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1. Introduction

In applied econometric work it is not uncommon to have several substantially dif-
ferent models that can claim success as empirical explanations of a particular economic
phenomenon. A léading example, if not the leading example of this, is the assortment of
models that explain the time series demand for business fixed investment (hereafter, simply
“investmenﬁ”). Although there may be no “true” investment specification that explains ac-
tual investment patterns, it can be agreed that the absence of a consensus empirical model
not only inhibits investment policy formulation and complicates investment forecasts, but
also adversely affects the usefulness of theoretical and empirical macroeconomic models
whose interpretations hinge on the precise form of the equation(s) explaining net capital

formation (cf. Feldstein {1982)).

Recent dramatic swings in aggregate investment expenditures, and in the underly-
ing microeconomic and macroeconomic conditions that determine the rate of investment,
have provided empirical investigators with a unique opportunity to test and cross-validate
conventional models of investment. Several recent studies (e.g. Kopcke (1977) and Clark
(1979)) have developed rankings of investment models using goodness-of-fit or statistical
prediction error criteria similar to those used in earlier comparisons of investment models.!
This work has generally concluded that there is modest support for investment models that
use output or sales variables, and that there is little support for models that employ the
user cost of capital or g. Few of these studies have, however, provided formal justifications
or motivations as to why goodness-of-fit or forecast errors are appropriate comparative
criteria. Further, the small sample size and power properties of these ranking procedures
are rarely, if ever, considered.

Several recent refinements in the theory of nonnested specification tests suggest that
in addition to or in place of the discrimination criteria used before, specifications should
be compared on the criterion of whether they can show that other candidate models are

misspecified (see Pagan (1981) and the excellent review by McAleer (1984)). Although

! Early comparative studies of investment include Kuh (1963), Jorgenson and Siebert
(1968), Jorgenson, Hunter, and Nadiri (1970a, 1970b), and Bischoff (1971a).
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several studies have used these tests to compare different macroeconomic time series models,
there are at least three reasons why these nonnested testing principles have not been more
widely applied to macroeconomic time series such as investment.? First, nonnested tests
have not been developed for general time series models that possess mixtures of serial
correlation, lagged dependent variables, and endogenous variables.®> Second, there is some
evidence that the asymptotic critical values of existing nonnested test procedures tend
to reject the null hypothesis too often in finite samples.* Third, in more complicated
practical applications, especially when one wishes to implement nonnested tests based upon

maximum likelihood techniques, these tests can be quite burdensome computationally.

This paper explores the usefulness of nonnested testing procedures for evaluating lin-
ear regression models when the disturbances of the candidate models are first-order serially
correlated. Specifically, we examine the usefulness of nonnested tests as a means for de-
tecting whether serial correlation in time series residuals reflects specification error. The
paper begins by extending and discussing existing nonnested test criteria of Pesaran (1974),
Fisher and McAleer (1981), and Davidson and MacKinnon (1981) to situations involving
first-order serially correlated errors. A number of asymptotically equivalent nonnested test
statistics are derived, and the tradeoff between their respective computational complexities
and their finite sample properties is evaluated. We then compare the finite sample perfor-
mance of these alternative tests on four conventional nonnested models of macroeconomic
investment demand. The data we use are quarterly U.S. business investment for structures
and equipment from 1951:1 to 1983:IV. We initially find that none of the traditional models
is satisfactory. Before concluding that these conventional models of investment demand are
inadequate, we investigate the hypothesis that there is a finite sample bias in the size of

the test. After adjusting for finite sample biases, we find that we are able to accept the

2 Two notable applications of nonnested tests in the investment literature are Bean
(1081) and Poterba and Summers (1984). These two studies, however, use nonnested
specification test principles developed for the classical linear model with spherical normal

disturbances.
3 For exceptions see Pesaran (1974), MacKinnon, White and Davidson (1983), and Er-

icsson (1983).
4 This tendency was noted by Pesaran (1974) for small sample sizes and has been

confirmed by other investigators for different statistics and different problems (e.g. Ericsson
(1983)) .



equipment accelerator model. We conclude by discussing different conditions under which

the significance levels of these different statistics are likely to be overstated.

