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ABSTRACT

Weights are found for weighted least squares estimates such
that a selected coefficient (a) changes by one standard deviation
or (b) changes in sign. The length of the vector of weight
changes is equal to the usual OLS standard error divided by the
White-corrected standard errors. Thus the White-corrected
standard errors can help decide if it is necessary to adjust the
location of the confidence sets to correct for
heteroscedasticity. The vector of weight changes is similar to
the effect of omitting observations, one at a time. The
sensitivity diagnostics of Belsley, Kuh and Welsch are therefore

linked with heteroscedasticity issues.
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1. Introduction

If the (nxl) data vector y is drawn from a normal distribution with

mean XA and covariance W!, where S 1s an unknown (kxl) parameter vector
and W is a known (nxn) precision matrix, then the generalized least
squares estimator is (X'WXK) !X'Wy which has variance (X'WX) L, Rarely,
however, will the precision matrix W be known. When W is unknown but
probably clese to an identity matrix, then it is common practice to use
the least squares estimator (X'X)"'X’y, Though this estimator has
variance (X'X)ﬂX'UﬂX(X'X)ﬂ, most practitioners report instead the
ordinary least squares estimated variance, sz(X'X)'l, where s? is the sum
of squared residuals divided by the degrees of freedom. But
Eicker(1967) and White(1980) show that, if W is diagonal but unknown,
and E {s a diagonal matrix with the least squares residuals on the
diagonal, then the matrix (X’X)“X'EZX(X’X)‘l is a consistent estimate of
the least-squares covariance matrix.

White’s article has had great impact and it is now quite common to

report ordinary least squares estimates together with "White-cor.ccted"
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standard errors. But this practice is disturbing because it is based on
the idea that heteroscedasticity requires an adjustment to the length
but not the location of a confidence set. This is correct
asymptotically, as White has shown, but in small samples the location of
the confidence sets may sensibly require substantial adjustment.

Unfortunately, adjustment of the location of the confidence sets
seems to require a traditiocnal approach in which the form of the
heteroscedasticity is modelled in terms of a fixed set of parameters.

If one were to approach the choice of estimates without commitment to
the form of heteroscedasticity, one might try iterating the equations,
X'E%Xb = X'E'%y, e = y-Xb, E = diagle,,e,,...,e ,) that jointly
determine the estimates and the weights. But the fixed points of this
iteration occur when all the weight (e ,=0) is assigned to k arbitrarily
selected observations, and the estimate b is selected to fit these k
observations exactly. There are n-choose-k such solutions. And the
likelihood function has essential singularities at each of these points.
This unappealing treatment of the problem of heteroscedasticity arises
precisely because the variances are allowed to be anything. A sensible
treatment must therefore impose some limits on the weight matrix W. A
stochastic or deterministic model would serve this function.

In my opinion, the availability of White-corrected standard errors
has had an undesirable affect on real data analyses because ,perhaps
unintentionally, the use of the corrected standard errors has
discouraged treatments that alter the location as well as the size of
the confidence sets. But I report in this paper that the corrected
standard errors may be used to indicate when changing the weights can

alter substantially the location of the confidence sets. Namely, if



there is an increase in the standard error after correction, then we can
expect that there would likewise be a large change in the location of
the confidence sets. If, on the other hand, the White-correction leaves
unchanged or reduces the standard errcrs, then the estimates are likely
to be very insensitive to reweighting.

In particular, the vector

s Weights(e) = ¢ (X'X)R'E s(¢’ (X'X) )2/ (¢ (X'X)TREX (X'X) o),
is shown to be the change in the diagonal values of the weight matrix W
from the initial values of W = I that is just enough to change the
estimate of c’S by one standard deviation. (The subscript s on 4 is a
reference to the standard error.) The length of this vector is the
ratio of the OLS standard error divided by the White corrected standard
error:

[|aWeights(e) |} = s (e"(X'X)7)? / (" (X'X)TXKEX (X'X)re)t’?

