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SEQUENTIAL BARGAINING UNDER ASYMMETRIC INFORMATION

By
Sanford J. Grossman* and Motty Perry*x

I. INTRODUCTION

A game of asymmetric information is analyzed where two parties are
bargaining over the price at which an item ig to be sold. The seller's
valuation is common knowledge but the buyer's valuation is known only to
the buyer. Each party, in turn, makes an offer. The other party either
accepts or responds with a4 counteroffer, Ag they bargain, their payoffs
are discounted over time, so that both have an incentive to come to an
early agreement, If the bargaining game is one of complete information,
Rubinstein [14] has shown that while almost any outcome can be supported ag
a Nash Equilibrium, there exists a unique Subgame Perfect Equilibrium.

However, with asymmetric information, the Sequential Equilibrium concept

information., We also provide a method for solving infinite stage games
where the uninformed player's information improves, due to his learning

from the history of play, as the game unfolds.
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We analyze a bargaining game of incomplete information in which there
is one type of (say) seller and the buyer's type is distributed according
to some distribution. We restrict our attention to a specific sequential
equilibrium that satisfies some very intuitive properties. We show that any
P.S.E must satisfy these properties.Moreover, we show that under weak
assumptions, there is a unique such equilibrium. In equilibrium, players
communicate their private information by revealing their willingness to
delay agreement. The most impatient buyers (i.e., those who expect the
largest gain from trade), say, set A, accept the seller's offer
immediately. The more patient buyers separate themselves into two
different sets. The less patient, set B, responds with an acceptable
counteroffer, while the more patient set C responds with an offer they
know the seller won't accept. An acceptable offer reveals to the seller
that the buyer belongs to set B. As the seller cannot revise his beliefs
in an arbitrary manner after observing a deviation from the proposed
equilibrium, we show that in a P.S.E he cannot credibly threaten to reject
an offer above the discounted value of the game in which he moves first and
buyers belong to the set B. If the seller gets an unacceptble offer he
revises his belief accordingly to C, and the whole process repeats itself
with the seller's new belief.

Our model can be regarded as a generalization of Rubinstein’s
rationalizing conjectures model [15]. He considers games which we
characterize as "informationally small,” which leads bargaining to last for
only one round; after the seller makes.an offer, any buyer who rejects
surely makes an acceptable counteroffer. We consider "jnformationally
larger” games where some remaining buyers make offers which they know the
other side won't accept, and by so doing reveal that they have a relatively
low willingness to pay, b. This can lead to many rounds of bargaining when
the seller's information about b is sufficiently imprecise.

Section 2 sets up the structure of the bargaining game and provides a
verbal definition of P.S.E. Section 3 proves some general results

concerning the set of Sequential Equilibria (S.E) for the bargaining game,




and then sets up a functional equation which is used to solve for the
specific S.E we are interested in. Section 4 presents a constructive
proof of the existence of a unique solution to the functional equation.
Section 5 proves that any P.S.E. must have the structure developed in
Sections 3 and 4. Section 6 contains numerical solutions for the equilibria
as parameters of the problem vary. Substantive conclusions are drawn
regarding the determinants of bargaining time.

The paper is organized in a way that allows the reader who is not
familiar with P.S.E. to read through the paper and to skip Section 5. The
assumptions we impose on the S.E are very plausible by themselves.

A number of works have appeared on noncooperative solutions to
infinite-horizon sequential bargaining games with incomplete information.
Cramton [3)] and Fudenberg et.al. [5], provide excellent surveys,
Sobel-Takahashi [17] aésume that the uninformed player (the seller) makes
all the offers. Bargaining stops only when the informed player (the buyer)
accepts the current offer. By having the seller make all the offers, Sobel
and Takahashi are able to avoid the complications involved with beliefs at
out of equilibrium nodes. If the seller makes all the offers and the
seller's valuation is known, the offers reveal no information, Along the
equilibrium, there is always a positive probability that the buyer will
respond with either "Yes" or "No.” Thus, there is no out of equilibrium
behaviour for the informed player. They prove that a unique sequential
equilibrium exists, in which Price must decrease over time. In a model
similar to the Sobel~Takahashi's model, Cramton [1] analyzed the case where
both bargainers have incomplete information about the other party's
valuation,

The conjectures most apt to support an equilibrium are what Rubinstein
[16] calls "optimistic conjectures,” i.e., if an offer is made which is not
an equilibrium offer, then the other bargainer updates his beliefs to
assume he plays with the weakest opponent to him. Such an updating is sure
to prevent any deviation. Using "optimistic conjectures,"” ome needs to

look just for a pair of strategies which are sequentially rational along




the equilibrium path; "optimistic conjectures" are sure to support it as a

sequential equilibrium. Fudenberg et.al. [5] used this idea to show that
the equilibrium derived by Sobel and Takahashi [17] for the game where only
the seller is allowed to make offers, can often be supported as a S.E in a
game where both sides alternate offers. Of course, there are a continuum of
other equilibria which are also supported.

Cramton [2], in another paper, extends his model to one, where in
continuous time, each player, at every instant, can either make an offer or
accept the most recent offer of his opponent. This paper is similar in
structure to ours, except that the game is played in continuous time and
both players have valuations which are private information. However,
Cramtom chooses the "out of equilibrium conjectures” to convert this game
into a concession game. With these conjectures, Cramton is able to make
each player's strategy involve simply the choice of when to accept offers
being made by an appropriately chosen clock which ticks away new prices in
real time. If a player makes an offer not specified by the clock, then his
opponent is assigned to have beliefsvwhich makes the player's move
suboptimal. As Rubinstein [16] has shown, this is at most one of a continuum

of sequential equilibria.

2. THE BARGAINING MODEL

There are two players —— one seller, with an indivisible object to
sell, and one buyer. At the beginning of say, period t, player 1 makes an
offer. At the beginning of period t+l player 2 can respond with "Y" to
accept or he can reject the offer and make a counteroffer P ¢ R+.
Acceptance of an offer terminates the game. 1f player 2 rejects the offer
then at t+2 player 1 can accept player 2's counteroffer. This continues
without a time limit.

An outcome of the game is a pair (P,t) which is interpreted as ag-
reement on price P in period t. Perpetual disagreement is denoted by
(0,=). Both the buyer and seller have costs of delaying the bargaining

process. Specifically, their payoffs in subsequent rounds are discounted




according to the discount factor 0 < 6§ < 1. The players’ payoff functions

6t~lP for the seller and UL(P,t) = dt_l(b—P) for the buyer of

are Ug(P,t) =
type b. While the seller's payoff is common knowledge, the buyer's payoff
depends on b which is the buyer's private information. The seller's
prior assessment on the buyer's type is a probability distribution F(b)
and it is common knowledge.

An action at time t > 0 for a player specifies his reaction which is
an element of {Y} U R+, to his opponent's previous offer at t-1. At t=0, an
action is just an offer P e R+.

As an acceptance of an offer terminates the bargaining, a relevant
history at period t is just a sequence of unaccepted offers.

Let H be the set of all possible histories, and let Ht be the set

of all possible histories up to and including t., Let ht € Ht and

t+k c Ht+k k

h ; Wwe write ht C ht+

if ht+k is a history evolving from ht.
A strategy is a specification of what action a player takes at each of

his information sets.

Assume that the seller starts the bargaining. The seller's set of

strategies ZS, is then the set of all sequences of function o, =

t
{GS}t=0,2,4,...,® where:

o;: mtly . v} v g

For the buyer of type b, whose first move is a response to the
seller's offer, the set of strategies Zb’ is the set of all sequences
t
oy = {Ub}t=l,3,5,...,w where:

L m*l . v} u Rt

Perfect Sequential Equilibrium.

For the general setting of P.S.E, including examples and discussion,
‘the reader is referred to our paper (Grossman-Perry [8]). Roughly speaking,
the set of P.S.E. is a subset of the set of S.E., in which the belief at

all nodes, especially at nodes off the equilibrium path, are constrained to
be "self-fulfilling" peliefs (when such exist).




Ian order to make the above notion precise we require the strategies to

specify an action at t, for each history ht and for every possible belief

that a player might have at ht. This definition make the following question
well posed: In whose interest is it to make a move which changes the
beliefs of his opponent, when that move is not generated by the proposed
equilibrium strategies?4 Moré precisely, we ask: Is there a set of types K,
such that if the opponent believes in the conditional distribution given
that t € K, then this move is in the interest of all t € K and just in
their interest? If the answer to this question is yes then we require the
opponent to believe in the conditional_ distribution on t given that t e K.
If the answer is no, then we require only that the belief have a support
contained in the support of the prior distribution.

In the next section a S.E is constructed. It is then shown that this

equilibrium is the unique one which is a candidate for P.S.E.