2. Nonnested Testing Procedures with Serially Correlated Errors

Pesaran (1974), MacKinnon (1983), McAleer (1984), and the Journal of Econometrics
special issue (1983) on nonnested hypothesis tests provide excellent introductions to the
theory and application of nonnested tests. Currently, applied investigators can choose
among several different nonnested procedures. These procedures differ not only in their
computational requirements, but also in their generality and the statistical assumptions
they require. A number of monte carlo studies have also shown that there are important
computational and statistical tradeoffs among these alternative test statistics (cf. Pesaran
and Deaton (1978), Davidson and MacKinnon (1981), and Pesaran and Godfrey (1983)).°
Moreover, a fundamental complication that arises in attempts to evaluate these different
nonnested tests is the multiplicity of ways in which each of these different approaches
can be implemented. This multiplicity occurs both because practically there are many
asymptotically equivalent ways of writing down any one nonnested hypothesis test and
because of conceptual ambiguity in defining the family of alternative models.® At present,
there appears to be little consensus on whether any one approach is generally more preferred

than another.

One practical situation where specification tests would appear invaluable occurs when

a time series model exhibits highly serially correlated disturbances.” For example, Granger

5 Most monte carlo studies of the finite sample performance of these tests are based
on bivariate regression models. There have been relatively few practical applications, and
to our knowledge no published applications, of these tests that have used monte carlo or
bootstrap techniques to evaluate the performance on actual data. Indeed, these tests are
routinely applied and evaluated on the basis of asymptotic critical values despite warnings
that may or may not have been adjusted for known biases in the nominal finite sample size
of the test (see especially the warnings of Davidson and MacKinnon (1981), Godfrey and
Pesaran (1982), and Pesaran (1982)). Finally, the power of these tests against particular
alternative specifications rarely receives consideration.

6 Pesaran (1982) examines these issues in comparing the approaches of Fisher and
McAleer (1981), Davidson and MacKinnon (1981), and others. See also the discussion

in McAleer (1984).
7 Except perhaps if the investigator has a theory that predicts that the disturbances are
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and Newbold (1974) argue that serial correlation in the residuals of time series models
often reflects specification errors due to omitted or incorrectly included variables. Most
econometrics texts take a similar, albeit more prescriptivé position on serial correlation.?
After warning that serial correlation may reflect different forms of specification error in time
series mciiels, they typically develop efficient generalized least square formulae for linear
models with serially correlated random errors. In practice, applied investigators have used
these generalized least squares methods because it is known that serial correlation of random
disturbances will bias the ordinary least squares estimates of the coefficient standard errors.
However, for most applications, this statistical response of estimating a serial correlation
parameter is at odds with the prior acknowledgment that the estimated disturbances may
contain omitted variables. Further, this response is even less appropriate if the investigator
has several alternative models under consideration, as all but one (or all) of the models are
known to be misspecified.

One response to the presence of serial correlation among several nonnested models
might be to use conventional F or chi-square tests of exclusion restrictions to see if vari-
ables from other models might belong in a particular specification. Although such tests are
feasible as long as the explanatory variables are not perfectly collinear, it is unclear whether
these tests have high power in applications where the candidate variables are highly corre-
lated.® Apart from these computational and power considerations, it iz also important to
note that a crucial feature of these conventional tests is that they are only a partial check

for misspecification. To see why, note that the above tests are partial (or uni-directional)

serially correlated. For example, certain transformations of an original model (such as the

Koyck transformation) may produce serial correlation.
®  For instance, Johnston (1972) in his econometrics textbook states

