critical values of the normalized bias can be found in the same sources
given below for the critical values of to The normalized bias forms the basis for a

transformed test statistic proposed by Phillips and Perron (1988) and discussed
below. Dickey and Fuller (1981) consider individual t—statistics on the coefficients
of the deterministic components; these are, however, of little practical use because
their null distribution depends on nuisance parameters. More useful are likelihood
ratio statistics considered by Dickey and Fuller such as a test for the joint
hypotheses that = = 0 and 6 = 0 in (2.8) with DR, = {1,t} as in (2.2). However
simulation experiments suggest that these statistics have lower power than ts.
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(t - Tg)(t > Tg)} and {1, ¢, 1{t > Tg), ¢ 1(t > Tg)}, see Perron (1989a)8. The basic
reason for the dependence of the null asymptotic distribution on the included deterministic
regressors is the fact that the specified trend function needs to be estimated. If the true
coefficients of the DGP were known, only a single set of critical values would be needed,
namely that where DR, = {e}, the null set. The tabulated critical values also reveal the
following fact, which has important implications for the power of unit root tests, that is,
the probability that the tests reject the null hypothesis of a unit root when a
trend—stationary alternative hypothesis is true.

Rule 2 : Under the null hypothesis of a unit root, the left-tailed critical values of the
asymptotic distribution of t. increase in absolute value with the number of included
deterministic regressors.

Things are different when the set of included deterministic regressors does not contain
all the components of the deterministic trend. Of particular interest is the following.

Rule 3 : Suppose that DR, omits a variable in DV, that is growing at a rate at least as fast
as any of the elements of DRt' Then under the null hypothesis of a unit root, the statistic
t- in (2.7) can be normalized in such a way that its asymptotic distribution is standard
normal. In the case where the maintained DGP has a linear trend, a similar result describes
the set of regressors DR? and the distribution of t- in the one step regression (2.8).

Rule 3 applies most obviously to the case where a non—zero linear trend is present in the
DGP but is omitted from the deterministic regressors DR, (Perron and Phillips (1987),
West (1988)). It also applies when the DGP contains higher-order polynomial trends which
are omitted from the regression (Sims, Stock, and Watson (1990)).

It is important not to misinterpret Rule 3. The rule seems at first to suggest that one
could increase the power of unit root tests by omitting certain deterministic regressors
which are present in the data generating process. Consider for instance using the t—statistic
for testing x = 0 in a regression without a trend in the case where the DGP is a unit root
process with drift. In this case the asymptotic distribution is normal and the critical values

s Finite sample and asymptotic critical values are also available for tests of the unit
root in models with a structural change in intercept and/or slope when the date of
the change is assumed unknown, see Banerjee, Lumsdaine and Stock (1990), Perron
(1990b), Perron and Vogelsang (1990) and Zivot and Andrews (1990).
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are smaller (in absolute value) than the non—normal asymptotic critical values obtained
when a trend is included as a regressor. However there are two reasons why this approach
is misguided. First, the finite sample distribution of t. is not invariant to the values of the
parameters of the trend and for small values the normal approximation may be inadequate.
Second, and more important, this procedure leads to tests whose power goes to zero as the
sample size increases. This is an extreme form of inconsistency (an inconsistent test being
defined as one whose power against fixed alternatives does not go to one as the sample size
increases). This is stated in the following rule.

Rule { : a) Assume that DRt omits a variable in DVt that is growing at a rate at least as
fast as any of the elements of DR,. Then the power of the statistic t in (2.7) goes to zero
as the sample size increases. b) Suppose that DRt fails to include a variable in DVt that is
non—trending (e.g., a mean or a change in mean). Then toin (2.7) is a consistent test but
the finite sample power is adversely affected and decreases as the coefficient on the omitted
component increases. Similar results apply to the set of regressors DR: in the one step
procedure (2.8).

It is best to illustrate these results with a few examples. For part a), consider first the
case where the DGP is a stationary process around a deterministic trend function of the
form TDt = Kk + 6t and only a constant is included as a deterministic regressor. This case is
discussed in Perron (1988). Now consider applying the regression equation Ayt =c +
Wt & If the DGP contains a trend component, the only way to fit this trend is to
have x = 0, in which case ¢ becomes the coefficient § on the trend?. In a similar way, if the
DGP specifies a trend function with a changing slope, a test of the unit root constructed
using only a constant and a time trend as deterministic regressors will yield an inconsistent
test. For an example of part (b), suppose no deterministic regressors are included but the
DGP specifies that ¥y has a non—zero mean, then the power of the test will decrease to zero
as the mean increases (in absolute value). Similarly, if the DGP specifies a change in the
intercept of the trend function at some date and no regressors are included to account for
it, the power of the test will decrease as the magnitude of the change in mean increases.

Rule 4 shows the importance of including as many deterministic regressors as there are
deterministic components in the trend function of the data-generating process. Otherwise

7 Kleidon (1986) runs unit root tests on aggregate earnings and dividends omitting a
time trend. These tests are an example of this problem in practice.
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the test will at best lose finite-sample power or at worst have power that goes to zero as
the sample size increases. On the other hand, it is desirable not to include extraneous
deterministic regressors. The following rule states the general behavior when extraneous

regressors are included.

Rule 5 : Suppose that to is constructed using a set of deterministic regressors, DRt, that
includes at least all the deterministic components under the relevant DGP. The power of a
test of the unit root hypothesis against stationary alternatives decreases as additional
deterministic regressors are included.

The statement in rule 5 is partially justified by that stated in rule 2 which states that
the critical values increase (in absolute value) with the number of extraneous deterministic
regressors. However, this must be counterbalanced by the fact that, in finite samples, there
is a downward bias in the estimate of x and this bias increases as the number of extraneous
deterministic regressors increases. The justification for the statement in rule 5 comes from
various published and unpublished simulation studies (see, e.g., Schwert (1989) and
Dejong, Nankervis, Savin and Whiteman (1990a)).

Rules 4 and 5 suggest that care must be exercised in choosing the appropriate
deterministic regressors to include to have tests that have reasonable power properties.
When it is not clear which set of deterministic regressors to include, a sequential testing
procedure may be useful. Such a sequential testing strategy is described in Perron (1988)
for the case where the class of trend functions under the DGP includes either no
component, a constant, or a constant and a trend. Briefly, it was argued in that paper that
a proper testing strategy should start from the most general trend specification (in that
context, a first-order trend polynomial) and test down to more restricted specifications. In
the more general case where the deterministic trend component is allowed to contain more
than a simple first~order polynomial in time, such a sequential testing procedure cannot
yet be applied given that the distribution theory for the relevant statistics has not been
derived. Experimentation with various trend specifications should be guided by the
following general rule, which summarizes our discussion of deterministic components.

Rule 6 : A non rejection of the unit root hypothesis may be due to misspecification of the
deterministic components included as regressors.
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2.2.2. Some tssues concerning power.

Applied researchers are often faced with choices among different types of data set for a
given time series. This can occur, in particular, when data are available at different
sampling f{requencies for different lengths of time. For instance, it is common to have
quarterly observations for the period after World War II, while monthly observations may
be available starting in the early 1960’s. On the other hand, data covering longer horizons
are often available only at an annual frequency. An annual data set might typically contain
around 100 observations, while a quarterly data set might contain more than 160 and a
monthly one over 300. It is then natural to ask which data set would allow the greatest
discriminating power. Is a greater number of observations better in terms of power?

It turns out that for tests of the unit root hypothesis versus stationary alternatives the
power depends very little on the number of observations per se but is rather influenced in
an important way by the span of the data. For a given number of observations, the power
is largest when the span is longest. For a given span, additional observations obtained
using data sampled more frequently lead only to a marginal increase in power, the increase
becoming negligible as the sampling interval is decreased (see Shiller and Perron (1985)
and Perron (1990c))8. In most applications of interest, a data set containing fewer annual
data over a long time period will lead to tests having higher power than if use was made of
a data set containing more observations over a short time period. These results show that,
whenever possible, tests of the unit root hypothesis should be performed using annual data
over a long time period. This conclusion is reinforced by the fact that seasonal adjustment
procedures often create a bias towards non-rejection of the unit root hypothesis (see
Ghysels and Perron (1990) and Jaeger and Kunst (1990)).

On the other hand, long historical data series may pose other problems. First, it may
be the case that the quality of historical data is questionable and that the early methods of
construction spuriously induce a bias against one or the other hypothesis. For instance,
Jaeger (1990) argues that for pre-war data the method of linear trend interpolation was
common and may induce a bias in favor of rejecting the unit root hypothesis. Second, using

8 Perron (1989b, 1990c) also considers testing the random walk hypothesis using a
test of randomness applied to the first—differences of the data. Such a test is
commonly used in finance. He shows that such a test has a power function that is
dominated by unit root tests on levels. Also the power decreases to the size of the
test as the number of observations increases with a fixed span of data. Hence in this
case too many observations destroy the power of the test.
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a long sample of data increases the possibility that the series of interest is affected by a
major structural change in the process characterizing either the trend function or the noise
component. The presence of such a structural change would bias the test in favor of the
unit root hypothesis. Hence, though using a data set over the longest period possible is
desirable in terms of power properties, care must be taken in interpreting the results.

2.2.3. Eztensions to processes with additional correlation.

We now consider extensions that are necessary when allowance is made for possible
additional serial correlation in the noise component of the DGP. We consider the case
where the noise function Z, obeys the ARMA(p,q) process (2.3), A(L)Zt = B(L)et, rather
than the AR(1) model (2.6). The points made above remain valid in this more general
setting but a new issue arises, namely that the asymptotic distribution of the statistic ts in
first—order autoregressions such as (2.7) or (2.8) depends on the correlation structure of the
data. Hence, modifications are necessary to get rid of this dependency on nuisance
parameters. Two approaches seem natural, a parametric and a non—parametric one.

Dickey and Fuller (1979) and Said and Dickey (1984) consider a parametric correction
motivated by the case of a pure AR(p) process, i.e. A(L)Zt = e,, where A(L)=1- a,L -

- apr. In this case, we can write AZt = 1th__1 + X?Zi'yjAZt_j , where r = Xri):lai -1
is the difference between the sum of the autoregressive coefficients and one, while 7j =

°zli)=j+lai' As before, the noise component Zt has a unit root if * = 0. The regression
equation (estimated by OLS) then takes the form :

(2.9) ¥y =7 DRy + ¥ Ay =5y, + El;=17jAyt—j + Uy
or
(2.10) Ay, = T'DR? + 1y,_, + El‘;:l'yjAyt_j +u,.

where k = p — 1. Here DRt and DR{ are vectors of deterministic regressors as discussed
above. In the case of a pure AR(p), the asymptotic distribution of t; obtained from (2.9) or
(2.10) is the same as the asymptotic distribution of to obtained using a first—order
autoregression with AZ, = 72, , + €. In the more general case where the noise
component is an ARMA(p,q), Said and Dickey (1984) suggest that the process can be
approximated by a high-order autoregressive process, in which case the regression
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specifications (2.9) and (2.10) remain appropriate. The technical condition for such a
procedure to remain asymptotically valid is that the order of the estimated autoregression,
k, increases to infinity at a suitable rate as the sample size increases to infinity.

In practice, the choice of the truncation lag parameter k is an issue. First, even in the
pure AR(p) case, the order p is usually an unknown variable. In the general ARMA(p,q)
case, the theoretical conditions for the asymptotic validity of the procedure are not
informative enough to guide any choice in finite samples. This problem is of importance
because it is often the case that the outcome of the test depends on the particular choice of
this truncation lag parameter. Several factors may explain such a sensitivity. First, too few
lags may adversely affect the size of the test. Second, the introduction of too many lags
may reduce power (because of more parameters being estimated and a reduced number of
effective observations, given the need for additional initial conditions). Finally, as k
changes, the initial conditions also change. This last factor may be of importance given the
non-invariance of .the power function of the statistics to the initial conditions (see, e.g.,
DeJong, Nankervis, Savin and Whiteman (1990b)). These factors point to the importance
of choosing the truncation lag parameter judiciously. The choice of a fixed k, independent
of the data, is likely to be inappropriate. The following data dependent procedure is easy to
implement and is likely to yield tests with better size and power properties.

Suggested procedure to select k 9: Start with some upper bound on k, say kmax, chosen a
priori. Estimate an autoregression of order kmax. If the last included lag is significant
(using the standard normal asymptotic distribution), select k = kmax. If not reduce the
order of the estimated autoregression by one until the coefficient on the last included lag is
significant. If none are significant, select k = 0.

Such a procedure is studied in some detail by Hall (1990). It is in fact motivated by
the pure AR(p) case. In the case of an AR(p), such a procedure will select the true order
with probability one asymptotically and the distribution of to will be the same as in the
fixed k case, provided the upper bound kmax is selected greater than the true order. In the
general case where moving-average components are present no general consistency results

9 Of course, this is not the only possible data dependent procedure for selecting k.
Any procedure that selects the correct autoregressive order asymptotically, for
example by using the Akaike Information Criterion or a joint F—test of significance
on additional lags, will be adequate. The rule stated here has the advantage of
simplicity, but additional work is needed on the finite-sample properties of
alternative procedures.
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are available yet. We conjecture, however, in analogy with the Said-Dickey (1984)
extension, that the asymptotic distribution would remain unchanged provided the upper
bound kmax increases at a suitable rate as the sample size increases to infinity. Simulation
evidence presented in Hall (1990) suggests that such a data based method induces little size
distortion in finite samples. It is important, however, to note that the sequential method
must proceed from a general model to more specific ones. An alternative procedure would
be to select the order by starting from a parsimonious specification and including
additional lags until the last one is significant; but this is not asymptotically valid and
leads to more serious size distortions in finite samples.

An alternative way to handle additional serial correlation in the noise process Zt has
been proposed by Phillips (1987) and Phillips and Perron (1988). Their approach is to add
to the original unit root test statistic a correction factor that eliminates the dependency of
the asymptotic distribution on the serial correlation of Zt' The correction uses a
nonparametric estimate of the spectral density of AZt at frequency zero, measured relative
to the sample variance of AZt. This nonparametric estimate is a weighted sum of the
autocovariances of AZt, where the weights are chosen in such a way that the estimated
spectral density is positive by construction. Phillips and Perron derive transformed

versions of both the normalized bias Tx and the t-statistic te but the former is preferable
as it is more powerful.

These test statistics are easy to implement and asymptotically valid under quite
general conditions. However, several simulation studies have shown that they have serious
size distortions in finite samples when the data-generating process has a predominance of
negative autocorrelations in first differences (see, e.g. Schwert (1989), Phillips and Perron
(1988), and DeJong, Nankervis, Savin and Whiteman (1990b)). This suggests that the
Phillips—Perron tests may be less reliable than the Dickey-Fuller methodology where a
parametric correction is applied. An important fact which leaves some hope for this class of
statistics is that simulation evidence suggests their size-adjusted power is substantially
higher than the power of augmented Dickey—Fuller statistics. Therefore an important topic
on the research agenda is to find a way to modify the Phillips—Perron procedure in such a
way as to alleviate the size problem while retaining good power properties. Preliminary
investigation by Stock (1990) seems to indicate that some improvements are possible on
this front. We discuss some of this evidence in the next subsection.
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2.2.4. Alternative approaches to the unit root issue.