3. CONSTRUCTION OF THE EQUILIBRIUM

Suppose that the bargaining game begins with the seller making an
offer. Let F(b) be the cumulative probability distribution that the
seller puts on the buyer's willingness to pay. Let the support of F(e)
be [Ez’gh]'

At the beginning of the game, t = 0, the seller's beliefs are given
by wo(b) = F(b). Throughout the paper when we say "The seller believes
the buyer is in [bz’bh]"’ we mean that the beliefs of the seller are
described by the conditional distribution of b given b e [bz’bh]’

i.e.,
F(b) - F(bz)

F(bh) - F(bz)

Let V(bz’bh) be the seller's expected payoff when it is his turn to make
an offer and his belief is that b ¢ [bz’bh] (note that in general V(.)
might be a function of the history). Thus, V(b,b) is the Rubinstein [14]
solution for the price charged by the seller in a game of certainty when
the seller moves first. Recalling that the seller's reservation price is

zero, and buyer b's reservation price is b, we get from Rubinstein [14],




(3.1) V(b,b) =

It is useful to start by proving some general properties that hold in any

equilibrium that satisfies sequential rationality, i.e. in any S.E.. >

3.a. General Properties of Any Sequentially Rational Equilibrium.

Lemma 3,],

(1) If there is an equilibrium where the seller has beliefs [bz’bh]
after some history and the seller makes an offer P > V(bh,bh), then no
buyer will accept the offer,

(ii) If after any history the seller has beliefs [bz’bhj’ then he
will accept any offer greater than or equal to EGV(bh,bh).

(iii) If after any history the seller has beliefs [bz’bh]’ he will
reject any offer P < GV(bl,bl).

Proof:

(i) Let E(bl,bh) be the highest price (i.e. the supremum of all

such prices) that the seller can get in any equilibrium after any history

when the support of his beliefs is contained in [bz’bh]' We now show that

P < =
(3.2) P(bz’bh) < V(bh,bh) 1rs .

Suppose (3.2) does not hold, then for some o > 0 there is some point

in the bargaining where some buyer must pay arbitrarily close to
*h_
1+s

P + a. Suppose this buyer deviates and counteroffers
Pc = & + .9% (1_52L. It is easy to see that b - P < 8(b - Pc) for all
b

€ [bz’bh]’ since the inequality is equivalent to P > 9a+ ng—, which

must be true as P = —__ 4 a. Hence, all the buyers in [b
better off by the counteroffer, and the seller must accept it since it ig

better than 65, the discounted value of the largest price the seller can




get. Recall that by assumption any revision of the seller's beliefs must

h]
(ii) Part (ii) follows immedlately from part (i).

have a support contained in [b ,b

(iii) Part (iii) is proved in a similar way as part (i), by defining
P as the lowest price the seller can get in any equilibrium, and showing
that all buyers will accept an offer gc which is higher than the P and
isfi - > - >
satisfies bl gc 2 S(bl P), unless P2 6V(bl,b2).

Q.E.D.

Let (pb b) be the price buyer b pays and the time of agreement
with buyer b along the equilibrium path. We can now establish the

following.

Lemma 3.2. Let b,,b, be such that b, < b,, then p? < pi and t? 2 ti.
Proof:
e e e e 1 st

Clearly P; > pJ and t; > tj is not an equilibrium, as bi should
follow bJ s strategy and by doing so settle earlier on a lower price.
Hence, what is left to show is that neither (a) p, 2 pz and t1 < t; nor
(b) p? > pi and tl < t2’ can be an equilibrium. This is done by showing
that for b, to follow his equilibrium path it must be that:

e e
(3.3) &5 (b, - pY) £ st2 (b, - p2)  which implies

e e
St‘(bl - p?) <-6t2(b1 - pi), when either (a) or (b) hold.
Thus, b, should deviate and follow Db,'s strategy.

Q.E.D.




Lemma 3.3,

]

(a) If there is an equilibrium where the seller has beliefg [bz’bh
after some history, and the seller makes an offer P which ig rejected by
the buyer, then, along the equilibrium, at the next stage the buyer either
makes a unique acceptable offer Pa’ Or counters with an unacceptable
offer,

(b) If there is an equilibrium where the seller has beliefs [bz’bh]

after some history, and some buyers b ¢ B offer an unacceptable offer 5

and some b e B # B offer an unacceptable offer 9, which are followed

by different Strategies, say s and g, by the seller, then there exists

another equilibrium where a and g are followed by a unique strategy s,

which yields the same outcome as s and S.

(a)ﬂfsuppose there exists an equilibrium where some buyers counter
with §a and some with a lower offer Ea' Suppose the seller's Strategy
is to accept both offers, Cléarly every buyer is better off by offering
Ba rather than ﬁa' 4

(b) Let Ei CB and -Ei C B be the groups that settle in {
periods after their counteroffers 5, and q respectively. Let Ei’ Bi be
the seller's offer (or buyer's accepted counteroffer) under s and s
respectively., If ﬁi >_§i, then Ei must be empty or else all b ¢ Ei
would have made the counteroffer gq rather than a. Similarly, if
P, < P., then -Ei must be empty for the same reason. Thus, whenever
Ei # Ei’ the higher price is one which no group of buyers actually pay.
Let the seller switch his strategy to Ei = Min(?i,gi), i.e., he chooses .E
irrespective of whether he receives the counteroffer a or q. We claim
that this leads to the same outcomes as: choosing P 1in response to a
and P in response to 9. To see this, note that if, say 51 >_£1, then
buyers b ¢ Ei for 1 > 1 must pPrefer to wait until period i to receive

Pi S-Ei than to settle at time | for -31 (since these buyers could always
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have offered g instead of a and received the offer B&). Hence the
strategies of these buyers will not change if the seller responds with
Min(ﬁl’gd) to the offer of either g or a. An identical argument holds
for any date 1 when ﬁi > Ei' . . Q.E.D.

We can summarize the discussion so far with the following proposition,
and by Figure 1.

Proposition 3.1.

Suppose it is the seller's turn to make an offer and the seller has
beliefs [bz’bh]' Then along the equilibrium there are numbers ba’bc’ P
and Pa such that the seller makes an offer P which is accepted if b 2 ba
and rejected otherwise. The rejecting group is then divided into two
intervals (each, or both of them may be empty): one interval, [bc’ba)’ such
that if b € [bc’ba)a then the buyer makes an acceptable offer PéZéV(Q:,ba);
and another interval, [bz’bc)’ such that if b ¢ [bz’bc)a then the buyer -
makes an unacceptable offer, which by Lemma 3.3b, we may take to be zero.

An unacceptable offer reveals to the seller that b € [bz’bc)' Such an
offer is rejected and the whole process repeats itself where [bz’bc)

becomes the new [bl’bh)°

reject P reject P and
make unacceptable make acceptable
counteroffer counteroffer accept P

>
Pa_ GV(bc,ba)

—
—

Fig.(1) [

The bfoof of this proposition follows immediately from the above lemmae.
For the rest of the paper we denote the unacceptable offer by zero.

The above discussion shows that although the notion of sequential
equilibrium eliminates some Nash equilibria as possible solutions, we are

still left with a huge set of eqilibria, many of which are clearly

unreasonable.
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It is important to note that the seller can insist Oon an acceptable
counter offer Pa > GV(bC,ba) even though he knows that the offer came from
the set (bc’ba)' For example, in ;he subgame where the buyer starts and the
seller has beliefs [bz’bh]’ and bl> GV(bh,bh), then-the seller can set Pa=
GV(bh,bh) and all the buyers will make that offer. This is supported as a
S.E. where the seller “threatens" to revise his beliefs to [bh,bh] if he
gets an "out of equilibrium counter offer"” less than GV(bh,bh). Rubinstein
[15] called such a system of beliefs “optimistic cbnjectures". In such
equilibria, it is as if the seller uses his lack of information to his
advantage. Instead, we will be concerned with S.E. where the deviation
to an out of equilibrium move q, 1is analyzed as follows. If
the seller receives an offer q, he attempts to find a group of buyers K
with the property that if the seller believed the offer was made By K and
took a best response, then K is indeed the set of buyers that are better
off than had they followed the equilibrium path. If such a K exists, and
fhete is some buyer in K who is strictly better off from the deviation, then
the S.E. is ruled out, and q is called a“"successful deviation."

In order to find S.E, v?hich are not subject to the above type of
deviation, we will construct an S.E. with the following three important
properties:

(i) After any history an individual's action depends on the history

~only through the effect of the history in changing the seller's beliefs,

(ii) If in equilibrium be[bc ’.ba) is supposed to make an offer that the

seller accepts, then the seller cannot credibly threaten to reject an offer

above the discounted value of the continuation of the game with [bg,bg), i.e.
Pa = 6V(b¢,bg).

(iii) If the seller receives an offer of zero, then he is not allowed to
put positive probability on those buyers for whom it is a dominated move

for any reasonable response.

We will show in Section 5 that -every P.S.E must have thege properties.
In Section 4 it is shown that under some weak conditions, there exists a

unique equilibrium that satisfies these three requirements,
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3.b. The Stationary Equilibrium.

To help the reader follow our method of solving for the equilibrium it
is helpful to present an outline of the solution first and then to explain
how to solve for it. ‘

Thus let P(bz’bh) be the price the seller asks when it is his turn to
make an offer and his information is that b ¢ [bz’bh)' Similarly, let
P (b ,b ) be the acceptable offer made by the buyer along the equilibrium

when it is the buyer’s turn to make an offer and the seller's information 1is
that b ¢ [bl’ba)' The number ba(P;bz’bh) is defined to be the marginal
buyer's type that accepts the seller's offer P when the seller's information
is b € [bz’bh) Similarly we define b (bz,b ) to be the marginal buyer that
makes an acceptable counteroffer. Finally, b € [b ,b ) chooses: t.o offer zero.
Wwhen the seller receives én unacceptable offer he updates his belief to
b e [b ,b ) and counters with P(b ,b ) and so on.

