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1. Introduction

This paper provides conditions for the consistency and asymptotic normality of a
Simulated Moments Estimator (SME) of the parameters of asset pricing models
with time-homogeneous Markov representations of the stochastic forcing process.
The SME extends the generalized method-of-moments (GMM) estimator [Hansen
(1982)] to a large class of asset pricing models for which the moment restrictions
of interest do not have analytic representations in terms of observable variables
and the unknown parameter vector. Applications include the estimation of models
based on the moments of decision variables when agents’ decision rules cannot be
expressed in closed form, or of models to which Euler equation methods [Hansen and
Singleton (1982)] are not applicable. These extensions are feasible in part because of
the recent development and refinement of new algorithms for solving discrete-time
general equilibrium models [Taylor and Uhlig (1989) and the references therein}.
Given choices of a solution algorithm and a parameterization of a Markov state
vector, the SME proposed in this paper provides a computationally tractable means

of simultaneously solving and estimating an equilibrium asset pricing model.

The basic construction of the SME is as follows. The state vector Y; that
determines asset prices is assumed to follow a time-homogeneous Markov process
whose transition function depends on an unknown parameter vector fB;. Asset
prices, and possibly other relevant data, are observed as f(Y;,80), for some given
function f of the underlying state and parameter vector. In parallel, a simulated
state process {Y/} is generated (analytically or numerically) from the economic
model and corresponding simulated observations f(Y2,B) are taken, for a given
parameter choice . The parameter 3 is chosen so as to “match moments,” that
is, to minimize the distance between sample moments of the data, f(Y%, Be), and
those of the simulated series f (Y,ﬂ ,B), in a sense to be made precise. We provide
conditions on the transition function of ¥; and the observation function f under

which the SME of f§, is consistent, and characterize the normalized asymptotic
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distribution of the estimator.

For two reasons, neither the regularity conditions underlying Hansen's (1982)
analysis of GMM estimators for time-series models without simulation, nor those
imposed by McFadden (1987) and Pakes and Pollard (1987) for simulated moments
estimation in i.i.d. environments are applicable to the estimation problems posed
in this paper. First, in simulating time series, pre-sample values of the series are
typically required. In most circumstances, however, the stationary distribution of
the simulated process, as a function of the parameter choice, is unknown. Hence,
the simulated process is generally non-stationary. This issue was recognized in-
dependently, although no resolution of it was proposed, in the work of Lee and
Ingram (1989). Second, functions of the current value of the simulated state de-
pend on the unknown parameter vector both through the structure of the model
(as in any GMM problem) and indirectly through the generation of data by sim-
ulation. The feedback effect of the latter dependencé on the transition law of the
simulated state process implies that the first-moment-continuity condition used by
Hansen (1982), or the generalizations proposed by Andrews (1987), in establishing
the uniform convergence of the sample to the population criterion functions are not
directly applicable to the SME. Furthermore, the non-stationarity of the simulated
series must be accommodated in establishing the asymptotic normality of the SME.

We address these difficulties by assuming geometric ergodicity as a condition on
the state process ensuring that the simulated processes are asymptotically stationary
with an ergodic dist-ribution that is independent of starting values, and by imposing
a damping condition on the feedback effect of parameter choice on the law of motion
of the state process. The exact nature of our conditions will gradually become

apparent as the paper unfolds.

The remainder of the paper is organized as follows. Section 2 uses a simple
asset pricing setting to illustrate the econometric issues that arise with estimation

by simulation. The formal structure of the estimation problem and the definition
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of the Simulated Moments Estimator are laid out in Section 3. Section 4 provides
conditions for consistency, both weak and strong, the key ingredient being an ap-
propriate extension of the uniform law of large numbers. Section 5 characterizes
the asymptotic distribution of the SME, while Section 6 provides several extensions
of the SME.

2. An Illustrative Asset Pricing Model

In this section we describe a simple dynamic asset pricing model that illustrates
many of the econometric problems that arise in the use of simulation methods in
estimation. The model is an extended version of the stochastic growth model studied
by Brock (1980) and Michner (1984). After briefly describing the model, the use
of simulation methods is given a more extensive motivation. Several econometric
issues related to estimation using simulation are then introduced in the context
of this model. This section is intended as an informal backdrop to the simulated
moments estimator presented in Section 3 and analyzed in Sections 4 and 5.
Suppose that production of the single consumption commodity is determined
by
F(ky,z)=2kf, 0<¢<1, (2.1)

for some function F, where k; is the level of the capital stock at date ¢ and z, is
a technology shock. The firm rents capital from consumers at the rental rate r¥
and pays out the profits to the owners of its shares in the form of dividends, d;. In
each period, the firm solves the following static optimum problem (maximization of
profits)

d; = arg n}:x{z,kf’ ~r¥k,) (2.2)

in order to choose the level k, of capital to rent from the consumer. This is equivalent

to maximization of share market value [Duffie (1988), Section 20].

Given the price p; of a share of the firm, the representative consumer faces the

4



budget constraint
ct + keq1 + Pesesr = (de +pe)se + (rf + )k, (2.3)

where ¢, and s; denote consumption and shares of claims to the dividend stream of
the firm, respectively, and (1—u) denotes a constant depreciation rate on the capital
stock. Subject to this constraint, the representative consumer chooses consumption
and share holdings so as to maximize utility for the infinite-horizon consumption
process {c;}. Allowing for an unobserved (to the econometrician) taste shock {u:}
and adopting a typical additively-separable utility criterion, the agent’s problem is
then

max FE
{C: ke )

26‘ (c‘ — 1)1 z ,] . a<O, (2.4)

where « is the constant coefficient of relative risk aversion and é§ € (0,1) is a

subjective discount factor.

The vector X = (2¢,u¢) is assumed to be a Markov process satisfying
X = h(xt—ly €y Po)’ (2‘5)

where {¢;} is a two-dimensional ¢.i.d. stochastic process, k is a transition function,
and py is an unknown parameter vector. For the moment, we also assume that {X;}
does not exhibit growth over time.

In order to estimate the unknown parameter vector 8; = (¢,a,po,u,8), a
point in some compact parameter set ©, we proceed as follows. The economic
system (2.1)-(2.5) is solved analytically or numerically for the equilibrium transition
function H generating the augmented state process Y; = (X, k¢)’, according to

},t+l = H(}’h Eg+1,ﬁ0)-

For any admissible parameter vector # € O, we can also generate a simulated

state process {Y}’} according to the same transition function H, but using a shock
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sequence {é} that is identically and independently distributed of {e.}; that is,
Ytil = H(Y., é41,8).

From this, a history {Y,ﬂ }L, of T simulated equilibrium states can be generated.

Next, for some chosen observation function f, in each period ¢t an oBservation
fi = f(N, Yo, ..., Yi—e41) is made of a finite “-history” of state information.
Likewise, a corresponding observation _ff can be formed for each ¢-history of simu-
lated states. The components of f,ﬂ may be known analytic functions (for example,
Kf. kf_l) or determined numerically as functions of the £-history of simulated states
(for example, equilibrium asset prices or consumption). Finally, the SME is a value
of B chosen to minimize the distance between the sample mean of { j 74 }L, and the
sample mean of {f;}X,, where T is the actual number of periods of data.

Several considerations motivate the use of simulated moments in estimating
Bo. First, dynamic asset pricing models like (2.1)-(2.5) typically do not yield ana-
lytic representations of the decision rules or laws of motion for capital and equity
returns nor for the population moments of f;. Consequently, outside of certain
linear-quadratic examples [as, for example, in Hansen and Sargent (1980)], maxi-
murn likelthood estimation of the parameters of agents’ decision rules is often not
feasible. Instead, the SME of f§y is chosen to minimize the discrepancy between
certain moments of the joint distributions of the £-histories of Y; and those of the
corresponding simulated values from the model, where the moments of interest are
specified through the choice of f.