So far we have followed the bulk of the existing literature by focusing on the properties
of coefficients and t—statistics in autoregressions for the variable Yy Recently some authors
have explored the implications of the unit root model compared to those of a
trend-stationary model by looking at the asymptotic behavior of the series {yt} itself. In
many ways this is a simpler approach.

Suppose for the moment that the DGP contains no deterministic component so that ¥y
= Zt , 2 zero mean ARMA(p,q) model. If ¥y contains a unit root, we have, under general

1/2

conditions, that T yp converges in distribution to an appropriately scaled Brownian

motion. Under the hypothesis that ¥y does not contain a unit root, we have T_l/zyT
converging to zero. Stock (1990) has used this idea to develop a class of statistics to test
the null hypothesis of a unit root. The statistics can easily be extended to allow for
deterministic components in the trend function by running preliminary regressions of y, on
the deterministic variables. Just as before the asymptotic distribution of these statistics
varies with the set of deterministic components included. Stock suggests, among other
tests, modifications of the Sargan—Bhargava (1983) and Phillips—Perron (1988) procedures
based on an autoregressive spectral density estimator. Simulation evidence suggests that
the size problem is alleviated while the power is greater than that of most available
statistics. This is an interesting avenue for further research.

This idea of using the different behavior of sample moments of the data under the
hypotheses of a unit root and of stationarity extends in a natural way to provide statistics
for the null hypothesis of stationarity versus the alternative hypothesis of a unit root

behavior. Consider for instance the quantity T_3/ 22'ftyt. Under the hypothesis that Yy is a

zero mean stationary process, this converges to a nondegenerate normal distribution with a
variance that is a function of the spectral density of yg at frequency zero. Under the
hypothesis that ¥y follows a unit root process, this statistic explodes. Park and Choi (1988)
suggest a test for the null hypothesis of stationarity that uses superfluous regressors. Their
test can be seen as exploiting the behavior of the statistic discussed here. We give further
details in a multivariate context below.
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2.3. The near—observational equivalence of trend— and difference-stationary processes.

In the last section we discussed the possibility of testing both the null hypothesis of a
unit root process and the null hypothesis of a trend-stationary process. This naturally leads
us to ask what is the relation between these two classes of models and what is the
importance of specifying one or the other hypothesis as the null.

We first recall from our discussion of the Beveridge-Nelson decomposition that a unit
root process is one for which the spectral density of the first difference, h Ay (0), is nonzero.
A trend-stationary process, by contrast, has h A (0) = 0. This means that the unit root
hypothesis is a composite null hypothesis, which has the following interesting implication.

Rule 7 : In finite samples, any trend-stationary process can be approximate.d arbitrarily
well by a unit root process (in the sense that the autocovariance structures will be
arbitrarily close).

This point has been highlighted by Blough (1988) and Cochrane (1989). The idea is
quite simple. For any trend-stationary process, we have h Ay (0) = 0. A unit root process
with h Ay (0) = ¢, say, with ¢ > 0 can arbitrarily approx]mate a trend-stationary process
prowded € is chosen small enough relative to the sample size. The following example
illustrates this point in a straightforward way. Consider an ARMA(1,1) process:

(2.13) Yy =¥,y +u, + bu_,

This process is difference stationary when ¢ = 1 and -1 < # < 1, but trend stationary
(with a zero trend) when -1 < ¢ < 1 and -1 < # < 1. Consider the case where the
trend-stationary process has ¢ = # = 0 (so the series is white noise), while the unit root
process has ¢ = 1, -1 < # < 1 (so the series is an IMA(1,1) with a negative moving average
coefficient). For any finite sample size, the trend-stationary process will be approximated
arbitrarily well by the difference—stationary process (in the sense that they will have an
arbitrarily close autocovariance structure) provided 4 is close enough to but not equal to
—1. This fact has the following interesting implication concerning the power of unit root
tests in finite samples.

HRule 8 : In finite samples, any test of the unit root hypothesis against trend—stationary
alternatives must have power no greater than its size.
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Rule 8 is simply an implication of the fact that the probability distributions of the
statistics of interest are continuous in the parameters of the process for Yy Therefore, given
rule 7, the finite sample distribution of any statistic under a particular trend-stationary
process can be arbitrarily close to the finite sample distribution of the statistic under a
difference—stationary process which approximates the trend-—stationary process. In terms of
the example (2.13), the critical values of a unit root test must be chosen such that the
probability of rejection is less than or equal to the size of the test for any value of the
parameter § in the interval (-1 < 6 < 1). But when @ is arbitrarily close to —1 the unit root
process is indistinguishable from a trend—stationary process, so the test must have power
equal to its size against such a process. Using a rejection region based on the asymptotic
distribution therefore means that any test will have an exact size greater than its nominal
size for some part of the parameter space permitted under the null hypothesis. Schwert
(1989) presents Monte Carlo results that illustrate this point.

Some have argued that this problem occurs because testing the null hypothesis of a
unit root versus the alternative of a trend—stationary process implies testing a composite
null hypothesis (hAy(O) # 0) versus a point alternative (hAy(O) = 0). The argument is
then that the problem could be avoided by reversing the null and the alternative and
testing the null hypothesis of trend-stationarity versus the alternative hypothesis of a unit
root process. This argument is, however, incorrect as one can express the trend—stationary
hypothesis as a composite null and the unit root hypothesis as a point alternative.

Consider, for example, the following measure. Let hl denote the half life of a shock e, on
the level of the series Yy Consider now the quantity hl_l. For any difference-stationary

process h! = 0 while for any trend-stationary process w! > o By analogy with rule 7
we have the following.

Rule 9 : In finite samples, any unit Toot process can be approximated arbitrarily well by a
trend-stationary process (in the sense that the autocovariance structures will be arbitrarily
close).

This result follows because for any unit root process there will exist a trend—stationary
process for which shocks have effects on the level of {yt} that are arbitrarily close to being
infinite. For example in the simple first-order autoregressive model, ¥y = ¢yt_1 + e, the
random walk process can be arbitrarily well approximated, in any finite sample, by a
stationary process with ¢ less than but close to one. Following the same logic as in the case
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of tests of the null hypothesis of a unit root, we have the following.

Rule 10 : In finite samples, any test of the trend—stationarity hypothesis against unit root
alternatives must have power no greater than its size.

The special feature of importance here is that for any trend-stationary process there is
a difference-stationary process that approximates it arbitrarily well in finite samples and
vice versa. It is this dual relationship stated in rules 7 and 9 that creates a problem beyond
what one usually encounters in hypothesis testing. Given the statements in rules 8 and 10,
should we altogether abandon the idea of trying to discriminate between a unit root process
and a trend-stationary process? Some have argued that we should (e.g., Christiano and
Eichenbaum (1989)). We favor a more pragmatic answer to this question, namely that we
should still try to distinguish these two classes of processes while keeping in mind that
strictly speaking we may reach incorrect conclusions if the DGP belongs to a particular
subset of the parameter space.

For the argument that follows, consider the usual framework where the unit root is the
null hypothesis. When applying any test of the unit root using asymptotic critical values, it
must be the case that the test has an exact size greater than the nominal size for
difference-stationary processes that are within some neighborhood region of the class of
trend-stationary processes’®. The magnitude of this region decreases as the sample size
increases. A given testing procedure is said to have better finite sample properties than
another procedure if the region where the size becomes greater than its nominal
counterpart is smaller for a given sample size T. In any event, unit root tests must be
viewed in a context where the parameter space under the null hypothesis is restricted (the
more so with smaller sample sizes). The same comments apply to tests of the null
hypothesis of trend—stationarity.

Why should we be willing to use procedures that yield improper inference for some
part of the parameter space? The answer is a pragmatic one. For practical purposes it does

10 One mith think that this neighborhood could be conveniently parameterized in
terms of the quantity h, (0). Unfortunately this is not the case because one can

take a unit root process with any value of h,,(0) and find a trend—stationary

process that approximates it arbitrarily well in a finite sample. It might be possible
to characterize the neighborhood region in terms of the behavior of the spectral
density function near the zero frequency, but more work is needed on this topic.
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not really matter if we label a difference—stationary process with coefficient hAz(O) close to
zero as a trend-stationary process, or if we label a trend—stationary process with extremely
persistent shocks as a difference—stationary process. Indeed these kinds of errors may even
have practical advantages.

To illustrate this last point we conducted a small Monte Carlo experiment. We
considered the family of ARMA(1,1) processes given in (2.13). We simulated both
difference stationary ARMA(1,1) processes that are close to being trend stationary, and
trend stationary ARMA(1,1) processes that are close to being difference stationary. The
former processes have ¢ = 1 and 6§ approaching -1 (for the Monte Carlo experiment we
chose 0 = —0.5, —0.8, ~0.9, —0.95, and —0.98). The latter processes have ¢ approaching 1 (we
set # = 0 and chose ¢ = 0.5, 0.8, 0.9, 0.95, and 0.98). For each data generating process, we
drew 5000 samples of length 100 and ran standard unit root tests with estimated linear
trends. We calculated the augmented Dickey—Fuller ts statistic and the Phillips—Perron

transformation of the normalized bias T, denoted by Z(7). For the former we used the lag
length selection procedure described in the text, setting kmax = 6, for the latter we set k =
kmax. Table 1 reports the fraction of 5000 runs in which the unit root test statistics
exceeded their asymptotic 5% critical values.

Two points are very clear from this exercise. First, when the true DGP has a unit root
but is close to being stationary, then the unit root tests have severe size distortions: they
reject the true null hypothesis too often. To take the most extreme case, when ¢ = 1 and ¢
= —0.98, the unit root hypothesis is falsely rejected at the 5% level at least 98% of the
time. The reason for this is of course that in a finite sample the process looks very much
like white noise; the unit root component, which dominates asymptotically, has only a
small effect in a sample of length 100. Second, when the true DGP is stationary but has a
root close to unity, then the unit root tests have very little power. If we compare the
integrated case ¢ = 1 and § = 0 with the stationary case ¢ = 0.98 and # = 0, for example,
we find that the rejection rate is no more than 1% greater for the stationary case than for

the unit root case.

So far these Monte Carlo results are quite standard (see for example Schwert 1989).
However we now show that the cases in which the unit root tests give false answers are also
ones in which these false answers may have some practical utility. For each of our artificial
data samples, we estimated an autoregressive forecasting model in levels and another
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autoregressive model in differences. In the former model a linear trend is estimated, while
in the latter model the mean of the differenced data is estimated. We chose the lag length
for each model using the lag length procedure described in the text, with kmax = 6. Then
we used the models estimated up through period 100 to form out-of-sample forecasts one
period ahead and twenty periods ahead, that is forecasts of Y101 and Y120° We drew 25
realizations of Y101 and Y120 from the true DGP, and calculated out—of-sample mean
squared errors of forecast for the simulation. Finally we averaged across all 5000
simulations to get average mean squared errors at horizons one and twenty for the levels
and differences forecasting models. These average mean squared errors are reported in the
fourth and fifth columns of Table 1. For each DGP, the mean squared errors for
one—period-ahead forecasts appear above those for twenty-period ahead forecasts.

The main point to note is that near-stationary unit root DGP’s are better forecast
using stationary forecasting models, while near-integrated stationary DGP’s are better
forecast using integrated forecasting models. Among the DGP’s we consider, stationary
forecasting models are superior for all processes with ¢ = 1 and 0 < -0.90, while unit root
forecasting models are superior for all processes with 6 = 0 and ¢ > 0.90 (one period ahead)
or 0.95 (twenty periods ahead). The table also reports the average out-of-sample mean
squared errors for mixed strategies. These use the levels forecasting model when the
Said-Dickey or Phillips—Perron tests reject at the 5% level, and the differences forecasting
model otherwise. For most DGP’s, the mixed strategies have mean squared errors that are
close to those of the best pure forecasting modeltl. These results illustrate that unit root
test procedures can be practically useful for improving the quality of macroeconomic
forecasts, even in small samples where they have only a limited ability to distinguish unit
root processes from stationary processes. The example studied here is simple, but we
believe it illustrates a fairly general principle.

Unit root tests have some other uses in finite samples. They can be helpful if one
wishes to know whether stationary or integrated asymptotic distributions provide a better
approximation in a particular application. Consider for example an AR(1) model. The
limiting distribution of the least—squares estimator of the autoregressive parameter has a

1 There are some DGP’s for which the unit root tests do not achieve the best possible
mean squared errors. For example when ¢ = 1 and = —0.8, the unit root tests tend
to reject the null even though the best forecasting model is a difference stationary
model. However this phenomenon tends to occur in cases where the difference in
forecasting performance between the unit root and trend stationary models is small.
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normal asymptotic distribution if the autoregressive parameter is less than one. However, if
this parameter is close to one the unit root asymptotic distribution actually provides a
better finite—sample approximation than the asymptotically correct normal distribution
(Evans and Savin (1981)). In more general contexts also, it may be better to use integrated
asymptotic theory for near—integrated stationary models, and stationary asymptotic theory
for near—stationary integrated models. In principle, of course, it would be better to have
recourse to the exact finite sample distribution but in practice this can rarely be calculated
analytically. Unit root tests are a simple alternative to extensive Monte Carlo simulations
which are usually needed to calculate finite sample distributions.

Unit root tests can also help researchers to impose plausible restrictions on more
structural time series models. Unit root restrictions may help to increase the efficiency of
estimates (i.e. reduce mean squared error) even if the variables in the model do not have
true unit roots but are near-integrated. This is just a restatement of the general principle,
familiar in the case of zero restrictions, that imposing false restrictions may help reduce the
mean squared error of estimates. False restrictions increase the bias of forecasts, but they
may reduce the variance by enough that the mean squared error is actually reduced. The
Monte Carlo experiment described above illustrates this phenomenon in a univariate
context, but the general principle is perhaps even more important in multivariate time

series models.
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3. REVIEW OF MULTIVARIATE PROCEDURES AND ISSUES.

This section discusses issues related to unit roots in a multivariate context.
Throughout we shall consider the properties of a vector ' of n variables, for each of which
a sample of size T is available. The discussion is organized into four main sections: 1)
representation and characterization of the models describing the evolution of the vector Yy
with particular emphasis on the issue of cointegration among their elements: 2) testing
procedures related to cointegration; 3) estimation and inference in multivariate models
with cointegration; and 4) a discussion about situations where these techniques are
necessary and where they are not.

3.1 Representation of Multiple Time Series with Some Unit Roots.

§.1.1 Basic Concepts of Cointegration.

We start with an (n x 1) vector of variables ¥y~ To keep the framework simple, we
suppose that each element of this vector has a representation given by :

(3.1) Vi = TDy + 24, Ai(L)Zit = B(L)e;, , (i=1,..n)

where TDit is the deterministic component of variable i, Zit is its noise function modeled

as an ARMA process and the innovation e, is N(0, a?). This is the same model we
considered in the previous section. As before, we assume that ¥;¢ contains at most one
autoregressive unit root and that the remaining roots are strictly outside the unit circlets.
Note that the model (3.1) allows all variables to have non—zero deterministic trends. For
simplicity of exposition, and given the results available in the literature, we suppose that
the deterministic component of each series can be modeled by a first—order trend
polynomial, i.e. TDt = &k + 8t where x and § are now (n x 1) vectors rather than scalars.

