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ABSTRACT

Asset pricing relations are developed for a vector of assets
with a time varying covariance structure. Assuming that the
eigenvectors are cunstant but the eigenvalues changing, both the
Capital Asset Pricing Model and the Arbitrage Pricing Theory
suggest the same testable implication: the time varying part of
risk premia are proportional to the time varying eigenvalues.
Specifying the eigenvalues as general ARCH processes, the model is
a multivariate Factor ARCH model. Univariate portfolios
corresponding to the eigenvectors will have (time varying) risk
premia proportional to their own (time varying) variance and can be
estimated using the GARCH-M model.

This structure is applied to monthly treasury bills from two
to twelve months maturity and the value weighted NYSE returns
index. The bills appear to have a single factor in the variance
process and this factor is influenced or "caused in variance” by
the stock returns.

I. INTRODUCTION

Much recent empirical literature has observed that asset returns
typically exhibit time varying variances. This has been shown for
exchange rates by Hsieh(1985), McCurdy and Morgan(1986), Domowitz and
Hakkio(1984), Diebold and Nerlove(1988), and Engle and Bollerslev(1986)
among others. It has also been observed by Engle, Lilien and
Robins(1987) and Bollerslev, Engle and Wooldridge(1988) for short and
long term interest rates and by Schwert, French and Stambaugh(1986),
Chou(1986)and Bollerslav, Engle and Wooldridge (1988) for equities.

In the presence of such well established empirical regularity. the
empirical tests of asset pricing theories must be reappraised. The

general approach pioneered by Fama and MacBeth(1973) estimates the risk



premia as if the covariance structure were constant and therefore may
reject the CAPM even if it is valid in a dynamic context. Models of the
factor structure of returns used in testing the APT, likewise are based
upon estimates of the unconditional covariance matrix of returns which
may or may not have the same factor structure as the time varying
covariance matrixl. Inference about the number of factors is surely
invalid in this context. Furthermore, the risk premia are potentially
time varying so estimates of their mean will be inefficient or biased
depending upon the context.

Several papers have attempted to estimate time varying risk premia
in the presence of time varying variances. Engle, Lilien and
Robins(1987) introduce the ARCH-M model to model returns as a function
of own variances for interest rates, and Domowitz and Hakkio(1984) do
the same for exchange rates. Bollerslev, Engle and Wooldridge(1988)
extend this to a three asset system and apply a trivariate version of
the CAPM.

In this paper the implications for the CAPM and APT of a time
varying factor structure in the covariance matrix of returns are
explored. Fortuitiously, both models suggest the same testable
restrictions and both allow the model to be efficiently estimated

without requiring the universe of stochastic returns. This argument is

1Unlike the CAPM, the APT works well in an unconditional
context. That is, an unconditional factor structure
determines (in part) the behavior of unconditional risk
premia. See Stambaugh (1983) and Rothschild (1986).
However, a conditional (or time varying) factor structure
also determines the way in which risk premia change over
time. Empirical examination of this relationship requires
estimates of the conditional (or time varying) factor
structure.



presented in Section II. In section [II. the econometric specification
is developed which turns out to be the Generalized Factor ARCH structure
of Engle(1987). Section IV. presents empirical estimates for the short
end of the term structure and its interaction with equity markets.

Section VY ventures some conclusions.

II. Asset Pricing with Time Varying Covariances

Let Y, € RN be a vector of asset returns; that is Yie is the
(random) return on an investment of S1 in asset i in period t. Denote
the conditional mean vector and covariance matrix of Y, as Hu, and Ht
respectively. If there is a riskless asset which earns rate of return

Pe then the risk preimum of asset 1 is Hig = P The goal of many asset

.
pricing theories is to use the conditional covariance matrix, Ht' to
explain risk premia. At each point in time the matrix H: can be written

in terms of its spectral decomposition:

H = f, £7 h
t =1 kt kt t
where fkt are orthogonal eigenvectors and hkt are non-negative
. 2 . . . . .
eigenvalues. To restrict the potential time series behavior of H_ we
T

. X . . 3 . .

now assume that the eigenvectors are time invariant. This major

simplifying assumption on the behavior of the covariance matrix is

2The fkt are normalized such that fkt'L =1

a vector of one’'s. This particular normalization is chosen

because, as we shall show later, the fkt are related to the

weights of particular portfolios that represent "factors”.

