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1. Introduction.

For purposes of modelling the evolution of various random systems, the
theory of continuous-time stochastic processes ﬁés become indispensible. In
particular, the use of continuous-time processes described by stochastic
differential equations (SDE's) is now an integral part of such diverse fields
as stochastic optimal control theory, financial economics, and statistical
thermodynamics. This is due, in part, to the development of a fully
operational "stochastic caleulus" by Itg [1951] which extends the standard
tools of calculus to funetions of a wide class of continuous-time random
processes (now known as Itg processes. )1 Another important aspect of the
class of Ito processes is its closure under Quite general nonlinear
transformatlons, that is, nonlinear functions of Ito processes are (under mild
regularity conditions) also Ita processes. Moreover, given the SDE of the
original process, the Ita calculus provides a method for explicitly
caleculating the SDE driving the transformed process dynamics. Due to this
remarkable result, the Stochastic properties of quite complex models driven
by Ito processes may be readlly deduced as, for example, in the case of the
well-known Black-Scholes [1973] stock option-pricing model. Although
Ita processes are used most often in economics as models of asset-price
behavior, their applications are considerably more widespread and range from
labor economics to investment theory.2 However, to date relatively little
research in economics has been devoted to the econometrlc estimation problems
associated with such continuous-time processes.3 This is particularly
surprising since the modelling of uncertainty via Ita processes usually yields
a very specific statistical specification for purposes of estimation.

In this paper, we consider the parametric estimation problem for Ito

processes using the method of maximum likelihood (ML) . 4 The main result of
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the paper is a characterization of the 1ikelihood function as a solution to a
particular functional partial differential equation. We also discuss the
asymptotic properties of the resulting estimators and provide some
illustrative examples. Since the general theory of maximum likelihood
estimation has been well-studied in several relatéd areas of research, our
discussion of the estimators' asymptotic behavior will be mainly expository in
nature and somewhat abbreviated in collecting some of the more relevant
results from the exant literatﬁre.

Because the theory of statistical inference for an alternative class of
continuous-time processes is now well established and comprehensively
developed in Bergstrom5 [1976, 1983, 1984], a few remarks concerning the
relation of that literature to inference for generalized It; processes are in
order before we begin our analysis. One important distinction between It;
processes and those studied by Bergstrom is that the latter (hereafter called
"nth-order processes'") are described by nth-order linear SDE's with constant
coefficients, whereas the former satisfy first-order nonlinear SDE's.6 of
course, an nth-order linear SDE with constant coefficients may in principle be
considered a special case of a vector first-order nonlinear SDE in the usual
f‘ashion.7 However, we assume throughout that all the state variables are
observable by the econometrician. With unobservable state variables the
parameters may no longer be identified, which may complicate the analysis
severely and is beyond the scope of this paper.

Another important difference between nth-order and It; SDE's is the type
of randomness driving the processes. In particular, Bergstrom [1983, 1984]
considers SDE's driven by white noise disturbances but does not restrict them
to be Gaussian. In contrast, the approach taken in this paper is to consider

SDE's driven by the sum of Gaussian and Poisson white noise components.

-
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Although almost all sample paths of Gaussian white noise (Brownian motion) are
continuous, the introduction of a Poisson component allows for simple Sample-
path discontinuities. Also, the distributional assumptions on the
disturbances facilitate the explicit calculation of statistical properties of
It; processes and the derivation of the likelihood function. Furthermore,
given the closure of the class of Ita processes under smooth nonlinear
transformations and the Ita calculus, the stochastic behavior of functions of
such processes are then well-specified. This, of course, does not obtain for
functions of nth-order processes. In addition, although nth-order processes
may seem more general than Ita processes driven by Gaussian and Poisson white
noise, the Ita calculus has been shown to extend to quite general martingale
processes.8 For purposes of exposition, the loss in concreteness does not
seem justified by such generality.

One furﬁher aspect of Ita processes which is distinct from nth-order
processes is the Markovian nature of the former. It will be shown that this
leads to a considerable simplification in the calculation of the likelihood
function of discretely-sampled data which are not necessarily equally spaced
in time. The Markov property is clearly quite restrictive and may not be
;applicable to certain economic processes of interest. This may be partly
remedied by the usual "expansion of the states" technique, although issues of
tractability arise when the number of states is large. The appropriateness of
the Markov property depends intimately upon the underlying economic model at
hand and must be considered on a case-by-case basis.9

The organization of the paper is as follows. In Section 2 the general
parametric estimation problem is posed and the maximum likelihood procedure is
discussed. Section 3 considers the asymptotic properties of the maximum

likelihood estimators obtained in Section 2, and we conclude in Section 4,
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2. Formulation of the Estimation Problem.