A central concept in the analysis of a set of nonstationary variables is that of
cointegration due to Granger (1981, 1983) and Granger and Weiss (1983) and discussed in

12 The analysis could be made more comprehensive by allowing the possibility of
multiple unit roots. We refrain from considering this more general case for two
reasons. First it would make the interpretation oF the issues involved more difficult
to convey without adding much insight. Secondly, the case of practical interest is
that where each series is either integrated of order one or is trend—stationary.
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more detail in Engle and Granger (1987). The idea is that even though each series may
have a unit root, there may exist various linear combinations of the variables which are
stationary. Stated more precisely, we have the following definition.

Definition 1: A vector of variables defined by (3.1) is said to be cointegrated if there exists
at least one n-element vector ﬁi such that ﬂiyt is trend-stationary. ﬁi is called a
cointegrating vector. If there exist r such linearly independent vectors, ﬂi (i=1,.,r), we
say that {yt} is cointegrated with cointegrating rank r. We then define the (n x r) matrix
of cointegrating vectors § = (ﬂl, ey ﬂr). The r elements of the vector ﬁ’yt are
trend—stationary and f is called the cointegrating matrix.

An important fact to note about cointegrating vectors is the following :

Rule 11 : The cointegrating vectors are identifiable at most up to a scale transformation.
That is, if £,"y, is I(0), then cf}y, is also I(0) for any constant ¢ # 0.

Additionally, there are a few things to note about definition 1. First, this definition
allows the linear combinations of the variables which eliminate the unit roots to have
non—zero linear trends. This corresponds to the notion of "stochastic cointegration" in
Ogaki and Park (1990). A stronger definition of cointegration, called "deterministic
cointegration" by Ogaki and Park, would require that the same vectors ,Bi which eliminate
the unit roots also eliminate the deterministic trends from the data. For deterministic
cointegration the matrix f§ must be such that both ﬂ’TDt is a constant and also §’ Zt is
I{0). When the deterministic trend is linear in time, this requires that 4’ § = 013.

Second, definition 1 does not require that each of the individual series be integrated of
order one; some or all series can be trend—stationary. In this respect definition 1 differs
from the definition given in Engle and Granger (1987). The motivation for our more
general definition is that in practice a researcher is often faced with a vector of series that
can be quite different in nature incorporating some variables with I(1) noise components
and others with I(0) noise components. Allowing the presence of trend—stationary variables
has important implications. If ¥y contains a trend-stationary variable it is trivially

1 An example of a system that is stochastically cointegrated but not deterministically
cointegrated is a system where the individual variables are log real output levels of
countries with different deterministic rates of population growth, and stationary log
differences of per capita output.
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cointegrated, the cointegrating vector being the unit vector which selects the stationary
variable. If all the series are trend-stationary, the system is again trivially cointegrated
since any linear combination would yield a trend-stationary variable. An important point

to note is the following.

Rule 12 : In the case where at least one integrated variable is present, there cannot exist
more than n - 1 linearly independent cointegrating vectors.

To see this, suppose first that there are two variables, one being I(0) and the other
I(1). Since a non-stationary variable cannot be combined with a stationary variable to
yield a stationary variable, the only cointegrating vector is the unit vector (or a scale
transformation) which selects the I{0) variable. Suppose now that there are two I(1)
variables and that the normalized linear combination Yig t3Y¥q is 1(0). The cointegrating
vector (1 a) is then unique (up to a scale transformation) since any other linear
combination would yield an I(1) variable. This line of reasoning extends to systems of
higher dimensions. This feature will prove of some importance when discussing the
properties of models involving co-integrated systems.

§.1.2 Why is Cointegration interesting ?

Before turning to the detail of cointegrated systems it is useful to provide some
motivation for studying them. At first sight the idea of cointegration among variables may
seem to be an unlikely special case. If one has a set of integrated variables, it may seem
highly restrictive to assume that some linear combination of them is stationary. In fact,
however, the idea of cointegration has become extremely popular in macroeconomic
analysis precisely because it arises naturally from multivariate macroeconomic models with
unit root driving processes.

There are two main mechanisms that can give rise to cointegration in a
macroeconomic model. To understand these, we first mention the Granger Representation
Theorem that relates cointegration to the existence of an error—correction representation
for the data (to be discussed more precisely below). In the error—correction representation,
the stationary linear combination of the model variables Granger causes changes in at least
some of the variables. As always, this Granger causality can arise either from true
causality, or because some variables in the model are forecasting others.
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The first mechanism is one of true causality. This is emphasized in the work of the
"LSE School" (Phillips 1954, Sargan 1964, Davidson, Hendry, Srba, and Yeo 1978,
Davidson and Hendry 1981, Hendry 1986) and by Engle and Granger (1987). These authors
envisage a sluggish adjustment to some long—run equilibrium described by economic theory.
The short-run adjustment is a "servo—mechanism" which econometricians are free to model
pragmatically. As Granger (1986, p. 213) puts it,

"At the least sophisticated level of economic theory lies the belief that certain pairs of
economic variables should not diverge from each other by too great an extent, at least
in the long-run. Thus, such variables may drift apart in the short-run or according to
seasonal factors, but if they continue to be too far apart in the long-run, then
economic forces, such as a market mechanism or government intervention, will begin
to bring them together again."

Any model that imposes a deterministic long-tun relationship between two integrated
macroeconomic variables, but which allows the variables to deviate in the short run, will
display cointegration.

The second mechanism by which cointegration can arise involves forecasting rather
than true causality. As described in Campbell and Shiller (1987, 1988), if one variable is
first—order integrated and another variable is a rational forecast of future values of the first
variable, then the two variables will be cointegrated. In general, when the forecasts are
based on a multivariate information set, the stationary linear combination of the two
variables will Granger cause at least the variable being forecast, and possibly the variable
that embodies agents’ forecasts as well. The term structure of interest rates provides an
example. If short—term interest rates are I(1) and term premia are stationary, then long—
term and short—term interest rates will be cointegrated, with Granger causality from the
yield spread to changes in both short-term rates and long-term rates. This Granger
causality need not reflect any causal mechanism relating short rate changes to past slopes
of the term structure.

Cointegration can also arise in models with forward—looking, optimizing agents and
I(1) forcing variables. For example, a real business cycle model with a Cobb—Douglas
production function and a random walk technology shock implies that log consumption, log
investment, and log output are cointegrated (King, Plosser, and Rebelo 1988). Here both
the two mechanisms discussed above are at work.
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3.1.8 Some Useful Representations.

We now discuss a number of alternative representations of multivariate systems with
unit roots and possible cointegration. These are necessary background for the methods of
testing and estimation to be discussed subsequently.

i) The autoregressive and error—correction representations.

Following the work of Sims (1980), vector autoregressive (VAR) systems have become
an increasingly popular device to model the stochastic properties of a multivariate system.
It is therefore useful to analyze how, if at all, the possibility of unit roots and cointegration
affects the estimation and interpretation of VAR models. In keeping with our practice of
separating the trend function from the noise function, we start with the following reduced
form representation :

(3-2) yy=r+ 8 +2; A(L)Z, =,

where x and § are n—element vectors of fixed coefficients. A(L) is a matrix lag polynomial

of order p such that A(L) =1- AL - A?‘L2 - - Apr. The A, are (n x n) matrices of
fixed coefficients and the disturbances are assumed to be distributed normally with mean 0
and covariance matrix I. Just as in the univariate case, this vector autoregressive system of
order p can be viewed as an approximation to a more general multivariate ARMA process.
For the issues to be discussed, there is little loss of generality in considering VAR models.
Following Dickey and Fuller (1979) in the univariate case, we can write (3.2) as follows:

(3.3) Ayt =pt+ n(yt-l - §t-1)) + El‘;:leAyt__j +e,

where k =p -1, 1 =3P _ A -1, and ry=- E‘f:jHAi for j = 1,...,k. The constant
vector 4 is related to the drift vector § and the other parameters of the model, as discussed
further below. The matrix II is the multivariate analog of the coefficient = in the univariate
case (2.10) which measured the sum of the autoregressive coefficients less one. In the
univariate case, a unit root is present if the sum of the AR coefficients is one, equivalently
if # = 0. In the present multivariate case, the correspondence between unit roots and the
nature of the matrix Il is not as straightforward. Many of the issues concerning

cointegration can be analyzed by simply using (3.3) and searching for conditions on the
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nature of the variables y, and the matrix IT such that both sides of (3.3) are stationary.
Since we do not consider processes with more than one unit root, the left hand side of (3.3)
is stationary. The right hand side will also be stationary if and only if the components of
M(y,_; — &t-1)) are stationary. There are three cases of interest and they relate to the
rank of the matrix I1. In the following discussion, we use the notation y: to denote i~ &,
the deviation of the series from their deterministic trends.

Consider first the case where Il is of full rank n. For all the elements of M(y, , -
&t-1)) = Iy{_; to be stationary we need that all n linearly independent combinations of
y‘t*_1 formed by the rows of II are stationary. Given rule 12 it must then be the case that
all the elements of ¥, are stationary around the trend vector &t. This case corresponds to
the standard VAR model where no restrictions are imposed on the reduced form
representation. Here standard VAR analysis applied to the level of the series is the
appropriate estimation strategy. Consider now the case where the only way to make I‘Iy;:_1
stationary is to have the rank of Il be zero. This implies that [l = 0, an (n x n) matrix of
zeros, and that there are no linear combinations of the variables ¥y which are
trend—stationary. In this case (3.3) becomes a VAR in first—differences.

The case of particular interest is when II is neither of rank zero nor of full rank.
Denote the rank of IT by r. Then there exist (n x r) matrices « and f such that

(3.4) I=af.

In order to have Hy’{_1 stationary, it must be the case that ﬁ’y:_l is stationary. Hence fis
the matrix whose columns are the linearly independent cointegrating vectors and the rank
of the matrix II corresponds to the cointegrating rank of the system of variables ¥y (using
definition 1). In the stronger case of deterministic cointegration, where we require that
Iy, , is stationary, ﬂ’yt_l must be stationary so we require §’§ = 0. In analogy with rule
11 which applied to a single cointegrating vector, we have the following important fact.

Rule 18 The parameters of a and £ are not identified since for any non—singular matrix F

the matrices oF and ﬁ(F’)—1 yield the same matrix II. This implies that the data can only
give information about the space spanned by the columns of g (the cointegrating space)

and the space spanned by a.
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One solution to this identification problem is to normalize one element of each column
of f, for example by imposing a unit coefficient on one variable in each equation. Johansen
(1989a) points out, however, that this is valid only if we have a priori knowledge that the
coefficient associated with that variable is non—zero. In practice this may be unappealing.
Fortunately, it is often unnecessary to separately identify the parameters of a and §; but
care must be taken to avoid testing hypotheses about these parameters when they have not
been identified by normalization or other prior restrictions (Park (1990b)).

Before describing how one can interpret the matrix ¢, it is useful to give an
interpretation of the vector ﬂ'y’{. Each column of the matrix 3 can be viewed as describing
some long run relationship between the integrated series in the vector y:. The fact that we
require ﬁ'y: only to be stationary (as opposed to constant or white noise) means that
allowance is made for the possibility of serially correlated but temporary divergences from
this relationship. Accordingly, the elements of ﬁ’y’{ are sometimes called "equilibrium
errors", the equilibrium relation being described by the cointegrating vectors. Of course, as
discussed in section 3.1.2, this use of the term equilibrium should not be confused with the
common use in macroeconomics to refer to the outcome of a market—clearing economic
model. Equilibrium errors can arise in the most classical of macroeconomic models, as
discussed by King, Plosser, and Rebelo (1988).

We now introduce the notation z,_, = 'y} ; = ﬁ’(yt__l - §t-1)), and rewrite (3.3)

(3.5) Ay, =p+az_ |+ Ef]'(:l[‘jAyt—j +e .

(3.5) describes what we referred to in section 3.1.2 as an error—correction model. It specifies
that the change in y, depends not only on the lagged values of these changes but also on
the equilibrium error that occurred in the previous period. Viewed in this error correction
framework the matrix a can be interpreted as a measure of the speed by which the system
corrects last period’s equilibrium error. The matrix «a is often called the adjustment matrix,
although of course it need not arise from costs of ad justment.

The error—correction model (3.5) implies that when both unit roots and cointegration
are present, an unrestricted VAR in the first-differences of y, is misspecified because the

lagged equilibrium errors z,_. are omitted as regressors. An unrestricted VAR in the levels

t-1
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of ¥y is not misspecified but involves a loss of efficiency because some restrictions are
omitted, namely the reduced rank of the matrix Il in (3.3). We note also that it is possible
to rewrite the error—correction model (3.5) as a VAR, not in first differences or levels of the
original series, but in the levels of r equilibrium errors z, and the differences of n —r of the
original series. This representation is used in Campbell and Shiller (1987, 1988). We

summarize the major points discussed so far in the following rule.

Rule 14 : In the general VAR process (3.3) three cases are possible : a) rank(II) = n in
which case all variables are trend—stationary and application of an unrestricted VAR in
levels is appropriate ; b) rank(IT) = 0 (or I1 = 0), in which case no cointegrating relation
exists and application of an unrestricted VAR in first—differences is appropriate ; c)
0 < rank(I1) = r < n, in which case at least one integrated variable and one cointegrating
relation are present. In the latter case an unrestricted VAR (either in levels or in
differences) is inappropriate but the data can be described by an error—orrection model of
the form (3.5) or by a VAR in r stationary combinations and n — r differences of the
original variables.

One final point about the error—correction representation is emphasized by Johansen
(1989a,b). In general the error—orrection model (3.5) contains an unrestricted constant
vector y. When the series y, are not trending (6 = 0), however, one can show that y = —
Ik = — af’k, where & is the vector of intercepts in (3.2). In this case (3.5) can be
rewritten as:

(3.6) By, = o'y, —BR) +T5_ T Ay, +ep

In the representation (3.6), constant terms appear only because the equilibrium errors have
nonzero means §’«. These need to be subtracted from the equilibrium errors on the right
hand side of (3.6) in order to satisfy the condition that the unconditional mean of Ay, is
zero when there are no trends in ¥y Johansen (1989a,b) emphasizes that the restriction in
(3.6), as compared with (3.5), can affect estimation and testing.

1) The moving average representation.

It is useful at this point to consider how cointegration restricts the moving-average
representation of the first—differences of the data. By analogy with the earlier univariate
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analysis, we use the notation ¥(L) to denote the moving average representation of the first
difference of the multivariate noise process 2, A7, = \P(L)et. In general ¥(L) is a matrix

polynomial in L of infinite order and can be written in the form ¥(L) = onc’zo‘llej, where
¥, = L. The first differences of the data can be written as:

(3.7) (1-L)y, = 6+ ¥(L)e,.

