NBER TECHNICAL WORKING PAPER SERIES

DOES CORRECTING FOR HETEROSCEDASTICITY HELP?

Frederic S. Mishkin

Technical Working Paper No. 88

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
May 1990

Research support has been provided by the Faculty Research Fund of the Graduate
School of Business, Columbia University. I thank Bob Cumby for helpful
comments. This paper is part of NBER’'s research program in Financial Markets
and Monetary Economics. Any opinions expressed are those of the author and not
those of the National Bureau of Economic Research.




NBER Technical Working Paper #88
May 1990

DOES CORRECTING FOR HETEROSCEDASTICITY HELP?

ABSTRACT

This paper conducts Monte Carlo simulation experiments to evaluate how
well the Hansen-Hodrick-Newey-West-White methodology performs for a particular
example in the literature. The conclusion from this exercise is that although
correcting for the overlapping data does help produce better statistical
inference in finite samples, correcting for heteroscedasticity can
substantially worsen statistical inference even when heteroscedasticity is
present in the data. The answer to the question posed in the title of the
paper is that correcting for heteroscedasticity may not help produce better
statistical inference, but rather can do the opposite.

Frederic S. Mishkin
Graduate School of Business
Uris Hall 619

Columbia University

New York, NY 10027
(212)854-3488




I. Introduction

Empirical analysis of financial market data now often involves
estimating linear rational expectations models inwhich the standard errors of
the coetficients are corrected for both serial correlation and heteroscedas-
ticity in the error term. Recent examples in the literature include Campbell
and Clarida (1987), Froot (1989), Hardouvelis (1988), and Mishkin (1988,
19904, 1990b). The correction for serial correlation of the error term is
necessary because the number of periods spanned by the forecast horizon or
the holding period of a security's return is greater than the observation
interval -- i.e., the data is overlapping. Heteroscedasticity is corrected for
generally because. as stated by Cumby and Huizinga (1989), "the econome-
trician is unlikely to know a priori whether a given data set is conditionally
heteroscedastic or not. Therefore, having a test which works well on both
conditionally homoscedastic and conditionally heteroscedastic data is
desireable.”

The standard estimation procedure to handle the serial correlation and
heteroscedasticity in the regression is to use the method outlined by Hansen
and Hodrick (1980), with a modification due to White (1980) and Hansen
(1982) that allows for heteroscedasticity' and a modification by Newey and
West (1987) that insures the variance-covariance matrix is positive definite by
imposinglinearly decliningweights onautocovariance matrices. Although the
Hansen-Hodrick estimation procedure is valid asymptotically, it can lead to
incorrect statistical inference in finite samples when the amount of data

overlap is substantial. Furthermore, the correction for heteroscedasticity,

'The Hansen (1982) modification is the same numerically as that proposed by White (1980).
Hansen’s analysis assumes there is conditional heteroscedasticity, while White’s uses other
assumptions but only assumes there is unconditional heteroscedasticity rather than conditional
heteroscedasticity. Forfurtherdiscussion of econometric issuesfor regressionswith overlapping
data and serial correlation, see Cumby, Huizinga and Obstfeld (1983).
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although it helps produce asymptotically valid standard errors, may also not
improve statistical inference in finite samples.

This brief paper conducts Monte Carlo simulation experiments to
evaluate how well the Hansen-Hodrick-Newey-West-White methodology
performs for a particular example in the literature. The conclusion from this
exercise is thatalthoughcorrectingfor the overlapping data does help produce
betterstatisticalinference infinite samples, correcting for heteroscedasticity
can substantially worsen statistical inference even when heteroscedasticity is
presentin the data. The answer to the question posed in the title of the paper
isthatcorrectingfor heteroscedasticity may nothelp produce betterstatistical

inference, but rather can do the opposite.

II. The Monte Carlo Experiments

The particular empirical example analyzed here isfrom Mishkin (1990a
and 1990b), which examines the ability of the term structure of interest rates
toforecast changes infuture inflation rates. Specifically, the null hypothesis

that 8., = 0 is tested in the following regression.

(1 7T - W= @, + Bal[iT - 1]+ A"
where,
7y = the realized inflation rate over the next m months, starting
at time t.
i = the m-month nominal interest rate at time t.