= §.E.Ratio(c)
where s? is the OLS residual sum of squares divided by the degrees of
freedom. A "large" value of this diagnostic would indicate that the
issue is very insensitive to choice of weights since "large" changes in
the least-squares weights from their initial value of one are required
to alter the estimate by one standard deviation. The meaning of “"small®
and "large" is further discussed below. Until then, quotations will
surround these vague words.

Another diagnostic indicates the change in the vector of least-
squares weights that is enough to change the sign of the estimate. This
vector of weight changes is equal to the product of the t-statistic
times the vector of weight changes necessary to alter the estimate by

one standard deviation:



4, Weights(c) = [t(e)| & Weights(e)

|faWeights|] = [c(e)| S.E.Ratio(c)
where t(c) = c’(X’X)*X’y/s (¢ (X'X) )% is the t-statistic for
testing ¢’f = 0. (The subscript b on A is a reference to the least-
squares estimate b, signalling that here we are perturbing the estimate
by enough to change its sign.)

These diagnostics are different for each coefficient or linear
combination, but the continuum of possible diagnostics can be summarized
in terms of the minimum and maximum. Letting the eigenvalues A be
roots of the characteristic equation [SZX’X - AX'EZXI where s is the
unbiased estimator of the residual variance, a pair of general
diagnostics are the smallest and largest roots:

inf S.E.Ratio(e) = (i )*? sup §.E.Ratio(e) = (3, Y°
=3 c

The statistic (x )2
min

indicates the change in the weights that is
enough to change some coefficient by one standard deviation. The
statistic (/\mx)”2 indicates the change in the weights that is encugh to
change any linear combination of coefficients by one standard deviation.
A problem is judged to be insensitive to heteroscedasticity problems if
(Amn)uz is "large". A problem is judged to be very sensitive to
heteroscedasticity problems if (,\MX)UZ is "small"

The extreme values of the second diagnostic indicating the change
in the weights necessary to alter the sign of the coefficient are shown

to be

inf [t(e)| 5.E.Ratio(c) = O sup |t(e)| S.E.Ratio(c) = (y'E2%y)Y?
c [3

The infimum is zero since there is always some linear combination with

an estimate c’(X’X)*X’y which is so clese to zero that the slightest
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change in the weights will reverse its sign. The supremum is then the
interesting result. A "small” value of the supremum indicates that all
estimates are sensitive to the choice of weights, since "small" changes
in the weights can be found to alter the signs of any linear
combination, A "large" value for the supremum indicates that there are
some linear combinations that are resistent to reweighting.

The vagueness in the terms "small" and "large" will have to be
eliminated if these diagnostics are to have practical value. I regard
changing each of the weights by ten percent to be a small change, one
that seems easily justified by formal models of heteroscedasticity. If
each weight changes by ten percent, the length of the weight change
vector is (Z(.l)z)l/z- .1*n'2.  This measure of smallness increases with
sample size, which may seem unnatural, but another way to think about it
is to suppose that the weights come from a distribution with central
tendency equal to one and second moment E(wi-l)zl- v. Then the expected

sum is E( Zl(wl-l)z) = nv with square root equal to n'/? v”z, which also

/2

grows like o’ A change in one of the weights as big as .9 seems to

me to be large since then the relative weights can be as extreme as

1.9/.1 = 19. For these reason, I will regard any vector of weight
changes that is smaller than .1 n'/? to be "small, and any vector larger
than .9 n'? to be "large". Classification of numbers between these

extremes is open for discussion.