For expositional clarity we consider the estimation pfoblem only for
univariate Ita processes with single jump and diffusion components; The
extension to vector It; processes with multiple jump and diffusion terms poses
no conceptual difficulties but is notationally more cumbersome.

Let {X(t): t e T c R, X(t) e S c R} be a stochastic process defined on
a complete probability space (g, F, p) and suppose X(t) satisfies the
following stochastic integral equation:

t t t

X(t) = X(ty) + [ £(X, 1; a)dt + [ g(X, ©; B)dW(7) + [ n(x, t; y)aN, (1) (1
t t .

0 0 %o

where the last two (stochastic) integrals in (1) are defined with respect to
the pure Wiener process W(t) and a Poisson counter Nx(t) respectively, and f,
g, and h are known functions which depend upon (X, t) and an unknown parameter
vector 8 = (a', B8', y')'. Note that because the integrand g in (1) may be a
function of X as well as of t, and because W(t) is of unbounded variation, the
corresponding stochastic integral cannot be interpreted in the wide or second-
order sense as, for e*ample, in Bergstrom [1983].10 The integral may,
however, be interpreted in the sense of It; [1951] if the functions f, g, and

h satisfy the following restrictions:

Assumption 1: Let {Ft: t « T} denote a right-continuous filtration o-field
defined on (@, F, u) and let the pure Wiener process
[W(t): t « T} be adapted to this filtration.']

Assumption 2: If B is the o-field of Borel sets on R*, then for all 8 in the

parameter space © = A x B x I the functions f, g, and h are

measurable in the product o-field B x F.
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Assumption 3: For all 6 € @ and t ¢ T the functions f, g, h depend only upon

X(t) and t, implying that the functions are trivially adapted

to the filtration {Ft: t « T} and are therefore nonanticipating
with respect to that filtration.
Assumption 4: For all 9 ¢ o the functions f, 8, and h satisfy the following

inequalities almost surely:

t
J [fldt < = (2a)
%

t o2
[ |g|%dt < = (2b)
%o

t o2
J |h|%dt < =, (2¢)
%

An equivalent and perhaps more familiar representation of X(t) as a

stochastic differential equation is given by:
dX(t) = £(X, t; a)dt + g(X, t; 8)dW(t) «+ h(X, t; Y)dNA(t) . (3)

Further assumptions are required in order to insure the existence and
uniqueness of a solution to the stochastic integral (differential) equation
given by equation (1) (equation (3)). They are:

Assumption 5: There exists some constaﬁt K > 0 such that the functions f, g,
and h satisfy the fbllowing condiﬁions for all X, X' « S and

t, t' e T:

(i) lf(X,t)-f(X',t)l + |g(X,t)-g(X',t)| + [h(X,t)-h(X',t)l KIX-X'I' (4a)

IA

IA

(ii) |f(X,t)-f(X,t')| + lg(x,t)-g(X,t")| + [h(X,t)-h(X,t")] Klt-t']  (4b)
(iii) £2(X, t) + g2(X, t) « h2(x, t) < K2(1 + ¥3) . (lic)
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Finally, for purposes of estimation we make two additional assumptions:
Assumption 6: The functions f, g, and h are twice continuously differentiable
in (X, t) and three times continuously differentiable in 0;
g + 0 a.e. in X for all (t, B) € T x B; the
function A(X, t; y) = X + h(X, t; v) is bijective
and l%% + 1] # 0 for all (t, y) « T x I and X e S.
Assumgtibn 7: The true but unknown parameters 8, = (56 AO)' lie in the
interior of a finite-dimensional closed and compact parameter

space 6 = © x A.

Although the formal definition of the Ita process is somewhat abstract, its
basic time series properties (e.g., conditional expectation, autocorrelation
function, etc.) may often be deduced explicitly. In the Appendix, the general
approach to calculating population moments is discussed and an illus;rative
example is provided.