If stationary strategies are followed the seller will be able to
compute how his offer of P will affect his payoff. The following functional
equation involving v(.), P(.), bc(.) and ba(.) describes the geller’s

optimization problem.

F(bh)—F(ba) F(ba) - F(bc)
P smoFe ) + FalPea) T ) - b))
h [ h £

(3.4) V(b ,b ) = Max
L S
a Cc

F(b)) - F(bz)
F(b,) - F(b,)) )

2
+ 8 V(b!’,bc)

where the Max is subject to (3.6), (3.7), and (3.8), and where P(bz’bh)

is now defined as

(3.5) P(bz’bh) is a P which achieves the Max in (3.4).

(3.6) Pa(bz’ba) = sv(bc(bz’ba)’ba)'

{Min{b € [bz’ba] | b - GV(b,ba) 2 8(b - P(bz,b))}.
(3.7) bc= bc(bz’ba) =
ba if b - GV(b,ba) < &b .- P(bz,b)) for all bs[bz,ba]
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Let ?’b - P - §[b - Pa(bz’b)] if bc(bz’b) < b
(3.8a) f(bl,b) = 7

[
o

. - - 2 - ’ > —

[ b P §2[b P(bg,b)] if bc(bf’b)
then

e ,

Ebh if f(bz,b) < 0 for all b ¢ [bl’bh]
(3.8b) ba= ba(P;bl’bh) =

{ Min { b] f(b?,b) 20}

Equation (3.7) could be interpreted in the following way. Assume
the players reach a subgame in which it is the buyer's turn to make an
offer and the seller's belief is that b ¢ [bz’ba)' Then bc(bz’ba) is
the lowest type, such that if the seller would believe that he is the
lowest type among the types that prefer to settle today, then b (b ba)
would prefer to settle today at a price of GV(b ,b ), rather than offering
zero and being tomorrow in a game where the seller thinks he plays with
[bl’bc) and hence offers P(bg’bc)‘

Equation (3.8) simply states that ba is the lowest type that prefers
accepting P today to waiting. How long the buyer is willing to wait
depends on whether bc(bz’ba) < ba' If bC < ba then all b ¢ [bc’ba)
offer Pa’ and hence ba is the marginal buyer that prefers P today to
Pa tomorrow. If bc = ba’ then all buyers are going to offer zero and
hence ba prefers P today to P(bz’ba) two periods forward.

Through (3.8) it is possible to express the Max in (3.4) with just one
choice variable., It might be helpful to think of ba as the only choice
variable, where P 1is then determined by (3.8) as the largest price which
induces ba to be the marginal buyer.,

The definition of Pa in equation (3.6) reflects an important feature
of any P.S.E. which is proved in Section 5. It implies that the seller
cannot use his lack of information to his advantage. The seller cannot
credibly threaten to reject an offer which is above the discounted value of
the game against those who are supposed to make this offer, i.e.,
Pa=6V(bc,ba).

Equation (3.4) is a complicated functional equation in P(e) and V(e),

Note that the functions P(e) and V(e) enter the right-hand-side of (3.4)




through bc(-) and Pa(o) as well as explicitly appearing there. In
Section 4, existence of a solution for this functional equation is proved,
and we present a method for solving it. The rest of this section is devoted

to showing how this functional equation can be used to describe a vector of

strategies.

Players' Strategies

We first define the seller's strategy which gives his action as a function

of the history and his beliefs

(of fer P(bz’bh) when it is the seller's turn

to move, accept any offer above

5 N

(3.9 os(bz’bh) = Pa(bz,ba(P;bg,bh)) when the buyer makes an

offer which follows the seller's offer of P.

L

The definition of equilibrium requires us to give the buyer's action
at ht as a function only of the history ht. Here, however, it is more
convenient to define the buyer's action as a function of the seller's
beliefs rather than on the history which generated that belief.

Thus, given the buyer's strategy expressed as a function of the
history of offers, we can write the buyer's strategy as a function of the

seller's beliefs.

(- . .

if b e [ba(P’bz’bh)’bh) then accept P;

(3.10) cb(P;bL’bh) =4if b e [bc(bz’ba(P;bz’bh))’ba(P;bz’bh)) then offer
Pa(P;bz,bh);

Ef b e [bz’bc(bz’ba(P;bz’bh))) then offer zero.

Thus, for any belief by the seller [bz’bh) and any offer P he has made,
the buyer can find out the seller's belief, and hence his reaction to any
counteroffer he makes. The buyer then chooses whether to accept or reject

P, and how to counter in case of rejection.
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Having established the players' strategies (3.9) and (3.10), let us
now show they form an equilibrium. Fix the buyer's strategy to (3.10), and
it is immediate from the construction of the seller's strategy that (3.9)
is an optimal response at any node. Fix the seller's strategy and consider
the response of a buyer to the seller's offer of P. Again by construction
(3.10) is an optimal response. It remains for us to show that there exists
a system of beliefs for the seller such that his strategy (3.9) is a best
response., There are many systems of beliefs that support this S.E. One of
them is the "Passive"” one. That is, if a node is reached where the seller's
belief is that b ¢ [bm’bh] and the seller's offer is P then for any
response q by the buyer, the seller believes that be[bc(bz’ba)’ba(P;bz’bh)]'
It is clear that given these beliefs the seller will reject any offer below

Pa = GV(bC,ba), and accept otherwise.

4, SOLVING THE FUNCTIONAL EQUATION

The existence of a stationary equilibrium depends on the existence of
a solution to (3.4)-(3.8). In this section we describe a method for
constructing a solution to that system.

Our method involves in "Step 1" solving for the equilibrium of games
where the seller has very good information about the buyer's type, then at
"Step 2," solving for the equilibrium of games where the seller has
slightly worse information. Once the equilibrium at "Step 1" can be found,
the equilibrium at "Step 2" can be found since over time the seller’s
information must improve and thus force them into a node of the type solved
for in Step 1. That is, first we shall solve for the equilibrium of an
informationally "small" game, and then use that solution to solve an
informationally "larger” game,$

The Two period Game:

The informationmally smallest game is one of perfect certainty. From
Rubinstei.;. [14] we know that such a game will have a unique equilibrium
where one party makes an offer, which the other party immediately accepts.

The next larger game is where, say, the seller has information that
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b e [bz’bh] and makes an offer P, which would be accepted by a buyer if,
say, his b ¢ [ba,bh], while if b ¢ [bz’ba) the buyer makes a counteroffer
Pa’ which the seller accepts. That is, bargaining lasts two periods, and

bc(bz’bh) = bL' If all buyers choose to make an acceptable counteroffer we

can rewrite (3.4) as:

F(bh)—F(ba) F(ba)—F(bz)
subject to (4.2), (4.32 and bz < ba < bh'
(4.2) ba - P = G(ba - Pa)’ where
(4.3) P = SV(bz,ba).

Note that if a buyer of type ba finds it optimal to accept P, (i.e.,
(4.2) holds) then all buyers of type b ¢ [ba’bh] will also find it
optimal to accept (i.e. b - P 2 &(b - Pa) for all b ¢ [ba,bh]). We can

use (4.2) and (4.3) to write (4.1) as

F(bh)-F(ba)

2.1
a F(b ) F(5 ) * ° Vi(b,,b 1.

(4.4) Vl(bz,bh) - Max  [(1-6)b
b <b <b
g~ a_ h

Remark 4.1

(i) It is easily verified that Vl(bz’bh) is non decreasing in bh and

in bz.
(ii) 1If bl = bh, then (4.4) is to be interpreted as V‘(bz,bl) = (I—G)bz
b
2 1 . 1 1 = _——-—2
+ &V (bz,bl), or solving for V!, we get V (bz,bl) s °

Note that V‘(bz,bl) is the Rubinstein [14] solution for the price charged
by the seller in a game of certainty when the seller moves first.

We will now show that (4.4) has a solution Vl(.).

Recalling that [Bz’gh] is the support of F(e) let:

B = {(b,,b) ¢ R | [by,by] C [by,b]]
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so B C R2 is just the set of points which can serve as a lower and upper

bound for the interval on which the seller's beliefs are concentrated. Let
+

C(B) be the space of continuous functions from B to R , normed by the

"sup” norm (i.e., tgh = sup lg(x)l) and satisfying V(x,x) =
xzB

X

1+6 °

Lemma 4.1. If F(e) 1is continuous and O £ § < 1, then there exists a
unique V e C(B) which solves (4.4).