In general, we include only certain important variables in the specified relation,
and the disturbance term must then represent the represent the influence of omit-
ted variables ... If the serial correlation in the omitted variables is pervasive and
if the omitted variables tend to move in phase, then there is a real possibility of
an autocorrelated error term. A disturbance term may also contain a component
due to measurement error in the ‘explained’ variable. This too may be the source
of serial correlation in the composite disturbance. [page 244]

® For some comparative evidence on this issue see Pesaran (1974) and Ericsson (1982).
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tests in that they Vtypically test whether the serial correlation in the null model contains a
specification error that is related to variables in the alternative models.!® That is, these
tests only ask whether variables in the other models are capable of rationalizing the null
model’s serially correlated disturbances as misspecification errors. However, it is important
to recognize that if the null model is the true model, then it should also be able to explain
the serial correlation present in the residuals of the candidate models. Thus, for example
if we made the null model (which is true) the alternative model, and made one of the false
alternatives the null hypothesis, we should be able to conclude the serial correlation in this
new null reflects omitted variables contained in the (true). alternative model. In short, if
one model is true, then we ought to be able to rationalize the serial correlation in the other

-models as omitted variable specification error.

Most nonnested test procedures are based upon this practice of interchanging the
null and alternative models as a check for specification error (cf. McAleer (1984)). The
application of this interchanging principle would seem therefore to have a straightforward
interpretation for macroeconomic time series models with serially correlated disturbances,
apart from the need to work out the specific form of the test. There is, however, one
potential complication that is created by the use of generalized least squares techniques
to estimate and then separately compare both the null and alternative time series models.
Use of generalized least squares on a false model (by simply ‘tacking on’ a serial correlation
process for the disturbances) may remove some of the specification error serial correlation
that one is attempting to diagnose with these tests. If this “masking” can occur, then it
could be extremely difficult to uncover misspecification errors when generalized least squares
techniques are used to estimate the candidate models. We shall return to this point below
in the analysis of the investment models. First, however, we shall develop several nonnested

testing procedures for time series models with first-order serially correlated errors.

10 There are several possible interpretations of why all the models under consideration
could have serially correlated errors. First, there may be one model that is correct and

has “true” serial correlation. The serial correlation in the other models could then then
be attributed to be a combination of the original serial correlation and serial correlation of

the specification error. On the other hand, the serial correlation may be evidence that all
models are misspecified and that none of the alternatives is correct.
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2.1 The Cox-Pesaran Statistic

To date, only Pesaran (1974) has explicitly treated serial correlation in the context of
nonnested hypothesis tests.!! Pesaran’s approach assumes that both models are linear and
have first-order serially correlated errors of the form

H, : y= Xﬂ + u, Ut = Poliot—1 + Vot
(1)

Hy: y=2Z7+u U1 = pré1e—1 + V1e.

The regressors X and Z are matrices of known constants and it is assumed that the dis-

turbances, u, and u;, are normally distributed with mean zero and variance-covariance

matrices
1 pe P2 pT
2 1 T-2
o Po Po e Po —
Blug)= -2 | %0 P —a2rt=n,
1- 3 . . . . .
pTt pT2 ]
1 A p1 ot
2 1 T-2
o 1 L .- P _
E(wu}) =7 | . .. . | =R =0, (2)
P1
T— -
P1 t p'f 2 ... .

From this framework, Pesaran derived Cox’s nonnested likelihood ratio statistic (denoted

here by CO) that tests whether H, is the correct model. Its form is (his equations (S.4)
and (S.21))

T o2 1, 1-p2 o N\
= Var C0)~% = { Zin—L + = o To (¢ _
Cl = {CO0} (Var C0)"3 {2 ndfo + 21n1 - p%} <‘7fo (e De)ﬂ) (3)

where ¢ = X8 — 27 = (y — Z7) — (y — XB) = u1 — u,, 07 is the variance of vi (i
= 0, 1), 0%, is the probability limit of o? under the assumption H, is true, and D =
Ryo[R;' - X(X'R,X)~*X'|Ryo. This statistic is asymptotically distributed as a standard

normal random variable if the null hypothesis is true (see Pesaran (1974)).