These diagnostics indicate the local sensitivity of an estimate to
changes in assumptions about the heteroscedasticity weights. Global
sensitivity results for the same problem are reported in Gilstein and
Leamer(1983) who provide algorithms for characterizing the full set of

weighted regressions. Global sensitivity results are also reported in



Belsley, Kuh and Welsch(1980) who suggest studying the changes in the #
least-squares estimates induced by the omission of observations one-at-
a-time. This seems like an unusual and unlikely form of reweighting e
since zero weight is put on one observation and equal weights on all the
others. The BKW approach does usefully detect "lonely" outliers but not
outliers in bunches. Multiple deletion is computationally burdensome,
and Belsley, Kuh and Welsch(1980) suggest instead a stepwise approach
which doesn’t seem likely to deal fully with the problems of clusters of
outliers. The local sensitivity analysis discussed here seems
automatically to identify sets of influential observations since a
vector of changes in the weights is selected that most affects the
estimate. But this comparison with BKW is misleading since this local
sensitivity analysis is built on the approximation that the weighted
least squares estimate is linear in the weights. Part of the problem of
multiple deletions is a form of nonlinearity. This point is further
discussed in Section 3 which makes some additional comparisons of BKW
and my results.
The final section contains an example built on a model and data
taken from BKW(1980). The intent of the example is to demonstrate the
value of these diagnostics and also suggest an informative and

/2 and

economical style of reporting that includes S.E.Ratio(c)/n
AsWeights(c) for selected linear combinations c¢'fA, and also the extreme

values of S4I-Z.Rat:io(z:)/n]‘/2 and S.E.Ratio(c)t(c)/nln.
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2. Derivations

The generalized least-squares estimator is a solution to the normal
equations

X'WX b = X'Wy
where W is the inverse of the error covariance matrix which in the
heteroscedastic case is assumed to be diagonal

a0 e wn).

W o= diag(wl, W
Differentiation of this equation produces

X'WX db + X' (dW)X b - X' (dW)y = O
or equivalently

X'WK db = X'(dW) e (1)

where e is the vector of residuals

e=y -Xb
Let E be the diagonal matrix with the residuals on the diagonal and

zeroes elsewhere:

E = diag(el, €y s en)
and let
dw = (dwl, dwz,... dwz)’.

Then (dW) e = E dw and if (1) is evaluated at the unweighted least
squares estimate, W = I, it can be written as db = (X'X)"* X'E dw. This
matrix of derivatives can be collapsed into a vector if interest focuses
on the linear combination ¢'b. Then the derivative of the estimate of
this linear combination with respect to changes in the weights is
¢'db = ¢ (X’X)7 X'E dw (2)
This vector of derivatives can be collapsed into a scalar by
selecting a direction dw in which to perturb the weights. A worst-case

direction can be found by maximizing c’'db subject to the constraint



dw'dw < (dwj® where dw is an infinitesimal. The Lagrangian equation for
this extreme value problem is ¢’ (X'X)*X'E - Adw’' = 0’ where X is the
Lagrange multiplier. Thus dw’= ¢’ (X'X) 'X‘E/\ and
c’(X’X)ALX'EZX(X'X)'lc/z\2 = (dw)?, from which we can solve for the
Lagrange multipliers, X = #(c¢’(X'X)"'X'ER(X'X) 'e)¥?/dw. Using these
values of the multiplier, we have the weight vector and derivative of
the estimate as

de'= t ¢ (X'X)X'E (dw)/ (c' (X'X)KER(X'X) Fe)t? (3)

¢’db = (' (X'X)X'EXX (X'X)Te)M? (dw) (4)

The vector of weight-changes (3) can be used to point to specific
observations that deserve cleoser scrutiny since changes in their weights
can have a substantial affe;t of the estimate of the issue. The weight-
change vector is defined up‘co the factor of proportionality dw and the
vector thus has to be scaled to make it comparable across issues and
problems. One interesting scaling selects the minimal weight-change
vector that is necessary to induce a one-standard deviation change in
the issue. Using a linear approximation which is signaled by replacing
the differential d with the discrete change notation A, the value of Aw
that is needed to induce a one-standard deviation change in the estimate
is the solution to c’ab = (¢’ (X'X)'X'EX (X'X) 1e)? (sw)
- 8 (c’(X’X)qt)lﬂ‘ Using this value of Aw we can solve for the vector
of weight changes and its length:
aWeights(e) = ¢ (X'X)X'E s(c’ (X'X) ) ¥/ (" (X'X)X'EX (X’'X)Le) (5)
S.E.Ratio(e) = [|a Weights(e)]|