Suppose the process X(t) is sampled at n+1 discrete points in time to,
t1, ceny tn, not necessarily equally spaced apart. Let X = (XO, X1, N Xn)
denote this random sample where X, = X(tk). Given the discretely-sampled data
¥ and the stochastic specification of the process X(t), we now consider the
maximum likelihood estimator éML of 90' Let P(XO, X1, e e ey Xn; 6) denote
the finite-dimensional distribution of the sample X associated with the
process X(t) and let p(X; 6) denote the density representation of P.'2 Wnen
considered a function of 8, this joint density is obviously the desired
likelihood function. Since X(t) is a Markov process (see Arnold [1974,
chapter 91), the joint density p may be re-written as the following product of
conditional densities:

n

k=1

-8-
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Deriving the likelihood function then reduces to calculating the transition

density funetions Py The main result of our paper is a characterization of

these transition densities via the corresponding forward or Fokker-Planck

equation which we derive in the following theorem:

Theorem: Under Assumptions 1-7, the transition densities p, solve the

Proof':

k

following functional partial differential equation:

2 .
] ] ] 2 ~ 13 ~=1
3t o] = - 35 Lfo 1 + 3 ;;5 (g%0,) - Ao, + Aoklgi h™ 1] (6)

subject to:

o Xy £ ) = 8(X - %) (7)

k-1

and any other relevant boundary conditions, where h is defined in

Assumption 6, p. = o (h 1, t), and §(X - X, .) is the Dirac-delta
k k k-1

generalized function centered at X q-

Let ¥(X) be an arbitrary infinitely differentiable function with
compact support, i.e., ¢ e C:(R). By Ito's Lemma (see Brockett

[1984]) we have:
v = [uf + wxxgzldt + Vy8dW + [¥(X + h) - ¥(D)]aN  (8a)
where

d—g i (8b)
dX

1]
Q.'Q.
>le

Define DP g to be the Dynkin operator at time ter i.e,
?

D = = Et [-]. Applying it to y yields:
k
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P,k t

Dy [v] = B, [4,f + & vyg®] + 2B, ¥+ ) - w(0] . (9)
k k

We may express Dp k[w] as the following integral:

y

Dp l¥] = [ (g + 3 bey8e + ALV(X + B) = 80 ]}o, (X, £)AX  (10a)

3 82 2
= [ [-v 35 (o) + F v == (g%) - bip, JaX
S X
(10b)
+ 2 [ w(X + h)p, dX .
k
S
where the second equality is obtained by integrating by parts and
collecting terms. By Assumption 6 the Inverse Function Theorem

guarantees the existence of ' such that X = 5—1(E(X,t; ¥), t; v).

Using the change of variables formula, we have:

[ WX + Yo (X, ©)aX = [ w(Do, (F7(Y, t; v))

S S
(11a)
12 5y, € v))]ay
BY ? ? Y
= [ W(X)ok(ﬁ'1(X, t; v))| %i (5'1(x, t; v))|dX . (11b)
S
We then conclude that
3 82 2
Dp ([¥] = [ {- 55 (o) + & 75 (&%) - Aoy
S X
(12)
~ 1 8 =1
-2, | 33 B |Jw(X) dX .
But Dp k[w] may be calculated alternatively as:
?
d ) 3 '
Dp ([V] = 5 Etk{w] = é o) 2 [, (X, £)]ax . (13)

-10-
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Equating (12) and (13) and noting that the equality obtains for

arbitrary v < C:(R) allow us to conclude that:

2
3 - - 9 13 2
(1l4a)
~ ] =1
= Ao+ do | o3 [T

with the initial condition:

oy Gy qI% gy b y) = 80X - X (14b)

k-1)
where §(X - Xk) is the Dirac-delta generalized function centered at

X
k-1-
Q.E.D.

Because the differential equation in (14) is a functional partial
differential equation, the usual existence and uniqueness theorems for p.d.e's
do not apply and a solution is unfortunately not guaranteed for general
coefficient functions f, 8, and h. However, when the existence of a density
representation for a specific process has been assured by other means,
equation (14) may often be solved by standard methods (Fourier transforms,
etc.) to yield the likelihood function. Also, additional restrictions upon
the coefficient functions may simplify these calculations. As an example, if

h = 0 (pure diffusion) and f and g satisfy the following reducibility

condition:
2
- (8] 2
] at 3 f ]
sx el 2 g il o (15)

it may be shown (see Schuss (1980, chapter 4]) that there exists a transformed

process Z(t) of X(t) for which the coefficient functions are independent of

-11-
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7(t). That is, for some suitable change of variables F[x(t)] = 2(t), an
application of Ito's lemma will yield:13
dZ = p(t; e)dt + q(t; e6)dW . (16)

In this case the transition density function for the transformed data is

readily derived as:

LY
(Z - Zk_'| - f pdt)
L IR Cr-1
ok(Z, t) = [2n [ q dt| exp| - T ] (17
Ck-1 > [ g%t
Ci-1

For example, it i; easily established that the lognormal diffusion process
dX = aXdt + BXdW satisfies the reducibility condition and the transformation
Y = F(X) is readily derived as 1ln X. Applying this to X and using It;'s
differential rule then yields dY = [a - gE]dt + BdW which has a simple
Gaussian likelihood function.