There are also several potential advantages of simultaneously solving and esti-
mating dynamic models of asset prices over estimating the implied Euler equations.
First, solving for the stochastic equilibrium of the model permits an assessment
of the goodness-of-fit directly in terms of aspects of the joint distribution of asset
returns, consumption and capital. Furthermore, estimation of asset pricing models
using Euler equations [as, for example, in Hansen and Singleton (1982)] is not al-

ways feasible. For instance, assuming that the representative consumer’s decisions
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are interior to the choice set, the first order conditions to problem (2.3)-(2.4) can

be expressed as

picy “uy = E, (5C¢_+°1ut+1 P41 + dH—l]) ) (2.6)
¢ “ur = 6E, (C:_+°1“:+1[zt+1k?;11 + #]) : (2.7)

where E; denotes conditional expectation given the consumer’s information at
date t. The presence of the unobserved taste shock u¢ in (2.6) and (2.7) precludes
the application of instrumental variables estimators based on these conditional mo-
ment restrictions.

Temporal aggregation provides an additional motivation for using the SME.
In the context of the present example, consumption is measured as the cumulative
flow over a month or quarter. If the agent’s decision interval is shorter than these
sampling intervals, then measured consumption is not the observed counterpart
of c; in these Euler equations. Hence, GMM estimation may give inconsistent
estimators of B, [Hall (1988), Hansen and Singleton (1989)]. In contrast, temporal
aggregation is easily accommodated using the SME. After solving and simulating
the equilibrium consumption sequence at intervals corresponding to the decision
interval of the agents, the simulated series can be time-averaged in the manner

corresponding to the construction of the data before calculating f,ﬁ .

The first step in implementing the SME is solving for the equilibrium of the
asset pricing model. Several alternative numerical methods for solving discrete-time
dynamic rational expectations models have recently been proposed in the literature.
A useful summary of these methods and their properties for a stochastic growth
model that is similar to (2.1)-(2.5) is provided in Taylor and Uhlig (1989) and the
references cited therein. Many of the algorithms discussed involve approximations
to either the distributions of the forcing variables or the model itself. For instance,
the value-function-iteration approach used by Donaldson and Mehra (1984) as well
as the quadrature solutions to the integral equations implied by Euler equations

7



used by Mehra and Prescott (1983) and Tauchen (1986), among others, require
discrete state-space approximations to the continuous distributions of the forcing
process {X;}. These approximations affect the large sample properties of the SME
since, as sample size increases, one obtains a consistent estimator of the approximate
model. For some of these solution methods, it seems apparent that the approxi-
mation error becomes negligible if the accuracy of the approximation is improved
as the sample size increases. Likewise, as in Example 2 of Section 4 (to follow),
one can approximate continuous-time Markov-state processes with various types of
discrete-time Markov processes. In future research, we plan to explore the rate at
which the approximations must be adjusted in order to assure that the asymptotic
distribution of the SME is not affected by certain types of approximations. The
methods described in this paper apply to the approximate model if approximations

are used to solve for equilibrium asset prices.

For several reasons, this illustrative estimation problem is not a special case of
either Hansen'’s (1982) GMM estimation problem or the simulated moments prob-
lems examined by McFadden (1987) and Pakes and Pollard (1987). The most im-
portant difference between the estimation problem with simulated time series and’
the GMM estimation problem discussed by Hansen (1982) lies in the parameter
dependency of the simulated time series { f,’9 }. In the stationary, ergodic environ-
ment studied by Hansen (1982), one observes f(Y%, ), where the data generation
process {Y;} is fixed and S, is the parameter vector to be estimated. In contrast,
f,ﬂ = f(Y,ﬁ ,B) depends on S not only directly, but indirectly through the depen-
dence of the entire past history of the simulated process {Y;°} on 8. In Section
4, we present versions of uniform weak and strong laws of large numbers that ac-
commodate this parameter dependency of the data generation process for simulated

time series.

Furthermore, in contrast to the simulated moments estimators for i.i.d. envi-

ronments, the simulation of time series requires initial conditions for the forcing
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variables Y;. Even if the transition function of the Markov process {Y;} is sta-
tionary (that is, has a stationary distribution), the simulated process {¥;’} in not
generally stationary since the initial simulated state Yl's is typically not drawn from
the ergodic distribution of the process. In this case, the simulated process {f/} is
non-stationary. _

A related initial conditions problem, common to the GMM and SM estimation
of asset pricing models, occurs with capital accumulation. Specifically, the current
equilibrium capital stock can typically be expressed as a function of the previous
period’s stock plus investment in new capital. Measurements of investment are often
more reliable than measurements of the stock of capital, which may not be based
on compatible assumptions about depreciation. Accordingly, in constructing a time
series on the capital stock to be used in estimation, one may wish to accommodate

mis-measurement of the initial stock.!

In Section 4, we present a set of sufficient conditions for the Markov process
{Y:} to be geometrically ergodic, which (among other things) implies that the large
sample properties of functions of Y; are invariant to the choice of initial conditions
used in simulating taste and technology shocks. The equilibrium processes {Y¥;} and
{ ff }, and in particular the equilibrium equity return, depend on & in addition to
X. Thus, we also show that geometric ergodicity of X, together with natural con-
ditions on the depreciation of capital, are sufficient for the large sample properties
of 771 Z;l f,’g to be unaffected by the choice of initial conditions for the forcing

variables or the capital stock. -

Throughout this discussion we have assumed that the Markov process described
by (2.5) does not exhibit growth. In fact, there is real growth in output, and hence
in certain asset prices. If the technology shock {z}, for instance, exhibits growth

over time, then the implied trends for the components of Y; are restricted by the

! See Dunn and Singleton (1986); Eichenbaum, Hansen, and Singleton (1987);
and Eichenbaum and Hansen (1988) for examples of studies of Euler equations using
GMM estimators in which this type of initial condition problem arises.
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structure of the model.? Conversely, the structure of the model restricts the class of
admissible trend specifications. Furthermore, accommodating these trends typically
requires that the implied form of the trends in Y, is known, and that it is possible
to build an adjustment for trends directly into the function f of the data and to
simulate a trend-free version of the model.

To be more concrete, consider the special case of (2.1)-(2.5) with u, = 1 for all
t, u = 0 (100% depreciation), and a = 1 (logarithmic utility). Also, suppose that
the law of motion for the technology shock is given by

in 241 = G2 + ft + pln 2¢ + €¢41, (28)

for constants ¢, and €. Under these simplifying assumptions, the equilibrium asset
pricing function and law of motion for the captial stock implied by (2.6) and (2.7)
are [Michner (1984)]:

7]

pe = (1__6)(1 ~ ¢)zek? (2.9)
di = (1 — ¢)zek?

keyr = 8¢z,k?. (2.10)

In (2.9) and (2.10), p; and k, exhibit growth over time induced by the growth
in z;. The stock return process {r{ = (p1 + di)/p:t-1} and capital growth process
{k¢/k(-1} are nevertheless stationary. Thus, in implementing an SME for this
model, one could simulate trend-free {z;/z;_;}, construct the implied simulated
returns and growth rates of capital, and then choose f* and f? to depend on ¢-
histories of simulated and measured r{ and k¢/k;_,, respectively.

Following Eichenbaum and Hansen (1988), the implied restrictions on trends

in the decision variables can be imposed in estimation by appending the moment

? See Eichenbaum and Hansen (1988) and Eichenbaum, Hansen and Single-
ton (1987) for a discussion of restrictions on trends implied by Euler equations.
Singleton (1987) discusses the analogous restrictions on deterministic seasonal com-
ponents of agents’ decision variables.
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conditions associated with least squares estimation of the trend equations to the

moment equations involving f* and f#:
Inki=c+&t+vi, Inpe=¢c +Et+ vy, (2.11)

where 5z and ¢, are constants, while 14, and v, are trend-free, stationary com-
penents of ¢nk; and ¢np;. The subsequent discussion in this paper extends im-
mediately to this case using the large sample theory discussed in Eichenbaum and
Hansen {1988) for GMM estimators of (2.11).

Two additional comments about trends are warranted. First, if the forcing
variables exhibit stochastic trends (unit roots), then our estimation strategy ap-
plies only if the entire model, including the forcing variables, can be transformed to
a model expressed in terms of trend-free processes. Examples of growth economies
with capital accumulation for which such tranformations are possible include those
in Kydland and Prescott (1982) [see Altug (1988)] and Christianc (1987). Sec-
ond, stochastic trends in decision variables can arise as the endogenous outcome of
agents’ decisions in the presence of trend-free forcing variables, as in Eichenbaum
and Singleton (1986) or King, Plosser, Stock, and Watson (1987). If the form of
the trends in the decision variables is known and induced growth takes the form
of unit roots in the processes, then our proposed simulation methods will often be
applicable.