= s(e' (XD )M/ (e (X' D) TRERR (X'K) re) R (6)
The vector A Weights(c) is the approximate change in the weights

from their initial unit values that is necessary to induce a one-
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standard deviation change in the estimate of the parameter c'f. The
statistic S.E.Ratio(c) is the length of ASWeights(c)4 The length
S.E.Ratio(c) is equal to the ratio of the usual estimate of the standard
error divided by the "White-corrected" estimate of the standard error.
If the White corrected standard error is large compared with the
uncorrected standard error then a small change in the weights can make a
big difference in the estimate. But if the White corrected standard
error is relatively small, then the estimate is insensitive to
reweighting of observations.

An alternative choice of the weight change vector is a set of
values for which the coefficient changes sign: c¢’aAb = (¢’ (X'X) ‘X'EXX
(X’X) teylr? (bw) = |c’(X’X)"1X’y[. The corresponding diagnostics are

A Weights(c) = A Weights(c) |t(e)|

| |aWeights|| = S.E.Ratio(e) |t(c)|
where t(c) = c¢'(X'X) 'K'y/s (c'(X'X) )2 is the t-statistic for
testing ¢’f - 0 and where the subscript b on & refers to the OLS
estimate b, These statistics can be found from (5) and (6) simply by
dividing by the t-values. An economical reporting scheme thus includes
AWeights(c) and S.E.Ratio(c) together with the t-value t(e).

These diagnostics might be reported for selected issues ¢ but they
carmot be reported for all linear combinations. A way to deal with the
dependence on ¢ is to find the issue that is most semsitive to
heteroscedasticity problems and the issue that is least sensitive. Note
that by change of variable c¢ = X'Xf the diagnostic is S.E.Ratio(X'Xf) =
s (f’)('}(f)l/2 / (f’X'EZX f)“z, Then letting the eigenvalues Ai be roots
of the characteristic equation |52X’X - kX’EZXl we have from Rao(1965,

p. 50):
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inf S.E.Ratio(e) = (A )7 sup S.E.Ratio(c) = (A )2

c c

max

One general diagnostic is thus (Amin)“z

which indicates the change in
the weights that is enough to change some coefficient by one standard
deviation. The statistic (Xm“)”2 is also of interest since it
indicates the change in the weights that is enough to change any linear
combination of coefficients by one standard deviation. A problem is
judged to be insensitive to heteroscedasticity problems if (kmn)l/2 is
large since this indicates that a large change in weights to change an
estimate by one standard deviation. A problem is judged to be very

is small since this

sensitive to heteroscedasticity problems if (Am“)lﬂ

indicates that only a small change in the weights is enough to change
any estimate by one sta;dard deviation.

It is possible also to find extreme values of the diagnostic
indicating the length of the weight-change vector that is necessary to
change the sign of the coefficient: 1|AbWeighCS(c)l|
- |{aWeights(e)}] |e(e)] = e (X'B)X'y / (e’ X'DTXER (XX Te)? -
{f’X’yy’Xf/f')(’Ez)'(f]”Z where f' = ¢’ (X'X)"}. The extreme values of this
ratio are the minimimum and maximum roots of the characteristic equation
lX'yy’X - A X’E2X| = 0. Using the formula |A - rr’| - |Al(l-r’Aﬂr)
this characteristic equation can be expressed as !X'yy'X - A X’EZX|
= |AX'EX| (1- y'X(XER) T y/A] = AN {XER| (0 -y X(X'E’R) X'y | which
has minimum root 0 and maximum root y’X(X’EZX)ﬂX’y. Thus