Because the usual methods for solving partial differential equations are
in some cases quite cumbersome, solutions are often obtained by "educated
guesses." In these cases, equation (14) provides a conclusive check for such

- conjectured density representations as the following example illustrates:

Example 1. (Lognormal diffusion and jump process.)
Suppose we seek the likelihood function corresponding to the process X(t)

which satisfies the following SDE:
dX = aXdt + BXdW =+ YXdNX , Y20 (18)

Using the log-transformation Y = ln X and Ito's lemma yields:

2

dY = (a - £-)dt + 8dW + In(1 + y)ON, . (19)

-12-
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Since dW and dNA are assumed to be independent and the coefficient functions
in (19) do not depend upon Y, a reasonable guess for the conditional
likelihood function of Yt given_Yt_T is the convolution Py * e, of a Poisson
density oy with intensity A and a Gaussian density e, with mean

uT = (a - g—)r and variance 821, and is given by:1u

@ e-lT(At)k 2 .3 [Yt - Yt-r - kln(1 + y) - ut]2
p. (Y, t) = = '__—ET—__[Z“B 1] GXP[- > ] (20)
y k=0 : 287t

This guess is readily vindicated by performing the required differentiation
and checking thai equation (14) is satisfied.

In addition to the initial condition (14b), the solution of equation
(14a) often depends critically upon particular auxiliary restrictions placed
on the process X(t) as a result of economic considerations. For example, when
X(t) represents an asset-price a non-negativity condition is required. Such
restrictions usually take the form of boundary conditions for (14) as in the

following example:

Example 2. (Diffusion with absorbing barrier.)!?

Let X(t) satisfy the following SDE:

dX(t) = udt + odW(t) , X(0) = Xo >0, (21

with the added restriction that X = 0 is an absorbing state, i.e., once the
process reaches 0 it remains at that state thereafter. In addition, suppose
that we have the observations X1 >0, . . ., Xn_1 > 0, Xn = 0 so that
absorption is realized in this sample some time between tn-1 and tn. Consider
the transition density for X(t,) conditional upon X(ty_4) where k < n. It may

be shown that in this case the forward equation (14) reduces to:

-13-
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2

3p 3 o ap
K 1 2 k k
— =z =g -y - (22a)
at 2 8X2 aX
pk(X, tk-1lxk-1’ tk-1) = §(X - Xk-1) (22b)
with the added boundary condition that:
pk(O, tklxk-1’ tk-1) =0 . (22¢)
Using the "method of images" this may be solved to yield:
2. 1-} (X, - Xy q - “Atk)z
o (Kot lX g B ) = [2n0®at, ] [exp]- 7 ] - (23)
o At
k
2uX (X_ + X, . - ubt )>
k-1 k k-1 k
exp[- 5 - 5
o 20 Atk

where oty = t, - t 4. Now the transition density of X(tn) conditional upon
X(t,_4) will not be defined in the usual sense since X has been absorbed by
time tn. However, the probability that absorption has occurred by time tn

conditional upon X(tn_1) may be derived as:

-X uat
tn) ]:¢[___n-_.___

2uX -X +uAt
L], exp[- —=to[—2=—L] (21

P[Absorption in [tn
c/Atn o o/Atn

-1?

thus the transition density may be defined as the following generalized
function:

p (X, t X t_.) = P[Absorption in [t 1 tn)]s(X) . (25)

n-1' "n-1

More generally the transition density for any observation k, k = 1, . . ., n

is given by:

-1l
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2
(X, - X - uAt, )
-1 -
o, = [2n02Atk] ?[exp] - K K 12 k ] - (26)
20 At
k
2uXk_1 (Xk + Xk-1 - uAtk)2
exP[' 2. = 2 ]] +
o] 20 Atk

P[Absorption in [t _qs tk)]a(x) , X20.