Henceforth, we suppress trends and their associated parameters in order to
conserve on notation, though reference will occassionally be made to modifications

of our discussion that would be required in the presense of trends.

3. The Estimation Problem
This section defines the simulated moments estimator. The basic primitives for the
model are:

(i) a measurable transition function H : RN x RP x © — RY, with compact

parameter set © C R9, for some positive integers N, p, and Q.
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(i1) a measurable observation function f : RV* x © - RM with M > Q.

A given RV -valued state process {¥;}$2, is generated by the difference equation
Yirr = H(Yy, €041, o), ' (3.1)

where the parameter vector f is to be estimated, and {¢;} is an i.1.d. sequence of
IRP-valued random variables on a given probability space (2, F, P). The function H
may be determined implicitly by the numerical solution of a discrete-time model for
equilibrium asset prices, or by a discrete-time approximation of a continuous-time
model. Let Z; = (Y;,Y:—1,...,Yi—¢41) for some positive integer £ < co. Estimation
of fy is based on moments of the vector f = f(Zy, fo).

For certain special cases of (3.1) and f, the function mapping 8 to E[f(Z,, 8)]
is known and independent of t. In these cases, the GMM estimator,

T ! T
br = argmingeo |5 Y f7 ~ E[f(Z:,ﬂ)]] Wr [% > £ - Elf(Z.8))|, (32)
t=1 t=1

for given “distance matrices” {Wr}, is consistent for 3y and asymptotically normal
under regularity conditions in, for example, Hansen (1982). The requirement that
B8 +— E[f(Z:,8)] is known, however, limits significantly the applicability of the
GMM estimator to asset pricing problems.

The simulated moments estimator circumvents this limitation by making the
much weaker assumption that the econometrician has access to an IRP-valued se-
quence {é} of random variables that is identical in distribution to, and independent
of, {€;}. Then, for any IR"-valued initial point f’l and any parameter vector g € O,
the simulated state process {Y,ﬁ } can be constructed inductively by letting Y/ =1

and
YA, = H(Y., &1, 8). (3.3)

Likewise, the simulated observation process { f,ﬂ } is constructed by ff =f (Zf B,
where Zf = (Ytﬂ,... ’Ytﬂ—t+1)' Finally, the SME of 8, is the parameter vector b
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that best matches the sample moments of the actual and simulated observation
processes, {f;'} and {f}}.

More precisely, let 7 : IN — IV define the simulation sample size 7(7T') that
is generated for a given sample size T of actual observations, where T(T) — oo as
T — oo. For any parameter vector 3, let

(T)

Gr(B) = = Ef, - T(T) > ff (3:4)

=1
denote the difference in sample moments. I {7} and {f?} satisfy a law of large
numbers, then limr Gr(8) = 0if 8 = fy. Withidentification conditions, limy Gr(3)
= 0if and only if 8 = f. We therefore introduce a sequence W = {Wr} of M x M
positive semi-definite matrices and define the simulated moments estimator for S,

given (H,¢, 7T, f’l, W) to be the sequence {br} given by
_ . . _ .
br = arg min Gr(B)'WrGr(p) = arg min Cr(). (3.5)

The distance matrix Wr is chosen with rank at least @, and may depend on the
sample information {f},... ,f}}U{ff,. . $f§(T) : €0}

Comparing (3.2) and (3.5) shows that the SME extends the method-of-moments
approach to estimation by replacing the population moment E[f(Z;,3)] with its
sample counterpart, calculated with simulated data. The latter sample moment
can be calculated for a large class of asset pricing models. Extensions of the SME

are provided in Section 6.

4. Consistency

The presence of simulation in the estimator pushes one to special lengths in jus-
tifying regularity conditions for the consistency of method-of-moments estimators
that, without simulation, are often taken for granted. As illustrated in Section 2,
there are two particular problems. First, since the simulated state process is usually

not initialized with a draw from its ergodic distribution, one needs a condition that
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allows the use of an arbitrary initial state, knowing that the state process converges
rapidly to its stationary distribution. Second, one needs to justify the usual start-
ing assumption of some form of uniform continuity of the observation as a function
of the parameter choice. With simulation, a perturbation of the parameter choice
affects not only the current observation, but also affects transitions between past
states, a dependence that compounds over time. We will present a natural (but re-
strictive) condition directly on the state transition function guaranteeing that this
compounding effect is of a dampening, rather than exploding, variety.

Initially we describe the concept of geometric ergodicity, a condition ensuring
that the simulated state process satisifies a law of large numbers with an asymptotic
distribution that is invariant to the choice of initial conditions. Then ergodicity of
the simulated series is used to prove a uniform weak law of large numbers for G7(3)
and weak consistency of the SME (that is, by — f in probability). Weak consis-
tency is proved under a global modulus of continuity condition rather than the
more usual local condition underlying proofs of strong consistency. Subsequently,
we present Lipschitz and modulus of continuity conditions on the primitives (H, e, f)
that are sufficient for strong consistency (that is, by — By almost surely). Though
weaker than the damping conditions typically used to verify near-epoch dependence
(Gallant and White 1988), these conditions nevertheless exclude an important class
of geometrically ergodic processes. This fact is the primary reason for our initial
focus on weak consistency. Finally, various tradeoffs in choosing among the regular-
ity conditions'leading to weak and strong consistency are discussed in the context

of the illustrative model presented in Section 2.

4.1. Geometric Ergodicity

In order to define geometric ergodicity, let P! denote the t-step transition probabil-
ity for a time-homogeneous Markov process {X.}; that is, P} is the distribution of
X given the initial point X¢ = z. The process { X} is p-ergodic, for some p € (0, 1],

if there is probability measure 7 on the state space of the process such that, for
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every initial point z,

o IPE =l = 0 as t - o0, (4.1)

where || - ||, is the total variation norm.? The measure = is the ergodic distribution.
If {X;} is p-ergodic for p < 1, then {X;} is geometrically ergodic. In calculating
asymptotic distributions, geometric ergodicity can substitute for stationarity since
it means that the process converges geometrically to its stationary distribution.
Moreover, geometric ergodicity implies strong (a) mixing in which the mixing coef-
ficient a(m) converges geometrically with m to zero [Rosenblatt (1971), Mokkadem
(1985))].

In what follows, for any ergodic process {X:}, it is convenient for us to write
“Xoo" for any random variable with the corresponding ergodic distribution. We
adopt the notation || X |,= [E(]| X ||")]1/q for the L7 norm of any R"-valued
random variable X, for any ¢ € (0,00). We let L7 denote the space of such X with
|| X |lg < o0, and let || = || denote the usual Euclidean norm of a vector z.

General criteria for the geometric ergodicity of a Markov chain have been ob-
tained by Nummelin and Tuominen (1982) and by Tweedie (1982). We will review
simple sufficient conditions established by Mokkadem (1985) for the special case
of non-linear AR(1) models, which includes our setting. Mokkadem’s regularity
conditions B and C are satisfied provided {Y¥;’} is irreducible. For example, it is
enough that the distribution of YZ'S given Ylﬁ has RV as its support. With this.
Mokkadem’s Theorem 3 implies geometric ergodicity of {¥?} provided, for some

K > 0, some § < 1, and some ¢ > 0,

@) Ay, e, B lla<blyll, llyll> K.
(ii) H(-,e1,B): RN — L1 is well defined and continuous.

We summarize with:

3 The total variation of a signed measure u is || 4 [lv = sUPAja(y) <1 f h(y) du(y).
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LEMMA 1. Suppose, for a given f € O, that {Y?} is irreducible and that (H,¢)
satisfies conditions (i) and (ii). Then {Y/’} is geometrically ergodic and | Y2 llq
and || Y2 ||, are uniformly bounded.

Example 1 (The Traditional AR-1 Model).  Suppose N = p = 1 and Ytil =
BYS + ¢, where © = [E,E] C(-1,1). If ¢ is in LY, then all conditions for Lemma
1 are satisfied and {¥/?} is geometri.ca.lly ergodic.