Monte Carloexperiments toevaluate the small sample properties of the

t-test on B,, are conducted as follows. The data generating process for the



-
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inflationrates and'the i} -i;spreadvariables are obtainedfrom ARMA models
whose parameters are estimated from the full sample periods in Mishkin
(19902 andb). Lagrange-multiplier tests described by Engle [1982] reveal the
presence of ARCH (autoregressive conditional heteroscedasticity) in the
error terms and so the error terms are drawn from a normal distribution in
which the variance follows an ARCH process whose parameters are also
estimated from the relevant sample periods. The Monte Carlo results
reported here assume thatthe error terms for the inflation and i7 - i; equations
are independent.” Start-upvaluesfor AR terms in the times series models are
obtained from the actual realized data from five and six years before the
sample period (or at the start of the sample period if earlier data were
unavailable), and thenfive years of drawsfrom the random number generator
produce start-up values for the error terms. Thirty year (360 observations)
and three year (36 observations) sample sizes were produced using errors
drawn from the distribution described above.

To evaluate how well the Hansen-Hodrick-White methodology
performs, it is worth first looking at Monte Carlo results for the t-test of 4.,
= Qusing ordinary least squares estimates (OLS). Table 1 reports the results
from Monte Carlo simulations with one thousand replications. Panel A
contains results for a thirty year sample, which is a sample size frequently

encountered in empirical work. Panel B contains results for a three year

*Mankiw and Shapiro [1986] and Stambaugh [1986] point out that if the data generating
mechanism displays correlation between the regressor and the regressand because of contem-
poraneous correlation between their error terms, the small sample distribution of tcst statistics
can be substantially affected. This problem is not an important one in the data here because the
correlations between error terms for the inflation and i} - i equations are not statistically
significant. Monte Carlo simulations which allowedfor this correlation as in Mankiw and Shapiro
{1986] and Stambaugh [1986], as well as simulations allowing for additional effects of past
inflation on yield spreads, were not appreciably different from those reported in the text. Note
that the dating convention for interest rates in this paper is off by one period from the
conventional dating used in Mankiw and Shapiro [1986] and Stambaugh [1986]. Hence allowing
for contemporancous correlation of the error terms from the #7 and i7 ARIMA models in the
Monte Carlo simulations involves allowing for the correlation between the it error term and one
lag of the »7 error term in the notation of this paper.




Table 1

Monte Carlo Simulation Results
for t-test of B., = 0
Using Ordinary Least Squares Estimates

m,n Critical values of X Rejections I Rejections
(months) t from Monte Carlos using using
standard standard
Significance levels 5% 12
critical critical
50% 252 102 5% 1x value value

Panel A: 30 Year Sample (360 observations)

3,1 0.65 1.05 1.56 1.92 2.56 4.4% 0.9%
6,3 0.83 1.38 2.07 2.49 3.36 11.8% 4.4%
9.6 0.92 1.62 2.37 2.70 3.52 17.7% 6.9%
12,6 1.04 1.75 2.70 3.25 4.12 20.1% 11.12
24,12 2.39 4.00 5.57 6.52 8.70 57.4% 46.6%
36,12 2.72 4.64 6.45 7.78 10.51 62.7% 52.12
48,12 2.85 4.89 7.11 8.46 11.24 63.32 53.7%
60,12 2.59 4.71 6.77 7.94 10.53 59.9? 50.1%
Panel B: 3 Year Sample (36 observations)
3,1 0.67 1.18 1.69 2.15 2.85 6.6% 1.8%
6,3 0.94 1.56 2.23 2.78 3.84 15.3% 6.3%
9.6 1.01 1.78 2.58 3.12 4.13 21.2% 10.02
12,6 1.22 2.07 3.03 3.60 5.04 27.7% 15.8%
24,12 2.04 3.68 5.41 6.71 9.72 52.3% 39.32
36,12 2.11 3.71 5.76 6.99 10.90 53.81 41 5%
48,12 2.53 4.33 6.18 7.62 10.70 58.6% 49.3%
60,12 2.32 4.03 5.96 7.60 10.70 57.2% 44 2%
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sample. corresponding to the sample length of the November 1979 to October
1982 period of a new Federal Reserve operating procedure. which has also
frequently been studied in the literature.