inf S.E.Ratio(c)t(c) = 0 sup S.E.Ratio(c) t(ec) = (y'X(X'E¥R)"X'y)¥?
[+ [

The infimum is zero since there is always some linear combination with
an estimate c’(X’X)*X’y which is so close to zero that the slightest "i
i

change in the weights will reverse its sign. The supremum is then the
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interesting result. It addresses the following problem: Find the linear
combination that is most resistent to change as the weights are altered.
By how much do the weights have to change in order for this linear
combination to change in sign. It perhaps is wise to repeat again that
this answer is only an approximation. As a matter of fact, the set of
all weighted regressions as characterized by Gilstein and Leamer(1983)
may not include the origin in which case there are linear combinations
that cannot change their signs. In that event the correct solution
should be infinity not (y’X(X’EZX)dX’y)lﬂ. My recommendation therefore
is not to take this number literally, especially when it is large. When
(y’X(X’I':z"}()'l}('y)”2 is small, all estimates are sensitive to the choice
of weights, since fairly small changes in the weights can be found to
alter the signs of any linear combination. When (y’X(X’EZX)ﬂX'y)”Z is
large there are some linear combinations that are resistent to
reweighting.

Incidentally, the supremum (y')(()(’!!z){)'1}('y)1‘/2 will necessarily
grow with sample size which can be interpreted to mean that as sample
size grows, there will always be some estimates that are difficult to
change in sign by reweighting the observations, but the standard against
which this is compared increases with n*?,  Thus the sample-size
corrected diagnostic is (y’)(()(’I:'.Z)()‘l)(’y)l/z/n”2 which does not diverge.

Last in this section I make some remarks about the linear
approximation that is implicit in many of these equations and I show how
some aspects of the approximation can be completely overcome. The
weighted least squares estimate that is considered here takes the form
b = (X' (I+p4) X)X’ (1+pA) 'y where & = diag(sw,, Aw,, 4w ) and the

scalar p is selected to make c’'b approximately zero or make c¢’'b and
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¢’ (X'X)"'X’'y differ approximately by one standard deviation. It is
possible without undue effort to make these statments precise.
Leamer(1984) has shown that this generalized least squares estimate can
be written as

b o= (X' (I+p8) R R (T+p2) Ty = (XXX (y - )
where g = (M + p 'A™') My where M is the usual idempotent matrix
M=I- XXX X and My is the vector of least squares residuals. In
words, b is an OLS estimate using "corrected data" (y-g), where the
correction g is the product of a matrix that depends on the matrix of
weight changes pA times the OLS residuals My. Using this result we have

¢'b - ¢’ (X'X) Iy = e (XXM + o7l My
This formula is made more clear if the matrices M and A™* are jointly
diagonalized: G'MG = D = diagonal matrix and ¢'aA"'¢6 = I. Then

e'd - ¢ (X'X)IX'y = -’ (X'X)TIKIG(GHG + o6 ATIG) T My

- c*' (D + p ) Tyx = T ok y* /(d+pTh)

which is a ratio of polynomialsin p. It is mot difficult to find zerces
of the polynomial in the denominator and in that way to find exactly the
matrices pA that are required to change an estimate by one standard
deviation or to set an estimate to zerc. For the example presented in
section 4 the approximation is quite good and this somewhat more

burdensome calculation seems unnecessary.