Proof. Let V e C(B), then the right-hand-side of (4.4) is an operator T
which takes V into a new functiom on B, say T ¢V, i,e, T o V maps

B into R+. T o V 1is obviously continuous at any point in the interior of

B since F(es) and V are continuous. To see that it is continuous

at the boundary, suppose (bz, bg) is a sequence which converges to (bz,bz)_
. n n - R .
but a, = lim T V(bz, bh) #T V(bl,bz) = a,. (Note that T o V 1is

n+owo

bounded.) Let bz be a maximizer of the R.H.S. of (4.4) with respect to
n.n .
ba’ when (bz’bh) = (bz’bh)' Clearly we cannot have a; <a,, because it

is always feasible to set b: = bi. On the other hand, if a; > a,, it must

F(b,)-F(b}) n
be because = q does not converge to 1. This is because b
n n a
F(bh)_F(bz)

+ b so if q, * 1, we would have a, = a

1’ 1 2°
something less than 1 and we must have a, < a,. Hence T:C(B) + C(B). It

is easily shown that T 1is a contraction:

But then q, converges to

Note that T-V](be,bp)-T-Va(be,bn) < 62(V1(bs,ba)-Va(be,ba))
< cznvl—vzu,
where the first inequality follows from the fact that if by is a maximizer in

the R.H.S. of (4.4) when V = V}, then the R.H.S. of (4.4) has a lower value
when bg is used as a maximizer when V = Vo. Q.E.D.
Now if P 1is "too large" then a buyer of' type bl may prefer to offer
a

zero and by so doing identifying himself as a buyer with a low willingness

to pay, which leads the seller to make a low counteroffer. We will show
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that if ba is sufficiently small relative to bl then we are in a two
period game and all buyers in [bz’ba) will indeed find it optimal to
terminate bargaining when it is their move. To define "sufficiently small”

we let

(4.5) Sh(bl) = max{bh | b

,
o " 8V (bz,bh) > a[bz - V(bg,bg)]}.

The continuity of V! assures existence of Bh(bl)'

Remark 4.2
It is easily verified that:

(1) if V e C(B), 8§ <1, and b, >0, then b (b)) >b,.

(ii) if [bz’bh] C [bz’gh(bz)] in a subgame where the seller has
beliefs [bz’bh] the buyer will always make an acceptable offer and the game

will end in one round of bargaining in equilibrium.

Thus (4.1) was constructed from (3.4) by the assumption that we are in
a subgame [bz’bh] where all buyers make an acceptable counteroffer
immediately following the seller's first offer, i.e. bc(bz’bh) = bz. If we
use the definition of bc(bz’bh) given in (3.7) we see that if V = V1 and
Sh(bz) > bh then it will indeed be the case that bc(bz’bh) = bz'

Thus 1if gh(bz) > bh our equilibrium is similar to that of Rubinstein
[15]. In his game a low type buyer can distinguish himself from a high type
buyer by delaying the agreement one period through rejecting the seller's
of fer and countering with an offer which is accepted. We allow the buyer
to make counteroffers which he knows will be rejected and by doing so
signal that his b is very low. For the kind of uncertainty to which we have
restricted ourselves up until now (and for the type of uncertainty to which
Rubinstein restricted himself) the buyer does not find it optimal to use
this option. However, in what follows we consider informationally larger

subgames where Sh(bl) < bh and there buyers will find it optimal to screen

themselves by making unacceptable offers in equilibrium.
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Larger Game:

When Sh(bz)< bh, then offering zero becomes an equilibrium move, and we

are in a game which is larger than the two period game. We have already

solved the system for small games, i.e., games where the seller believes

the buyers are in [bl,gh(bz)]. Let Vl e C(B) and Pl(bz,bh) be a solution

(4.4), and hence a solution to (3.4)-(3.8) for {bz’bh] o) [bz,Eﬁ(bl)].
Consider the right-hand-side of (3.4). That side depends on V()

and P(e), not only through the explicit appearance of the term

62V(b£,bc), but also because bc(-) and Pa(-) depend on V() and

P(+). Suppose that we are given a V:'L e C(B) and a Pi e C(B), and we use

Vi and Pi in (3.6) and (3.7) to define bi(bz’ba)’ Pi(bz’ba)’ and to

constrain ba and P in (3.8). Fix vt and P- and consider the (RHS)

right-hand~side of (3.4). When the RHS is maximized, a new function

Vi+1(b£,bh) is generated, i.e., if Xi = (Vi,Pi), write

i+l _ i
(4.6)  V7(b,,b ) = Max  Q(b_,b b 5X")

h;
<

bz‘bafbh

where (3.8) is used to eliminate P from the maximand by taking the
largest ? such that ba= baSP;bl,bh), and Pa(.) and bc(') are computed
using X', We will let b;+l(b£,bh) denote a maximizer of the Q on the

RHS of (4.6). Further, if the maximizer P, is unique, a new function

Pi+1(b£,bh) is also generated. If Vi+l, P1+1 are used in (3.6) and (3.7)
then new functions bz+l, P;+1, are also generated. This procedure can be
{4 i i

iterated to generate a sequence (Vl,P ,Pa,bz)i. We will show that if we
start the procedure with the solution to a "small game" in (4.4), then the
sequence converges in a finite number of iterations to functions
(V,P,Pa,bc) which solve (3.4) to (3.8). Further we will show that for
each n there is an interval [bz,bz] so that if [bl’b2] lies in that
interval, then V(bl’bz) - Vn(bl,bz), and the game will last for at most n

rounds of bargaining.
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There is a technical difficulty with the iteration. Note that vi{-) exists
and is continuous. However it need not be the case that Pl(bg,bh) is
continuous in by and by, where Pl is a maximizer of the R.H.S. of (4.1).
This creates a difficulty in the definition of bi(bg,bh), and bi(P;bg,bh)
in (3.7) and (3.8), since Pl(.) appears on the R.H.S. of (3.7) and (3.8),
inside a "Min" operator. A discontinuity in Pl(') implies that a marginal
buyer need not exist. Following the insight in Gul, Sonnenschein and Wilson
[9] a marginal buyer could probably be found if the seller followed a
mixed strategy, but the analysis of such strategies is beyond the scope of
this paper. We will instead simply assume that Pl(-) is continuous. This

problem repeats itself with every iteration of (4.6). Thus we assume

Assumption 4.1: On each iteration of (4.6) a maximizer Pi+1(b¢,bh) is

generated which is continuous in bp.

We now show how to compute the interval in which bargaining will last
i rounds. Let b_(bg,by) = bi " (be,bl(be,bn)). Thus, if the seller’s
belief if that b ¢ [bg,bp], then along the equilibrium Bi(bg,bh) is the
lowest type to counter the seller’s offer with an acceptable offer. We now

define

1

(4.7a) Ei(x) sup{ylbi(b‘,bh) Cby(b,) for all (b,,by) < [x,¥]}

(4.7b) gi(x) sup{ylbi(bz,bh) ¢ Eh(bg) for all (b,,by) © [x,5]} -

Thus Si(x) is the largest bp such that in the program defining Vz(x,bh),
an optimizer by will be chosen which leads to one round of bargaining.

Simjilarly hi(x) is the largest bp such that in the program defining Vl(x,bh),




-21-

an optimizer b, is chosen which leads to one round of bargaining. Define
1 . 1 =1

{ = {x

(4.8a) bh(x) Mln(hh(x), bhﬂx)) .

Next, iteratively define

i+l

i-1
a (be,bn)) < by (bg)

(4.8b) bi(x) = sup{y/Max(b_(bg,bp), b
for all (bg,bp) < [x,y]} .

The next proposition shows that if b;(bg) > bp, then Vi(bg,bh) is the

solution to the bargaining problem.

Theorem 4.1. If bl(bg) > by then vitl(by,by) = Vi(bs,bp) and P i(be,bp)

= PL(bg,bp).

Proof. We first prove the statement for i = 1.

By (4.7b), the program in (4.4) has the same value as would occur if
the maximization was done subject to the constraint bg < gh(bl). By
(4.7a), the program in (4.6) when i = 1, has a value which would be
unchanged if it is done subject to the constraint that bg < gh(bg).

But the two constrained programs are the same, and thus Vl(bg,bh) = Vz(bg,bh)
and Pl(bg,bp) = P2(bg,bp).

Now assume that the theorem is true for i < n-1. Artificially
constrain the maximization in (4.8) for i = n-1 to satisfy by < bﬁ—l(b;).
Similarly, constrain the maximization in (4.6) for i=n to satisfy
ba ﬁ bg—l(bg). By the hypothesis that by < bg(bg), it follows that these
artificial constraints do not affect the value of their respective programs.

Further, by the induction hypothesis, the two constrained programs are
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n+l
identical. This proves that V“*l(bg,bhE = Vi{bg,by) and P (bg,bp) =

Pn(bg,bh), since XD can be replaced by xn—1 jp {4.6) when i=n. Q.E.D.

The following corollary proves the very important result that if [b.,bg]
pool to make an acceptable counteroffer, then the interval [bg,by] is
sufficiently small that had the seller rejected and played against [bg,bg]

bargaining would end after one round.

Corollary 4.1. (i) Vi(bg,bh) is increasing bp.

(i1) If bp < bp(be) and bg = ba(be,by) and bg = be(be,ba),
then (%) v'(bl,ba) = VI(bi,ba)

(*¥) by < bp(bg)

Proof (i) Suppose z < y, then bé(bg,z), Pi(bg,z) are feasible choices

for by and P in the problem where by = y. Next, note that
Q(bé(bg,z),bg,y,xi) 2 Q(b;(b:,z), be,z,Xi) since if Q is evaluated

at by, = y, it is a weighted average of a declining sequence of prices

with more weight put on the earlier prices, than occurs when Q is evaluated
at by = z.-

(i1) Note that if by < bi(bg), then V (bg,by) = V(bg,bp) and
Pi(bg,bh) = P(bg,by) which solves the functional equations (2.4) and
(4.6).

Let b = bi(be,bp) and by = bi(bs,bp), then by the definition of
be(+): be - 8¥(be,ba) > 8(beP(be,be).