Example 2 (The Euler Approximation to a Diffusion). For any u: RN x© — RV
and o : RYN x © — RN*? that are Lipschitz in the first (y) argument, a diffusion
process Y,ﬂ is well defined by the stochastic differential equation

dYf = w(¥’,B)dt + o(¥/, B)dB,, (42)

where B is a standard Brownian motion in IR?. The Euler approximation to Y, for
n > 1 time periods per unit of time, is the process {Y,‘9 "} defined as follows. A state

process {}A;,ﬂ"} is defined by 17,1'; =H, (f’,ﬂ", €141, ﬂ) , where €41 = By41 — By and

Ha,,8) =y + Lu(1, ) + Z=0(v, e (43)

We then let ¥{"" = 17,5"

Irreducibility of {f’,ﬂ "} follows if N < p and o is everywhere of full rank.
Condition (ii) for geometric ergodicity follows from the continuity of 4 and o as
well as the existence of all moments for the normal distribution.

As for condition (i), we know that

n||? a(y) ||® /n

For geometric ergodicity condition (i), it is thus enough that some K > 0 can be

E(| Ha(y,e1,8) I1”] =1l 9 I”

chosen so that supy, s x £(y) < 1, which is equivalent to

sup  2y'u(y) + p(y) u(y)/n + tr[o(v)o(y)'] <0,
Iyll>K
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and requires that y'u(y) < 0 for | y |> K. These conditions on &, as well as
corresponding results for higher order diffusion approximations, are examined in

other work planned by the authors.

4.2. A Uniform Weak Law of Large Numbers

Since geometric ergodicity of {Yf } implies o-mixing, it also implies that ¥/}
satisfies a strong (and hence weak) law of large numbers. For consistency of the
SME estimator, however, standard sufficient conditions require that a strong or
weak law holds in a uniform sense over the parameter space ©. For example, the
family {{ £y:8e 6} of processes satisfies the uniform weak law of large numbers
if, for each § > 0,

lim P |sup
T—o0 see

7] 1o g
E(fs —TtZ:;f:

> 6] =0. (4.4)

In our setting of simulated moments, {Z{9 } is simulated based on various choices
of A, so continuity of f(Zf, B) in B (via both arguments) is useful in proving (4.4).
We assume the following global modulus of continuity condition on { 74 }.

DEFINITION. The family { f{g } is Lipschitz, uniformly in probability, if there is a

sequence {K,} such that, for all t and all B and 6 in O,

I - NS KN B-81,
where KT = T} ELI K, is bounded (with T') in probability.

LEMMA 2 (UNIFORM WEAK LAaw OF LARGE NUMBERS). Suppose, for each 8 € O,
that {Yf } is ergodic and that E(|f5]) < co. Suppose, in addition, that the map
B — E(f£) is continuous and the family { f,‘9 } is Lipschitz, uniformly in probability.
Then {{ P}:8¢ 9} satisfies the uniformn weak law of large numbers.

The proofs of this and all subsequent propositions in Section 4 are provided in

the Appendix.
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In order to provide conditions that can be verified in applications, we replace
the ergodicity assumption on {¥/} with Mokkadem’s conditions for geometric er-

godicity directly on the transition function H and disturbance ¢.

COROLLARY. Suppose, for each B € © and for ¢ = 1, that H satisfies Mokkadem's
conditions (i)—(ii), that {Y,‘a} is irreducible, and that E(|f5.|) < co. Then, for
each 3, {Y,‘a } is geometrically ergodic.* If, in addition, { f?} is Lipschitz, uniformly
in probability, and 8 — E(f£) is continuous, then {{ 2y:8¢€ 9} satisfles the

uniform weak law of large numbers.

This corollary follows immediately from Lemma 2 after applying Lemma 1 to
see that {Y;?} is ergodic and integrable.

4.3. Weak Consistency

Next, we summarize several important assumptions that are used in our proofs of

both consistency and asymptotic normality of the SME.

AssuMPTION 1 (TECHNICAL CONDITIONS). Forallf3 € ©, {|| ff lz4s:t=1,2,.. }
is bounded for some é > 0. The family { f,ﬂ } is Lipschitz, uniformly in probability,

and B — E (f£) is continuous.

AssUMPTION 2 (ERGODICITY). For all 8 € ©, the process {Y{'} is geometrically

ergodic.

The hypotheses of the corollary to Lemma 2 are sufficient for Assumptions 1 and 2
provided Mokkadem’s conditions apply for some g > 2.

We impose the following condition on the distance matrices {Wr} in (3.5).

* Note that geometric ergodicity is used in establishing that { £} has a unique
ergodic distribution and that the sample mean of { f,ﬂ } converges in probability to

E(f2). Any other regularity conditions that also implied these properties of { ffJ }
could be substituted in the statement of this corollary.
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AssUMPTION 3 (CONVERGENCE OF DISTANCE MATRICES). £, is non-singular and
Wr — Wo = ;! almost surely, where (for any t)

> E(fr - BN - ES)))- (4.5)

i —00

Zo

For the second moments in this assumption to exist, and their sum to converge
absolutely, the assumptions that {|| f¢ ||2+6:t =1,2,...} is bounded for some § > 0
and geometric ergodocity of {Y;} together suffice, as shown by Doob (1953), pp. 222-
224. Also, as with Hansen's (1982) GMM estimator, the choice of Wy in Assumption
3 leads to the most efficient SME within the class of SMEs with positive definite
distance matrices.

Notice that £y in Assumption 3 is a function of the moments of {f;} alone; in
particular, ¥y depends neither on 8 nor on the moments of the simulated process
{ f,ﬂ }. Thus, £, can be estimated using, for instance, the sum of sample autocovari-
ances of the data {f;'}, weighted as in Newey and West (1987)%. If, on the other
hand, f; depends on f, then a two-step procedure for estimating £y would be nec-
essary. This would be the case, for example, if the moment equations associated
with least squares estimation of the trend equations (2.11) were included. Given the
definition of Lo and the fact that geometric ergodicity implies a-mixing, it follows
that the Newey-West estimator is consistent for £, in our environment.

Under Assumptions 1-3, the asymptotic criterion function C : © — IR defined
by C(8) = Goo(8) WoG () constant for each § almost surely.

AsSUMPTION 4 (UNIQUENESS OF MINIMIZER). C(8y) < C(B), B € O, 8 ¢ Bo.

Our first theorem establishes the consistency of the SME {br : T > 1} given by
(3.5).

8 Several estimators of Iy have been proposed in the literature. See, for exam-
ple, Hansen and Singleton (1982), Eichenbaum, Hansen, and Singleton (1987), and
Newey and West (1987). In general, E[(f¢ — Eff)(fi~; — Ef;.;)'] is nonzero for

all j in (4.8) and the Newey-West estimator is appropriate.
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THEOREM 1 (CONSISTENCY OF SME). Under Assumptions 14, the SME {br}

converges to Py in probability as T — oo.

4.4. Strong Consistency

The UWLLN underlying the discussion in Sections 4.2 and 4.3 maintained the uni-
form continuity condition in Assumption' 1. In this subsection we provide primitive
conditions on H, ¢, and f for a local modulus of continuity condition with simula-
tion, and thereby explore in more depth the nature of the requirements in simulation

environments for {f} to satisfy the USLLN:

2% 0as T — oo.

1 T
72 —Eff
t=1

sup
Bee

The basic nature of the conditions are of three forms: continuity conditions, growth
conditions, and a contraction (or “damping”) condition on the transition function
H that we call an “asymptotic unit circle (AUC) condition.”

Our proof of strong consistency of the SME proceeds in three steps. First, we
introduce the AUC condition, which assures that current shocks have a damping
effect on future simulated observations. Under the AUC condition, it is shown that,
for each B, there exists a stationary and ergodic process {¥;"°? } that satisfies (3.1)
and can be substituted for {Y;?} in proving consistency (and asymptotic normality)
of the SME. Second, we show that the AUC condition and certain continuity and
growth conditions imply a version of Hansen’s (1982) modulus of continuity condi-
tion for simulation environments. Strong consistency of the SME then follows from

results in Hansen (1982).