A multivariate version of the Beveridge-Nelson decomposition (2.4) enables us to rewrite
(3.7) as:

(3.8) v, = B+ B+ B(1)S, + V¥(L)e,

where as before S, is defined by S, = z}:let (this is now a vector of n random walks), and

W*(L) is defined to equal (1 — L)—l[‘I!(L) — ¥(1)]. The vector p* is a vector of constants.
Multiplying both sides of (3.8) by the matrix 4’ and using the definition of z,, the vector of
equilibrium errors, we have :

(3.9) 2y = f'u* + ' ¥(1)S; + ' ¥*(L)e,.

Given that the left hand side of (3.9) is stationary we require its right-hand side to be
likewise. The first term is a constant and the third term is stationary given the properties
of ¥*(L), but the second term involves the random walk component 5,. Therefore we need
£'¥(1) = 0. Since fis an (n x r) matrix, this implies that the rank of ¥(1) is n - r. It is
also easy to verify (see Engle and Granger (1987)) that ¥(1)a = 0, expressing a
relationship between the matrix sum of the moving-average coefficients and the
adjustment matrix. These results, which we summarize in the following rule, are helpful in
discussing the nature of some testing procedures.

Rule 15 : In the moving-average representation of the first—differences of the data (3.7),
the presence of a cointegrating relation among the components of the vector ¥y implies that
¥(1), the matrix of the sum of the moving average coefficients, is singular. If there are r
linearly independent cointegrating vectors, ¥(1) is of rank n — r and the following relation
holds : f'¥(1) = 0 and ¥(1)a = 0.
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i11) The long—run covariance matriz.

Consider again the first—differenced representation of the data given by (3.7). The
existence of cointegrating relationships implies restrictions on the long-run covariance
matrix of this vector of first—differences. To be more precise, we mean by the long-run
covariance matrix the spectral density matrix evaluated at frequency zero which, following
the notation used for the univariate case, we denote as h, (0). This long—run covariance

matrix is related to I, the covariance matrix of the vector e, and to ¥(1), the matrix sum

t!
of the moving-average coefficients, as follows :

(3.10) hpy(0) = ¥(1)B¥(1)".

We stated this relationship for the scalar case when discussing the Beveridge—Nelson
decomposition in section 2. Since §’¥(1) = 0, as discussed in the last subsection, we have
ﬁ’hAy(O) = 0 which means that the rank of the matrix hAy(O) is n — r. This fact has been
used by Phillips and Ouliaris (1989, 1990) to derive testable implications associated with
cointegration. We summarize the facts of practical interest as follows.

Rule 16 : The long run covariance matrix of the first—differenced data, hAy(O)’ will be of
full rank only if no cointegrating relation exists among the variables Yy If there exist r
cointegrating relations h Ay(0) is singular and has rank n —-r.

This singularity of the long run covariance matrix when cointegration is present
corresponds to the fact that the first difference of a stationary univariate series has zero
long run variance. In the multivariate case considered here, the long run covariance matrix
will also be singular if one of the series is stationary since this implies the presence of a
cointegrating relation (though a trivial one). The relation between the univariate and -
multivariate case is probably best understood by noting that if all the series are stationary
then hAy(O) is the null matrix. This holds because in this case there are n cointegrating
vectors and hence the rank of h Ay(0) is zero.

tv) The common trend representation.
An interesting specification put forward and used to derive test statistics by Stock and

Watson (1988a) is the so—called common trend representation. It highlights the fact that if
r cointegrating relations exist among a set of n variables (all of which could be I(1)), then
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the variables can be written as linear combinations of n linear trends, n — r pure random
walks, and n stationary random terms. To see this, recall that equation (3.8) gives the
stochastic trend in the vector y, as \Il(l)St, where S, is a vector of n random walks. Stock
and Watson show that since ¥(1) has rank n - r, the stochastic trend in (3.8) can be
rewritten in terms of n — r random walks. This is the common trend representation.

In the stronger case of deterministic cointegration, we have the additional restriction
that §’6 = 0, where § is the vector of linear trends in the series ¥y Since also f'¥(1) = 0, §
lies in the column space of ¥(1) and can be written as a linear combination of ¥(1),i.e. § =

\11(1)5*. (3.8) now becomes

(8.11) yy = #* + ¥(1)S} + ¥¥(L)e,,

where S: =6t + 2}=1et is a vector of n random walks with drift 5*. Again, Stock and
Watson show that this can be reduced to a representation with n — r random walks. When
the original series y, are trending, then the common random walks have nonzero drifts;
they have zero drifts when the original series are not trending (§ = 0). We summarize the
common trend representation in the following.

Rule 17 : A multivariate system with r cointegrating vectors represented by the matrix 8
with corresponding adjustment matrix a can be written as n trends, plus n ~ r random
walks ("common trends"), plus n stationary components. When the cointegration is
deterministic (4’6 = 0), the system can be represented as n — r random walks, plus n
stationary components. These random walks generally have nonzero drifts, but they have
zero drifts when the series y, are not trending (6=0).

3.2 Testing for Cointegration.

In this section we review some of the statistical procedures that can be used to test
hypotheses about cointegration. We show how each procedure uses one of the different
representations outlined in the previous section. In sections 3.2.1 and 3.2.2 we discuss
procedures that are designed to distinguish a system without cointegration from a system
with at least one cointegrating relationship. These procedures do not try to estimate the
number of cointegrating vectors. Then in section 3.2.3 we consider procedures that test for
a particular number of cointegrating relationships. A last subsection briefly discusses issues
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related to the size and power of the tests. In testing for cointegration, just as in testing for
a unit root in a univariate context, the treatment of deterministic regressors is important.

Throughout our discussion we emphasize this point.

8.2.1 Tests Based on a Static Regression.

1) The framework of the static regression.

Tests based on a static regression are probably the most popular class of tests for
cointegration. These tests give a special role to one of the variables in a vector Yoo which is
chosen to be the dependent variable in the regression. The tests try to distinguish the
hypothesis that there is no cointegration between the dependent variable and the
regressors, from the hypothesis that there is at least one cointegrating relationship between
the dependent variable and the regressors. The procedures presume that any I{0) variables
in the original vector y, have been removed from consideration before the procedure begins,
so that all remaining variables are I(1). Hence, each of the individual variables must pass a
unit root test before being included in the static regression. The cointegration tests are
conditional on this pre-testing procedure. In principle, their critical values should be
adjusted to account for pre—testing, but no theory is currently available that would allow
us to do this.

We partition the variables in y, as (yn, y2t), where y,, is a scalar I(1) variable and
Yo, is an m-—element vector of I(1) variables. We also assume that if there exists a
cointegrating relationship, the variable Yt has a non-zero coefficient in the cointegrating
vector. Since cointegrating vectors are identifiable only up to scale, we may without loss of
generality set this coefficient to 1. The hypothesis of cointegration then asserts that there
exists a m-element vector of coefficients # such that Vi ~ 0’y2t is I(0), i.e. the
cointegrating vector is §/ = (1 —8’). Assume for the moment that it is known a priori
that the mean of the linear combination of y,, — "y, is 0 and consider the following
regression equation:

(3.12) Yo = 0¥gq + Uy

The hypothesis that Y1t and Yo 3r€ not cointegrated can now be stated as the
hypothesis that there does not exist any vector of coefficients § such that u, = y;, - 0yo,
is I{0). The hypothesis that Y1t and Yo 31€ cointegrated is that a vector of coefficients can
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be found such that u, is I(0). Note that even if no such vector of coefficients exists, there
still could be cointegration among the variables y, on the right hand side of (3.12).

1) Residual-based tests.

In (3.12), a test of the null hypothesis versus the alternative hypothesis amounts to a
unit root test on the equation errors. Since we do not observe the errors u,, we must use
some estimates of their values. A straightforward approach is to apply OLS to (3.12) and

conduct a unit root test on the estimated residuals, 4, as a proxy for the true residuals.

t)
In principle, any test for a unit root versus stationarity applicable in a univariate
context can be used as a test for no cointegration versus cointegration when applied to the

series ﬁt' These include the augmented Dickey-Fuller method, the tests proposed by
Phillips and Perron (1988) or the tests suggested by Stock (1990) that were discussed in
Section 2. Just as in the univariate analysis, it is important to include a constant in the
static regression if the alternative hypothesis of cointegration allows a nonzero mean for
ﬁ’yt, and a trend in the static regression if the alternative hypothesis is "stochastic

cointegration", allowing a nonzero trend for ﬁ’yt. The critical values of the unit root tests

on ﬁt depend on whether a constant and/or a time trend are included in the static
regression. In addition it is important to note that the critical values are not the same as
those for unit root tests applied to raw data, and they depend on the number of integrated
regressors in (3.12) and whether or not these regressors are trending. We give some
intuition for this when we discuss "spurious regression" below. These points are
summarized in the following rule.

Rule 18 : When unit root tests are applied to the estimated residuals from regression (3.12),
their asymptotic distribution under the null hypothesis depends on whether a constant
and/or a time trend are included in (3.12). In addition they depend on the number of
integrated regressors, that is the dimension of the vector Your and the nature of the
deterministic trends in Yo The asymptotic distribution is never identical to the case
where the unit root tests are applied to raw data.

Phillips and Ouliaris (1990) and Engle and Yoo (1987) have tabulated critical values
for the augmented Dickey-Fuller t-test and the Phillips~Perron Z(%) and Z(t%) tests



~-37—

applied to residuals from (3.12), where the dimension of the vector Yo Tanges from 1 to 5.
In the case where the regressors may contain deterministic trends, care must be exercised
in using these tabulated critical values. This issue has been investigated by Hansen
(1990b), and we summarize his results as follows. If the static regression includes a time
trend, parts (c) of Phillips and Ouliaris’ tables are appropriate and the tests are for
stochastic cointegration. If the static regression includes only a constant and the TEEressors
do not contain deterministic trends, parts (b) of Phillips and Ouliaris’ tables are
appropriate. Finally consider the case where the static regression includes only a constant
but the regressors contain deterministic trends so that one is testing for deterministic
cointegration among trending variables. Here parts (c) of Phillips and Ouliaris’ tables are
appropriate but one should use the critical values for m —1 regressors instead of m
regressorsi4,

iii) A digression on spurious regression.

If there is no cointegration between the dependent variable and the regressors of
(3.12), then the regression is described as "spurious". This term was introduced by Granger
and Newbold (1974) who gave special attention to the case where a random walk (ylt) is
regressed on an independent random walk (y2t)’ Since these variables are not cointegrated,
the residuals are I(1) and this results in a low value of the Durbin-Watson statistic.

Granger and Newbold (1974) also documented the fact that in such a regression the R’
statistic will typically be high giving the impression of a good fit.

This phenomenon has been theoretically investigated by Phillips (1986) who shows
that in a spurious regression the following results hold as the sample size increases to

infinity : a) the Durbin—-Watson statistic converges to 0, b) the RZ of the regression
converges to a random variable, and c) the t—statistics on the coefficients of the vector
diverge. To understand these results intuitively, consider two independent random walks. If
one could observe an increasing number of samples drawn from these stochastic processes
with a fixed initial condition, then the correlation of the samples would be zero. But
instead one observes a single sample of increasing length from each process. In this single

14 In an interesting recent contribution, Hansen (1990a) has suggested working with
the estimated residuals from a Cochrane—Orcutt version of the static regression that
allows for AR(1) errors. Hansen's test statistics have the advantage that their
limiting distributions are always the same as those of univariate unit root tests.
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sample random shocks have effects that never die out, so the regression coefficient of one

time series on the other and the R2 converge to random variables rather than to zero.

The characteristics of spurious regression help one to understand why unit root tests
on static regression residuals have critical values which depend on the number of regressors
(rule 18). Under the null hypothesis of no cointegration, the static regression contains m
spurious regressors whose coefficients have random limits. This affects the asymptotic
distribution of the static regression residuals, and hence the null distribution of the unit
root test statistics.

Granger and Newbold (1974) proposed a rule of thumb for detecting spurious

regression. It states that, in an estimated regression, an RZ higher than the Durbin-Watson
statistic should be viewed as a warning of a spurious relationship (see Hendry (1980) for an
interesting illustration). In light of the theoretical apparatus that is now available, this rule
of thumb should be viewed as a preliminary sign that a more formal cointegration analysis
is warranted. It also highlights the importance of residual diagnostic statistics such as the
Durbin-Watson as indicators of possible misspecification. Nevertheless, though the
Durbin-Watson statistic is a useful preliminary indicator it cannot be used as the basis of a
formal test statistic for cointegration as suggested by Engle and Granger (1987). The
reason is that under the null hypothesis of no cointegration, the asymptotic distribution of
the Durbin-Watson statistic depends on nuisance parameters such as the correlations
among the first differences of the variables included in the regression. This important
practical result is stated in the following rule.

Rule 19 : The Durbin—Watson statistic should not be used as the basis of a test of the null
hypothesis of no cointegration versus the alternative hypothesis of cointegration.

iv) Tests based on the significance of spurious regressors.

The idea of spurious regression has been used in several recent papers by Park and
Choi (1988), Park, Ouliaris and Choi (1988) and Park (1990a) to derive tests for
cointegration. These tests have the advantage that they can be formulated either with a
null of no cointegration, or with a null of cointegration. Consider the following version of
(3.12) with added regressors:
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(3.13) Y1 = T'DR, + 0'yo + 9178 + 95789, + u, -

Here DRt is a vector of deterministic regressors that capture the deterministic trend of the
variables Y1t and Yor 514 is a vector of q nonstationary deterministic functions that are of
a higher order than the variables in DR,. For example, if (yu, y2t) are characterized by a
3

first—order linear trend, DR, = {1,t} and 8, could include the regressors {t2, t

tQ+l}. The vector s, is a p-element vector containing variables that are integrated of

order one. The specific assumptions needed about these regressors depend whether the null
hypothesis being tested is that of no cointegration or that of cointegration.

Consider first the case where the null hypothesis is the familiar one of no
cointegration. Here we assume that As2t = Wy, where W, is asymptotically uncorrelated
with the errors u, of regression (3.16). An obvious choice for such a regressor is a computer
generated random walk. Denote by F(<p1,<p2) the Wald statistic for the joint hypothesis
that 9 = 0 and ¥y = 0. Park et al. show that the Wald statistic normalized by the sample
size, F((pl,<p2)/T, has a nondegenerate asymptotic distribution under the null hypothesis,
but converges to zero under the alternative hypothesis; thus it is a consistent test of the
null against a cointegrated alternative. The critical values depend on i) the number of
nonstationary regressors in yo, (m) ; ii) the number of nonstationary regressors in Sot (p);
and iii) the number and specific form of the nonstationary deterministic regressors included
in the vector 51t Asymptotic critical values can be found in the papers mentioned above.

Consider now testing the null hypothesis of cointegration versus the alternative
hypothesis of no cointegration. The same regression equation (3.13) can be used if it is
assumed that the superfluous stochastic regressors included in the vector s, are not
cointegrated with the variables in Yoi- The same Wald statistic for testing the joint
hypothesis P, = 0 and P = 0 can be used as the basis of the test. Indeed, it can be shown
that F(gol, (,02) (not divided by T) has a nondegenerate asymptotic distribution under the
hypothesis of cointegration but diverges to infinity under the hypothesis of no
cointegration. Unfortunately the limiting distribution under cointegration depends on
nuisance parameters involving the serial correlation of the variables, but Park (1990a)
shows how to transform the Wald test in such a way that its limiting distribution

converges to a x2 with (p + q) degrees of freedom.