Aswe canseein Panel A, not surprisingly, use of ordinary least squares
produces quite misleadinginference, eventhough the number of observations
in the sample is over three hundred. The last two columns indicate how often
the null hypothesis is rejected using a standard 5% critical t-value of 1.96 or
astandard 1% critical t-value of 2.58, while the second through sixth columns
provide more information on the finite sample distributions by reporting
critical values for different marginal significance levels. As m and hence the
degree of overlap increases, the bias of the OLS t-tests becomes progressively
worse. By the time we reach m = 36 months. over 50% of the t-statistics
indicate rejection of the null hypothesis when it is true using either standard
5% or 1% critical values. Furthermore, the appropriate 5% critical value of
the finite sample distribution is around 8.0 rather than 2.0, while the 1%
criticalvalue is over 10.0. Panel Bwhich contains resultsfor the shorter three-
year sample yields similar results,

Table 2 contains the Monte Carloresultsfor one-thousand replications
of the t-test of 8, , = 0 using the Hansen-Hodrick-Newey-West procedure in
which there is no correction for heteroscedasticity.” Here there is a substan-
tial improvement in the performance of the t-tests. For the Panel A, thirty-
year sample, the t-tests when m = 12 months or less lead to fairly reliable
inference. The percentage of rejections under the nullare close towhatwould
be expected usingstandard criticalvalues, while the 5% criticalvalue from the
finite sample distribution is close to 2.0 and the 1% critical value is close to

2.5. When m = 24 months or greater, there is some deterioration in the

*The Hansen-Hodrick-Newey-West procedure for the t-tests in Tables 2 and 3 assumes that
the crror terms of the regressions have a MA process of order m-1 because of the overlap in the
data: i.c., the procedure has linearly declining weights on the first m-1 autocovariance matrices
with the autocovariance matrices at lag m and above set to zero.




Table 2

Monte Carlo Simulation Results
for t-test of 8., = 0
Using Hansen-Hodrick-Newey-West Without Correcting for Heteroscedasticity

m,n Critical values of X Rejections X Rejections
(months) t from Monte Carlos using using
standard standard
Significance levels 5% 1z
critical critical
50% 252 10% 5% 1z value value

Panel A: 30 Year Sample (360 observations)

3,1 V.60 1.04 1.51 1.77 2.36 3.31 0.5%
6,3 0.66 1.13 1.59 1.85 2.51 3.8% 0.9%
9,6 0.72 1.21 1.71 2.03 2.58 6.1% 1.0%
12,6 0.66 1.18 1.74 2.04 2.74 6.5% 1.6X
24,12 0.82 1.42 1.97 2.36 3.31 10.42 3.32
36,12 0.82 1.43 2.02 2.42 3.19 11.2% 3.7%
48,12 0.83 1.48 2.13 2.50 3.27 12.42% 4.1%
60,12 0.87 1.41 2.02 2.38 3.38 10.9% 3.32
Panel B: 3 Year Sample (36 observations)
3,1 0.67 1.12 1.65 1.97 2.79 5.2% 1.4%
6,3 0.72 1.29 1.8 2.23 2.96 7.7% 1.9%
9,6 0.72 1.26 1.96 2.38 3.28 9.9% 3.42
12,6 0.94 1.51 2.11 2.52 3.58 12.7% 4_8X
24,12 1.16 1.98 3.16 4.20 6.39 25.1x 16.0%
36,12 1.32 2.31 3.60 4.43 7.57 32.0% 19.3%
48,12 1.36 2.34 3,70 4.76 7.49 34.1% 20.6%
60,12 1.39 2.29 3.50 4.69 7.16 33.5% 20.5%
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performance of the t-tests, but the performance is still reasonable. The
percentage of rejections using the standard 5% critical value is around 10%,
while it is around 3 to 4% using the standard 1% critical value. The appro-
priate 5% criticalvalues from the finite sample distribution are now closer to
2.5 than to 2.0, while the appropriate 1% critical value is around 3.3.