DEFINITION (THE ASYMPTOTIC UNIT CIRCLE CONDITION). The transition func-
tion H and shock process € satisfy the Asymptotic Unit Circle Condition if, for each
6 € ©, there is some 6§ > 0 and a sequence of positive random variables {pg(e:)}

satisfying

20



T
.1
Th_.n:o T ;ang(q) =a9 <0 a.s. (4.6)

such that, whenever | 8 — 0 || < §, for any z and y,

I E(y, B, &) — H(z,B,e) | < po(er) |y - < || -

In other words, for the AUC condition, H(-, 3, ¢) must have a Lipschitz coefficient
pe(€s) with the property that H:=o pe(e,) declines geometrically toward zero as
t — oo. This is a weaker requirement than the unit circle condition used by Gallant
and White (1988) to verify near-epoch dependence of a process.

We say that f is ©-locally Lipschitz if, for each § € O, there is a § and a
constant k such that, whenever || 8—6 || < §, the function f( -, 8) has the Lipschitz
constant k. Next, we define f to be S-smooth (sufficiently smooth) if f is ©-locally
Lipschitz and, for each z € RM¢, the function f(z,:) : © = RP has a Lipschitz
constant Cy(z), where C) satisfies a growth condition.® Obviously, if f is Lipschitz,
then f is S-smooth, but a Lipschitz condition is unnecessarily strong and is not
satisfied in many applications. (Take, for example, f(z,8) = Bz.) We say that H
is S-smooth if, for each 8 € O, there is a § small enough that || B—6 | <6 implies
that, for all y € RN and e € RP,

” H(y7ﬂv 6) - H(yaove) ” < Cz(y, 5) ” ,B -6 "7

where C; satisfies a growth condition.

The smoothness assumption on f and the AUC condition imply that the non-
stationarity induced by the initial conditions problem can be ignored when studying
the large sample properties of the SME. We establish this result in the following

two lemmas.

¢ A real-valued function F on a Euclidean space satisfies a growth condition if
there exist constants k and K such that for all z, |F(z)| < k+ K || z ||.
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LEMMA 3. If (H,¢) satisfies the AUC condition, then for each 3 in § there exists a
stationary and ergodic process {Y,°°p : —00 < t < oo} such that, for all t, Y,°°ﬂ is
measurable with respect to {é&—, : s > 0} and Y,‘,’:{a =H (Y,°°ﬂ, €¢+1,ﬂ).

Next we argue that {¥;’}, simulated with an arbitrary initial condition, can be
replaced by {Y,"°’9 } for the purpose of proving a USLLN.

LEMMA 4. If f is S-smooth and (H,¢) satisfies the AUC condition, then
1 1o
T ; - T ; £2F

where ft°°ﬂ =f [(thﬂ’y“’_"f,_.,,}’f_"&l),ﬂ] .

sup 25 0asT — oo, (4.7)

see

The final step in proving strong consistency of the SME is showing that {f;° ﬁ}

satisfies a USLLN. Toward this end, for each 8 in © and § > 0, let
mody(6,6) = sup{“ FEP g B-6li<6,8 €0}
denote the “modulus of continuity” of the process {f>°?} at 8. Suppose:

ASSUMPTION 5. For each 8 € ©, there is a § > 0 such that E[mod,(§,8)] < oo.

With this, combined with our earlier assumptions, Hansen'’s (1982) Theorem 2.1 im-
plies that {f¢° A } satisfies'a USLLN and that {br} is a strongly consistent estimator

of 8. We summarize with:

THEOREM 2 (STRONG CONSISTENCY). Under Assumptions 2-5, the AUC condi-
tion, and the assumption that f is S-smooth, the SME {br} converges to 3, almost

surely as T — oo.

The assumption in Theorem 2 that E[mod(6,6)] < oo is not known to be
implied by the AUC condition. However, by strengthening the statement of the
AUC condition, Assumption 5 becomes redundant. Specifically, we introduce the
following strong AUC condition:



DEFINITION (L? UNIT CIRCLE CONDITION). The transition function H and the
shock process e satisfy the L* Unit Circle condition if, for each § € ©, there is some

8 > 0 and a sequence of positive random variables {p¢(e;)} satisfying E[ps(€:)?] < 1
such that, for all z and y,

| H(y, B, &) — H(z,B,&) | < po(ee) [y — = | -

By Jensen’s inequality, fnE{ps(e;)] > E[fnps(er)], so that the LXUC condition
implies the AUC condition. Hence the lemmas preceeding Theorem 2 continue to

hold under the L2UC condition.

This strengthening of the unit circle condition leads to:

THEOREM 3. Under Assumptions 24, the assumption that H and f are S-smooth,

and the LU C condition, the SME is a strongly consistent estimator of fy.

4.5. Regularity Conditions and Dynamic Asset Pricing Models

Weak consistency was established by assuming that the simulated processes are
geometrically ergodic and that { f,ﬂ } satisfies a uniform Lipschitz condition in 4. In
contrast, strong consistency was established assuming a unit circle condition on the
transition function H and an i.i.d. shock process {e;}. In this section we discuss
several practical considerations that may influence which, if either, of these results

assures consistency for SM estimation of dynamic asset pricing models.

First of all, the assumptions of geometric ergodicity and the asymptotic unit
circle condition for {Y;’} are not equivalent. In order to see this, consider again the
example in Section 2 and suppose that the law of motion of the technology shock
is given by

) ze =&+ pze_y + oV, €, vy<1l,0>0,]p|<1, (4.8)
where v; = z; if z; > n > 0 and v, = 5 otherwise, and suppose that E(e;) = 0 for all
t. (Equation (4.8) can also be interpreted as the discrete-time Euler approximation
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to a diffusion model, as in Example 2 of Section 4.1.) This representation of a shock
process, which is similar to several widely studied representations of conditionally

heteroskedastic processes, generally does not satisfy an L? unit circle condition. To

see this, let A(z, ¢, 3) denote the right hand side of (4.8). Then

|h(z,€,8) — h(z',&,8)|l2 =

(v7 - v'7) )
B+ oe———=I [lz—2.
(z=2) I,

The ratio (v7 —v'7)/(z — z') can be made arbitrarily large, as vy — 7 for small 5, in
which case the factor of proportionality for ||z — z'|| exceeds unity. Similarly, if 3,
o, and the variance of ¢ are suffficiently large, then the unit circle condition may be
violated. This is the case, for example, if ¥ = 1 and || + o¢||z > 1. Furthermore,
from the proofs of Lemma 3 and 4, it is apparent that this process will not in general
satisfy the AUC condition used to prove Theorem 2.

The process (4.8) is nevertheless geometrically ergodic. This can be verified
easily by noting that |p| < 1 and ||27||/|| z]] can be made arbitrarily small for
large enough z when v < 1. Thus, the process {z;} satisfies strong and weak laws of
large numbers. If, in addition, {Y,‘s } is an irreducible process and our weak uniform
continuity condition is satisfied, then weak consistency of the SME is implied by
the UWLLN (Lemma 2). The fact that there is an important class of geometrically
ergodic forcing processes that do not satisfy the unit circle conditions is a primary
motivating reason for our analysis of weak consistency.

Though the geometric ergodicity assumption accommodates more general pro-
cesses than the AUC condition, our consistency proof based on the former requires
the imposition of a uniform Lipschitz condition. Though weaker in spirit than an
L? unit circle condition, the uniform continuity condition implicity requires some
damping of the effects of past shocks on current values of Y?. We have not shown
that processes of the form (4.8), for example, satisfy our uniform Lipschitz con-
dition. Verifying this condition may well narrow the gap between the classes of
models encompassed by the sets of regularity conditions used to prove weak and

strong consistency of the SME.
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Finally, verification of the geometric ergodicity assumption for {¥}’} is not
always straightforward. In particular, the sufficient conditions for geometric ergod-
icity of {Y{} given by Lemma 1 include the assumption that {Y?} is irreducible.
This is a mild restriction on the process governing the exogenous forcing variables
{X:}. However, for models with endogenous state variables, verification of the
irreducibility assumption may not be immediate. Fortunately, under plausible as-
sumptions about the evolution of, say, the capital stock, a weak law of large numbers
can be established without examining the irreducibility of the augmented state vec-
tor {Y;}. We sketch a WLLN for this case in the context of the model in Section
2, since the proof highlights the robustness of our results to the choice of arbitrary
initial conditions for the capital stock and forcing process.