This conditional likelihood function is quite similar to the likelihood of the
well-known censored linear regression model which is composed of a discrete
and continuous part. Note that although the conditional likelihood function
in Example 2 is indeed a solution for equation (14), it contains a Dirac SQ
function and is therefore not a function in the usual sense.16 However, this
poses no problems for maximum likelihood estimation but merely requires some

~ care in choosing an appropriate carrier measure. Specifically, although the
Joint distribution function of the sample X in Example 2 is not absolutely
continuous with respect to Lebesgue measure, it is absolutely continuous with
respect to the sum of Lebesgue and counting measures. The proper likelihood
function may then be derived by taking the Radon-Nikodym derivative of the
joint probability measure with respect to the alternative carrier measure. In
Example 2, this results in a Joint likelihood function which is simply the
product of the densities and probabilities, as in the censored regression
model. 7 That maximum likelihood estimation may still be performed when the
solution of (14) is not a function in the classical sense is best illﬁstrated

by the following example:

Example 3. (Pure jump process.)
Let X(t) solve the SDE dX(t) = dN, (t) and consider the transition density

p(X, t) of X conditional upon X(t) = 0 at time t = 0. Since in this case X(t)

-15-
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is just a Poisson counter with intensity 2, its transition density may be

expressed as:

e-Xt(Xt)k

k=0

§(X - k) . (27)

For the Poisson counter the forward equation (14) reduces to:

% = x[o(X -1, t) - o(X, t)] . (28)

This may be verified by explicitly calculating the derivative of p with

respect to t and simplifying:

® -t k © -At k-1
R o SR OO D8 (x - k) (29a)
k=0 : k=0 '
® -t k ® -2t Kk
=-xze——§<§—t)—s(x-k)+xze——£—}ia(x-1-k) (29b)
k=0 - k=0 :
= afo(X - 1, t) - o(X, )] . (29¢)

Even though the solution to (14) in this case is a generalized function which
is associated with a measure not absolutely continuous with respect to
Lebesgue measure, nevertheless maximum likelihood estimation is still feasible
with respect to the proper carrier measure. In this example, the counting
carrier measure v yields a likelihood function which is simply the

probability: '8

dP(X(t) [X(0) = 0} _ e'*t(xt)x(t)
dv O (30)

Having characterized the likelihood function as the solution to equation
(14), we now suppose its existence and define the maximum likelihood estimator

in the usual manner:

~16-
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8, = arg Max G(o; X) where (31a)
ML
06€0

n
G(o; X) = In pO(XO, tO) + I In pk(Xk, tklxk_1, tk-1; 8) (31b)

k=1

n

= 24(X,, ty) + kf1 2. (X, tklxk_1, g 8) . (31¢)

In the next section, the asymptotic properties of eML are discussed.

3. Asymptotic Properties of the Maximum Likelihood Estimator.

Because the estimator 8ML is based on the sample X which is neither
independently nor identically distributed, the standard proofs of consistency
~and asymptotic normality (as in Huber [1967] for example) are not directly
applicable. However, we may appeal to the results of several authors who have
investigated the asymptotic properties of maximum likelihood estimators with
dependent heterogeneous osbervations. In doing so, it is useful to
distinguish between two cases: asymptotics based upon sampling intervals
which are positive in the limit, and more frequent sampling of X(t) in a fixed
span of calendar time [0, T]. More precisely, define the limiting sampling
interval A as the following:

8 = lim (inf|at, |) . (32)
n+o K<n
If A is strictly positive and two further regularity conditions are satisfied:
(R1) oy is time-homogeneous for all 6 « @.

(R2) X(t) admits a unique stationary or "steady state" distribution for
all @ e o,

then it has been shown by Billingsley [1961], Roussas [1965], and Prakasa Rao

[1972] that eML is consistent and asymptotically normal, i.e.,

-17-
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plim 6ML = 8, (33a)
n-+w
~ -1
/n (8, - 6p) 2 n(o, 1 (eo)) where (33b)
2
n %8 (X, |X, .5 8,)
| ) k'"k-1 "0
I(e,) = rl]ir: - k; E[ YT (33¢)

Note that conditions (R1) and (R2) are necessary and sufficient conditions for
the strict stationarity of X(t);19 Assuming strict stationary and a strictly
positive limiting sampling interval essentially reduces the sample X to
observations of a strictly stationary discrete-time Markov process, for which
the references cited above have demonstrated the consistency and asymptotic
normality of 8ML'
The assumption of the strict stationarity of X(t) is quite restrictive
and excludes many processes of interest such as the simple Wiener process with
drift or the Ornstein-Unhlenbeck process. In addition, it is of some interest
to consider asymptotic properties of processes when the limiting sampling
interval is zero.20 A somewhat less restrictive set of conditions for
consistency and asymptotic_normality may be obtained by appealing to Crowder's
[1978] results. The following two rather contrived examples demonstrate the

importance of checking the Crowder conditions, and we refer the reader to

Crowder's original paper for the precise statement of those conditions.
Example 4. (Wiener process with 4 > 0.)
Let X be a sample of equally spaced observations of the process X(t)

where:

dX = pdt + odW , X(’cO = 0) = XO .