The intuition behind these tests is that under the null hypothesis of no cointegration



neither the variables of interest (y2t) nor the superfluous regressors (slt and sm) have a
long run relation with the dependent variable y,,. Hence the regression is spurious and
{rom our earlier discussion the t or F statistics associated with all the regressors, including
the superfluous ones, will diverge. Under the hypothesis that the dependent variable Y1t is
cointegrated with the variables Your the regression is not spurious and the t or F statistics
for the superfluous regressors will asymptotically reflect their insignificance as in a
standard regression framework. However, Park’s corrections are necessary to account for
the presence of possible correlation between the errors and the regressors.

8.2.2 Cointegration Tests on the Long Run Covartance Mairiz.

We now describe some tests that exploit the fact that any cointegrating relationship
among the variables y, implies a singular long run covariance matrix h Ay(O), as defined in
section 3.1.3(iii). These tests still do not attempt to estimate the number of cointegrating
relationships, but some tests of this type avoid the assumption of the previous section that
a particular variable Y1t has a nonzero coefficient in the cointegrating vector.

For notational convenience we partition h , (0) as follows in accordance with the
partition on y, such that y, = (ylt y2t) with y, . a scalar and y,, an m vector :
wyy g

(3.14) hp,(0) =0 = {“’11 ‘*’él] ’

and define wy; o = Wy~ “5195;“21’ a measure of the long run variance of Y1
conditional on the elements of y,,. (If the elements of Q were variances and covariances
rather than spectral densities at frequency zero, then Wiy.9 would be the variance of the
error in a regression of ¥y, on y2t). We have that w;; o = 0 if y;, and y,, are
cointegrated. Letting det(-) denote the determinant, it can be shown that

(3.15) det[hAy(O)] = wyy.9 det(Qy,)-
When there is no cointegration among the elements of y,,, det (Q99) # 0. In this case

hAy(O) is singular if and only if w ; , = 0. Phillips and Ouliaris (1990) use this framework
to propose what they call the "variance ratio test". It is an appropriately scaled version of

an estimate & , of the quantity w), ,. This test statistic by itself does not offer any

11-
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generalization over the statistics discussed earlier, but the same framework can be used to
construct statistics that test the null of no cointegration against the alternative of at least
one cointegrating vector without specifying a priori any specific element of y, as having a
non—zero coefficient. The idea is to directly test whether hAy(O) = Q is singular. Phillips
and Ouliaris propose a "multivariate trace statistic" for this purpose.

In constructing these tests, constants and/or linear trends should be included in the
system if they appear in the data generating process. As always the presence of these
deterministic regressors affects the critical values for the tests. In addition, the critical
values depend on the number of variables in the system. Phillips and Ouliaris present
tabulated critical values for any number of regressors in You between 1 and 5. Note also
that the estimates of the long-run covariance matrix in these procedures must be based on
the residuals from a regression of Yy ony, ;- Under the null hypothesis of no cointegration
this is equivalent to using the first—differences of the data since the least—squares estimator
of the matrix of coefficients converges to the identity matrix. But under the alternative
hypothesis of cointegration this equivalence breaks down, and the regression residuals must
be used to ensure the consistency of the test statistic.

3.2.8 Tests for Cointegrating Rank.

We now consider testing procedures that allow the investigator to estimate the
number of cointegrating vectors. We start with a procedure suggested by Johansen (1988,
1989a), and then describe the approach of Stock and Watson (1988a). Both procedures
allow one to specify as the null hypothesis an arbitrary number of cointegrating vectors
provided that this number is less than the number of cointegrating vectors allowed under
the alternative hypothesis. For example, in a three—variable system one can test the null
hypothesis of one cointegrating vector against the alternative hypothesis that there are two
or three cointegrating vectors, the latter corresponding to the hypothesis that all series are
trend—stationary. These procedures also do not impose any prior assumption that some or
all of the series investigated are I(1). Therefore they contain as a special case a univariate

test for a unit root versus stationary alternatives.

Johansen’s procedure applies maximum likelihood to the autoregressive model
discussed in Section 3.1.3(i), assuming that the errors are Gaussian. More specifically the

estimated model is given by :
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(3.17) Ay, =p+ My, + El_;:lrjAyt—j te,
where e, ~ N(0, ). This is the autoregressive representation (3.3) with the added

t
assumption that cointegration is deterministic, i.e. [16 = 0, or that the series are driftless,

i.e. § = 0. This assumption allows the system to contain I(1) or stationary variables {or
linear combinations of variables), but it rules out trend-stationary variables (or linear
combinations of variables) with nonzero trends. Johansen’s method tries to estimate the
rank of the matrix I1, the matrix of coefficients on the lagged levels in (3.17). Recall that
when there are r cointegrating relationships, the rank of Il is equal to r.

We first consider how to construct a likelihood ratio test of the null hypothesis of r
cointegrating vectors versus the alternative hypothesis of n cointegrating vectors. Under
the alternative hypothesis Il is unrestricted and the maximum likelihood estimates of the
coefficients of (3.17) are obtained by OLS. Under the null hypothesis the matrix I is
restricted by the relationship Il = aff’. Maximum likelihood estimates of the matrices I'; (i
= 2, .., k) and the vector p can again be obtained by OLS. However, the maximum
likelihood estimates of a, # and ¥ are different and are obtained by solving an eigenvalue
problem. Here we simply sketch the basic idea of the procedure, as details are given in
Johansen (1988, 1989a). If the matrix # were known, then a could be obtained by first
regressing Ayt and Y1 on lagged changes Ayt—j’ then taking the residuals (indicated by

tildes) and regressing Ay, on ﬂ’yt_l. Maximum likelihood estimates of § are obtained by
minimizing the determinant of the covariance matrix of the residuals of this second stage
regression; this is equivalent to choosing r eigenvectors corresponding to the r largest
eigenvalues of a particular matrix. The maximized likelihood function is multiplicative in
these eigenvalues, so that a likelihood ratio test statistic can be computed from them.
Johansen calls this the "trace statistic". Its asymptotic distribution is not given by
standard theory, because under the null hypothesis the calculated eigenvalues correspond
to n — r nonstationary common trends rather than stationary linear combinations of the
data. The asymptotic distribution depends on n — r, and is tabulated in Johansen (1989b)
and Johansen and Juselius (1990) for values of n — r between 1 and 5. Johansen also
considers a likelihood ratio statistic for the null hypothesis of r cointegrating vectors versus
the alternative of r + 1 cointegrating vectors. This is called the "maximum eigenvalue
statistic". The asymptotic critical values again are nonstandard, depend on the number of
nonstationary components (n —r), and have been tabulated for n —r ranging from 1 to 5.
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In applying the Johansen approach it is essential to handle deterministic trends with
some care, because the critical values of the test depend on the trend characteristics of the
data. Note first that the system (3.17) excludes time as a regressor so it can only be used to
test for deterministic cointegration. Furthermore, the Johansen test calculates eigenvalues
which under the null hypothesis are associated with common trends rather than stationary
linear combinations of the data. To understand the importance of this, recall that an
omitted nonzero trend in a univariate unit root test causes the t-statistic on the lagged
level variable to have a standard normal distribution rather than a Dickey-Fuller
distribution (rule 3). Analogously, the critical values of the Johansen test depend on
whether the omitted drifts in the common trends are zero or not. If they are zero, this
implies non-trending data which in turn implies the restriction 4 = - af’« as shown in
equation (3.6). In summary, there are three possibilities: (i) trending data (6 # 0); (ii)
non-trending data (6 = 0, 4 = —af’ &) with the statistic calculated using an autoregression
with an unrestricted intercept term; and (iii) non-trending data with the statistic
calculated using an autoregression imposing the restriction 4 = — af’k. A conservative
procedure for determining the cointegrating rank is to use the maximal critical values over
all the cases. A sequential procedure to estimate both r and the presence or absence of
trends is also possible (Johansen (1991)). The Johansen approach could be generalized to
allow stochastic cointegration in the null hypothesis by including linear trends in (3.17),
but no tables of critical values have yet been published.

An alternative test for cointegrating rank has been proposed by Stock and Watson
(1988a). Their approach is implicitly based on trying to estimate the rank of the matrix
¥(1), the sum of the matrix coefficients in the moving-average representation of the series
in first differences. As we discussed in Section 3.1.3(ii), the rank of ¥(1) is equal ton —r
under the hypothesis that there are r cointegrating vectors. This is also the number of
common trends in the representation discussed in section 3.1.3(iv). Hence estimating the
rank of the matrix ¥(1) is equivalent to estimating the number of common trends present
in the set of variables under study. Stock and Watson estimate the common trends under
the null hypothesis that n ~ r of them are present and to test whether these constructed
series show further evidence of cointegration. To estimate the common trends, Stock and
Watson suggest using principal components analysis. The idea is to choose the n — r linear
combinations of ¥y with the largest variance as the estimated common trends. The
intuition for this procedure is that the common trends are I(1) so their variance increases
with the sample size and will asymptotically dominate the variance of the stationary linear

combinations of the data.



Once the vector of common trends has been estimated, Stock and Watson regress the
vector on its own first lag to obtain a coefficient matrix P. The limiting distribution of the
coefficient estimates depends on the serial correlation of the data. Stock and Watson
consider both a non-parametric correction similar to that used by Phillips and Perron
(1988) and a vector autoregressive parametric correction similar to that used by Dickey
and Fuller (1979)15. To test the hypothesis of n — r common trends versus m common
trends, Stock and Watson calculate the m + 1 smallest eigenvalue of the corrected least

squares estimator f’c and test whether its real part is different from one. Stock and Watson
have tabulated the asymptotic critical values of the normalized eigenvalue under the null
hypothesis. These critical values depend on two parameters, the number of common trends
under the null hypothesis, n — r, and the number of common trends under the alternative
hypothesis, m. Critical values are tabulated for n — r and n — m ranging from 1 to 6. Note
that a test of the null hypothesis of no—cointegration versus the alternative of cointegration
can be obtained by specifying r = 0 and m = n - 1. Similarly a univariate test for a unit
root can be obtained by specifying n = r = 1 (in which case there is no need to estimate the
vector of common trends since it is the univariate series itself) and m = 0. In the latter
case the non-parametrically corrected statistic reduces to that proposed by Phillips and
Perron (1988). The Stock-Watson approach allows the investigator to remove constants
and/or linear trends from the data. As always, this affects the asymptotic critical values
and should be done whenever constants and/or trends are present in the data generating
process. The way the detrending is performed depends on the hypothesis being tested. For
testing stochastic cointegration, the original data should be detrended, while to test for
deterministic cointegration, the estimated common trends should be detrended!s.

3.2.4{. Some Comments about Size and Power.

It is useful, in closing this section, to return to the near-observational equivalence
issue discussed in section 2.3. Recall that in the univariate case we argued that the
trend-stationary and integrated processes are classes for which each member of one class

15 They recommend the parametrically corrected version for reasons of size robustness
similar to the univariate case.
18 There is as yet little work comprehensively comparing the finite sample behavior of

alternative tests for cointegration. An exception is Gregory (1991) who analyzes a
wide variety of procedures within a linear—quadratic model. He recommends the
Dickey—Fuller ADF and Phillips Z(x) tests applied to static regression residuals as
analyzed by Phillips and Quliaris (1990).
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can be arbitrarily well approximated, in finite samples, by a member of the other class.
The same principle applies when comparing the classes of cointegrated and
non—ointegrated processes. Every cointegrated process can be arbitrarily well
approximated, in finite samples, by a non—cointegrated process and vice versa. To make
this point more precise, consider a set of variables which displays no cointegrating
relationship. Then the matrix of the sum of the autoregressive coefficients [T has rank zero.
Any such process can be arbitrarily well approximated by a cointegrated process for which
the matrix I1 has "nearly zero rank". Conversely, consider a process which is cointegrated
in which case the matrix of the sum of the moving-average coefficients, ¥(1), is singular.
Any such process can be arbitrarily well approximated by a system with no cointegrating
relationship with a matrix ¥(1) "nearly singular".

In the case of multiple time series, this argument can be taken one step further. A
system with r cointegrating vectors can be arbitrarily well approximated, in finite samples,
by a system with any number of cointegrating vectors. Consider approximating a process
with r cointegrating vectors by a process with a smaller number of cointegrating vectors,
say m (m < r). With r cointegrating vectors, the matrix ¥(1) has rank n - r. In finite
samples there will exists a process with ¥(1) of rank n ~ m that is a close approximation if
its matrix ¥(1) is nearly of rank n — r. Conversely, a process with r cointegrating vectors
can be well approximated by a process with a greater number of cointegrating vectors, say
m* > r. The [T matrix for such a process has rank m* but is "nearly of rank r".

This discussion suggests that it may be difficult to distinguish processes that exhibit
cointegration from those that do not, and more so to estimate precisely the exact number
of cointegrating relationships. If in fact the goal of cointegration tests is to uncover the
“true relation among the variables", these issues are disconcerting. As in the univariate
case, our response is a pragmatic one. In many applications the goal is not to uncover the
"true number" of cointegrating relationships per se but rather to have a useful guide in
imposing restrictions that may lead to more efficient estimation. Viewed in this light, it is
inconsequential if we label a process that really has m cointegrating vectors but is "nearly"
cointegrated of order r as one having r cointegrating vectors. The testing procedures
described can play a useful role in identifying these (possibly approximate) restrictions and
may permit more precise estimates of the coefficients governing short-run dynamics.
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3.3 Estimation of Multivariate Models with Cointegration.

We now consider methods for optimal estimation of the parameters in a multivariate
model with cointegration. First recall that in the error correction representation (3.5), the
changes in a given variable are functions of lagged changes in all the variables and the r
lagged equilibrium errors z,_,. Suppose first that both the number of cointegrating vectors
r and the true coefficients in the matrix § are known a priori. The equilibrium errors z, are
then known quantities (when the drifts § are either known or zero), and optimal estimation
of (3.5) is simply OLS applied equation by equation. In practice, however, both r and f are
unknown quantities. Methods for estimating r, the number of cointegrating relationships,
were discussed in the last subsection. In all the methods that we shall discuss concerning
the estimation of the other parameters, it is important to note that the value r is chosen as
the estimated value from one of these procedures. Methods for estimating § and the other
parameters of the model treat the estimated value of r as if it were the true value, so
inference is conditioned on that value of r. This point is summarized in the following.

Rule 20 : In all the procedures that follow the number of cointegrating vectors used to
specify the estimation procedure is treated as known even though, in practice, it is obtained
from a testing procedure and hence is a random variable. In principle this pre—testing
affects the appropriate distribution theory underlying the estimates, even asymptotically.