Suppose that {X} is geometrically ergodic and that the law of motion for the
capital stock is given by

ke = K(k¢—1,Xe-1,8), (4.9)

where || k¢ || < oo for all t and {k:} is initialized at an arbitrary value of the capital
stock. Assume that the function K satisfies an AUC condition; that is, for each

8 € O, there is some § > 0 -and some sequence {pg(X;)} of random variables with
lim % 0, fnpg(X:) = ag < 0 such that, for any k and ¥/,

| K(k, X2, 8) — K(k', X:, )| < po(Xo) | E—-F'||,  [|B-6]<é (410

Inequality (4.10), analogous to our AUC condition on the transition function H, is
satisfied by a large class of standard depreciation schemes for capital. For instance,
the equilibrium law of motion for {¢n k;} implied by k2.10) clearly satisfies (4.10).

Now, the geometric ergodicity of {X,} implies the existence of a stationary and
ergodic process {X{°} that satisﬁes (2.5). Furthermore, by an argument similar to
that of Lemma 3, (4.10) implies the existence of a stationary and ergodic process
{k*} that satisfies (4.9) with {X°} as the forcing process. By the ergodic theorem,
(Y28 = (X5, k°P)'} satisfies of WLLN. Thus, if (,;. PIHITD =0 % S Y,°°")
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converges in probability to zero, then {Y;’} satisfies a WLLN. The convergence of
(a}. 23;1 X — ,}- }:,T=, X;”) to zero in probability follows immediately from the
geometric ergodicity of {X,}. Also, using (4.10) and an argument similar to that
in the proof of Lemma 4, it follows that

1 & 1 &
ECEES EES MR
t=1 t=1

t

T
1 e <)
= T ; HW(Xt-J') | ko —k3° ||| — O a.s. ,

Jj=1

as T — oo. Thus, the average difference between the two capital stock series con-

verges in probability to zero.

5. Asymptotic Normality

Under the unit circle conditions introduced in Section 4.4, the stationary and ergodic
process {Y;°} can be substituted for {¥}’} in deducing the asymptotic distribution
of the SME. Thus, the asymptotic normality of {br} follows immediately under
suitably modified versions of the regularity conditions imposed by Hansen (1982).
If, instead, the regularity conditions used to prove weak consistency in Section
4.3 are adopted, then Hansen’s (1982) conditions are no longer directly applicable
because of the nonstationarity of {Ytﬂ }. Therefore, our discussion of asymptotic
normality focuses on the case of geometrically ergodic forcing processes that may
not satisfy an AUC condition. The final characterization of the limiting distribution
of the SME is, of course, the same for either set of regularity conditions.

In deriving the asymptotic distribution of {V/T(br — p)}, We use an interme-
diate value expansion of G(f) about the point ;. Accordingly, we will adopt:

ASSUMPTION 6.
(i) Bo and the estimators {br} are interior to ©.

(i1) f,p is continuously differentiable with respect to 8 for all t.
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(ili) Do = E[8fB¢/0B) exists, is finite, and has full rank.

Expanding G7(br) about 8, gives

Gr(br) = Gr(Bo) + 8G*(T)(br — Bo), (5.1)

where (using the intermediate value theorem) 0G*(T) is the M x Q matrix whose
i-th row is the i-th row of G7(b%)/88, with b equal to some convex combination
of B and by. Premultiplying (5.1) by [0GT(br)/88]' Wr, and applying the first

order conditions for the optimization problem defining br,
IGT( oGT(b
z "T)] WrGr(br)=0= [ s T)] WrGr(Bo) + Jr(br — Bo),  (5.2)

where

Ip= [aGT(bT)] Wr 8G* (T).

Equation (5.2) can be solved for by— g, if Jr is invertible for sufficiently large T'. This
invertibility is given by Assumption 5 (iii) provided 0G(br)/08 converges in prob-
ability to Dy. For notational ease, let D,qf,’9 = ﬁf(Zf’,ﬂ) (the total derivative).
Under the additional assumptions that the family {Dgf,ﬂ €0, t=1,2,.. } is
Lipschitz, uniformly in probability, and E (Dsf£) is a continuous function of 3,
Lemma 2 and Theorem 4.1.5 of Amemiya (1985) imply that plim;dGr(br)/08 =
Dy. We therefore adopt:

ASSUMPTION 7. The family {Dp ff:8e0,t=1,2,.. } is Lipschitz, uniformly in
probability. For all § € ©, E(|DsfZ,|) < oo, and § — E(Dgf8) is continuous.

Under these assumptions, the asymptotic distribution of v/T(br — B,) is equiv-
alent to the asymptotic distribution of (DyZy 1 Do)"l\/TGT( Bo). The following the-
orem provides the limiting distribution of vT'G1(f)-
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THEOREM 4. Suppose T/T(T) — 7 as T — oo. Under Assumptions 1-4, and 6-7,

VTGr(Bo) => N[0,Zo(1+7)]. (5.3)

PROOF: From the definition of G,

1 T \/T 1 (T)
VTGr(Bo) = (ﬁ ; e - E(f;)]) o, (53] ( 3 (- E(f;":)]) .
(5.4)

vVI(T) =
We do not have stationarity, but the proof of asymptotic normality of each term
on the right-hand side of (5.4) follows Doob’s (1953) proof of a central limit theo-
rem (Theorem 7.5), which uses instead the stronger geometric ergodicity condition.
In particular, we are using the assumed bounds on || f? |l2+5 to conclude that
asymptotic normality of f; and f,‘g ° (suitably normalized) follows from the geomet-
ric ergodicity of {Y;} and {Y/°}. [Note that, although Doob’s Theorem 7.5 includes
his condition Dy as a hypothesis, the geometric ergodicity property is actually suffi-
cient for its proof.] Our result then follows from the independence of the two terms

in (5.4) and the convergence of VT //T(T) to /7. |

An immediate implication of Theorem 3 is

COROLLARY 3.1. Under the assumptions of Theorem 4, \/T(bT — Bo) converges in
distribution as T — oo to a normal random vector with mean zero and covariance

matrix

A=(1+7) (DhSs Do) . (

ot
o
a2

The form of the asymptotic covariance matrix A is familiar from the results of
McFadden (1987), Pakes and Pollard (1987), and Lee and Ingram (1989). As r gets
small, the asymptotic covariance matrix of {br} approaches [D(’, )by lDo]_l, the
covariance matrix obtained when an analytic expression for E(f2) as a function of
B is known a priori. The proposed SM estimator uses a Monte Carlo generated es-
timate of this mean, which permits consistent estimation of o for circumstances in

which the functional form of E(f2,) is not known. In general, knowledge of E(fE
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increases the efficiency of the method of moments estimator of ;. I, however, the
simulated sample size T7(T') is chosen to be large relative to the size T of the sample
of observed variables {f;}, then there is essentially no loss in efficiency from igno-
rance of this population mean. Thus, the proposed simulated moments estimator
extends the class of Markov processes that can be studied using method-of-moment
estimators beyond those considered previously, with potentially negligible loss of

efficiency.

Theorem 4 presumes that {Y;’} is a geometrically ergodic process. As noted
in Section 4, this may not be easily verified in the presence of endogenous state
variables. As with consistency, however, for many economic models our results still
obtain in the presence of endogenous state variables as long as a depreciation con-
dition like (4.10) holds. Pursuing this example of depreciable capital, an argument
analogous to the discussion following (4.10) implies that T=/2 37, (k¢ — k§°) con-
verges in probability to zero. Furthermore, geometric ergodicity of { X;} implies that
T-Y/2 3 (X¢—X§) converges in distribution to zero. Hence, asymptotic normality
of the SME follows from convergence in distribution of T-1/2 ¥ [v;°% — E(Y£)]
which, in turn, follows from the central limit theorem for stationary and ergodic

processes.