11 Walker (1967) has also constructed Cox tests for moving average and autoregressive

time series models.



From a practical standpoint, this statistic i3 cumbersome computationally, because it
can be impleinented only after a system of nonlinear equations has been solved.!? This
computational drawback appears to account for its not being used. At present, we also
do not have any information on the finite sample properties of this test. It is possible,

however, to simplify Pesaran’s statistic by examining its asymptotic properties.
2.2 Simplifications of the Cox-Pesaran Statistic

To simplify C1, note that the asymptotic distribution of this statistic depends only
upon the first term (as can be seen by appropriately standardizing C0). Appendix B shows
that by taking a Taylor series expansion of the first term about zero, one can obtain the
following two asymptotically equivalent statistics:

o2 =T ( zi:a_?o) , ()
2 \o,(e'De)3

and

c3 = (M) (5)
oo(e!De)d

The first statistic is comparable to the computationally simple Cox likelihood ratio statistic
discussed in Atkinson (1970), Pesaran and Deaton (1978), and Fisher and McAleer (1981).
In this particular application, however, it is not that much more computationally conve-
nient because it still requires the solution of the nonlinear maximum likelihood estimating
equations. The second asymptotic form of the Cox Neyman-Pearson test does not look
that much simpler, yet it actually is related to another nc;nnested testing procedure, the

P-test proposed by Davidson and MacKinnon (1981).
2.3 Comparisons to the Davidson and MacKinnon Tests

The comparability to the Davidson and MacKinnon P-test can be seen by considering

an auxiliary regression of the form:

y—-XB=Xr+R'R(Z7 - XB)) +n, (6)

12 Another potential problem is that it has not been shown that these equations have a
unique solution. Further, there is no guarantee that in small samples successive substitu-
tion methods will necessarily find a fixed point that corresponds to the maximum of the

likelihood function.



or in more suggestive notation,
o= X7 — RS 'Ryéd +1n (1)

where the “hats” ("’s ) denote maximum likelihood estimators. Applying generalized least
squares to ihis equation assuming the null hypothesis applies and E(nn') = E(u.u}) = Q,,

yields an estimate of A

A= = (FRYBIY - X(X'R,X)" X" Ry &)Y Ry (I - X(X'R,X) "' X'R, )i,
(8)

= (¢'Dé)"YeR, i,

where D = Bj[R;! — X(X'R,X)~*X'|R,. This estimate of A can be thought of as an
auxiliary mixing parameter that measures departures from the null model. To test the
null hypothesis that H, is the true model, we test the null hypothesis that this auxiliary
parameter is zero. This test can be carried out in a t-ratio form once we have an expression
for the asymptotic standard deviation of X. It can be shown that if the errors satisfy
regularity conditions given in White (1984, Chapter 1), then a consistent estimator of the
asymptotic variance of Xis

Asy Var (}) = o2(¢'Dé)™1. (9)

Computing the t-ratio for A we obtain

é' Ry 1,

Pl = - (W) . (10)

That is, the Davidson and MacKinnon P-test regression given by equation (6) yields a t-
statistic that is asymptotically equivalent to C3. (Note, however, that maximum likelihood

estimators have been substituted for the unknowns and the sign of the statistic is reversed.)

The derivation of the P-test regression illustrates that in practice there are many
estimators of the alternative parameters that could be used to construct nonnested tests.