-18-
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Since X(t) is clearly not stationary in the "wide" or "second-order" sense

(observe that E[X(t)] = ut + E[X5]), it cannot be strictly stationary hence

the results of Billingsley, Roussas, and Prakasa Rao are not strictly

applicable. However, since the Crowder conditions may be shown to obtain in

this case, the consistency and asymptotic normality of 5ML are insured. Indeed,
3 "2

s : . . . ~ - '
the likelihood function G and corresponding estimator eML = (“ML OML)

may be readily derived as:

2
n (X - X - uAt)
G(e; X) = - g ln(2n02) - I K k-; (33)
k=1 20 At
- 1 N
LT =L (34a)
n
~2 1 - 2
ML * hat kf1[xk “ Koy -yl (34b)
where At = ty - ey K= 1, . . ., n. The ML estimators (33) are then the

usual ones for the mean and variance of a normally distributed random

variable.

Example 5. (Wiener process with A = 0.)
Let X(t) be the same process as in Example U4 but Suppose that equally-
Spaced observations are taken in a fixed interval of calendar time [0, T] so

that At = T/n hence A - 0. Consider the ML estimator of u:

(35)

1 7 _ X(T) - X(0)
LR A e s

k=1 k k-1

It is obvious that as n approaches infinity, MM does not converge in

probability to the true parameter u. In this case, Crowder's [1978] condition

-19-
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(2.3) is violated. More specifically, the upper left diagonal element of the

information matrix of 6:

L o
3°G o
I(e, n) = E|- 3_9_30_'] z n : (36)
O 2_-)1
a

does not .tend Eo infinity as n increases without bound. Loosely speaking,
this implies that information about u does not accrue as more observations of
X(t) are taken. Crowder terms such parameters as transient and specifies
conditions under which consistent estimation of the remaining parameters is
still possible in the presence of transient parameters. In this example, it
may be shown that such conditions are satisfied for the variance parameter,
therefore ;iL is consistent and /H(;ﬁL - 02) has the limiting distribution

N(O, 20”). When the limiting sampling interval is zero, the Crowder

conditions must be checked on a case-by-case basis.

4, Conclusion.

In this paper, we have considered the parametric estimation problem for
continuous-time stochastic processes which satisfy general first-order
nonlinear stochastic differential equations of the It; type. By exploiting
the Markov nature of such processes, under suitable regularity conditions
consistent and asymptotically normal estimators of the unknown parameters may
be obtained even if the process is discretely-sampled and sampled at unequally
spaced intervals. Because the asymptotic properties of maximum likelihood
estimators are well established, statistical inference for many continuous
time asset-pricing models may readily be performed. One example given is the
testing of contingent claims model, which is pursued in more detail in Lo

[1986]. Other possible applications include the empirical estimation and
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testing of geheral equilibrium asset-pricing models such as those in
Chamberlain [1985] and Cox, Ingersoll, and Ross [1985a, 1985b] for example,

Of course, since the results in this paper are exclusively asymptotic in
nature, the finite-sampling properties must be studied through Monte Carlo
simulations for each application Separately. This is especially important for
asymptotic inference when the limiting sampling interval is zero since, in the
case of "continuous sampling" over a fixed length of calendar time,
consistency does not always obtain and the nominal size and power of the usual
statistical tests may differ substantially from their actual values (see, for
example, Shiller and Perron [1985]).21 Also, in cases where the density
representation of the process is analytically intractable, numerically
51mulat1ng the behavior of a discrete-time approximation to the process may be

fru1tful.22
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APPENDIX

In this appendix, the calculation of population moments of Ito processes
is considered. Let X(t) satisfy the following stochastic differential
equation (the dependence of X upon parameters 8 has been suppressed for

notational convenience):
dX = £(X, t)dt + g(X, t)dW + h(X, £)dN, , X(ty) = X4 . (a1)

To compute the conditional expectation of X(t) (conditional upon the initial

value X(to) = XO) we perform the following (heuristic) calculation:

EO[dX] z dEO[X] = Eo[f]dt + Eo[gdW] + EO[thx]

Eo[f]dt + Eo[g]Eo[dW] + EO[h]EO[de]

Eo[f]dt + XEO[h]dt
d -
therefore it EO[X] = Eo[f] + xEo[h] (A2)

where EO[-] = E[- | XO] , EO[dW] = 0, and EO[de] = adt .