, where ¢ .is

: ; . 2 2 _
3Under this assumption, E(Ht) = 2§=1fkfkak . where oy =
E(hkt) . Thus, the fk are also eigenvectors of the
unconditional expectation of Ht .
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statistically convenient and, we would argue, quite reasonable. If there
is a single risky characteristics, then our restriction implies that the
relative riskiness of assets remains constant over time while total
riskiness varies. This observation will be developed below. The
eigenvalues, hkt' can be decomposed into a non-stochastic, time
invariant component R and a time varying component xkt. so that:

hkt =@+ )\kt' mk')\kcz 0 for all k,t.
Finally, we suppose that only K { N of the )"kt are ever non-zero. Then
we obtain the decomposition of Ht:

(1.a) Ht =0+ Vt
(1.b) Q= i fkfl'c w
=1

(l.e) Vt = Z;lfkfl" )"kt

Equation (l.a) states that the variance covariance matrix can be
decomposed into a constant part 2 and a time varying part Vt. Both Q2
and Vc are symmetric, positive semidefinite matrices. Equation (1.b) is
the spectral decomposition of 2 and (l.c) is the same for Vt‘. The
matrix Vt is of rank K which may be considerably less than N. If K is
small, then (l.c) implies that the dynamic structure of the variance
covariance matrix is determined by the dynamic behavior of a few
parameters, the eigenvalues of Vt. which can have a rich stochastic
structure. The techniques developed for estimating dynamic process of
variances can be used to analyze their behavior. Indeed as we shall see
the )‘kt are variances of the returns on particular portfolios and the
fk are corresponding vectors of portfolio weights.

In this paper we will (i) analyze the stochastic structure of the



th and (ii) use the results of this analysis to estimte asset pricing

equations which are variants of

(2) Pie P &% * Ek Bikxkt )

Equation (2) is sugges.ed by the specification (1). some strong
additional assumptions and either of the two leading theories of asset
pricing, the capital asset pricing model (CAPM) or the arbitrage pricing

theory (APT).

A. The CAPM

We consider first the CAPM. Suppose there is a riskless asset whch
earns the rate of return pti. The CAPM pricing equation may be written
(3) Be = Pt = S How,
where ¢ is a vector of ones, 6: is the market price of risk and v, is a
normalized vector of portfolio weights which is proportional to the
market portfolio. Assume that the market price of risk and the
composition of the market portfolio are constants. That is
(4) 5c = 6 and W, =W
Then.

M, - Pyt = 6w + GV w = 60w + 8 (ENEN -

which is of the form (2).

The careful reader will have noted that the assumptions in (4) are

not likely to be consistent with the CAPM. That is, if the CAPM really

this derivation assumes the existence of a riskless asset.
All the formulae have analogs if there is not a riskless
asset.

5These are the strong additional assumptions mentioned
above.



determines prices of securities, the market portfolio w 1is determined
by the stochastic realization of asset prices, which is governed, in
part, by the variance-covariance matrix of asset returns. As a result
it is difficult to write down a model in which the CAPM holds (the
market portfolio is mean variance efficient) and the market shares are
constant. This does not mean that our basic equation (2) is inconsistent
with rational behavior on the part of investors. As the work which
Harrison and Kreps (1979) initiated on Martingale measure has made clear
any stochastic specification of security prices which does not permit
arbitrage opportunities is consistent with rational behavior (this {is
the stochastic counterpart of Sonnenschein’'s work on the, meager,
implications of utility maximization for the behavior of excess demand
functionss). Thus our equation is suggested by the CAPM but can be
derived exactly only by approximating the market portfolio by the fixed
weight portfolio most highly correlated with the market. In most cases
this should be a good approximation: in any case the equation is an
interesting hypothsis for empirical examination.

Consider now the returns to two assets which have only one risk
characteristic, namely factor loadings on factor k. For these assets,
the risk premia are given by

Bie = P = 8( M (0 + N,
The ratio of the risk premia for any such assets is proportional only to
the factor loadings and is therefore time invariant if and only if the
eigenvectors are time invariant.