For example, for é we could use either Xﬁ — 74, which is the form recommended by

Davidson and MacKinnon (1981), or X8 ~ Z710, which is the form recommended by Fisher

and McAleer (1981) (cf. Pesaran (1982) for a related discussion of these different forms of
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the test).!® The first of these tests we have labelled P1. The second, with R0 substituted in
place of R, will be referred to as P2. The choice of P1 or P2 for any particular application
should be guided by some consideration of their finite sample properties and computational
difficulties. On the former issue we have no prior information. In general, P1 will be easier
to implement because it does not require Rjg or 410. As equation (10) stands, however,
there is not that much of a computational savings because of the complexity of the auxiliary

matrices R7!R; and R;1R,o.
2.4 Comparisons to Cox’s Exponentially-Mixed Likelihood Function Test

As an alternative approach to generating a simple nonnested test for this particular
application, we can adopt Cox’s exponential mixing of likelihood functions principle (see
also Pesaran (1982) and Davidson and MacKinnon (1983)).'* Following Pesaran (1982),
we can create the combined likelihood function
Pas

= g (11)
fa, o '\Li\ dy

L(ﬂ’ b Po: b1, ’\)

where L, and L, are the likelihood functions of u, and 4, under the two respective alter-
natives, H, and Hy, R, is the T-dimensional domain of y, and A is a mixing parameter.

Under multivariate normality on both errors, this composite likelihood function is

LB por o1, N = 257 F 1 e {~ 3wl (12)
where
u=y - (1-2) 007! X3 - ana7! Z4 (13)
and
R R
=1 (1 -\ 222 bt
Q=0 ’\)ag+’\a§' (14)

That is, the exponential mixing approach leads to a regression model

y=(1-200;' X8+2007! Zy +u (15)

13 Here, the estimators 7;9 and R;o are the maximum likelihood estimators of 4 and R

assuming the null hypothesis is correct.
.14 For a discussion of this mixing approach and alternative approaches to mixing the

likelihood functions see Quandt (1974).



where the error structure depends on A.

An obvious problem with trying to estimate directly the regression equation (15) is
that not all parameters are identified by equation (15) alone.!® In particular, it is crucial
to note that the mixing parameter A cannot be separately identified from the variances of

the v;. To see this, note

(1-2)0a5! =I-xqa7!, (16)

where I is a TxT identity matrix. Substituting equation (16) into equation (15) gives

y=XB-2007" e+ u. (17)
Writing out /\QQI—I,
1- A)o? -
/\QQII = (I+ (—Tg)a—l‘Rl—lRO) (18)
or
-1 1- 5 -1 -
a0yt = I+ —— R R, (19)
where
Aod

S v B Ry

Thus, equation (17) becomes
y=XB-E(ER +(1~E)Ro)™ Ryetu (20)
Expanding the term in parentheses in a Taylor series about £ = 0 we obtain,
y=XB—-E(Ry'Rie+utv (21)

where v represents the remainder term of the expansion. This regression equation is com-
parable to the Davidson and MacKinnon P1 test regression provided we interpret A in (6)
as being £ in equation (21).

In practice, the exponential mixing likelihood function and equation {20) could be

implemented using the same nonlinear methods used to identify the parameters in the

15 This point is well known for the case of two nonnested univariate regressions with
spherical normal errors and is due to Atkinson (1970) (see also Pesaran (1982)).
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first Cox statistic (equation (3)). Some further computational savings can also be made
in implementing this test by comparing the regression (21) to the Lagrange multiplier
tests discussed in Breusch and Pagan (1980). That is, the test statistic from regression
(21) can be reinterpreted as an auxiliary regression nR? test. Once again, however, it is
unclear whether there are any finite sample advantages to be obtained by using this more

complicated nonnested model misspecification test.
2.5 Other Forms of Nonnested Tests

Finally, as a practical and more simple computational alternative to these maximum
likelihood and mixed regression procedures, one could abandon the strict mixing interpre-
tation of A and its appearance in the disturbances, so as to reduce the nonlinearities in
equation (15). Once we abandon a strict mixed likelihood function approach to testing for
misspecification, it is possible to obtain a variety of easily implemented nonnested specifica-
tion tests. These tests can be derived directly by noting that if H, is asymptotically correct,
then almost any estimate of y that employs an estimate of Z+4 (such as the second right
hand side term in equation (15)) can be used in a P-type specification test of H,.!® For
example, an extremely simple nonnested test is motivated by what investigators have done
previously in compa;ring time series models that exhibit serially correlated disturbances
(Pesaran and Deaton (1978), Davidson and MacKinnon (1981), and Bean (1981)), which
is to ignore serial correlation and to apply nonnested tests assuming classical (spherical)
diséurbances. Such an approach may be attractive because it avoids the possibility that
the estimation of serial correlation process may mask the presence of omitted variables
in the disturbances. For example, Davidson and MacKinnon {(1981) compared alternative

macroeconomic consumption models with serially correlated errors by applying ordinary