But P(be,bc) < P(be,be), so be — 6V(be,ba) > 8(be — P(be,be)).
Thus by (i)

(¥k%) be — 6V(bg,x) > 8(bo—P(be,be)) for be < x < bg.
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Next note that V{be,x) solves the functional equation (4.4) when bea

is thought of as a flxed parameter and X varies in {be,bal, since (k%¥)

assures that bC(bC,x) = be. Thus V(be,x) - V (be,x) and by < gh(bc). Q.E.D.
By Theorem 4.1, we know that a subgame [be,bp] < [bg,b%)] can be

solved usihg our iterative procedure. If we show that for some finite n,

bﬂ(gg) > Eh, where [E;,bh] is the support of F(.), then all subgames which

will arise from the initial node (bl,bh] can be solved. This is proved next.

We will require the following assumption:

Assumption 4.2

If there exists a convergent sequence {%n} such that
HE®aesm) = xn) = 0, then 1in(B2 (be,xp)-sy) = 0,
We believe thls assumption unnecessary because we conjecture that ba(be,bh)
is bounded away from bh; however, we have not proved this conJecture The
conjecture states that the seller never "throws away his move" by making an

offer which a negligible group of buyers accepts.

Theorem 4.2. Assume that by > 0 and § < 1. Then there exists a finite N
such that bh(bg) > bh and V (be,bp), P (be,bp) satisfy (3.4)-(3.8) for all
[be,bp] C [by,bp].

Note that bﬁ(bg) > bﬂ_l(bl) by (4.8b). Fix be = [El,gh] and use
(4.8b) to generate the sequence {bﬁ(bg)}n. Since (bﬂ)n is a monotone
Sequence, if we show that it doesn’t converge, then there exists an N such
that bﬁ > bp. Suppose by contradiction that llm bh b¥. This
means that ba(bl,bh +a) >b¥ for ¢ > 0 and n large. Therefore, there is a

subsequence bﬁ so that lim ba(bl,bh ) = b¥. From Assumption 4.2, this means
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that lim Eg(bg,bﬂ~l) = b¥. So the intervals [bg,bﬁvl} and [52 ,bg) used in

the functional equation (3.4) are becoming very small, while

n—1 1

[bg,b;n(bg,bh ¥l - [bg,bﬁ— 1. Therefore, for every small £ > 0 there exists

an n such that (3.4) can be written:

F(bg) — F(be)

—_— 9 — .
4.9 Voot = e sV bebe) —— :
PR 1) - F(be)

See Remark 4.2, for the fact that by ? be > 0 implies by (be) > be, so

(2] —_
b¥ > bg. Hence as n > =, the fact that 6~ < 1, and bg > b¥ is used in (4.9)

to conclude that lim Vn(bg,bﬂfl) = 1862 . This is impossible since:

P (be,br™ D) 2 V(be,be) = Vibabe) = %{; -
The proof of the rest of the Theorem follows immediately from Theorem 4.1.
Q.E.D.

The previous Theorems also imply that there exists a unique V, and P
which satisfy the functional equation, as long as at each stage i there is a
unique maximizer in (4.6). This is because V1 is unique (by Lemma (4.1)) and
Theorems 4.1 and 4.2 show that there is.a unique extension of V1 for
intervals larger than [bg,b%(b;)], given by (4.1). That is, any other
function V(bg,bp) which solved the systém (3.4)-(3.8) say in
[bg,b%(bg) + ¢] must satisfy (4.6) where Vi+1 is replaced by V and Xi is
replaced by Xl. A similar argument holds at all larger intervals.

These remarks are summarized in the following theoren.

Theorem 4.3 If for each [be,bnl € [bg,b%(bg)], the right-hand-side of (4.6)
has a unique maximizer ba, and a unique bg, then there is a unique solution

for V(.) and P(.) to (3.4)-(3.8).
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5. UNIQUENESS OF PERFECT SEQUENTIAL EQUILIBRIUM

Theorem 4.3 establishes existence and gives a condition for the
uniqueness of a solution to the functional equation. Here we will show
that every vector of P.S.E strategies must be derived from the solution to
the functional equationz See the end of Section 3,a for discussion of P.S.E.
Thus we will show in this section that in every P,.S.E:
(i).Pa= GV(bc,ba),
(ii) if gh(b,) < bh then offering zero is an equilibrium move, and,
(iii) nonexistence of "nonstationary" equilibria, i.e., Strategies

which are not derived from the functional equation,

constructed in Section 3 and 4 is the unique candidate for a P.S.E..
However, there are distribution functions F(.) and values for § where a
P.S.E. does not exist in pure strategies. In an earlier version of this
paper we analyzed the uniform distribution in detail and showed parameter
values for which a P.S.E. did and did not exist. This work is available
from the authors.8

In what follows we will show that a Sequential Equilibrium is not a
P.S.E. by finding a deviation for the buyer's counter offer, say q, and a
set of buyers K such that if the seller observes 9, revises his beliefs to
K, and chooses a best response given this belief, then K is the set of
buyers who are better off than in the proposed equilibrium. We will call
such a q a "succesful deviation.” Note that throughout this Section we
use the idea of a metastrategy. That is we compute the seller's move after
a deviation by finding a best response when his belief at that node is
altered from what the Sequential Equilibrium assigns to the node.

We begin with the following Lemma which, in effect, rules out S.E.

supported by "optimistic conjectures,"
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Lemma 5.1. Let the seller have beliefs [bz’bh]' 1f there is a P.S.E.

where a buyer b € [bz’bh] accepts an offer P, then V(b,b) 2 P.

Proof:

Suppose to the contrary that there exists a'g ¢ [bg,bp] who accepts
an offer P with P > V(G,g). By Proposition 3.1, there is an interval [ba,bhl
which accepts P. Let b’ satisfy P = v(b",b"); clearly b'>g. By Lemma
3.1(i), b" £ t;h or else no buyer would have accepted the offer P. By Lemma

3.2, b” > ba, gince b > by. Note that in order for b to have paid P it must be

the case that the lowest acceptable offer to the seller at the next node Pg,

satisfies b-P > (b — Pa), so that b'—P > &(b’ - Pg), and hence

py > LLBI=AOLT 4 gy ).

Let a buyer b & [bg,b’] deviate and reject P and counteroffer
Pc = &V(b’,b"); clearly Pc ¢ Pg. Let K = {blb is better off when the seller
accepts Pc than b is in the proposed equilibrium}. Next, note that if b > b’
then b # K. This is because b-P > 6(b — sV(b’,b")) when b > b°. Hence by
Lemma 3.1 (ii), the seller will accept Pc = sV(b°,b") if he believes that he
~ plays against K. This shows that if the seller updates to K, the deviation

is successful. Q.E.D.

The next Lemma shows that if the seller has sufficiently precise
information then there is a unique P.S.E. where the seller makes an offer
of V(bl,bl) and all buyers accept. Note that there are S.E where this is
false. For example, if bz and bh are sufficiently close, the seller can

make an offer P > V(bz,bz) which satisfies bz— P = 6(b —GV(bh,bh)) and all

%
buyers will accept when the seller revises his belief to [bh,bh] after
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observing rejection. Note that Kreps' [10] restriction of S.E. will not

eliminate this equilibrium.

8F(b2)

ab
that the unique P.S.E. for the game where the seller moves first and has

Lemma 5.2, If bz >0 and > 0, then there exists a bh > bz such

beliefs [b is the following stationary equilibrium: the seller

Rr,bh]
offers V(bz’bz) and all buyers accept the offer.

Proof: By Lemmas 3.1(i) and 5.1, the seller can do no better than

F(bp)-F(bg) F(ba)-F(be)

(5.2) V(bg,bp) = %?ﬁa[P E?E;;ZEEE:; + 6(8V(ba,ba)) F(bp)—F(by) ]

subject to ba -P = G(ba - 6V(ba,ba)),

since the best that can happen is that all buyers in [bz’ba) counteroffer

with GV(ba,ba). P can be eliminated and (5.2) can be written as

(5.3) V(bz’bh) = Max H(ba;bz’bh)’

b
a

F(bp)-F(bga)

— 4+ 62V(b ,b ).
a2 F(bp)-F(bg) a a

where H(ba;bz’bh) = (1-8)b

We now show that if bh is sufficiently close to bz, then the

maximizer in (5.3) is ba = bz. To do so, we show that

oH ]
BE;f(ba,bL,bH) < 0 for all ba € [bz’bh] when bh is close to bz. By

oH
3b

= (1-8)[F(b )-F(b )] -
aF(ba) 52
ab

direct calculation [F(bh)—F(bQ)]-

(1—s)ba + 173 {F(bh)‘F(bn)]'
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When bh is close to bl’ so also is ba near bh' So the two positive

terms; F(bh)—F(ba) and F(bh)—F(b%) can be made arbitrarily small, so
aF(ba)
that the negative term: -(1-98) 5 ba dominates. This shows that the

optimal choice for ba is bz. Hence
b

b
o _ _ 2 R . L
V(bz’bh) = 6)b9,+ S 155 = T+s

= V(bz’bl)'

Note that if the seller followed the stationary equilibrium in (3.4), then
by the same argument used above he will get ba = bz, for bh sufficiently
close to bz.