It is not known whether this pre-testing problem is of any practical importance. We
believe that it is not likely to be serious. In any event, no theoretical results are currently
available that might shed light on this problem and we shall accordingly ignore it.
Conditioning on the number of cointegrating vectors amounts to imposing some long run
restrictions. In a sense even if the true value of r is different from the estimated value, it
may still be the case that the restrictions imposed allow estimates with greater precision.
Once one conditions on the number of cointegrating vectors there remains the issue of
estimating i) the cointegrating vector A, and ii) the coefficients related to the short-run
dynamics (@, g, and the Fj’s). Two main approaches are available in the literature : a)
estimating the cointegrating vector and the short-run dynamics jointly, and b) estimating
them separately. Within each approach there is also the issue of estimating the system as a
whole versus estimating the system equation by equation. It turns out that each of these
methods yields consistent estimates but these can have quite different finite sample and
asymptotic properties. To understand the issues involved it is useful to review a simple
method that was suggested by Engle and Granger (1987). For simplicity we consider the
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case where there is a single cointegrating vector which has a nonzero coefficient on a
variable Yip this coefficient can then be normalized to equal one. All the other variables in
the system, y,,, are assumed to be I(1)!7.

Engle and Granger (1987) suggest a two step procedure where the cointegrating vector
is estimated in the first step. The method is simple and appealing. To estimate the
cointegrating vector, just apply OLS to the static regression:

(3.18) Yip = 7'DRy + 0y, + u,.

Once OLS estimates & have been obtained from (3.18), one can construct an estimate of the

vector B’yt, where g = 1 —b’]. The parameters associated with the short-run dynamics
can then be estimated by OLS on each equation of the error—orrection representation

(3.5), with 3 y, substituted for 5’ ¥, and trends added if necessary. The second step of this
method involves OLS estimation of a model with generated regressors. Following the work
of Pagan (1984), one might suspect that standard errors would need to be adjusted to
account for the use of generated regressors. However this is not the case here as shown by
Stock (1987) and Engle and Granger (1987). The relevant facts are stated as follows.

Rule 21 : OLS estimates of the parameters of the cointegrating vector obtained using (3.18)
are consistent and converge at rate T to the true values. Furthermore, the parameter

estimates obtained from OLS on (3.5) using the estimated B’yt are consistent,
asymptotically normal and have the same asymptotic distribution that would prevail if one
applied OLS to (3.5) using the true values By,

The important point in rule 21 is that the estimate of the cointegrating vector

converges to its true value at rate T instead of the usual rate Tl/ 2 This is the reason why

using estimated values in the second step regression leads to the same outcome
(asymptotically) as if one were able to use the true values. The reason why the estimates
converge at rate T, even in the presence of substantial serial correlation in the errors and
correlation across variables, is that the residuals are I(1) for all parameter values except

17 If some of the variables in the system are I(0), they can be ignored in the first step
which estimates the cointegrating vector and reintroduced in the second step which
estimates the short—term dynamics.
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those corresponding to the cointegrating vector. Hence as the sample size increases, the
variance of the residuals grows without bound for all combinations of parameters other

than those in the cointegrating vector.

These results are appealing, but simulation studies show that in finite samples the
OLS procedure can lead to severe biases which often decrease only slowly with the sample
size (see, in particular, Banerjee et al. (1986))!8. Hence, it appears that the rate T
convergence result is not sufficient to ensure parameter estimates with good finite sample
properties. As we will discuss below this is due to the fact that the least-squares estimate
of the cointegrating vector obtained from (3.18) is not asymptotically optimal. Another
disadvantage of the OLS procedure is the following :

Rule 22 : OLS estimates of the parameters of the cointegrating vector in (3.18) have an
asymptotic distribution that depends on nuisance parameters. Therefore, one should not
attempt to test hypotheses about the cointegrating vector using these estimates unless the
effect of the nuisance parameters is taken into account.

The nuisance parameters in rule 22 are of two typest?. First, there is the serial
¢ in (3.18). This can be dealt with fairly easily using a
nonparametric correction like the ones discussed above for the Phillips—Perron univariate
unit root test or the Stock-Watson cointegration test. Second and more important, the

correlation of the errors u

asymptotic distribution of T(b - #) is affected by the endogeneity of the regressors Yoy If
the innovations in Y1t do not Granger cause the innovations in You» this problem
disappears. Thus we have the following.

Rule 23 : If the error u, in (3.18) is serially uncorrelated and the innovations in y,, do not
Granger cause the innovations in Yoy then the asymptotic distribution of T(8 - 6) is free of

nuisance parameters. Furthermore, the OLS estimate 9 is asymptotically optimal and
standard hypothesis tests such as Wald tests on the parameters of ¢ are asymptotically

18 This study concentrates on the properties of the estimates of the cointegrating
vectors and not the estimates of the parameters in (3.5). The estimates of the
cointegrating vectors are indeed those of primary interest. If one has good estimates
of these quantities the estimates of the parameters of the short—run dynamics
should be well behaved.

19 For an extensive treatment of asymptotic distribution in models with unit roots and
cointegration, see Park and Phillips (1988, 1989).
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distributed as chi-squared random variables.

These conditions under which OLS on (3.18) yields optimal estimates are highly
restrictive. Accordingly, there is a need to derive alternative estimation procedures that are
asymptotically optimal in the general case. Phillips (1991) discusses optimal inference in
cointegrated systems and shows that Full Information Maximum Likelihood methods yield
asymptotically optimal estimates if they incorporate the correct prior restriction that n — r
unit roots are present in the system2°. In this case an optimal asymptotic theory of
inference applies and hypotheses can be tested using the usual chi-squared distribution?.

The intuition behind the optimality of FIML is first that it accounts parametrically
for serial correlation in the static regression errors. More importantly, it is a system
estimation method which accounts for the presence of endogeneity and feedback among the
variables. It is important to note that the unit roots in the model need to be imposed a
priori and not estimated. FIML is not optimal when it is applied to a system that does not
impose unit roots, such as an unrestricted VAR. An example of FIML fully restricted by
the a priori imposition of unit roots is the method proposed by Johansen (1988, 1989a) and
Ahn and Reinsel (1990) for the case of a Gaussian multivariate autoregressive system. We
showed in section 3.2 how one can implement this procedure to estimate the parameters of
the model, in particular those of the cointegrating matrix32. Johansen also discusses the
algorithm implied by FIML in the case where restrictions are imposed on the cointegrating
matrix §, the adjustment matrix & or both. It is then possible to form likelihood ratio tests
which are asymptotically distributed chi-squared. Wald tests of restrictions on either a or
f are also asymptotically chi-squared. Ahn and Reinsel (1990) consider a two—step reduced
rank procedure that is asymptotically equivalent to FIML.

Despite the availability of the Johansen procedure, there are several reasons to
consider single equation estimation methods. First, such methods are often easier to apply.
Second, knowledge of the presence of unit roots is usually obtained via a pre-testing

20 For a discussion of asymptotic optimality for inference in time series models, see
Jeganathan (1988).
2 Phillips (1988) also considers system estimation procedures in the frequency

domain. These also share the property of being asymptotically optimal. We omit
their discussion here. For an application, see Corbae, Ouliaris and Phillips (1990).

n Simulation evidence on the finite sample performance of Johansen's (1988)
maximum likelihood procedure is presented in Gonzalo (1989).



—-50 —

procedure which, if properly taken into account, could affect the asymptotic properties of
subsequent estimates. Such pre-testing issues are likely to be more severe in systems
estimation than in single equation estimation procedures. Third, in the Johansen approach
as in any system estimation procedure, the estimates of one equation are sensitive to
possible misspecification in another equation.

In discussing single equation methods, for simplicity we first return to the assumption
that there is only one cointegrating vector. The aim of the single equation methods is to
find an estimator of the coefficients of this vector that has optimal properties and for which
hypotheses can be tested using the normal or chi-square asymptotic distribution. Once the
estimates of the cointegrating vector are available one can construct an estimate of the
equilibrium error z,, substitute it into the error correction regression (3.5), and then
estimate that regression by OLS. To our knowledge, there exist three single equation
estimation methods for the cointegrating vectors that have the same asymptotic
distribution as the FIML estimates, and hence that are asymptotically optimal. These are
due to Phillips and Hansen (1990)23, Saikkonen (1989) and Stock and Watson (1990), and
Phillips and Loretan (1989). They vary according to whether the corrections for serial
correlation in the residuals of (3.18) and the presence of endogeneity are of a parametric or
non-parametric nature. Phillips and Hansen’s procedure is fully non—-parametric; Saikkonen
and Stock and Watson correct for endogeneity in a parametric way while the correction for
serial correlation is non-parametric; and Phillips and Loretan’s procedure is fully
parametric. These methods are asymptotically equivalent.

The fully non—parametric procedure of Phillips and Hansen (1990) starts with the OLS
estimates obtained from (3.18). Two non-parametric corrections are applied to the OLS
estimator to give it the same asymptotic distribution as the FIML estimator. The first
correction deals with the presence of serial correlation in the residuals of (3.18) and is akin
to the Phillips—Perron (1988) correction. The second correction uses a normalized
non—parametric estimate of the long-run covariance between the innovations in y,, and the
innovations in Yo t0 deal with the presence of Granger causality from Yqg 1O Your The
t-statistics for (3.18) can also be corrected in this way. Phillips and Hansen (1990) and
Phillips and Loretan (1989) present simulation results showing that this estimator has
rather poor finite sample properties (greater bias and mean squared error than simple OLS)

n Park (1988) considers a closely related estimation method called "canonical
cointegration regression" that eliminates nuisance parameter dependencies
non—parametrically. His procedure also generalizes easily to a multivariate context.
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when the model contains negative serial correlation. This is analogous to the behavior of
the Phillips—Perron (1988) tests for unit root as documented by Schwert (1989) and others.
Otherwise, the estimator performs relatively well compared to OLS but less well than the
following two procedures which incorporate some parametric structure.

The methods of Saikkonen (1989) and Stock and Watson (1990) share with the
approach of Phillips and Loretan (1989) a common parametric correction for the effect
caused by the endogeneity of the regressors. Recall that the asymptotic distribution of the
least—squares estimator in (3.18) is affected by the presence, in the general case, of Granger
causality from the innovations in Yyq t0 the innovations in Yo From the work of Sims
(1972) on testing for causality we recall the following fact. If a variable w,, Granger causes
another variable Woyr then Wy, can be expressed as a linear combination of past, present
and future values of Woy- The idea behind this result is that if Wit Granger causes Wous
future values of Wou will contain information that is useful in predicting W), Saikkonen,
Stock and Watson, and Phillips and Loretan exploit this idea to propose a parametric
correction to the least—squares regression (3.18) that asymptotically eliminates the effect of
this endogeneity on the distribution of the least—squares estimator of §. The idea is simply
to add to the regression leads and lags of the first—differences of the regressors Yo This
yields the regression :

, 4 _1
(3.19) Y1p = T'DRy + 0yg, + d;(L) Byy, + do(L7) Ay, + v, ,

k

where d,(L) = £¥_,d and dy(L™Y) = 3P_ dy L™ In principle the polynomials

=191l
d,(L) and d2(L—1) have infinite order, but in practice one needs to truncate the infinite
sum. This can be done using standard asymptotic distribution theory to eliminate
insignificant additional lags to arrive at a parsimonious representation.

Equation (3.19) still has the problem that the residuals v, are serially correlated,
which affects the asymptotic distribution of the least—squares estimate of 4. Stock and
Watson (1990) propose two different methods for dealing with this. The first one uses OLS
estimates of ¢ in (3.19), but corrects standard errors and Wald test statistics non-
parametrically for the effect of serial correlation. The second method uses generalized
least-squares on (3.19). A preliminary OLS regression estimates the correlation structure of
the residuals A parametrically. This is then used to construct the GLS estimator. In this
case hypothesis tests on the coefficients of the cointegrating vector can be performed using
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the standard (unmodified) Wald test whose asymptotic distribution is then chi-square24.

Phillips and Loretan (1989) instead use a parametric correction to obtain a regression
equation with uncorrelated residuals. They include lags of the equilibrium error in the
regression (3.19) leading to the specification :

’ ’ ’ -1
(3:20) yyy = 7'DRy + 0'yy, + da(L)(yy—0'y9,) + d;(L)By,, + dy(L7")Ay,, +e,,

where e, is now a serially uncorrelated sequence and d3(L) = !3(’]:)=1d3kLk is an infinite lag
polynomial in L which as before is truncated in practice. Equation (3.20) differs from a
single equation of an error-correction repreentation in that leads of Ayq, are included in
the regression. Also in (3.20) the coefficients # enter non-linearly so the equation must be
estimated by non-linear least—squares. The non-linear least-squares estimator of ¢ in
(3.20) has the same asymptotic distribution as the FIML estimator so that hypotheses can
be tested using the standard chi-squared distribution. Phillips and Loretan present some
preliminary simulation evidence about the performance of this single—equation estimator.
They remark that hypothesis tests on the coefficients of the cointegrating vector appear to
be sensitive to overfitting the lag length in (3.20). They suggest successively eliminating
insignificant regressors in the spirit of Hendry’s methodology (see Hendry (1987) and
Hendry and Richard (1982)).

Our discussion of single-equation methods has considered the case where there is a
single cointegrating vector in the system. In general there may be r cointegrating vectors.
In this case any of the single-equation methods can be applied to a stacked system of r
equations, each with a different dependent variable. The choice of r dependent variables,
out of the n available, represents a normalization of the cointegrating vectors. This
generalization is of course more complicated than estimating a single regression equation,
but it may still be easier to apply than the Johansen system estimation method, as it
requires only multivariate (linear or nonlinear) least—squares procedures. Of course, to use
this approach one must know or estimate r, the cointegrating rank. Hypotheses about r can
be tested following Stock and Watson (1988) or Johansen (1989a), but if the Johansen
approach is used for this purpose then it is easy to use it to estimate the cointegrating
vectors as well. In this case the only remaining advantage of the single—equation methods is

u Note that Stock and Watson (1990) also consider the more general case where the
variable can be integrated of any order with or without deterministic trends.
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that they may be more robust to misspecification of the system. No comprehensive
simulation study of the finite sample properties of alternative estimation procedures is yet
available. It does seem that any of the optimal methods are better than using static OLS to
estimate cointegrating vectors, but it is not at all clear how one should choose among the
available optimal methods. More work is needed on this topic, especially on the robustness
of each procedure to misspecification.

3.4 When Are Cointegration Methods Necessary?

In the previous sections we have developed in some detail the theory of representation,
testing, and estimation for cointegrated systems. It is important to acknowledge, however,
that there may be circumstances where macroeconomists can avoid using the cointegration
methods we have described.

First, economic theory sometimes determines not only the existence, but also the
parameters of cointegrating vectors. For example, when two variables in a model are
measured in logs it is common to find that the log ratio of the variables is stationary, so
that the variables are cointegrated with cointegrating vector f=[1 -1]. This occurs for
example in real business cycle models with unit root shocks (King, Plosser, and Rebelo
(1988)). Campbell and Shiller (1987, 1988b) have modelled asset price determination with
unit root processes for dividends; when the model is formulated in levels, the cointegrating
vector between prices and dividends is a function of the unknown discount factor, but an
approximate log-linear model gives a known cointegrating vector equal to [1 -1]. When
cointegrating vectors are known, the estimation and inference problem becomes fairly
trivial. One can form the equilibrium errors z, = i (yt — §t), substitute them into the
error—correction model (3.5), and estimate the model using OLS equation by equation. No
nonstandard asymptotic theory is needed for testing hypotheses about the other parameters
of the model. The a priori restrictions on the cointegrating vectors can be tested using
univariate unit root test statistics on the equilibrium errors.