Note that the conditional expectations of the products gdw_and thx are equal
to the product of their expectations respectively because g and h are assumed
to be nonanticipating hence they are independent of the stochastic
differentials dW and dN,. The result is a (functional) ordinary differential
equation in EO[X(t)], Eo[f(x(t), t)], and Eo[h(X(t), t)] subject to the
initial condition EO[X(tO)] = X, If f and h are linear in X then (A2)
reduces to an ordinary differential equation in the conditional expectation of
X which may be solved under weak regularity conditions. The heuristic

computation of taking expectations and "dividing by dt" is more rigorously
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defined by the Dynkin operator Dt =z gE EO[-] (see, for example, Karlin and
Taylor [1981]).

In order to obtain the k-th (noncentral) conditional moment, a similar
procedure is adopted. First, using Ita's differentiation rule, the stochastic

differential equation of F(X) = XX is derived, yielding:

k-2 2 k-

dx¥=(kx¥~ ¢ o % k(k-1)X"%g%)dt + kx* Tgaw + ([x « n}¥ - Xk)dN)\ . (83)
Applying the Dynkin operator to (A3) results in the expression:

d k, _ k-1 1 k-2 2 k k

at BolX1 = KEJLXSTIE] + SK(k-1E[X""g%] + AE[(X + W) - ¥¥] . (an)

This relation also does not necessarily yield an ordinary differential
equation in the k-th moment but, depending upon the coefficient functions f,
g, and h, may involve expectations of nonlinear functions of X. This would
suggest that a reasonable restriction on the coefficient functions is that
they be polynomials in X. Of course, even in this case the k-th moment
equation may contain moments of order higher than k in which case the system
of k differential equations would not be closed without further
restrictions. In a similar manner, conditional autocovariances, cross-
variances, and correlations may be computed. Unconditional moments may also
be obtained by specifying a particular marginal distribution for the initial
value Xy and then taking iterated expectations in the usual way. Central
moments may be computed in the obvious way. The following example presents

some illustrative calculations:

Example 6. (Random telegraph wave.)

Let X(t) satisfy the SDE:

dX(t) = - 2X(t)dNA(t) , X(to = 0) =X, =1
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This process is known as the random telegraph wave since it jumps randomly
between only 2 states: 1 and -1. Its conditional expectation, variance,

autocovariance and autocorrelation functions may be calculated as:

d -
d- B lX] = -2aEG(X]
L -2t _ -2t
EO[X] = Xoe = e
a® = [(x - 202 - ¥°laN = 0 (Ito's Lemma)

d 2. _
at Eol¥1 =0

E[¥°] =k, = 1 since E [%%(0)] = 1
| -l
VarO[X(t)] =1-e
F(X(1)) = X(£)X(1) 0stsr
dF(X(1)) = X(£)dX(1) = -2X(£)X(r)dN (<)
L gy [1(0)X(0)] = 2B [X()X(D)]

E[X(£)X(0)] = k1e_2x(1't) - M7 =8 gince B [¥P(0)] = 1
EO[X(t)X(t +a)] = e 2e
Thus we have:
E[X(t)] = e 2t
Var [X(£)] = 1 - ¢~ AT

Covo[x(t), X(t + a)] e~2rap | mHAE,

e-2XQ[ 1 - e-NXt ]%
_ e-ux(t+a) ’

CorrO[X(t), X(t + o)}
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FOOTNOTES

1More specifically, generalized Ita processes satisfy quite general SDE's
driven by both standard white noise (Brownian motion) and Poisson counters.
The term "generalized" emphasizes the presence of discontinuities and serves
to distinguish such processes from the more common Ita diffusions. The
inclusion of the Poisson term is one of the principal advantages of
the Ito process over higher order processes driven purely by sample-path
continuous white noise since discrete changes in the state variables.cannot be
modelled by diffusion alone (whereas Brockett [1984] has shown that any
finite-state continuous-time jump process may be expressed as a
generalized Ita process).

2See,_for' example, Hausman and Wise [1983] and Abel [1983].

3Most of the empirical applications seem to be within asset-pricing
studies. See, for example, Rosenfeld [1980]; Marsh and Rosenfeld [1983];
Grossman, Melino, and Shiller [1985]; Ball and Torous [1985]; and Lo [1986].

uNote that in this context, the term "estimation" is used in the
classical parametric statistical sense. This is in contrast to its usage in
the engineering and stochastic control literature, in which estimation is
identified with the filtering, smoothing, and prediction problems. Of course,
the parametric statistical estimation problem may be posed as a very special
case of the filtering problem. However, because the focuses of the two
approaches are quite different, the distinetion between the two forms of
estimation is significant.