Thus the seller can do no better than to follow the strategy which he
would follow in the stationary equilibrium. Further, if the seller charges
a price P > V(bz’bz)’ then he must do strictly worse than v(bz’bz)
because there is a probability that his first offer will be rejected. Next
note that by Lemma 3.l. no buyer in [bz’bh] can do better than to get an
offer V(bm’bz) on the first move. Therefore, in any equilibrium when the
seller moves first and bh is sufficiently close to bz, the seller will

offer V(bL’bz) and the buyer will accept. Q.E.D.

The following lemma is central in our theory. Essentially, it will
help us to show that the seller cannot use his lack of information to his
advantage. That is, he cannot credible threaten to reject an offer which is
above the discounted value of the game with the group that, in equilibrium,
makes this offer. It shows that the value function of small games V!(.) can
be used to compute Pa' We also show that when bh becomes larger and larger,
relative to bz (i.e., Eh(bz) < bh), then there is a point where the
bargaining must go on for more than two periods. This is because in a P.S.E
buyers that are more patient can signal thier low willingness to pay by

making an unacceptable offer. Unlike in some S.E., here the seller cannot

ignore such a signal. 1In what follows we use V(bg,bp) to denote the history
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dependent value of the game to the seller in an equilibrium other than the

one of Sections 3 and 4. Similarly a "tilde" over P or P, will indicate

~

alternate equilibrium prices, however bp(bg) refers to the function in (4.5).

Lemma 5.3: Let the seller have beliefs [bg,bp] before making an offer ;.
Let the equilibrium specify that if ; is offered then buyers of type
[be,bal reject the offer and‘counteroffer ;a which the seller aécepts.
Assume there exists a neighborhood A ¢ R of [bg,bg] such that for every
[b1,b2] © A, V(b1,bz) = V(b],bg). Then in any P.S.E. Py = oVl(bg,bg), and
if gh(bg) < ba then b, > bg, i.e. some buyers will offer zero.

Proof: In order for it to be an equilibrium for the seller to accept ;a

it must be that

(i) Pa > 6V(bg,ba) = 8V(be,bg) > 6V1(be,ba)
where ;(bc,ba) is the history dependent value of the continuation game where
the seller moves first, and the second inequality follows from Corollary
(4.1).

Case (1 bs > bg.

This implies that along the equilirium path a buyer of type b, will be
indifferent between making the offer ;a or waiting until the next time at
which an acceptable offer is made by either the buyer or seller. Let n
periods elapse until an acceptable offer denoted by ; is made. Thén
be - ;a = 6n(bc—;). From Lemma 3.1, ; ﬁ V(be,be). Thus, if ;a > 6V1(bc,ba)
then bs - 6V1(bc,ba) > 6n(bC—V(bc,bc)). From the fact that Vl(.) is a
continuous function (by Lemma 4.1), it follows that

by - 6V1(b1,b2) > 6n(b1—V(b1,b1)) in a neighborhood of [b.,bg]. We may take

this neighborhood to be A. Hence, by the definition of bp(.) in (4.5) and
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corollary 4.1 (ii} it follows that V(bj,b2) = Vl(bl,bz} for all (bj,b2) = A,
and we use this to evaluate the following deviation. In order for it to be an
equilibrium for any b ¢ [bg,bg) to offer ;a’ the seller’s strategy must
involve rejecting any offer below a number ;aa and accepting any offer above
;a. Suppose ;a > 6V1(bc,ba).' Consider a deviation from ;a to
q= ;a -5 > 6V1(bc,ba). The set of buyers who are better off if q is
accepted is K = [bg—#1(2), bate2(z)], where £1 =2 are non—decreasing
continuous functions of &, with £3(0) = &2(0) = 0, given by
(i1) be - 2] - q = 6" (be-21-P) and

ba + =2 ~ P(be,by) = 8(bats2-a).
By Lemma 4.1, there exists ¢ > 0 and 6V1[bc—a1(s), by + £2(¢)] < q.
Thus, if the seller revises his belief to K it is a best response for him
to accept q. Further, when he accepts, all b & K are better off than they
would have been had they followed the proposed equilibrium. Clearly q is a
successful deviation.
Case (2) bes = by
(A) Suppose gh(bg) < by. We prove the last part of the Lemma by showing
that there is a successful deviation to a counteroffer of zero. Let
Gb(b;,b) be the value to bgyer b of a continuation game where he offers zero
and the seller believes he plays against [bg,b]. Let
(iii) b° = Sup {b ¢ [bg,by] I b - ;a < ;b(bg,b)}.
Recall that gh(bg) < by means that bg — 6V1(b¢,ba) < 6(bg—P(bg,be)). Hence,
since ;a > 6V1(b¢,ba) it must be the case that the "Sup" is taken over a
set which includes bg. Next note that from Lemma 5.2, there exists a b > by

such that Vp(bge,b) = 5(bg~P(bg,be)). Hence b” > bg. This shows that if

K = [bg,b’] and there is a deviation to a counteroffer of zero by the buyer,




-3la-

then the best response of the seller will make all buyers in K better off
than had they followed their equilibrium strategy. Thus q = 0 is a
successful deviation.

(B) Suppose gh(bg) 2> by and ;a > 5V1(bg,ba). Consider a deviation to

q = ;a -z > 6V1(b¢,ba+82), where £2 is as given in (ii) of Case (1)
above. By an argument similar to that given in Case (1), there is a
successful deviation by buyers when the seller revises his belief to

K = [bg,bgtea(e)]. Q.E.D.

Corollary 5.3 Assume a node is reached where the seller believes the

buyer’s type is in [bg,by) and in equilibrium any buyer of type [be,bgy)=A

makes an offer Py which the seller accepts. If Py > 6V(be,bg), then in any

~

neighborhood of (bc,ba) there exists a subgame S C A such that V(S) > V(§)
and ;a < GG(S).

Proof: Consider a deviation to q = ;a - &. Let 8(s) = [be — #£1(2),

by + £9(z)] as defined in (ii) of the previous proof. 1In order for the
deviation not to be successful, it must be the case that

(iv) Pg - & < 6V(S(s)) for all & > 0,

since otherwise the seller would accept q. But since V(.) is continuous, and
;a > 6V(be,bg), there is an « > 0 such that ;a > 6V(S(z)) + a, for some range
of ¢ > 0. Hence, from (iv) V{(S(z)) < ;(S(e)) and ;a < 6;(8(8)) for =

- sufficiently small. Q.E.D.

Having proved these Lemmae, we can proceed now to prove that there is no
other P.S.E. but the one derived from the functional equation. The idea of
the proof is that, suppose there is some subgame [be,bh) where the seller

can follow a strategy which does better for him than V(be,bh). Then this
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will be possible'only if there is some subinterval [Lj,H1] < [bg,bp]
where the seller will do better than V(Lj,Hj). This argument is iterated to

generate intervals [Lp,Hp] € [In-1,Hp-1] which collapse to a single
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point, i.e., a game of certainty. Thus we show that the seller can do
better than V(bl’bh) only because there is some subgame in which he has
perfect information where he does better than the unique equilibrium to the

perfect information bargaining game.

oF
ab
maximizer ba and a unique bC on the right-hand-side of (4.6) for each

Theorem 5.1, If bl >0, >0 for b e [gz’gh]’ and there is a unique

[bz’bh] C [BL’Eh]’ then there is at most one P.S.E. to the bargaining
game.
Proof:

Recall that the support of F(e) is [BE,Eh]. Let
o - = -
bh= sup{bh € [bm’bh] | every subgame of [bg,bp] has a unique equilibrium].

From Lemma 5.2, bﬁ > Ez. We begin by showing that every subgame of [Bz’bﬁl
has a unique equilibrium. Suppose not, then by definition of bg, either

[bz,bg] or (bg’bgl does not have a unique equilibrium for some bl 2 Eg.
Let V(bz,bﬁ) be the value of the subgame where the seller moves first and

. . o o
believes either [bz’bh] or (bz’bh]' Note that

(5.3) V (bz’bg) = Max[P Prob(P is accepted) + Gﬁé(P)Prob(acceptable
P
counteroffer)+ GZV(bz,Eé)Prob (seller gets to make another offer)].

where ?;(P) is the lowest acceptable price given the history, and
V(bz,gc) is the value of the game to the seller when he does not accept a
counteroffer and revises his beliefs to be that he plays against [bz,EE).

Recall from Proposition 3.1, that in any equilibrium there is an offer made
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~ ~

by the seller which a group [ba,bg] accepts, and another group [bc’ba)

makes a counteroffer ?2 which the seller accepts —— where either group

can be empty, i.e. b = 3%_ and/or

a = Sa' We will consider separately

L.y ™ _ .0 & _ .0,
(ii) ba = b and bC bh’

b
C
o
h’ h

the following three cases: (i) Sa < b ;
s o ~ ~

= < .