All of these results presume that the model is identified. The rank condition for
the class of models considered here is Assumption 6 (iii). In many GMM problems,
verifying that the choice of moment conditions identify the unknown parameters un-
der plausible assumptions about the correlations among the variables in the model
is straightforward. However, inspection of the moment conditions used in simulta-
neously solving and estimating dynamic asset pricing models may give little insight
into whether Assumption 6 (iii) is satisfied. This may be especially relevant when
the model is solved numerically for some of the elements of {¥;’} as functions of
the state and parameter vectors. Indeed, in this case, it may be difficult to gain

much insight into which moment conditions will shed light on the values of specific
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parameters. We recommend that, in practice, the sensitivity of the estimates to
various choices of moment conditions be examined.

Fortunately, some information about the validity of this assumption can be
obtained in our environment using the simulated state {Y,ﬁ }. At a given value of

B, the partial derivative matrix

o[$ L, 1]
D)= ———— .
®) = (56)
can be calculated numerically. For large values of the simulation size 7, D(B) is

approximately equal to 8E(; ’). An orthogonalization of D(8) can be examined
35 (3

at various values of # in order to gain some insight into whether the first order
conditions defining the SME form a relatively ill-conditioned system of equations

at certain points in the parameter space, including at the SME estimator of 5.

6. Extensions and Conclusions

The SME proposed in this paper can be extended along a variety of different
dimensions. Following are three obvious extensions:
(1) incorporating measurement errors on the observation vector f{,
(2) letting f? be a function of 3, and
(3) avoiding the explicit calculation of security prices, or other observations defined

by conditional moments.

In order to accommodate these extensions, we need one additional primitive, a-
measurable observation function g : RM x 0 - RM | where ¢ is the number of
periods of states entering into the observation g{(Y:,...,Y,_7,,), ] at time t. We
can always assume without loss of generality that £ = £. We replace the observation
fi on the actual state process used in the SME with the observation gf ° = g(Zy, Bo).

This leads us to consider the difference in sample moments:

1 T 1 (7
Gr(B) = ngf - T it (6.1)
t=1 =1

30



We once again introduce a sequence {Wr} of positive semi-definite distance ma-
trices, and define the criterion function Cr(8) = Gr(8) WrGr(8) as well as the
Extended Simulated Moments Estimator {b7} of B just as in (3.5).
For example, suppose that, instead of observing f itself, the contaminated
series g™ = f(Zy,50) + us, where {1} is an ergodic, mean-zero RM-valued mea-
surement error, is observed. The asymptotic efficiency of the SME is increased by
7 ignoring the measurement error in simulation and comparing sample moments of
the simulated {f(z7, 8)} and {g®}. In this case, we replace I, defined by (4.5) with

the weighted covariance matrix, for some positive scalar weight 7,
Zfgr =150+ I, (6.2)

where
o0

Zi= Y E(lef - EeP)lel - Blo™)). (6:3)

j=—o0
Assuming that the families {f”} and {¢”} satisfy the technical conditions of As-
sumption 1,” and that Wr — W, = 2;’:,, almost surely, the weak consistency of
this extended SME follows from an argument almost identical to the proof of The-
orem 1. Furthermore, under the same assumptions as in Theorem 4, \/T(bT — Bo)
converges in distribution to a normal random vector with mean zero and covariance

matrix

Aggr = (DZ7, Do) (6.4)

In contrast to the matrix A in (5.5), consistent estimation of Ay, » must typically
be accomplished in two steps using both simulated and observed data.
As a second extension, suppose one is interested in moments of functions of the

data that depend on the unknown parameter vector. For instance, in an asset pricing

T Note that the uniform-in-probability Lipschitz condition for {gf } is qualita-

tively weaker than the same condition for {f?}, since g/ depends only directly on
B ( that is, Y; is not dependent on f).
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setting, one may wish to compare the sample mean of the intertemporal marginal
rate of substitution of consumption in the data to the mean of the corresponding

simulated series. In this case, both ff and gf will depend on 3. Furthermore,

po=[o(%)-2(%5)] -2 |- (%) (%))

because (under the null hypothesis) the expected partial derivatives of gf and f,‘g

with respect to their second arguments are equal.

An important special case of this extension arises when one or more of the co-
ordinate functions defining ¢, say g;, has the property that h;(8) = Elgj(Zx,B3)]
defines a known function h; of 8. If this calculation cannot be made for every j, one
can mix the use of calculated and simulated moments by letting f;(z,8) = h;(B)
for all z, for any j for which hA; is known. This substitution of calculated moments
for sample moments improves the precision of the simulated moments estimator, in
that the covariance matrix Ay g , is smaller than the covariance matrix A obtained
when all moments are simulated.

Finally, in some cases, and we are thinking specifically of asset prices, one of

the coordinate functions, say g;, on the actual state observation may be of the form
9il(Ye, Yie1,y - ., Yiees1), B = E[Rj(Ya, .., Yee1, B)IYe, Yoo, .- Yemea ],

for some h;. It may be infeasible to calculate the function g; explicitly, in which
case the simulated observation gj(ZtS, B) is not available, except perhaps by numer-
ical approximation. On the other hand, by the law of iterated expectations, the
observation fj(Z,ﬂ,ﬂ) = hj(Zf,,B) is feasible, and has the same mean as gj(Zf,ﬂ).

The obvious case is that of an asset claiming at time ¢ the future dividends
dy(Yi+1,8), d2(Ye42,8),...,de-1(Ye42-1,8) for the next respective £ — 1 periods.
In a representative-agent style economy, as in Lucas (1978), the price of the asset

at time ¢ is of the form

St = E(hj[(},t-i-l—l""v}’t)aﬁ] l Yt) )
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where

t+4-1

S Mot (o, B)a(YE . B),

hsl(erem,- o Ya), B = s
’ s=t+1

and where y is the representative agent’s marginal indirect utility for wealth and
p is the representative agent’s subjective discount factor. The security in question
might be a coupon bond maturing in period t + £ — 1, or perhaps a European call
option on another asset whose price in period s is 7(Y,,5). In the latter case,
for instance, where 3 is the time to expiry and K is the exercise price, we have
d, =0, s #3, and ds(y, B) = (v, B) - K]*.

For the option example, the SME does not map directly into the setting of
this paper, since [7(y, 8) — K]* is not everywhere differentiable. However, Marcet
and Singleton (1989) have extended the results in this paper to a class of nondif-
ferentiable payoff functions which includes this function. Also, this application is
limited by the fact that we cannot directly treat higher moment information on
asset prices. For example, one cannot merely replace A with h? as the observation
function corresponding to simulated second moments of asset prices, for the obvious
reason that, typically, St2—¢+1 # E[R(Z¢,8)?|Yi—e41]. To some extent, observations
on options substitute for second moment information on the underlying asset price

given the non-linearity of the option payoff.

As the option pricing example illustrates, there are interesting economic models
that do satisfy the regularity conditions imposed in this paper. Marcet and Single-
ton (1989) extend the results in this paper to certain models with continuous, but
not everywhere differentiable GMM criterion functions. An interesting topic for fu-
ture research is the investigation of models with discontinuous and nondifferentiable
criterion functions for time series models. These are the time series counterparts of

the models studied by McFadden (1989) and Pakes and Pollard (1989).



Appendix

PROOF OF LEMMA 2:4! Since 6 is compact it can be partitioned, for any n,
into n non-overlapping neighborhood 87,03,...,0% in such a way that the distance
between any two points in each OF goes to zero as n — co. Let f1,,,...,0n be an
arbitrary sequence of vectors such that 8; € ©F,¢ =1,...,n. Then, for any € > 0,

:

2 (7 -BuR))| >

1 T
sup |3 (A - BU2)

t=1

y

1
> ;P aseuep? T P (f'ﬂ _E(ffo)) > e]
n T
sZP[%Z(f.-—Eu:;;)) >§] (A1)
=1 =1 |
T

+ZP

=1

Tz sup |fg ~fo |+ sup ,E(fﬂ)" fﬂ')’ ]

where the last inequality follows from the triangle inequality. For fixed n, since
{Y"} is ergodic and E(|f%|) < oo, the first term on the right-hand side of (A.1)

approaches zero as T — oo by the weak law of large numbers for ergodic processes.