5Other examples include A. W. Phillips [1959]; P. C. B. Phillips [1972,
1973, 19741; Hansen and Sargent [1981, 1983a, 1983b]; Borkar and Bagchi
[1982]; Christiano (1984, 1985a, 1985b1]; Harvey and Stock [1985]; and

Grossman, Melino, and Shiller [1985].
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6One implication of this is that nth-order processes are "smoother"
than Ita processes in the mean-square sense. More precisely, an nth-order
process possesses mean-square derivatives up to order n-1; It; processes in
contrast are not mean-square differentiable. This non-differentiability is an
important property especially for purposes of modelling asset-prices since, as
Harrison, Pitbladdo, and Schaefer [1984] have shown, continuous-time
equilibrium price processes generated by frictionless markets must be of
unbounded variation.-

TFor practical purposes, this quickly becomes intractable when systems of
nth-order SDE's are considered, as in Bergstrom's approach.

8See, for example, Skorokhod [1965, chapters 2 and 3].

91n particular, in this paper we do not deal with the important issues of
itime-aggregation and stock/flow distinctions which would render the Markov
property 1nappropr1ate These issues, however, are explicitly investigated in
Sims [1971]; Bergstrom [1983, 1984]; Christiano [1984, 1985a], and Grossman,
Melino, and Shiller [1985].

10since Nk(t) is of bounded variation, the stochastic integral with
respect to the Poisson counter may be defined as a Lebesgue-Stielt jes
integral.

MThat is, let {Ft : t « T} be a sequence of sub-o-fields of the o-field
F such that:

(i) F_cF_ for t<s

(ii) Ft = n FT

™t

and let W(t) be Ft-measurable for all t « T.

12More formally, let the measure corresponding to P be absolutely

continuous with respect to some c-finite carrier measure v. Then p is simply
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the Radon-Nikodym derivative of the P measure with respect to v. Note that v
need not be Lebesgue measure.
13Furthermore, this transformation F may be explicitly derived by solving
a simple ordinary differential equation given in Schuss [1980, chapter 4.1].
1uMor-e formally, we define:

2
dV = In(1+ y)dN, , dz = (a - £)dt + eaw

n

@ -Xr()‘r)k
1

_ e ~ -1
pV(Vt, t) = Ckfo T a(th - k) where ¢ = [ln(1 + y)]
2
8 2
Z Z - (a - —)T]
2.\~ [ t £- 2
0,(Z,,t) = (2n8°t) 2 exp|- T282r ]

15For perhaps its first econometric implementation, see Hausman and Wise
[1983]. A more satisfactory economic modél might allow the absorbing barrier
to change over time, however, the first-passage probability for this general»
case is analytically much more complicated. See, for example, Park and
Paranjape [1974]; Park and Schuurmann [1976]; Park and Beekman [1983]; and
Siegmund [1985].

16Mor'e formally, the é-function is an example of a generalized function
or "distribution" (no relation to probability distributions), which is defined
to be a real-valued continuous linear functional on C:(R). One important
property of generalized functions is that their "derivatives" always exist.
Moreover, all the standard formal rules of calculﬁs obtain for these objects
(differentiation, chain rule, integration by parts, ete.), a fact which is
implicitly used in our derivation of the forward equation. See Gel'fand and
Shilov [1964, chapter 1] or Rudin (1973, chapters 6 and 8] for a formal

development of this theory.

-27-




AL-13

dp
'Tobserve that —> = 1 where PG is the probability measure associated

dv

with the §-function and v is counting measure. See Hoadley {1971] for a more
detailed discussion.

18Note that as long as the diffusion component of an It; process does not
vanish (as is assumed in Assumption 6), the transition probability measures
will be absolutely continuous with respect to Lebesgue measure. Loosely
speaking, this is due to the fact that the convolution of two densities is as
smooth as the "smoother" of thé two (see, for example, Chung [1974, chapter
6.1, problem 6]).

19see Arnold [1974, chapter 2.2].

20Indeed, several authors have examined the properties of maximum
likelihood estimators of certain pure diffusion processes when sampling is
continuous. See, for example, Brown and Hewitt [1975], Le Breton [19761,
Liptser and Shiryayev [1978, chapter 17], and Basawa and Prakasa Rao [1980,
chapter 9.5].

21Phillips' [1985] theoretical results concerning asymptotic theory for
the continuous data-recording case is especially relevant in explaining the
source of such differences. See also Le Breton [1976] and Basawa and Prakasa
Rao [1980, chapter 9.4.2].

22For the numerical simulation of Itg processes, see Rao, Borwankar, and

Ramakrishna [19741; Rumelin [1982]; and Pardoux and Talay [1985].
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