Note that for individual portfolios formed using eigenvectors as

6See Schafer and Sonnenschein (1982) for a survey of this

literature.



weights, the relation between (changes in)} risk and return is
particularly simple. Let fkt be the scalar random return on the
portfolio with weights fk . Then

E(fy ) - o = fpp - oy
Gfiﬂw + 6(fkw)xkt

Aand

Var(fkt) = fiﬂfk + kkt
Thus, the time varying part of the risk premia of ;kt is proportional to
the time varying part of its variance, which is simply xkt'

Consider now the familiar Roll critique of empirical tests of the
CAPM. Suppose we could observe an additional set of assets N+1,... Nx
which together with the original set of assets comprises the universe of
assets. Denoting the returns to the first set by Yi, and the second by
Yor the covariance matrix becomes Ht! given by

[911 * Ve Q12}
91 f99

where it is simply assumed that the covariance matrix of the new asset

H » =
t

returns is time invariant. With w'»* = (wi*.wé*) as the new set of
portfolio shares, the vector of risk premia implied by the CAPM is again
given by
- tg
B, pb = & Ht Wi
so that the risk premia to the first set of assets are

Hip ~ Pt = 5 0, . w + 50 _w. % + thw *,

1171 1272 1

The difference between this formula and that derived above, is simply in

4

the intercept term. Without prior knowledge of the 2's, w's or 6, the

parameters of the intercept are not identified so the estimation can



proceed without observation of Yo Thus by assuming that the unobserved
asset returns satisfy the constant covariance assumptions traditionally
made for all assets in empirical tests of the CAPM, the Roll critique
can be avoided. This seems an appropriate assumption for some of the
most problematic assets such as human capital, housing and consumer

durables.

B. The APT
The derivation of (2) from the APT is somewhat less clean. Let us
review the conventional APT. Suppose there are many assets (i.e. N is
large) and that the constant variance-covariance matrix H has a factor
structure
(5) H=BB" +D
where B is N by K and D is diagonal7. Then the APT states that
(6) By - p= zk b1k ™t e
where Tk is the factor risk premium and e, is a small pricing error.
The sense in which pricing errors are small is sometimes a source
of confusion. The APT was deisgned to capture an intuitively plausible
notion. If the stochastic structure of most asset returns is determined
by a few common factors and idiosyncratic risk, then idiosyncratic risk
should be diverisifijable; in equilibrium investors will only be
rewarded for bearing undiversifiable factor risk. It follows then that
an asset’s risk premia will be determined by the asset’'s correlation

with factors. In cruder terms, the risk premia of many assets will be

7Weaker conditions on D will suffice. See Chamberlain and

Rothschild (1983) and Reisman (1988).



well explained by a few things. In a sense the APT is a generalization
of the CAPM which states that an asset's risk premium is completely

determined by its covariance with the market. Ross. who developed the
theory, demonstrated the correctness of this intuition by showing that
i{f the number of assets was infinite ( N = » ) the sum of the pricing

. 2 . :
errors was finite (z e { ® )} so that pricing errors were in aggregate a
i

negligible fraction of risk premia.

This way of stating the APT has led to the belief that for the
theory to be useful N must be large. This is not the case. The APT can
be quite useful if N is not large but K is small (relative to N ) and if
pricing errors (i.e. the part of risk premia which is not a reward for
bearing factor risk) are small. If the number of assets is not large no
theory guarantees that pricing errors will be relatively small. However
it 1s an empirical possibility and one which can be investigated. The
situation with small N is no different from the situation with large N.
When N is large, factor risk will only explain risk premia if there is a
factor structure. That is, if there is a decomposition like equation
(5)8. then equation (8) will hold and pricing errors will be relatively
small. Whether or not there is a factor structure when the number of
assets is large is an empirical and not a theoretical mactter. No
deductive theory guarentees that asset returns will have a factor

structure. We think it is likely that there will be a factor structure

The precise statement is that there must be an approximate
factor structure. For a precise definition see Chamberlain
and Rothschild (1983). The basic idea is that for every
collection of N assets, the variance-covariance matrix can
be decomposed into two positive semidefinite matrices. One
is of rank K and the other has (for all N) bounded eigen
values.
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because we believe that there are many more assets than there are
important influences on asset returns. In exactly the same way, whether
or not factor risk premia explain asset prices well when the number of
assets is not large is an empirical not a theoretical questiong. In
this paper we explore the possibility that dynamic pricing errors are
small, and that changes in risk premia are well explained by changes in
factor variances. This is the basis of the APT version of our basic
estimating equation (2).