3. Relationship with Belslev, Kuh and Welsch

There are several vectors that could select observations for
special scrutiny. One is the derivative (2) of the estimate with
respect to the weights. Another is the vector of weight-changes (5)
that are enough to alter the estimate by one standard deviation. These
two vectors are proportional to each other if, as is assumed above, the
vector of weight-changes is constrained to lie within a circle. A
third, and different formula proposed by Belsley, Kuh and Welsch(1980)
is the change in the coefficient induced by the omission of a single
observation, BKW(1980, p.13). This differs from (2) and (3) by the
multiplication of a positive diagonal matrix. In my notation this
coefficient change is

DFBETA(c) = ¢’ (X'X) 'R’ED"* (7)
where D = diagonal(I-X(X’X)ﬂX’)‘ BKW(1980, p.24) also report the
derivative (2) and make the following comment:

"[The derivative (2)]...is often viewed as the influence
of the ith observation on the estimated coefficients.
Its relationship to the formula (7) for DFBETA is
obvious and it could be used as an alternative to that
statistic."

In their example which is reanalyzed in the next section, BKW
report the values of DFBETA scaled by the standard error of the estimate
based on the data set with one observation omitted. This scaling is
computationally burdensome and in thé next section I will report instead
the value of DFBETA scaled by the standard error estimated with all the
data:

DFBETAS*(c) = DFBETA(c) / s (e’ (X'X) le)/?

13
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The vectors AWeights(c) and DFBETAS*(c) are different both in
length and in direction. The directions in which these two vectors
point may not be very different since the diagonal matrix
D = diagonal{I-X(X'X) !X’} which links the two formula may be pretty
close to the identity matrix. When these two vectors point toward
different influential observations, I tend to prefer the question that
underlies AWeights(c): "If you reweight cthe observations to alter the
estimate of ¢’f by as much as possible, which weights change the most?"
The question implicit in DFBETAS* is: "Which observations, if deleted
from the sample, would have the greatest affect on the estimate of c’g?"
This question seems somewhat less interesting since I am unlikely to
omit completely an observation. But the one clear advantage of DFBETAS*
is that it is an exact answer to its question, whereas & Weights(c) is
only an approximate answer to its question. Furthermore, the question
that A Weights(c) answers has to be made more specific by defining the
length of a vector which is here taken to be Euclidean. This choice of
a circle within which to vary the weights makes an implicit reference to
the spherical symmetry of the prior distribution for the inverses of the
residual variances. The traditional choice of prior would be a gamma
distribution, which has level curves a = leog w,o- 72”1‘ The set Zilog
W, - 72”1 > r? can be far from spherical. Furthermore, the perturbation
of weights within a sphere makes no reference to data information which
might suggest that some perturbations are more likely than others.
Weights that are selected when heteroscedasticity is modelled will

necessarily be influenced by the data.



4.0 An Example

Belsley, Kuh and Welsch(1980, pp 40-63) report a data analysis that
explains the variation in the personal savings rates for 50 countries in
terms of differences in demographics and income. The equation that they
estimate is

SR = ﬁl + ﬁZPOPISL + 53POP75i + ﬂADPIi + ﬁs ADPIL + €, i=1,...,50
where
SR = the average aggregate personal savings rate over the period 1960-

1970 (per cent)

POP15 = the average percentage of the population under 15 years of age

over the period 1960-1970.

POP75 = the average percentage of the population over 75 years of age

over the period 1960-1970.

DPI = the average level of real per-capita disposable income over the
period 1960-1970 (thousands of U.S. dollars).2
ADPI = the average percentage growth rate of DPI over the period 1960-

1970. (percentage)

Estimates of this model and associated diagnostics are reported in
Table 1. The least-squares estimates are somewhat different from BKW,
presumably due to slight differences in the data sets caused by
misreporting by BKW or misrecording by my research assistant. These
differences are highly unlikely to affect the following conclusions
substantially.