(iii) ba bh and bC ba

Case (i) If in the proposed equilibrium Ea < bg, then it is impossible

to have V(b;,bg) > V(bg,bg). This is because V(Ec,ﬁa)

V(EC,S;) since
[6_,6,) ¢ [b,,b), and (b ,6) = V(b,B) since [b,,5.) ¢ [b,,bp).
Note that if V(gc,ga) = V(Ec,ga), and Ea < bﬁ, then by Lemma 5.3

ﬁa = SV(EC,Sa). That is, the only way that the seller can do better than
V(bl,ba) after a history ht which leaves him with beliefs [bg’bﬁ] is
if there is some subgame where he does better than the V(e) for that
subgame. Similarly if V(bz,bﬁ) < V(bz,bg) it must be that in some
subgame of ht where beliefs are [bl’bh] C [bg’bgl’ the seller does worse
than the V(s) for that subgame, but this is impossible as Sa < bg.
Case (ii) Consider now the case where no buyer accepts the seller's offer
of P, and all buyers counter with an unacceptable counteroffer. That is,

0_~

in the proposed equilibrium bh ba = Sc. Thus we can write (5.3) as

o~ o 2& o)
(5.4) Vt(bz’bh) = § Vt+2(bz’bh)°
Case (iii): In this case bg = ba > Sc' When the first term on the RHS
of (5.3) is absent we can write (5.3) as
(5.5) V(b ,b ) = &P - Prob(b e[b_,b 1) + & V(b ,b_ )+ Prob (belbg,be))-
. o~ o o ~ ~ .0
Note that in (5.5) V(bz’bh) > V(bz’bh) only if Pa > SV(bc,bh).

By Lemma 5.3 and its corollary this can be true only because in some sub-
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game S which is close to [Ec,bgl, V(s) > V(S), and ;af 6;(8).
This can happen only if bg € 5. Clearly
(5.6) (b, ,b%) < &%7(s)
Thus in both case (ii) and case (111) a given game [b bh] generates

a subgame [bl’b ] such that V(b b ) 8 V(bl,b ) and V # V. The same
argument can now be applied to the subgame [bl,bh], to generate a new
subgame [bz,bg] such that V(bz,bﬁ) z V(bz,bﬁ) and V(bl,bﬁ) < 62V(b2,bﬁ).

This argument must be repeatable an arbitrary number of times, and since

62 <1 it implies that V(bg,bﬁ) = 0, which contradicts by > 0 and Lemma 3.1.

We have now shown that every subgame of [Sg’bg] has a unique

equilibrium. We next show that if bﬁ < Sh then there exists € > 0 such that
every subgame of [E ,b? + el has a unique equilibrium for ¢ > 0 and
sufficiently small The argument is similar to that of the last paragraph.

Suppose that V(b b + e ) # V(bz h + €¢). This is clearly impossible

if in this subgame the seller makes an offer P such that (ba,bﬁ + g]
accept and 5; < E%, since all such subgames of the subgame starting from

[bz nt e] will have unique equilibria. Hence it must be that 5; > bg.
Therefore, by the continuity of F, the first term on the RHS of (5.3) can
be made arbitrarily small, so (5.3) can be written as

~ “~

(5.7) V(bz,bh+e) = q + SPaProb(b € [bc,ba)]) + 8 V(bz,bc)Prob(b e[bz,bc]),

where € > 0 can be chosen to make « arbitrarily small. As in the last
paragraph, it must be the case that there exists a subgame S in which

V(S) # V(S), and V(b Jbo+e) o 82V

V(S),and a similar statement must hold
for an infinite sequence of .subgames of this game. Using the fact that

62 <1 we get the same contradiction as before Q.E.D.




6. CONCLUSIONS

We have developed a model of the losses associated from bargaining
over the division of a surplus. Buyers who get a small surplus out of the
relationship delay settlement to reveal their willingness to pay the seller.
1f the seller begins bargaining believing that the buyer's willingness to

pay is b ¢ [bg,b then after rejection of his offer, he will believe

Nk
either: (i) that Db ¢ [bc’ba) if the rejection is followed by an
“acceptable" counteroffer, or (ii) that b e [bz’bc) if rejection is not
followed by an acceptable counteroffer, where bz < bC < ba < bh' If we let
b; be such that b ¢ [b;’bh] accepts the seller's first equilibrium offer
and bi is such that b € [bi,b;) makes an acceptable counteroffer, then we

i+1 1

. . i i+l i
can iteratively generate ba = ba(bz’bc) and bc = bc(bz’ba)’ using the

functions ba(-) and bc(-) which solve the functional equation.
If b e [bi+1,bi], then there will be i periods of bargaining.

Thus, the equilibrium determines a function t(b;F) which specifies
how many periods a buyer of type b will wait before agreeing to a trade,
as a function of the seller's prior distribution F. If F(s) .is
concentrated on single b, (i.e., there is certainty) then t = 1;
bargaining ends immediately. As the "uncertainty” about b increases

t(b;F) will increase. For example, if we start with an F with support

[Bz’gh] and a positive density therein, and generate a new F, say F1 as

F(b)

2
F(bc)

That is, if the seller improves his information by learning that b = b

F,.(b) = Max [1, ], then t(b;Fl) = t(b;F) - 2.

2
c

then the play of the game with beliefs F1 is as if it is the third move of
the original game where he had information F, rather than Fl'

In general, it is difficult to prove a statement about how a change in
F, changes t(b;F). However, the algorithm described in Section 4 can be

used to compute the solution to the functional equation for various
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distributions F. Figure 2 presents solutions for various truncated Normal
distributions. Values for the support of F, b and bh are given near
the upper left and right hand corners respectively. The x-axis is divided
into 201 equally spaced grid points between bz and bh inclusive. The
game 1is discritized so that the ith grid point X, has mass F(xi)-F(xi_l),
with F(bl) = 0, In solving the functional equation V(bz’bh) and

P(b ,b ) are represented as 201x201 matrices of real numbers, and in the
maximization in equation (4.6) the choice of b is restricted to the 201
grid points. Similarly, the choice of bc is restricted to those grid
points.

In Figure 2 we consider the case where the discount factor is 0.75 and
buyer's type is distributed normally with a mean of 50. We let the standard
deviation vary from 100 in the first graph to 5 in the last and we were
interested in how the length of the bargaining is affected. The numbers
inside each graph give the respective probabilities of each segment

i+l bi], and thus the probability of i period bargaining. The scale of

[b
the Xx—axis is given on the upper left and upper right corners of each
graph. The scale on the first graph is of equally spaced points between 0
and 100, while the scale on the last graph is of equally spaced points
between 30 and 50. Thus, if the standard deviation is 100, the probability
of 1 period bargaining is 0. 2777, 2 periods is 0. 6088, and so on. While if
the standard deviation is 5, the probability of less than 1 period
bargaining is 0.91. In general, one can see in the Figure that the
level of uncertainty has a positive effect on the lengthiof'the
bargaining.

Figures 3 and 4 present the results of numerical simuiations for 6=0.8

and §=0.85 respectively. As § increases there are usually more periods of

bargaining, since less surplus is lost from delaying agreement.

—————— put Figure 2 here ————-
—————— put Figure 3 next ———--

— put Figure 4 next ——-—
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Table 1 presents results on the outcome of the bargaining as a function
of the length of time between offers. If r is the annual interest rate,
and L is the number of days Dbetween successive offers, then we set
5 = 1- rL/365. We use r = .10, and L varies from two days to .1 day. The
Table reports the expected number of days of bargaining assuming that each
bargaining period last L days. It also reports the maximum number of
periods over which bargaining occurs, ji.e., how many periods it takes the
lowest b in the support to gettle. In addition, the Table reports the average
price at which trade takes place, relative to the price which would have been
obtained had the seller made the offer which all buyers would accept, namely
V(bg,bg). This information is repeated for the one—side_d bargaining problem
studied in [5,9]. In that problem the buyer is prevented from making a
counteroffer in the even periods, and the seller makes offers in
odd-numbered periods which the buyer either accepts or rejects. In order
to help with the interpretation of the Table, consider the first three numbers
of the column labelled wor  In the two-sided bargaining game, with a uniform
distribution on [1,25] with each period lasting two days, (i) bargaining is
expected to last 73 days, (ii) the seller expects to receive a price 32% higher
than he would get if he made the offer V(bg,by) for which bargaining would
end in one round, and (iii) it takes 62 periods for bargaining to end with
probability one. Moving down to the next three numbers in the same column
of the Table, we see that if the buyer is constrained not to make a
counteroffer, then bargaining can be expected to last 39 days, and the
expected price is 8.6% higher than the price which would end bargaining

immediately, namely b¢ (i.e. 1).
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We have examined in detail the equilibrium strategies for the two-sided
bargaining game reported in the Table, and they have the property that the
buyer chooses not to make an acceptable counteroffer until the seller’s
beliefs are such that the lowest b in the support of F(-) makes an acceptable
counteroffer, i.e., be(bg,bh) equals either bg or bp. We have found this
pbroperty in all simulations where é is close to one. That is, even though
buyers are permitted to make counteroffers, the seller chooses his offers to
discourage the buyers from making the offers. The seller’s desire to prevent
counteroffers makes it cred_ible for him to delay settlement by longer than
occurs in the one-sided bargaining game (in which the buyer is exogenously
restricted from making offers). Note that the value of the informationally
smallest game (which is the basis of the backward induction) to the seller is
about twice as large in the one-sided as in the two-sided bargaining game,
and this may be the reason for the substantially longer period of delay in
the latter game. The Table shows that the two-sided bargaining model
predicts that settlement takes about twice as long (and that the expected
percent price increment from bargaining is about four times as large) as in
the one-sided bargaining model.