As for the second right-hand-side term in (A.1), the Lipschitz assumption on
{##} implies that there exist K, such that

} . (A2)

N

T
%Z o |12~ 5+ sup 1BU2) - BU2) >

ip

<ZP [sup I8 - ﬂ.l—ZK¢+ SUP |E(foo)—E(f D >

t o

Al The strategy for proving this lemma, which was suggested to us by Whitney
Newey, follows the proof strategies used by Jennrich (1969) and Amemiya (1985)
to prove similar lemmas. A subsequent paper by Newey (1989) presents a more
extensive discussion of sufficient conditions for uniform convergence in probability.
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The assumption that KT = T! E,_ K, is bounded in probability implies that
there is a non-stochastic bounded sequence {Ar} such that plim (K7 — A7) = 0.
Thus, for T larger than some T and some bound B, the right-hand side of (A.2)
is less than or equal to

ZP sup 18- Bil |[KT — Ar| + sup |ﬂ B:i|B + sup |E(f&) — E(f%)| > —].

i=1 (A 3)
By continuity of 3+ E(f£), we can choose n once and for all so that | 3 — 3; |B +
| E(f&) — E(f&)] < § for all §in O and all i. Thus, the limit of (A.3) as T — o0
is zero, and the result follows. [

PROOF OF THEOREM 1: By the triangle inequality,
1 T
(3y5- Zf") (202~ 52 |
t=1 =1
. fco) - Z fa

Assumption 2 implies that the first term on the right-hand side of (A.4) converges to
zero in probability. By Lemma 2, the second term on the right-hand side of (A.4)
converges in probability to zero uniformly in 8. Now é7(8) = |Cr(8) — C(8)|
satisfies

<| B2 -7 ;f.' (44)

ér(8) =

Gr(BY WrG(B) — [E(f%) ~ E (f2)] Wo [E(f2) — E (2)] ]

<|cie) - [B(72) - E(£2)) ‘ \Wr || Gr(8) |
+| E(f) - E(f2) | | Wr - Wo | | Gr(B) |
1| B - B || W | | 0r(8) - [B(L) - B(F2)] } (A8)

Therefore, letting 1 = supgee

Gr(B) - [E(f2) - E(F)] |
;:gér(ﬂ) Sy | Wr | (g +L1] + do | W — Wo | [$0 + €]+ ¢o | Wo | &1, (A.6)

35



where ¢ = max {| E(f%,) — E(f5) |: B € ©} exists by the continuity condition in
Assumption 1. Since each of the terms on the right-hand side of (A.6) converges
in probability to zero, plimy [supsee 67(8)] = 0. This implies the convergence of
{b7} to By in probability as T — oo, as indicated, for example, in Amemiya (1985),
page 107. |

PROOF OF LEMMA 3: We fix 3 and t. For simplicity, we write “¢,” for €.
For each positive integer m, we define {Y;™# : t —m < s < t} by the recursion
Y™? =0 and

Y = HOY Lk By emiis).
By construction, Y,""9 is measurable with respect to {e;, e—1,...,€6c—m+1}. The
AUC condition implies that

1Y - ¥ 02 < [T paCes-3) | H(O, emmt1, B) I, (A7)
Jj=0
where
1 « 1
LS tnpp(er—s) + —tn (max (L, | HO,ecomis, ) ) 22 g < 0.
=0
Hence,
™ 1/m
[H pa(e,-ﬂJ | H(O, etemar, B) /™ 25 6% < 1. (A8)
i=0

This, in turn, implies that, given § € (e*#,1), there is some event A with P(A) =1
and, for each w € A some integer N(w,§) such that

[H pa(ec-j(w))

j=0

1 H O, e-mer (@), 8) [ < 8™, m 2 N(w,6).

Next, at arbitrary w € A and m > n > N(w,9),

- n-1, -2, n+1,
NY™ - Y | <™ -y Yy T

m-—1 n

< TI potee=i) 1 HO,ceem, B) Il + -+ [] po(ecms) | HO,—nt, B) |

j=0 j=0
n—1 _ fm-n+1 n-1
_ i) ot
1-46 —1-46

S(Sm_l +6m—2+---+5"
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It follows that, at each w € A, {¥;"#(w)} is a Cauchy sequence in m. We conclude
that lim Y™ = Y;™” exists almost surely. The limit process {¥;>* : —00 < t <
o0}, constructed for each ¢ in this manner, satisfies the difference equation (3.1)
by construction and Y,°°ﬂ is clearly measurable with respect to {¢;—, : s > 0}.
Since {¢} is an i.i.d. sequence, the stationarity and ergodicity of {¥;°} follows
immediately. 1

PROOF OF LEMMA 4: Fix § € © and without loss of generality set £ = 1.
For any 8 € © such that || 5 -8 || < &,

1 T 1 T 1 T
IS EE Wl FECEY M EA S
=1 =1 t=1

T t
< k(a)% > [H po(e,-)} 1Y - v |,

t=1 | j=0

where k(6) is given by the S-smoothness assumption. The AUC condition implies
that 4 Ef;l [H;‘=o pa(e,-)] converges almost surely to zero. Thus, given n > 0,
there is an event Ag with P(Agy) = 1 such that, for each w in Ay, there is some
Te(w,n) with

T T
1 1
A2 E’ W EED W e ’ <n T2 Tiwm) (4.9)
= t=

provided || B — 8 || < és.

Since © is compact, it has a finite subset ©* defining a finite subcover of “&4
neighborhoods,” § € ©°. Letting A* = [ycg. A¢ and T*(w,n) = maxsce- To(w,n),
it follows that A? <5, T > T*, for all § in ©, which leads to (4.7). |

PROOF OF THEOREM 4: As noted above, the L2UC condition implies the
AUC condition, so the conclusions of Lemmas 3 and 4 continue to hold. Thus,
the consistency of {br} for By will be established by showing that, for each § €
©, E[mod,(4, 8)] < oo for some § > 0. As before, we write “e;” for “¢;.”
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Fix 6 € ©. For purposes of the proof, we can assume without loss of generality
that £ = 1. Since f is S-smooth, there is a § > 0 such that, for || 8 — 8 ||< § and
for each ¢,

| F(Y°8,8) = F(Y0,0) || = || (Y8, B) — F(Y°8,8) + F(YF,0) — F(Y20,6) |
SCYA) I B-01l+kB) || Y8 — Y= .

It follows that

mod,(6,8) < & sup CI(Y°°‘9)+k(0) sup “ Y -y . (A.10)
H8—oli< I8-oiI<

Letting a; =| ¥;°# — Y= ||, the L2UC condition and S-smoothness of H imply
that
ay < pa(eg)at—l + C, (Y,‘_l,et) 6. (A.ll)

By recursively substituting a;_, using (A.11), we have for any T

a £ H po(€s)ar-1 + 6 z Cy (Yi=¢,) H poer)

s=t-T =t—T r=s+1

Now, X7 = [[i_,_r ps(es) converges to zero in L? since E[p(e:)?] < 1 and {e;}
is i.2.d.. Since || ar—7 |2 <|| Y,ﬂT |2 is bounded, the Cauchy-Schwarz inequality
implies that

| Xraer [ <|| X7 fl2 || @7 2 —70,

so, in L!,
t t
o < 6Tl_11.1’;° ;T & (Y’ooo’es) _11+1 P9(€t)'

The right hand side is independent of 3, and taking expectations, using the inde-

pendence of {e;}, we have

t t
B| sup || ¥ -y u] ssE[ Y G [T o)

llﬂ—9||55 =—00 r=s+1



using independence of {¢;} and the Cauchy-Schwarz inequality, where 5 = || pg(e:) |2
< 1 and where K is a bound on || C3(Y>#,¢,) ||2 implied by the growth condition
on C; and the fact that | Y, °# ||; and | ¢, ||2 are bounded.

The last term in (A.10) therefore has a finite mean. To establish that the first
term on the right-hand side of (A.10) has a finite mean, first note that C; (Y>f) <
dy +dg | Y,°°ﬂ ||,.for constants dy,d;. Furthermore,

sup || V7 <) vt ||+ Jup i Y -vel |, (A.12)
I1B—8fi<é -olI<

and both terms on the right-hand side of (A.12) have finite means.

Combining these results with Hansen’s (1982) Theorem 2.1 gives the desired
result. |
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