Returning to our development of the APT let us write equation (6)

as

M By - PE Ek Fie™

where fk=bk/(biL) is a normalized eigenvector of B. We call ¥, the

k
price of the kth factor risk because if fk is the random return from a
portfolio with weights fk then
(8) E(fk) “PRT Ak and Var(fk) % Ak

E(; - p)
so that —Lr: -rklo.
Var(fk)

"The simplest way to turn the APT into a dynamic story which
Justifies (2) is to assume that
(9) H =V, +Q2=B38; +D
where B_ = ( vfigt by JTKEt by ) and D (= Q) is diagonal. The

xkt are the eigenvalues of BtB; = Vt . They change over time. The bk

gFor an instructive estimate of the size of pricing errors
in finite economies see Dybvig (1983).
10.

This could be made more precise by letting fk be a random

variable which has only factor risk. See Admati and
Pfleiderer (1985) and Chamberlain (1983).
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are column vectors of B: and eigenvectors of both Ht and V:' As in our
discussion of the CAPM, the eigenvectors of Vc are constant while the
eigenvalues are changing. The meaning is slightly different; here the
eigenvectors of V: are also vectors of factor loadings.

If (9) holds, then the basic APT equation can be written
(10) Big =P ® zkfik "k N
which the reader will recognize as a version of our basic estimating
equation (2).

The assumptions needed to derive (10) are overly strong. Suppose
that
(11) Ht =0+ BtB;
where {1, the constant part of the variance covariance matrix, can be
decomposed further into factors and non-factor risk. That is
(12) Q=CC" +D
where OC’ is of rank K* < Nand D is diagonal. Again the APT implies

that

(13) Big P ™ o zkfik "k Mt

where the constant a; includes both pricing errors (the e from equation
(6)) and the effect of constant factors on prices.

Both derivations state that changes in risk premia can be
attributed to changes in the variance-covariance matrix of returns. If
the variance-covariance matrix has a particularly simple dynamic
structure, (if its eigenvectors are constant while its eigenvalues are
changing) then it {s straightforward to use time series techniques to
analyze the effects of changing variances on risk premia. This approach

contrasts with most empirical work on asset pricing. By and large this
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work ignores the dynamic structure of the variance covariance matrix and
uses cross section techniques to estimate constant risk premia. In
terms of our basic equation (2), the concern is with the estimation of
the a,. Our approach ignores the restrictions which theory places on
these intercept terms and uses time series techniques to estimate the
way in which a changing variance covariance matrices affects changing
risk premia. Our discussion of the Roll Critique on page 7 and 8 above
is an example of this approach.

¥hile the time series approach allows us to focus attention on the
time varying components of the risk premia and examine a small number of
assets, it could be that the constant part of risk premia are of much
more importance and interest than the variable part. Whether or not
this is so is an empirical question. We do note that if changing second
moments influence risk premia significantly then our approach can be
combined with more traditional cross sectional approaches to estimate
both the constants and the and the time varying terms in (2). If
variance covariance matrices change in the way we specify and if risk
premia are systematically related to variance~covariance matrices, then
our techniques will provide demonstrably superior estimates than will

traditional techniques.