16 This indeterminacy of nonnested specification mixing has drawn some criticism in the
literature (e.g. Pesaran (1982)). Given the computational complexity of the nonnested
procedures based upon (perhaps equally ad hoc) mixtures of likelihood functions, however,
it is an open question as to whether the added computational complexity results in better
finite sample properties of the test.
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least squares to!”

fip = X7 — MXB - Z7) + 4o (22)

where the “tildes” { “’s ) denote ordinary least squares estimators. One could also consider

applying unconstrained least squares to
o = X7+ A2 + u,, (23)

following the suggestions made in the paragraph above. Moreover, instead of ignoring the
serial correlation of the residuals, one could also think of preserving the simplicity of the
above tests by applying generalized least squares to equations (22) and (23) (using Q,),
and testing whether ) is equal to zero using the t-test procedures described above.!® These
tests can all be made asymptotically valid t-tests of H, because under the null hypothesis
y = XB + u,, and Z7 is extraneous to the asymptotic distribution of the test statistics.
It is unclear, however, whether the choice of estimator for Z+4 can dramatically affect the

finite sample properties of these statistics under the null hypothesis.!?

The existence of a variety of asymptotically equivalent tests with substantially differ-
ent computational costs naturally raises the issue of whether there are significant finite
sample size and power differences among these alternative procedures. Indeed, in most
practical applications it will be difficult, if not impossible, to tell whether a large number

of observations guarantees that the asymptotic distribution of the different test statistics

17 Although some of their consumption models were nonlinear, the generalization of
this statement to nonlinear settings is straightforward. One could also consider applying
generalized least squares to equations (22) and (23) to correct the standard errors. In
the monte carlo experiments reported in the next section, we found that the two methods

yielded essentially the same results.
18 These are just a few of the many possible tests one could consider employing. Other

tests could adjust Z~ to take into account the serial correlation in the the alternative
specification by estimating

o= XB+ A(Zy — p12:—1)7 + p1u14—1) + u

according to the test principles of the previous paragraph.
19 Moreover, it is also important to consider how the choice of Z+v affects the power of

these test procedures given the interchange of null and alternative hypotheses.
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20 In many applications it may also be difficult

is close to their finite sample distribution.
to defend the normality assumption required by the maximum likelihood test procedures.
Consequently, we propose evaluating the finite sample properties of these tests using monte
carlo techniques. In particular, in section 5 we use monte carlo evaluations to gauge the

size and the power of these tests against specific alternative investment models.

The next section describes the investment models used in our study; the following
section briefly discusses the data; and the final section presents our evaluations of the

investment models and the test statistics.

3. An Application:

The Lack of a Consensus Model of Macroeconomic Investment Demand

A number researchers have attempted to form a consensus models of investment de-
mand by evaluating empirically the performance of alternative theoretical and hodgepodge
models on the same set of investment data. These studies have typically sought to mea-
sure and rank model performance on the basis of within- or out-of-sample goodness-of-fit
criteria. Given the arbitrariness of these ranking criteria, however, it is not surprising that
investigators can disagree on the merit of alternative models. Such a dilemma is apparent

in Stephen Goldfeld’s remarks on Peter Clark’s (1979) investment specifications:

“However, because these models [modified neoclassical and accelerator] are non-
nested-that is, neither is a special case of the other-it is slightly problematic
to choose between them. Standard errors within the sample favor the modified
neoclassical model, but a forecasting criterion (measured either by anticipated
forecast error or actual forecasts) reverses the ranking, leading Clark to prefer the

accelerator model...” [p.118]