In the middle of Table 1 are reported the values of BKW's DFBETAS*,
indicating the change in the estimate if an observation is omitted,

scaled by the standard error of the estimate. For example, the estimate

2 BKW use dollars, not thousands of dollars. The units here make the
tables a bit more readable.
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of the intercept is reduced by 1.18 standard errors if Korea is omitted.
The panel above indicates A Weight, the change in the weights that is
necessary to change the estimates by one standard error. For example,
the estimate of the intercept will change by one standard error if the
Korean weight is reduced by .61 at the same time that the Costa Rican
weight is reduced by .11 and the Japanese weight is increased by .34,
and.... The intent of chese two arrays of numbers is to point to
observations that are especially influential in determining the
estimates. For that purpose, the two arrays of numbers are virtually
indistinguishable,

Below the DFBETAS are reported the length of the AWeights vector
divided by the square root of the sample size. As we have indicated
above, the length of the AWeights vector is the uncorrected standard
error divided by the White-corrected standard error. The reported
numbers range from .12 up to .24. These numbers are small enough to
make one concerned about heteroscedasticity since changes in the weights
by between 12 and 15 per cent on the average are enough to alter the
estimates by one standard deviation. What I mean by this statement is
that it seem probable to me that I could come up with a sensible model
of heteroscedasticity that would lead me to changing the weights by .12
on the average. The row below indicates the average change in the
weights that is necessary to change the sign of a coefficient. These
are just equal to the preceeding numbers times the t-values. It appears
rather difficult to change the sign of the intercept and also the
coefficients on ADPI and POP15. But a little bit of change in the

weights can change the sign of DPI.

¥



Finally, in the last panel of the table are reported the extreme
values of these statistics over all possible parameters or combinations
thereof. The minimum of the first diagnostic referrring to changing
coefficients by one standard deviation is .10 and the maximum is .268.
The maximum is small enough to suggest that there is hardly any
coefficient that is insensitive to heteroscedasticity if we are worried
by changes in the coefficients equal to the standard error. But the
minimum of .1 does indicate that it would take at least a ten per cent
change in the weights on the average to change any coefficient by one
standard deviation. If you regard that much change to be implausible,
then you are free to conclude that heteroscecasticity is unimportant.
The range of the other statistic is much wider, from zero to 3.25. The
upper number indicates that there is some linear combination of
coefficientcs that is very difficulc tfo change in sign, requiring average
changes in the weights equal to 325 per cent.

Finally, it seems wise to check the assumption that the weighted
least squares estimates are approximately linear in the weights. In
order to check the accuracy of this approximation, we first compute the
weighted least squares estimates using the weights in Table 1 and verify
that the selected coefficient changes by one standard error, as
advertised. This calculation is reported in Table 2. The second column
contains the unweighted OLS estimates. The third column contains
weighted least squares estimates of the five coefficients using the five
different sets of weights defined by the AWeights vectors that are
partially reported in Table 1. The fourth column reports the difference
between the OLS and the weighted least squares estimates, and the last

column reports the OLS standard errors. If there were no approximation
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error, the last two columns would be identical. From my perspective,
these columns are gratifyingly close. The approximation seems a little
less accurate for the last two coefficients, which according to Table 1
do require relatively large changes in the weights. Of course, the
linear approximation cannot possibly hold if one of the weights is
required to take on a negative value. There are no such weights implied
by the values of AWeights in Table 1.

More extreme weights are required to change the sign of some of the
coefficients and then the linear approximation may not be as accurate.
To check this I have computed the weighted least squares estimates
generated when the weight vector is multiplied by the product of the
absolute t-value and the nqmbers 1, 1.25 and 2. Note that in Table 2
the WLS estimate is always.larger than the OLS estimate. This direction
of change makes the coefficient smaller in absolute value only if the
OLS estimate is negative. Thus the weight change vector has to be
reversed in sign for the two coefficients with positive OLS estimates:
Intercept and CH_DPI. When a weight change would make a weight
negative, its value 1s set to zero, thereby obviously affecting the
linear approximation. The OLS and the new weighted least-squares
estimate are reported in Table 3. If the linear approximation were
perfect the estimates in the column labelled WLS(t) would all be zero.
These numbers are very small compared with the OLS estimates, but in
four of the cases there have been no sign changes. If these weight
changes are increased by the multiple 1.25, the sign changes do occur,
except for the last coefficient. I find the results in this table to be

further confirmation that the linear approximation is adequate.
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Table 1