Even when the cointegrating vectors have unknown parameters, one can often avoid
using cointegration methods if one is not directly interested in these parameters. Consider
estimating an unrestricced VAR in levels and testing hypotheses about the VAR
coefficients. Sims, Stock, and Watson (1990) point out that the asymptotic distribution of
the test statistics is standard whenever the hypotheses can be expressed as restrictions on
I(0) regressors. This result is given in the following.
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Rule 24: In an unrestricted VAR system in levels, parameter estimates have standard
asymptotic distributions whenever the system can be written in such a way that the
parameters appear on I(0) variables. Hypothesis test statistics have standard distributions
whenever the hypotheses can be expressed as restrictions on I(0) variables.

At an intuitive level, this result should not be surprising. We have already seen that
cointegrating vectors can be estimated in a preliminary regression, and can then be treated
as known in subsequent OLS estimation of the error—correction representation. Because the
estimates of cointegrating vectors converge rapidly to their true values, uncertainty about
the cointegrating vectors does not affect the asymptotic distribution of the other
parameters of the model (rule 21). The Sims, Stock, and Watson result extends this to the
case where the cointegrating vectors are estimated simultaneously with the other
parameters of the model, rather than in a first step, and where the unit roots are estimated
rather than imposed on the system.

The practical usefulness of this result will depend very much on the circumstances of a
particular macroeconomic investigation. Sims, Stock, and Watson discuss some leading
examples. If one is testing for the significance of additional lags in a VAR, the final lag
coefficients can always be written as coefficients on differences. This means that tests for
lag length do not suffer from unit root problems even in a VAR in levels. The same holds
more generally for restrictions that involve only a subset of the lagged levels that appear in
the VAR. Tests for Granger causality from a variable y,, to another variable y,, are more
problematic because they involve all the lagged levels of Youina regression of ¥Yqg OB lags of
itself and You- Thus Granger causality test statistics have unit root distributions unless You
is cointegrated with Yie

The macroeconomic literature on the permanent income hypothesis also offers some
examples. Hall (1978) and Flavin (1981) formulated a version of the permanent income
hypothesis in which consumption follows a martingale. The model also implies that
consumption and income are cointegrated (Campbell (1987)). Hall tested the model by
regressing consumption on lagged levels of consumption and income, and testing whether
the coefficients on variables other than the first lag of consumption were jointly significant.
This can be expressed as a test on coefficients of changes in consumption and stationary
combinations of consumption and income; therefore Hall’s test is valid even when income
has a unit root (Stock and West 1988). Flavin (1981), on the other hand, tested the model
by regressing the change in consumption on lagged levels of detrended income and testing
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the joint significance of the coefficients. This test rejects too often asymptotically when
income has a unit root, and rejects too often in finite samples even when income is
stationary but has a root close to unity (Mankiw and Shapiro 1985).

In some cases it is possible to learn about the questions at hand, while still benefitting
from rule 24, by adapting the hypotheses to be tested. For example one can test the
hypothesis that K — 1 lagged levels of You do not help to forecast Y1t in a regression that
includes K lagged levels of Y14 and Yoi- If this hypothesis is rejected, one has found
evidence of Granger causality from You 40 ¥yy without running the standard test that is
subject to unit root problems. Issues related to unit roots need be confronted only if this
hypothesis is not rejected. This is an example of the general principle that one should try
to test hypotheses of direct interest using procedures that are unaffected by extraneous
characteristics of the problem such as the presence or absence of unit roots.

The above example involves estimation of a levels model, but one can sometimes avoid
cointegration methods by working in differences. In the Hall (1978) version of the
permanent income hypothesis, the joint process for consumption and income is an
error—correction model, with a cointegrating vector that is unknown if one observes only a
subset of total consumption (Campbell (1987)). Nevertheless one can test the model by
regressing changes in consumption just on lagged changes in income and lagged changes in
consumption. The omission of the error—orrection term may affect the power of the test,
but will not affect its size.

There remain many cases where cointegration methods have an important role to play
in applied macroeconomics. First, researchers are often interested in testing for the
presence of unit roots in a system of variables related by identities or behavioral models.
Univariate unit root tests can yield different results, depending on which variables are
chosen for the tests. In this situation a system approach such as that of Ahn and Reinsel
(1990), Johansen (1988, 1989a,b), Park (1988) or Stock and Watson (1988a) can be useful.
Second, economic models sometimes have underlying parameters that appear both in the
cointegrating vectors and in the coefficients governing the short-—run dynamics of the
model. Kashyap and Wilcox (1990), for example, estimate an inventory model in which the
parameters of firms’ cost functions determine both the cointegrating vector between
inventories and sales and the short—run dynamics of these variables.
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4. CONCLUSION

We now return to the example with which we started this paper, and briefly discuss
some of the implications of our analysis for estimation and hypothesis testing of the
five-variable system X, = (mt, Yy Py i bt)' We note first that there is some evidence
that the first three variables in this system need to be differenced twice to render them
stationary, that is, they are I(2) rather than I(1)25. One might suspect that this is due to a
unit root in the inflation rate Ap, rather than I(2) behavior of real money and output, and
indeed King, Plosser, Stock, and Watson (1991) argue that a transformed system X: = (mt
~ Py ¥y — Py APy iy, bt) contains variables all of which are I(1). Here is a case where
macroeconomic theory suggests certain cointegrating vectors that can be applied to the
data; standard univariate unit root test statistics can be applied to the elements of X: to
test King, Plosser, Stock, and Watson’s hypothesis.

In the introduction we mentioned three macroeconometric exercises that could be
undertaken on the system X{. First, one might want to estimate a money demand function
relating the real money stock m, ~p, to real output Y, — Py and nominal interest rates it
and bt‘ Our review of multivariate systems with unit roots has shown that a critical issue
is whether the real money stock is cointegrated with the other I(1) variables in the vector
X:. If there is no cointegration, then the money demand regression is spurious and
standard t and F tests on the estimated coefficients are meaningless. If there is
cointegration, on the other hand, the parameters of the money demand regression can be
estimated super—consistently by any of the methods discussed in section 3.3. The estimated
coefficients will be robust to the presence of measurement error and endogeneity of the
regressors; this circumvents many of the standard problems in the money demand
literature, such as which concepts of the money stock, real economic activity, and the
interest rate to use, and how to adjust for endogenous responses of activity and nominal
interest rates to the money supply process. It is also important to note that economic
theory tells us which variables enter the cointegrated money demand relationship but does
not deliver strong prior restrictions on the parameters of this cointegrating vector (the
income elasticity and interest semi—elasticity of money demand); thus this is a case where

25 As always, this evidence is somewhat sensitive to assumptions made about trends
and to the exact data series and sample period used. Stock and Watson (1989), for
example, argue that the growth rate of log M1 is trend—stationary with a positive
trend in postwar U.S. data, whereas King, Plosser, Stock, and Watson (1991) argue
that the growth rate of log M2 is 1(1) with no trend in a similar data set.
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the super—consistency result may have some practical benefits for macroeconomics.

Unfortunately the empirical evidence on cointegration of real money, real output, and
nominal interest rates is mixed. King, Plosser, Stock, and Watson (1991) find evidence that
these variables are cointegrated, but Friedman and Kuttner (1991) argue that this evidence
largely disappears in recent data as a result of the well-known change in the behavior of
velocity in the early 1980’s. Both these papers use log-linear deterministic trends; it is also
possible that real money, output, and interest rates are cointegrated with a broken
deterministic velocity trend. This illustrates another theme of our survey, that the
treatment of deterministic trends is inseparable from the treatment of unit roots in
macroeconomic data.

A second macroeconometric exercise follows Sims (1972, 1980a,b) to ask whether the
real money stock Granger causes real output. It turns out that Granger causality tests from
money to output are sensitive to whether output and money are used in raw form, or are
detrended or differenced before the tests are conducted (Bernanke 1986, Eichenbaum and
Singleton 1986, Christiano and Ljungqvist 1988, Stock and Watson 1989). They are also
sensitive to the inclusion of nominal interest rates in the system (Sims 1980b). These
findings should not be surprising given the result of Sims, Stock, and Watson (1990)
summarized in our rule 24. If real money and real output are I(1) variables, then Granger
causality tests have a nonstandard distribution if the series are not cointegrated, but a
standard distribution if they are cointegrated. If there is a cointegrating vector relating real
money, real output, and nominal interest rates, but no cointegrating vector between real
money and real output alone, then the distribution of Granger causality tests on levels will
depend on whether nominal interest rates are included in the system.

A final exercise is to test the expectations theory of the term structure. This states
that the long—term interest rate can be written as a constant, plus the expected discounted
value of future short-term interest rates. When the short rate is I(1), the expectations
theory implies that the long rate is also I(1). One might think that in this case the theory
could be tested as a set of restrictions on a VAR in differences (Sargent 1979).
Unfortunately this strategy runs into problems because the expectations theory also implies
that the spread between long rates and short rates is stationary, so long rates and short
rates are cointegrated with cointegrating vector {1 -1]. This means, first, that no
well-behaved VAR representation exists for differenced long and short rates; and second,
that the expectations theory puts restrictions on levels that cannot be tested by looking
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only at differences (Campbell and Shiller 1987). The theory can be tested using an
error—correction model, which is conveniently transformed into a VAR for the yield spread
and the change in the short—term interest rate.

These examples illustrate some of the possible applications of multivariate unit root
methods in macroeconometrics. Some of these methods are still relatively new and have not
yet found wide application in macroeconomics, but we expect that over the next few years
they will become as well established as the now familiar test procedures for unit roots in
univariate time series.



—59 —
REFERENCES

Ahn, S. K., and G. C. Reinsel. 1990. Estimation for partially nonstationary multivariate
autoregressive models. Journal of the American Statistical Association 85: 813—823.

Andrews, D. W. K. 1989. Heteroskedasticity and autocorrelation consistent covariance
matrix estimation. Forthcoming in Econometrica.

Banerjee, A., J. J. Dolado, D. F. Hendry, and G. W. Smith. 1986. Exploring equilibrium
relationships in econometrics through static models: Some Monte Carlo evidence.
Ozford Bulletin of Economics and Statistics 48: 253-277.

Banerjee, A., R. L. Lumsdaine, and J. H. Stock. 1990. Recursive and sequential tests of
the unit root and trend break hypothesis. Mimeo, Harvard University.

Bernanke, B. S. 1986. Alternative explanations of the money—income correlation.
Carnegie—Rochester Conference Series on Public Policy 25: 49—100.

Beveridge, S., and C. R. Nelson. 1981. A new approach to decomposition of economic time
series into permanent and transitory components with particular attention to
measurement of the 'business cycle’. Journal of Monetary Economics 7: 151-174.

Blough, S. R. 1988. On the impossibility of testing for unit roots and cointegration in
finite samples. Working Paper No. 211, John Hopkins University.

Campbell, J. Y. 1987. Does saving anticipate declining labor income? An alternative test of
the permanent income hypothesis. Econometrica 55: 1249-1273.

Campbell, J. Y., and N. G. Mankiw. 1987. Are output fluctuations transitory? Quarterly
Journal of Economics 102: 857—880.

Campbell, J. Y., and R. J. Shiller. 1987. Cointegration and tests of present value models.
Journal of Political Economy 95: 1062—1088.

Campbell, J. Y., and R. J. Shiller. 1988a. Interpreting cointegrated models. Journal of
Economic Dynamics and Control 12: 505—522.

Campbell, J. Y., and R. J. Shiller. 1988b. The dividend—price ratio and expectations of
future dividends and discount factors. Review of Financial Studies 1: 195—228.

Chen, C., and G. C. Tiao. 1990. Random level-shift time series models, ARIMA
approximations, and level-shift detection. Journal of Business and Economic
Statistics 8(1): 83—98.

Christiano, L. J., and M. Eichenbaum. 1989. Unit roots in real GNP: Do we know, and do
we care? NBER Working Paper No. 3130.

Christiano, L. J., and L. Ljungqvist. 1988. Money does Granger—cause output in the
bivariate money—output relation. Journal of Monetary Economics 22: 217-235.

Clark, P. K. 1987. The cyclical component of U.S. economic activity. Quarterly Journal of
Economics 102: 798-814.



— 60 —

Clark, P. K. 1989. Trend reversion in real output and unemployment. Journal of
Econometrics 40: 15-32.

Cochrane, J. H. 1988. How big is the random walk in GNP? Journal of Political Economy
96: 893-920.

Cochrane, J. H. 1991. A critique of the application of unit root tests. Journal of Economic
Dynamics and Control 15: 275~284.

Corbae, D., S. Ouliars, and P. C. B. Phillips. 1990. A reexamination of the consumption
function using frequency domain regressions. Mimeo, University of Iowa.

Davidson, J. E. H., and D. F. Hendry. 1981. Interpreting econometric evidence: The
behavior of consumer’s expenditure in the U.K.. European Economic Review 16:
177—-192.

Davidson, J. E. H., D. F. Hendry, F. Srba, and S. Yeo. 1978. Econometric modelling of
the aggregate time—series relationship between consumer’s expenditure and income
in the United Kingdom. Economic Journal 88: 661—692.

DeJong, D. N., J. C. Nankervis, N. E. Savin, and C. H. Whiteman. 1990a. Integration
versus trend—stationarity in time series. Mimeo, University of Iowa.

DeJong, D. N., J. C. Nankervis, N. E. Savin, and C. H. Whiteman. 1990b. The power
problems of unit root tests in time series with autoregressive errors. Mimeo,
University of Iowa.

Dickey, D. A., W. R. Bell, and R. B. Miller. 1986. Unit roots in time series models: Tests
and implications. American Statistician 40: 12-26.

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive
time series with a unit root. Journal of the American Statistical Association 74:
427431.

Dickey, D. A., and W. A. Fuller. 1981. Likelihood ratio statistics for autoregressive time
series with a unit root. Econometrica 49: 1057—1072.

Dickey, D. A. and S. G. Pantula. 1987. Determining the order of differencing in
autoregressive processes. Journal of Business and Economic Statistics 5: 455—462.

Diebold, F. X., and M. Nerlove. 1990. Unit roots in economic time series: A selective
survey. In Advances in Econometrics: Cointegration, Spurious Regressions, and Unit
Roots, edited by T.B. Fomby and G.F. Rhodes. Greenwich, CT: JAI Press, 3—70.

Dolado, J. J., T. Jenkinson, and S. Sosvilla—Rivero. 1990. Cointegration and unit roots.
Journal of Economic Surveys 4(3): 249—273.

Eichenbaum, M., and K. J. Singleton. 1986. Do equilibrium real business cycle theories
explain postwar U.S. business cycles? NBER Macroeconomics Annual 1986: 91-135.

Engle, R. F., and C. W. J. Granger. 1987. Co—integration and error correction:
Representation, estimation and testing. Econometrica 55: 251—-276.

Engle, R. F., D. F. Hendry, and J. F. Richard. 1983. Exogeneity. Econometrica 51:



—61 —

277-304.

Engle, R. F., and B. S. Yoo. 1987. Forecasting and testing in cointegrated systems. Journal
of Econometrics 35: 143—159.