III. Econometric Specification

Let y*

k.
t be the vector of asset excess retunrs. (i.e. Yo=Y, -

ptL) With the factor structure described in (1), the asset pricing
equation (2), and the additional assumption on conditional normality,

the density of y: given , F the sigma field of all past information,

t-1'
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is given by
»* -~ »*
(14) Y IF o ~ N H)
K
Sosu o =a +)B {=1.....N
Hie THie ~ ¢ =% ke P =l
k=1

K
H =0+ 2 FEL N
k=1
To complete the specification, an expression for Akt is necessary which

makes these variances measureable with respect to Ft— The conditional

1
~5 . %
variance of the random portfolio excess return, fkt ,given by fk Yo o is
defined to be hkt which can be expressed as
hee = B0+ A
A natural but possibly restrictive assumption is therefore that
portfolio k has a univariate ARCH or GARCH representation.
Definition: A portfolio has a univariate variance representation if it
can be expressed as a GARGH(p.q) process conditional on the full
multivariate information set.
This assumption says that, conditional on all the returns data, only the
particular linear combination of surprises defining the portfolio are
relevant for forecasting the variance of the portfolio. Thus for e =
y-u,
£y Foy D( f'u..h)
P q
, 2 z
hy=w>+ 2 8, (fre )7+ )PPy
i=1 i=1
which for the GARCH(1,1) model becomes:

2 2
(15) hpe = 9% * % ™ke-1 * di bt

where Thee = fie , the surprise in the kth portfolio. Under this

t
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assumption the multivariate covariance matrix can be written as

K
2, e 12 .
(16) H, =0+ ) (00, £ (Fre )2+ o £ 0 6D
k=1

This is an example of the Factor GARCH structure introduced by
Engle(1987). It is also an example of the general positive definite

structure proposed for multivariate ARCH models in Baba et al(1586)
Kp

(17 H =0+ z 2 (Ao eoi®ioifer * BrilemiBral-

k=i=1

Under the assumption that A and B are symmetric rank one matrices with
common eigenvectors for each k, equation (16) can be derived.
A more general model than (16) can be achieved by relaxing the

univariate portfolio assumption. Let

K
(18) b =9y +le(e?k n?t-l * (ﬁk hj:—l )
If ij=¢)”(:j =0 for k#j then the univariate portfolio assumption holds.
If not, the information in one portfolic is useful in predicting the
variance of another. In this case, using the terminology of Granger,
Robins and Engle(1985). there is "causality in variance” from one
portfolio to another. In particular if ijfo then there is causality in
variance from portfolio j to portfolio k.

Substituting (18) into (14) gives a model of the form (17) but with

K K
M=) O Bl Ba =) P B -
B! i
This model is still a special case of (17) since A and B will have rank
one. Portfolios will still have no time varying covariance but will
have causality in variance.

For these specifications as well as more general ones, the
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portfolios will all have risk premia derived from (2) or (14) which
depend only upon their own variance and possibly an intercept.
Therefore under the univariate portfolio representation assumption, the
appropriate model for the portfolio is simply the ARCH-M model as used
by Engle Lilien and Robins(1987) as well as Domowitz and Hakkio(1984).
The estimation and testing of this model is rather straight forward
if it is assumed that the f's are known. The portfolios are then
constructed and tested for causality in variance from other information
sources using the standard GARCH-M likelihood function. When the
variance process of the portfolio is correctly formulated, it is then
possible to test the risk premium. Violations of the assumption that
only the own variance enters the risk premium in an otherwise correct
model., indicate failure of the asset pricing theory or the assumption of
constant eigenvectors. If the variance process is not correctly
specified however, then rejection of the risk premium formulation may
only be reflecting the inadequacy of the variance model which includes
less than all of the relevant information. Finally., the individual
returns can be examined to determine whether the variance is a linear
combination of the variances of the factors, and whether the risk

premium is a linear combination of the variances of the factors.
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IV. Application to the Pricing of Treasury Bills

To investigate whether the specification (14) .(15) and (16) is
useful in modelling the dynamic behavior of asset risk premia, we try
applying it to the pricing of the short end of the term structure.

Data

The data are one month returns of two to twelve months treasury
bills from August 1964 to November 1985 obtained from the CRSP
Government Bond Tape. This is the updated version of the data set used
by Fama (1984). A companion set of value weighted equity returns for
NYSE-AMSE from the same sample period is taken from the CRSP Index Tape.

From this dataset. the monthly excess returns of the two to twelve
months T-bills and the stock market portfolio are constructed by
subtracting from their monthly returns the one month T-bill rate under
the assumption that it represents a riskless return. Figure 1 presents
the plots of these excess returns for 3,6,9 and 12 month maturities.
Clearly they move together with common periods of high volatility
suggesting the plausibility of the Factor ARCH model.