The result that settlement occurs sooner in the model where the buyer
is constrained not to make a counteroffer implies that it is a more efficient
mechanism than the one where the buyer is permitted to .make a
counteroffer. This is because, from an efficiency point of view, the division
of the surplus is irrelevant; only the length of time required to reach a

settlement affects the efficiency of the outcome.
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By comparing the expected duration of bargaining in the problem with
support [1,25] to the problem with support [1,50], it is clear that increasing
the uncertainty has substantial effects. The "largest" uncertainty is in the
game [1,09]. Unfortunately, as by gets large, the algorithm we are using.for
the two-sided bargaining problem is unable to solve [1,bp] on the computer
in a reasonable amount of time with reasonable accuracy. However, "large"
one-sided bargaining games can be accurately solved, and results for the
game [1,100] are reported. It is also possible to analytically solve for a
solution to the game [0,1]1 in the one-sided bargaining model. The solution in
which the marginal buyer by is a linear function of bp in the subgame [0,bh]
can be computed using the results in [51, to be bg(bp) = xbh, where
x = [1 + \/_1-:—62]“1- If we maintain compatibility with the previous analysis
by requiring two periods to elapse between each of the seller’s offers, then
the expected number of periods of bargaining is

1-(1-x) + 3+(x-x2) + 5(xZ-x3) + ... = (1+x)/(1-%).

Further, since two periods elapse between the seller’s offers, we must set
89 = 62, if 6 is the discount rate per period in the two-sided bargaining
game. The expected price at which trade will take place can be computed to
be y/(1+x) where y = x(1-69)/(1-62x), and ybhp is the price charged by the
seller when he believes that he plays against [0,bp].

The numerical simulations for the one-sided bargaining model illustrate
the Theorem in [9] which states that the duration of bargaining goes to zero
as the time between offers goes to zero. This result has recently been
extended by F. Gul and H. Sonnenschein to two-sided bargaining games. The

rate of convergence is "glow"; from the Table, even if there are 10
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bargaining periods per day, bargaining can have substantial duration. In
some situations, such as on the trading floor of a stock or- commodity
exchange, bargaining duration is very short (say, less than five minutes} and
traders talk sufficiently rapidly so that many offers can be exchanged in a
period of five minutes. In other situations, labor negotiations, for example,
bargaining can last many weeks, and the ability of any side to make more
than one binding offer per day is severely limited.

It is important to recognize that the seller must be bound to his offer
for our model to be relevant. If the seller could take back his offer after a
buyer accepts, then he would usually do so. This is beqause acceptance
reveals that the buyer has a relatively high Willingness to pay. In labor
negotiations, or tékeover bid negotiations, the negotiators often need
approval from a "higher" authority, and it can be costly for the "higher"
authority to meet and deliberate very frequently, especially when there is a

fixed cost to holding a meeting.

The sequential bargaining model is capable of explaining the duration
of disagreement in bargaining situations as a function of the asymmetry of
information. This model is to be contrasted with the mechanism design
approach of Myerson [13] and in particular to the model of unemployment in,
e.g., Grossman and Hart [7]. In the latter it is the ex—ante desire to
share risks that lead parties to choose ex-post inefficient mechanisms when
there is asymmetric information ex-post, but symmetric information ex-ante.
In such models parties are able to commit themselves ex—ante to engage in
ex—post inefficient outcomes. In the bargaining model studied here such
commitments do not exist. Our results thus seem applicable to situations
where, for example, workers and firms sign 2-year contracts which do not
bind their behaviour after the second year. Once the initial contract ends
a new bargaining problem begins, and there can be strikes at the expiration
of a contract. An interesting open question is to explain why it is that
the parties choose to put themselves in a position where after 2 years they
will face an unconstrained bargaining problem rather than writing a very

long term contract which constrains their future renegotiations.
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FOOTNOTES
The equilibrium concept is a game theoretic version of the one in
Grossman [6]. Joe Farrell [4] has independently proposed an
equilibrium concept similar to ours.
We do not analyze a concession game, i.e., a game where only one party

can make offers and the other only accepts or rejects, because the
party that is wunable to make counteroffers is artifically

restricted. It is easy to show that in a game where both types have
valuations which are common knowledge, the party that makes the offers gets
all the surplus in the unique Subgame Perfect Equilibrium.

In Cramton's formulation, after the seller reveals his type (i.e.,
where Cramton's subgame is identical to our game) the seller chooses a
price to offer at each time P(t) and the only choice permitted to the
buyer is to accept P(t) or wait until, say t’, and accept P(t");
Cramton [2]. Cramton does not appear to consider the possibility that
the buyer could make a counteroffer q which would induce the seller
to accept q rather than wait and play his continuation strategy. of
course, this behavior can be made a sequential equilibrium, if the
seller revises his beliefs "optimistically” about the buyer when he
receives an offer q < P(t) at time t. Cramton chooses P(t) to be
the certainty Rubinstein solution in the game between the seller and
the particular buyer at t who in equilibrium offers P(t). Thus he
constructs the equilibrium to be the solution to a particular
concession game.

This argument has also been used by Grossman [6], Kreps [10], Kreps
ana Wilson [11], Milgrom and Roberts [12] and Myerson [13].

In what follows we only consider S.E. where a revision in beliefs does
not increase the support of the distribution representing the seller's
beliefs. Further we only consider pure strategy equilibria.

Our method is thus different from that followed by Sobel and
Takahashi [17], who first solve a game where the players live for 1
period and then inductively solve the game where players live for N
periods. Our method is similar to that used by Fudenberg, Levine and

Tirole to analyze bargaining games where only the uninformed player

makes offers.
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When we say uniqueness, we mean uniqueness of the equilibrium outcome.
It might be that there is another equilibrium, where the unacceptable
offers are different. Yet, the price and the time of agreement with
each buyer are the same as in the proposed equilibrium.
Our notion of equilibrium is much stronger than Sequential
Equilibrium, and hence there are parameter values (of e.g., §) such
that a buyer can deviate from an equilibrium where Pa= GV(he,Pa). In .
particular a buyer can offer q < SV(bc,ba) such that if the seller
believed that hHe played against a particular K C [bc’ba]’ then
q 2 6V(K), so that he accepts, and all b ¢ K are better off than along
the equilibrium path. One weakening of our equilibrium concept for
which the functional equation gives the unique p,3.E, is as
follows. 1Instead of requiring that the seller, upon observing a
deviation by a set K of buyers, revises his beliefs as if every one
in K 1is equally likely to have deviated, suppose instead that he is
allowed to choose any posterior distribution W with support K as
his belief. Further, suppose we impose the continuity requirement that
if K is close to the set [besbal, members of which in equilibrium are
supposed to make an acceptable counteroffer Pa’ then W should be
close to the equilibrium posterior. This preserves uniqueness of
equilibrium because the P.S.E. updating arguments were always used to
rule out situations where Pa > 6V(bc,ba). If the seller gets a
counteroffer q = Pa—e, and € 1is small then a group K of buyers
close to [bc’ba] will be made better off, and by the continuity
assumption the seller's posterior will be close to the equilibrium
one, and hence the value of the continuation game §&V(K) will be
close to 8V(bc,bg), so he will accept the offer. On the other hand, the
non-existence problem arises when Pa = GV(bc,ba) and buyers deviate
to q = Pa-e. Here the seller could choose a posterior which is
optimistic about the top group of buyers in K = [bc—el,ba+e2], where
K 1is the set of buyers who are made better off if q were accepted.

He can then reject q as less than the optimistic value of the game

with K, so the deviation is not successful.
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Where the support is [0,1], the seller would have to

en

Therefore, the seller’s percentage price-gain from b

offer price 0 to

sure that all buyers would accept without further bargaining.

argaining is infinite.
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Figure 3
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Figure 4
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TABLE 1

DAYS BETWEEN OFFERS 2 1 .5 .1
Uniform Distributio: Expected Days of Bargaining 73 38 20 4.1
Support is [1,25]

Expected Price Increase from | 32% 16% 8.4% 1.7%
Buyers May Bargaining
Make Counteroffers

Maximum Periods of Bargaining| 62 64 66 68
Uniform Distribution Expected Days of Bargaining 39 21 11 2.1
Support is [1,25]

Expected Price Increase from | 8.6% 4.4% 2.2% .45%
No Buyer Bargaining
Counteroffer :
Permitted Maximum Periods of Bargaining| 41 43 43 43
Uniform Distribution Expected Days of Bargaining 110 64 35 7.7
Support is [1,50]

Expected Price Increase from | 100%  56% 30% 6.3%
Buyers May Bargaining
Make Counteroffers

Maximum Periods of Bargaining| 110 120 130 140
Uniform Distribution Expected Days of Bargaining 72 37 20 3.9
Support is [1,50]

Expected Price Increase from | 30% 16% 7.9% 1.6%
No Buyer Bargaining
Counteroffer
Permitted Maximum Periods of Bargaining | 75 77 79 79
Uniform Distribution Expected Days of Bargaining 120 72 41 9.2
Support is [1,100] '

Expected Price Increase from | 130% 71% 39% 8.5%
No Buyer Bargaining
Counteroffer
Permitted Maximum Periods of Bargaining | 140 160 -170 190
Uniform Distribution Expected Days of Bargaining 120 86 61 27
Support is [0,1] jﬂ_ _

Expected Price~= .016 .012 .0082 .0037
No Buyer : .
Counteroffer Maximum Periods of Bargaining | =% o0 o0 OO0

Permitted

%All games were solved on

except that the game with support of [1,100] used

game [0,1] was solved analytically usin