Evans, G. B. A,, and N. E. Savin. 1981. Testing for unit roots: 1. Econometrica 49:
753-779.

Flavin, M. A. 1981. The adjustment of consumption to changing expectations about future
income. Journal of Political Economy 89: 974—1009.

Fuller, W. A. 1976. Introduction to Statistical Time Series. John Wiley: New York.

Ghysels, E. and P. Perron. 1990. The effect of seasonal adjustment filters on tests for a
unit root. Econometric Research Program Memorandum No. 355, Princeton
University.

Gonzalo, J. 1989. Comparison of five alternative methods of estimating cointegrating
vectors. Mimeo, University of California at San Diego.

Granger, C. W. J. 1981. Some properties of time series data and their use in econometric
model specification. Journal of Econometrics 16: 121—-130.

Granger, C. W. J. 1983. Co—integrated variables and error correcting models.
Unpublished Discussion Paper No. 83—13, University of California at San Diego.

Granger, C. W. J. 1986. Developments in the study of cointegrated variables. Ozford
Bulletin of Economics and Statistics 48: 213—228.

Granger, C. W. J., and P. Newbold. 1974. Spurious regressions in econometrics. Journal
of Econometrics 2: 111-120.

Granger, C. W. J,, and A. A. Weiss. 1983. Time series analysis of error—correcting models.
In Studies in Econometrics, Time Series, and Multivariate Statistics, 255—278. New
York: Academic Press.

Gregory, A. W. 1991. Testing for cointegration in linear quadratic models. Mimeo, Queen'’s
University.

Hall, A. 1990. Testing for a unit root in time series with pretest data based model
selection. Mimeo, North Carolina State University.

Hall, R. E. 1978. Stochastic implications of the life cycle—permanent income hypothesis:
Theory and evidence. Journa!l of Political Economy 86: 971-987.

Hamilton, J. D. 1989. A new approach to the economic analysis of nonstationary time
series and the business cycle. Econometrica 57: 357—384.

Hansen, B. E. 1990a. A powerful, simple test for cointegration using Cochrane—Orcutt.
Mimeo, University of Rochester.

Hansen, B. E. 1990b. Efficient estimation and testing of cointegrating vectors in the
presence of deterministic trends. Forthcoming in Journal of Econometrics.



—62 —

Harvey, A. C. 1985. Trends and cycles in macroeconomic time series. Journal of Business
and Economic Statistics 3(3): 216-227.

Hendry, D. F. 1980. Econometrics: Alchemy or science. Economica 47: 387—406.

Hendry, D. F. 1986. Econometric modelling with cointegrated variables: An overview.
Ozford Bulletin of Economics and Statistics 48: 201-212.

Hendry, D. F. 1987. Econometric methodology: A personal perspective. In T. Bewley (ed.),
Advances In Econometrics, Vol. 2. Cambridge: Cambridge University Press.

Hendry, D. F., and J. F. Richard. 1982. On the formulation of empirical models in
dynamic econometrics. Journal of Econometrics 20: 3-33.

Jaeger, A. 1990. Shock persistence and the measurement of prewar output series.
Economics Letters 34: 333-337.

Jaeger, A. and R. M. Kunst. 1990. Seasonal adjustment and measuring persistence in
output. Journal of Applied Econometrics 5. 47-58.

Jeganathan, P. 1988. Some aspects of asymptotic theory with applications to time series
models. Mimeo, University of Michigan.

Johansen, S. 1988. Statistical analysis of cointegrating vectors. Journal of Economic
Dynamics and Control 12: 231-254.

Johansen, S. 1989a. Estimation and hypothesis testing of cointegration vectors in Gaussian
vector autoregressive models. Forthcoming in Econometrica.

Johansen, S. 1989b. Likelihood Based Inference on Cotntegration Theory and Applications.
Centro Interuniversitario di Econometria, Bologna.

Johansen, S. 1991. Determination of cointegrating rank in the presence of a linear trend.
Mimeo, University of Copenhagen.

Johansen, S., and K. Juselius. 1990. Maximum likelihood estimation and inference on
cointegration — with applications to the demand for money. Ozford Bulletin of
Economics and Statistics 52: 169-210.

Kashyap, A. K., and D. W. Wilcox. 1990. Production and inventory control at the General
Motors Corporation during the 1920’s and 1930’s. Federal Reserve Board Finance and
Economics Discussion Paper 135.

King, R. G., C. L. Plosser, and S. T. Rebelo. 1988. Production, growth and business cycles
II. New directions. Journal of Monetary Economics 21: 309-341.

Kleidon, A. W. 1986. Variance bounds tests and stock price valuation models. Journal of
Political Economy 94: 953-1001.

Lam, P. S. 1990. The Hamilton model with a general autoregressive component:
Estimation and comparison with other models of economic time series. Mimeo, The
Ohio State University.

Mankiw, N. G., and M. D. Shapiro. 1985. Trends, random walks, and tests of the



—63 —

permanent income hypothesis. Journal of Monetary Economics 16: 165—174.

Nelson, C. R., and C. I. Plosser. 1982. Trends and random walks in macroeconomic time
series. Journal of Monetary Economics 10: 139—162.

Ogaki, M., and J. Y. Park. 1990. A cointegration approach to estimating preference
parameters. Mimeo, University of Rochester.

Ouliaris, S., J. Y. Park, and P. C. B. Phillips. 1989. Testing for a unit root in the presence
of a maintained trend. In Advances in Econometrics and Modelling, edited by B.
Raj. Dordrecht: Kluwer Academic Publishers, 7—28.

Pagan, A. 1984. Econometric issues in the analysis of regressions with generated Tegressors.
International Economic Review 25: 221-247.

Pantula, S. G. 1989. Testing for unit roots in time series data. Econometric Theory 5:
256-271.

Park, J. Y. 1988. Canonical cointegrating regressions. CAE Working Paper No. 88—29,
Cornell University.

Park, J. Y. 1990a. Testing for unit roots and cointegration by variable addition. In
Advances in Econometrics: Co—integration, Spurious Regressions, and Unit Roots,
T. B. Fomby and G. F. Rhodes (eds), Greenwich: JAI Press.

Park, J. Y. 1990b. Maximum likelihood estimation of simultaneous cointegrated models.
Memo 199018, Institute of Economics, University of Aarhus.

Park, J. Y., and B. Choi. 1988. A new approach to testing for a unit root. Mimeo, Cornell
University.

Park, J. Y., S. Ouliaris, and B. Choi. 1988. Spurious regressions and tests for cointegration.
Mimeo, Cornell University.

Park, J. Y., and P. C. B. Phillips. 1988. Statistical inference in regressions with integrated
processes: Part 1. Econometric Theory 4: 468—497.

Park, J. Y., and P. C. B. Phillips. 1989. Statistical inference in regressions with integrated
processes: Part 2. Econometric Theory 5: 95—131.

Perron, P. 1988. Trends and random walks in macroeconomic time series: Further evidence
from a new approach. Journal of Economic Dynamics and Control 12: 297—332.

Perron, P. 1989a. The great crash, the oil price shock and the unit root hypothesis.
Econometrica 57: 1361-1401.

Perron, P. 1989b. Testing for a random walk: A simulation experiment of power when the
sampling interval is varied. In Advances in Econometrics and Modelling (B. Raj,
ed.), Dordrecht: Kluwer Academic Publishers, 4768,

Perron, P. 1990a. Testing for a unit root in a time series with a changing mean. Journal of
Business and Economic Statistics 8: 153—162.

Perron, P. 1990b. Further evidence on breaking trend functions in macroeconomic



—64 —

variables. Econometric Research Program Memorandum No. 350, Princeton
University.

Perron, P. 1990c. Test consistency with varying sampling frequency. Forthcoming in
Econometric Theory.

Perron, P. and P. C. B. Phillips. 1987. Does GNP have a unit root? A reevaluation.
Economics Letters 23: 139—145.

Perron, P. and T. J. Vogelsang. 1990. Nonstationarity and level shifts with an application
to purchasing power parity. Unpublished manuscript, Princeton University.

Phillips, A. W. 1954. Stabilization policy in a closed economy. Economic Journal 64:
290—323.

Phillips, P. C. B. 1986. Understanding spurious regression. Journal of Econometrics 33:
311-340.

Phillips, P. C. B. 1987. Time series regression with unit roots. Econometrica 55: 277—302.

Phillips, P. C. B. 1988. Spectral regression for cointegrated time series. Forthcoming in W.
Barnett (ed.) Nonparametric and Semiparametric Methods in Economics and
Statistics, Cambridge University Press.

Phillips, P. C. B. 1991. Optimal inference in cointegrated systems. Econometrica
59:283-306.

Phillips, P. C. B., and B. E. Hansen. 1990. Statistical inference in instrumental variables
regression with I(1) processes. Review of Economic Studies 57:99—125.

Phillips, P. C. B., and M. Loretan. 1989. Estimating long run economic equilibria. Cowles
Foundation Discussion Paper No. 928, Yale University. Forthcoming in Review of
Economic Studies.

Phillips, P. C. B., and S. Ouliaris. 1988. Testing for cointegration using principal
components methods. Journal of Economic Dynamics and Control 12: 205—230.

Phillips, P. C. B., and S. Quliaris. 1990. Asymptotic properties of residual based tests for
cointegration. Econometrica 58: 165—193.

Phillips, P. C. B., and P. Perron. 1988. Testing for a unit root in time series regression.
Biometrika 75: 335—346.

Priestley, M. B. 1981. Spectral Analysis and Time Series. Academic Press: New York.

Said, S. E., and D. A. Dickey. 1984. Testing for unit roots in autoregressive — moving
average models of unknown order. Biometrika 71: 599—608.

Saikkonen, P. 1990. Asymptotically efficient estimation of cointegration regressions.
Forthcoming in Econometric Theory.

Sargan, J. D. 1964. Wages and prices in the United Kingdom: A study in econometric
methodology. In P.E. Hart, G. Mills and J. N. Whittaker (eds), Econometric
Analysis for National Economic Planning, London: Butterworths.



— 65 —

Sargan, J. D., and A. Bhargava, 1983. Testing the residuals from least squares
regression for being generated by the Gaussian random walk. Econometrica
51:153-174.

Sargent, T. J. 1979. A note on maximum likelihood estimation of the rational expectations
model of the term structure. Journal of Monetary Economics 5: 133—143.

Schwert, G. W. 1989. Tests for unit roots: A Monte Carlo investigation. Journal of
Business and Economic Statistics 7: 147-160.

Shiller, R. J., and P. Perron. 1985. Testing the random walk hypothesis: Power versus
frequency of observation. Economics Letters 18: 381—-386.

Sims, C. A. 1972. Money, income, and causality. American Economic Review 62: 540—552.
Sims, C. A. 1980a. Macroeconomics and reality. Econometrica 48: 1—48.

Sims, C. A. 1980b. Comparison of interwar and postwar business cycles: Monetarism
reconsidered. American Economic Review 70: 250—257.

Sims, C. A., J. H. Stock, and M. W. Watson. 1990. Inference in linear time series models
with some unit roots. Econometrica 58: 113—144.

Stock, J. H. 1987. Asymptotic properties of least—squares estimators of cointegrating
vectors. Econometrica 55: 1035—1056.

Stock, J. H. 1990. A class of tests for integration and cointegration. Mimeo, Harvard
University.

Stock, J. H., and M. W. Watson. 1988a. Testing for common trends. Journal of the
American Statistical Association 83: 1097—1107.

Stock, J. H., and M. W. Watson. 1988b. Variable trends in economic time series. Journal
of Economic Perspectives 2(3): 147-174.

Stock, J. H., and M. W. Watson. 1989. Interpreting the evidence on money—income
causality. Journal of Econometrics 40: 161—182.

Stock, J. H., and M. W. Watson. 1990. A simple MLE of cointegrating vectors in higher
order integrated systems. National Bureau of Economic Research Technical
Working Paper No. 83, Cambridge.

Stock, J. H., and K. D. West. 1988. Integrated regressors and tests of the permanent
income hypothesis. Journal of Monetary Economics 21: 85-96.

Watson, M. W. 1986. Univariate detrending methods with stochastic trends. Journal of
Monetary Economics 18: 1-27.

West, K. D. 1988. Asymptotic normality when regressors have a unit root. Econometrica
56: 1397—-1418.

Zivot, E. and D. W. K. Andrews. 1990. Further evidence on the great crash, the oil price
shock and the unit root hypothesis. Cowles Foundation Discussion Paper No. 944,
Yale University.



TABLE 1

UNIVARIATE MONTE CARLO RESULTS

Data Fraction of rejections Out-of-sample
generating at 5% level mean squared error
process
(¢.8) Said- Phillips- Levels Differences Said- Phillips-
Dickey Perron Dickey Perron
1, -0.98 0.98 1.00 1.06 1.23 1.06 1.06
1.06 1.24 1.07 1.06
1, -0.95 0.96 1.00 1.05 1.21 1.06 1.05
1.12 1.26 1.13 1.12
1, -0.90 0.91 1.00 1.08 1.17 1.09 1.08
1.38 1.39 1.37 1.38
1, -0.80 0.71 1.00 1.15 1.12 1.15 1.15
2.48 2.11 2.31 2.48
1, -0.50 0.28 0.77 1.15 1.06 1.10 1.14
9.87 7.07 7.54 8.96
1, 0 0.09 0.06 1.13 1.05 1.06 1.06
34.3 25.2 25.6 25.4
0.98, 0 0.10 0.06 1.13 1.06 1.07 1.07
28.0 21.6 21.8 21.8
0.95, 0 0.14 0.11 1.11 1.06 1.08 1.08
17.4 16.0 16.1 16.1
0.90, 0 0.29 0.25 1.10 1.09 1.10 1.10
9.54 10.4 10.2 10.3
0.80, 0 0.70 0.73 1.08 1.14 1.11 1.11
4.23 5.78 4.98 4.85
0.50, 0 0.96 1.00 1.08 1.23 1.08 1.08
1.60 2.16 1.61 1.60

Notes appear on the next page.



Notes: This table reports the results of a Monte Carlo experiment with 5,000
replications. Samples of length 100 were generated from the process

X, - X, + u. + Ou, ,, with standard normal innovations u, and values of ¢ and ¢
given in the first column. Said-Dickey t, and Phillips-Perron Z(x) unit root
tests were performed on each sample, using estimated trends and selecting lag
length by the procedure described in the text, with the maximum lag length
kmax = 6. The second and third columns of the table report the empirical
rejection probabilities of nominal 5% tests.

At the end of each sample, one- and twenty-period-ahead forecasts were
formed using an autoregressive model in levels, and an autoregressive model in
differences. For each model lag length was chosen using the selection
procedure described in the text, with the maximum lag length kmax = 6. For
each sample and forecast horizon, out-of-sample mean squared errors of
forecast were calculated using 25 draws of the data generating process. The
table reports average out-of-sample mean squared errors across all
replications, for the levels model, the differences model, and two mixed
models. The latter use the levels model when the Said-Dickey or Phillips-
Perron unit root test rejects, and the differences model otherwise. For each
data generating process, the first row gives results for one-period-ahead

forecasts, and the second row gives results for twenty-period-ahead forecasts.