The unconditional covariance matrix of these excess returns is
nearly singular as shown by the principle component analysis in Table 1.
The largest eigenvalue represents 92% of the total variance and the
first two are 99.67% of the total variance. It is natural therefore to
focus attention on the first two factors of the data set. The factor
loadings of these factors are also tabulated and these make it clear
that the first factor loads primarily on the stock index and is

therefore called Factor S. and the second eigenvalue loads primarily on
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the bills and is consequently called Factor B.

In order to implement the Factor ARCH model described in the
previous sections of the paper, it is necessary to identify the factors.
While it is in principle possible to estimate these jointly as a maximum
likelihood procedure, this is an approach left for further research.

In this paper we explore two methods for identifying the factors.
In the first we assume that the eigenvectors of E(H:) are also

eigenvectors of the unconditional covariance matirx of excess returns.11
We also assume that the eigenvectors of E(Ht) with the largest
eigenvalues correspond to the eigenvectors of Vt. Under these
assumptions the two portfolios can be constructed using the weights
given in Table I and are called respectively Factor S and Factor B.

The alternative approach is to construct portfolios with
prespecified weights. Those selected for analysis are 1) equal weights
on each of the bill returns with a zero on the stock index which is

‘ labeled EW bill, and 2) zero weights on all the bill returns with all
the weight on the stock index which is therefore just the Value Weighted
index labeled VW stock.

Assuming that there are two factors and that these have univariate
variance GARCH(1,1) representations, the model! to be estimated for the
portfolios are implicit in (14) and (15). These are simply the GARCH-M

models used by Domowitz and Hakkio(1984). Engle, Lilien and

11The unconditional covariance matrix of excess returns is:
»* » » * ., » » »* *, .,
I = E(Y B (p-E(W}Y))" = E(H) + E(u -E(n)) (W -E(k)))
In general, we expect the last term to be small because the
variability of the risk premia should be a lot less than the

variability of excess returns themselves. Thus, reasonable
estimates of fk may be taken from Z.
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Robins(1987).and French Schwert and Stambaugh(1987). The maximum
likelihood estimates are presented in Table II.

The results appear consistent with the model. The two bill and two
stock portfolios seem very similar in their behavier. The bill
portfolios have highly significant risk premia while the stocks are only
marginally significant. The GARCH efffects are very strong and are
essentially integrated in each case. See Engle and Bollerslev(1986) and
Engle(1987) for an analysis of the integrated ARCH models.

These models are now examined to determine whether the assumption
that they have univariate variance representations is satisfied. We
therefore check for causality in variance as parameterized in equation
(18). A series of Lagrange Multiplier tests of the models in Table II
are constructed and are reported in Table III.

The test results are rather striking. The squared surprises froa
the stock market over the previous month are important in explaining the
variance in the bills this month, while the past surprises in the bill
market are not significant in forecasting equity variances. There
appears to be one way causality in variance. Further tests were carried
out to determine whether the conditional variances of one market last
period would enter the other variance equation. These tests were all
insignificant as one tailed tests since the likelihood declined in the
permissible portion of the parameter space.

The preferred models for the bill market require another term in

the variance equation; (15) becomes (19).

2 2 2 2 2
(19) by ¢ =% M, c-1 * B Mg, c-1 * OB T, -1

where B refers to FACTOR B and EW bill and S refers to FACTOR S and VW
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stock. The intercept has been dropped in (19) because the data does not
support a postive value and a negative value is not permitted. The
maximum likelihood estimates of these models are presented in Table IV.
The results are better than the previous estimates in the sense that the
likelihood is improved and the significance of the ARCH-M terms in the
risk premia is even greater.

The theory implies that the portfolio risk premia will depend only
on their own conditional variance. We therefore test whether the past
squared surprise and conditional variance in one portfolio enter the
mean equation of the other portfolio. This test checks whether other
information available at the beginning of the period is useful in
predicting returns. For the two bill portfolios, the likelihood ratio
tests with two degrees of freedom are 5.76 and 5.80 which are marginally
insignificant at the 5X level. For the stock portfolios, the test
statistics are .10 and .02 which are highly insignificant.