Estimates and Diagnostics
Dependent Variable: Savings Proportion

n =50, R®- 0.2768

Intercept POP1S POP75 DPI ADPI

Estimate 21.53 -0.32 -0.84 -0.19 0.42
Stnd. Error 7.00 0.14 1.06 0.97 0.20
t-value 3.08 -2.34 -0.79 -0.19 2.00
AWeights Kor -0.61 Jap -0.36 Jap -0.41 US -0.68 Lib -0.68
CosR -0.11 Lib -0.19 Zam -0.19 Swe -0.66 Jam -0.30

(Extremes) Par -0.11 Ice -0.16 Lib -0.15 1Ire -0.42 Per -0.27
Ire -0.10 Rho -0.13 1Ice -0.14 Ice -0.33 Phi -0.15

Chl -0.09 Tun -0.07 Bra -0.12 Rho -0.31 Kor -0.13

Jam 0.07 Per 0.08 Fra 0.09 UK 0.35 Mal 0.17

Ice 0.14 Ire 0.09 Phi 0.09 Bra 0.36 Ice 0.19

Rho 0.14 Phi 0.13 ¢Chl 0.12 Kor 0.37 Zam 0.23

Lib 0.21 CosR 0.14 Ire 0.18 Den 0.3% Par 0.25

Jap 0.34 Kor 0.60 Kor 0.58 Jap 0.47 Jap 0.40

DFBETAS Kor ~-1.18 Jap -0.65 Jap -0.6% US -0.34 Lib -1.28
CosR -0.19 Lib -0.61 Lib -0.45 Swe -0.26 Jam -0.31

(Extremes) Ire -0.18 Ice -0.25 Zam -0.28 1Ire -0.18 Per -0.25
Par -0.18 Rho -0.23 1Ice -0.21 Ice -0.12 Kor -0.15

chl -0.15 Tun -0.11 Bra -0.18 Rho -0.12 Phi -0.14

Jam 0.12 Per 0.13 Phi 0.13 Bra 0.13 Mal 0.16

Ice 0.22 Ire 0.17 Fra 0.14 UK 0.13 Ice 0.18

Rho 0.24 Phi 0.20 Chl 0.17 Dem 0.14 Zam 0.21

Jap 0.63 CosR 0.23 Ire 0.31 Kor 0.16 Par 0.23

Lib 0.70 Kor 1.14 Kor 1.03 Jap 0.20 Jap 0. 44

(ZaW 2/m)t/? 0.12 0.12 0.12 0.24 0.15
(t%sav, 2/myM? 0.37 0.28 0.09 0.05 0.30

min(ZAW 2/m)M? - 0,100 max(ZaW */m)¥% - 0.268

nin(t?ZaW,%/n)? = 0.000

max (£25aW 2 /n) M2 = 3,250

20

.



‘e

Table 2
Weighted Least Squares Estimates

oLs WLS®__ DIFFERENCE ST, ERR, (OLS)
INTERCEP 21.531 29.00 7.469 7.000
POP15 -0.323 -0.19 0.133 0.138
POP75 -0.839 15 0.989 1.058
DPI -0.186 1.11 1.296 0.972
CH_DPI 0.411 .70 0.289 0.206

! Weighted least-squares estimates using weights defined
in Table 1; different weights for each row.

Table 3
Weighted Least Squares Estimates

oLS WLS(t) WLS(1.25t) WLS(2¢t)
INTERCEP 21.531 3.45 -.37 -4,12
POP15 -0.323 -.04 .02 .08
POP75 -0.839 -.04 .15 .33
DPI -0.186 .01 .06 L1l
CH_DPI 0.411 .11 .05 -.01

Note:Weighted least-squares estimates using weights defined
in Table 1 times the a multiple of the t-value;
different weights for each row.
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