The Panel B results for the shorter sample period indicate a much
poorerperformance of the t-statistics. The percentage of rejections under the
null using the standard 5% critical value now rises above 30%, and the
appropriate 5% critical values for the t-tests rises above 4.0. These results
indicate that a high degree of data overlap relative to the length of the sample
period leads to substantial differences between the finite and asymptotic
sample distributions.

Since the data generating process for the variables in the regression
equation do exhibit conditional heteroscedasticity, we might expect that the
t-tests which correct for heteroscedasticity (and thus have the appropriate
asymptotic distribution) would perform the best of all. Table 3, whichreports
the results for the one-thousand replications of the t-tests using the Hansen-
Hodrick-Newey-West procedure correcting for heteroscedasticity with the
method of White (1980) and Hansen (1982), indicates, however, that thisis not
the case. The t-tests correcting for heteroscedasticity have much worse
properties than do those which do not correct for heteroscedasticity. A
comparison of Tables 2 and 3 reveals that the percentage of rejections of the
null hypothesis using standard criticalvalues are often more than twice as high
when the t-statistics are corrected for heteroscedasticity versus when they are
not.' For the thirty-year sample, the percentage of rejections using the

standard 5% critical value is as high as 20% when m = 60 months and is over

“This finding that correcting for heteroscedasticity increases the percentage of rejections is
also found in Froot and Klemperer (1989) who report that the standard errors of coefficient
corrected for heteroscedasticity are smaller than those which are not.




Table 3

Monte Carlo Simulation Results
for t-test of B,, = 0
Using Hansen-Hodrick-Newey-West Correcting for Heteroscedasticity

m,n Critical values of %X Rejections X Rejections
(months) t from Monte Carlos using using
: standard standard
Signifi e lev 5% 1z
critical critical
50% 25%  10% 5% 1x value value

Panel A: 30 Year Sample (360 observations)

3,1 0.59 1.02 1.50 1.8 2.37 3.7% 0.6%
6,3 0.68 1.17 1.68 2.03 2.63 6.0% 1.2%
9,6 0.73 1.29 1.79 2.07 3.03 7.3% 2.1%
12,6 0.73 1.26 1.78 2.14 3.05 7.0% 2.6%
24,12 0.89 1.64 2.41 2.79 4.02 17.1x 6.8%
36,12 0.91 1.61 2,56 3.09 4.33 17.6% 9.8%
48,12 0.93 1.64 2.54 3.17 4.74 17.5% 9.3%
60,12 0.96 1.75 2.63 3.34 5.29 20.0% 10.4%
Panel B: 3 Year Sample (36 observations)
3,1 0.67 1.19 1.79 2.24 3.08 7.7% 2.9%
6,3 0.89 1.58 2.35 2.95 4.19 17.0% 7.8%
9,6 1.01 1.78 2.69 3.53 5.55 21.6% 11.1%
12,6 1.11 2.06 3.26 4.35 7.08 27.1% 17.02
24,12 1.99 3.80 6.65 8.53 13.91 50.8% 39.7x
36,12 2.77 5.46 8.76 11.44 20.19 63.5% 52.6X%
48,12 2.74 5.20 8.64 10.81 18.61 63.7% 52.7%
60,12 2.93 5.31 9.06 11.49 21.31 63.6% 55.4%
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10% using 4 standard 1% critical value. Critical values for the finite sample
distribution are now above 3.0for the 5% level and above 4.0for the 1% level
inPanel A. In the shorter sample, Panel B, the results are evenworse, with the
percentage of rejections using either the standard 5% or 1% critical values
often above fifty percent, and the appropriate 5% and 1% critical values are

sometimes above 10.0 and 20.0 respectively.

III. Conclusions

The conclusionfrom the Monte Carlo experimentsis that correctingfor
the serial correlation induced by overlapping data is important to achieving
correct statistical inference. However, surprisingly, correcting for hetero-
scedasticitydoesnothelp produce betterstatisticalinference. The results thus
suggest that correcting for heteroscedasticity when analyzing financial data
may not always be the best research strategy. Furthermore, they indicate the
importance of conducting Monte Carlo simulations in order to obtain correct
statistical inference when the degree of data overlap is high relative to the
number of observations in the sample period. especially when there is a

correction for heteroscedasticity.
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