Since our model implicitly implied the constancy of the conditional
covariance between the two factor representing portfolios, we can
perform an interesting diagnostic test for our specification by checking
whether the cross product of the residuals for the two factor
representing portfolios has autoregressive structure. The simplest way
to do this is to regress the cross product of residuals on its lags and
then look at the individual t-statistics and the TR2of the regression.
These are essentially LM tests for time varying covariances. The
results suggest the rejection of the constant conditional covariance
assumption, particularly for the a priori weighted portfolios. This may

be evidence that the dynamic structure is too restrictive or that we
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have not chosen the portfolios correctly. It is also possible that the
test has incorrect size in this case.

The theory also predicts the behavior of the individual assets
which make up the portfolios. The two factor ARCH model implies that
both the mean and the variance of the returns should be a weighted
average of the variances of the two factors. Because the factor weights
are nearly zero for the stock factor, the effects of the stock variances
should be small or zero.

V¥e now examine models for 3,6,9 and 12 month T-bills. The results
are presented in Table V. The stock variance is dropped from the
variance equation in each case because likelihood was declining from the
boundary of the parameter space. Although all the coefficients are
positive, the significance is not great even for the bill variances.
Very likely this is due to multicollinearity between the assets. As a
benchmark for comparison, the GARCH(l.,1)-M models are estimated for each
asset and are presented in Table VI. The conditional variances are all
significant or nearly so in the mean, yet the likelihood is below that
of the Factor model in each case. The difference is generally quite
large and gives substantial support to our formulation. It also
reinforces the interpretation of the low t-statistics as due to
multicollinearity. Rather than rely on a non-nested test between the
two models, we now estimate the artificially nested model which has all
terms. Non-negativity constraints are a particular problem here but the
final results are given in Table VII. For TB-3, TB-6, TB-9 and TB-12,
the two degree of freedom LR statistics for testing the two factor model

against this more general model are 6.34, 6.14, 1.63 and 4.23
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respectively. That is , for TB-3 and TB~6 the own variance effect is
marginally significant, while for TB-9 and TB-12 it is not. This result
is basically encouraging for our model formulation and presumably with
slightly more parameter richness, even better diagnostic statistics

could be obtained.

V. Conclusion

The factor ARCH model is theoretically appealing and appears to be
reasonably successful in modelling the short end of the term structure.
Many caveats remain and the unanswered questions are innumerable. In
particular, the difficulties with estimating the number of factors and
the factor weights, and the numerical problems with the non-negativity
constraints in the variance equations are prime directions for further

investigation.



V1°5881 —— 90 998}

1518 Arnaness suivou-g1 syy o minser porred Fngpiey Swerxy nisew wup ¢ WANEISR

11°SDES -~ 90 496}

1410 Cinasast wqpncm-§ au 10 msnpes poyand Fujpyey wencue qibom sup 1 MABARL

4 z
{ stvamaies W ) HeBZIEL

[ t
( simiweasnd wy ) HoWEEL

%é,f i%é;z? ;

11 'S0 -~ 00 'BPBI —— —

1IN £3nsebig oquuom § B4D Jo winnes povied Bufploe eesIne wivew wvg 1 RANMAL

u::

. !.4 STy S

11°Sg6) —— QO #9E[— ——

1UIS Ainersag swimce-g g1 gv wanibs popasd Tugprey S8UIXS winre D ¢ HAN(EL

| @anbi3

I 3
[ véwimmaaed W1 ) Wdo9RL

3
{ "N v ) UyWERL




TABLE I

EIGENVALUES AND EIGENVECTORS

Variables Factor S Factor B
TB2 -.0020 .0124
TB3 -.0044 .0275
TB4 -.0085 .0430
TBS ~.0121 .0610
TB6 -.0151 .0758
TB7 -.0173 .0880
TBS -.0218 .1029
TBS -.0262 .1218
TB10O -.0281 .1370
TB11 -.0276 .1493
TB12 -.0377 . 1620
VYWSTOCK 1.2008 .0195

EIGENVALUES TRACE PERCENTAGE

Factor S 19.67 92.23

Factor B 1.59 7.45

3 .03 .14
4 .02 .08
5 .01 .04



TABLE II

UNIVARIATE GARCH-M PORTFOLIO MODELS

3 EW Bill VW STOCK FACTOR B  FACTOR S
MEAN EQ
CONST .017 —-4.11 .0073 -4.9
.92) (-1.4) (.29) (-1.4)
h, .50 .23 .46 .19
(2.9) (1.5) (3.0) (1.5)
VARIANCE EQ
CONST .004 2.1 .0074 3.1
(2.1) (1.7) (2.4) (1.7)
2
Mooy .27 .049 .25 .049
(5.1) (1.7) (4.2) (1.7)
h,_, 72 .84 .73 .84
(16) (12) (14) (12)
InL -29.24 -719.61 -89.25 -766.05



TABLE III

LAGRANGE MULTIPLIER TESTS
FOR CAUSALITY IN VARIANCE

IN GARCH-M MODELS

EW BILL FACTOR B VW STOCK FACTOR S

24

VARIANCE EQ
ADDITIONAL VARIABLES

2
TEW BILL, t-1 40—

2
TFACTOR B, t-1

»

7.2

2
VW STOCK. t-1

2 »*
TFACTOR S, t-1 —— 6.0




TABLE IV

PORTFOLIO MODELS WITH CAUSALITY

IN VARIANCE
EW BILL FACTOR B
MEAN FQ
CONST .0073 -.011
(.39) (-.45)
h, .65 .59)
(3.4) (3.4
VAR EQ
2, .23 21
(4.8) (3.9)
h,_, 71 .71
(14) (13)
2
.00042 _
WW STOCK, t-1 (2.9)
2
7 o .00054
FACTOR S, t-1 (3.1)

InL -23.76 -83.85
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TABLE VY

TWO FACTOR MODEL OF INDIVIDUAL

ASSET EXCESS RETURNS

TB3 TB6 TBS  TBI2
MEAN EQ
CONST ~ -.01  =-.10  -.21  -.17
(-.29) (-.86) (-1.1)  (-.68)
18 .26 .39 .37
PFACTOR B, (3.2) (1.8) (1.6)  (1.0)
he 0014  .0046  .0081  .0061
ACTOR S, t
(.71)  (.97)  (1.1)  (.60)
VAR EQ
BrACTOR B. ¢ 056 .44 1.2 2.4

(15) (15) (16) (15)

InL 255.42 15.71 -106.20 -192.12
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TABLE VI

GARCH-M MODELS FOR INDIVIDUAL ASSETS

TB3 TB6 TBS TB12
MEAN FQ
CONST .032 .036 .021 .021
(6.5)  (2.3) (.81)  (.56)
h, 1.7 .56 .39 .19
(2.8) (2.9) (2.7) (1.8)
VAR EQ
CONST .0002  .0053  .00%4  .013
(1.4) (2.6) (2.4) (1.7)
2
ey .38 .45 .24 .21
(4.7) (5.6) (5.8) (3.9)
h,_, .70 .57 .73 .78

(23) (11) (15) (15)

InL 244.67 10.10 -113.56 -196.0
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TABLE VII

TWO FACTORS MODEL WITH ARCH(1) - M EFFECT

FOR INDIVIDUAL ASSETS

B3 TB6 TBS  TBI2
MEAN EQ
CONSTANT -0.021 -0.14 -0.30 -0.34
(-0.50) (-1.3) (~1.7) (-1.5)
h, 1.4 1.8 5.6 4.51
(0.67) (1.4)  (0.41) (0.80)
0.61 -0.69 -6.5  -10.
PFACTOR B.¢ (0.40) (-1.1) (-0.4) (-0.81)
0.0017 0.0068 0.013  0.013
PFACTOR . ¢ (1.0)  (1.5) (1.7) (1.4)
VARIANCE EQ
&, 0.31  0.25  0.048 0.073
(2.3)  (2.1) (0.41)  (0.82)
heycror g e 0050 0.3 1.1 2.2

(9.3)  (9.4) (9.2) (11.)

InL 258.59 18.78 -105.39 -190.0
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