This section describes four traditional economic models of aggregate investment de-

mand that we are interested in comparing.?! These models are widely used (see for example

20 The dependence of the different t-statistics on estimates of the two serial correlation
parameters currently precludes the possibility of analytically deriving the finite sample

distribution of A, even under normality on the disturbances.
21 By “traditional” we mean “a traditional model in existence prior to the Lucas (1976)

critique.” We do not consider post-critique models here primarily because these models
usually do not fit into our linear regression format and they therefore would substantially
increase our computational burden in the monte carlo section. It remains an open question
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Clark (1979)) and our descriptions will therefore be brief. One major difference that should
be noted at the outset, however, is that we will be comparing net investment equations (in-
stead of the gross investment equations that are usually estimated). This change is made
to avoid the problem of conducting the estimation and hyp4othesis test with what amounts

to a (definitionally related) lagged dependent variable on the right hand side.?? rates.

3.1 Accelerator Model

The generalized accelerator model is closely associated with the work of Chenery (1952)
and Koyck (1954). This model. assumes that the economy’s “desired” level of capital stock,
K., is proportional to the current level of output, Y;; or, equivalently (assuming initial
equilibrium}), that the desired rate of net investment is proportional to the first difference
of output. A strict application of the accelerator principle implies a greater volatility of
investment spending than what has been observed. Hence, a costs-of-adjustment argument
is usually invoked (see Clark) in support of the assumption that actual investment is linked
to desired investment via a distributed lag. This leads to a specification for actual net
investment, I,, of the form

N .
Ig =qa + Zﬂ.AYg—, + u, (24)

o=0
where N is the lag length, a and the 8, are scalar parameters to be estimated, A is the first-
difference operator, and u, is an additive random disturbance. In estimating this model, as
well as the neoclassical models (which are also of the basic accelerator form), we followed
Clark in including a constant term. (See Clark’s Appendix A.) Also following Clark’s
specification of accelerator and neoclassical models, we divided the dependent variable by a
measure of potential output. We departed from Clark’s specifications, however, in that we
did not constrain the lag coefficients to lie on a particular polynomial. Instead, we chose

to freely estimate eleven unconstrained lag coeflicients on changes in output.

as to how good these traditional models are when compared to more recent models. For
recent an example of recent work on nonnested testing procedures applicable to these new

models see Singleton (1984).
22 In using net investment as our dependent variable we are implicitly ignoring that we

have introduced specification error by using estimated depreciation rates. In both the
actual estimation, and in some of trial monte carlo analyses, we considered the statistical
consequences of using estimated depreciation rates and found them to be minimal.
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3.2 The Neoclassical Model

Jorgenson’s neoclassical model was the second model chosen for comparison. It incor-
porates capital costs into an accelerator-type specification. Assuming that the aggregate
production function is Cobb-Douglas, and defining the desired capital stock K] as the level
at which the marginal product of capital services equals their rental price, one can write
the desired capital stock, K, as

Ct

where 7 is the Cobb-Douglas capital-share parameter, p, is the price of output, and ¢, is
the rental price of capital services (discussed further in the data section). Imbedding (2)

in the generalized accelerator specification yields

N oY
I = a+§)ﬂ,A(-c—)¢_.+u,. (26)
The distributed lag on the first difference of the desired capital stock terms was left uncon-

strained and estimated over eleven quarters.
3.3 The Modified Neoclassical Model

The modified neoclassical model is a variant of the neoclassical model due to Bischoff
(1971a, 1971b). Unlike the standard neoclassical approach, Bischoff’s model allows for
“‘putty-clay” capital. That is, he acknowledges the possibility that it may be easier to
modify factor proportions and thus the capital-output ratio ez ante. Bischoff shows (see

the references just noted) that a simple version of the putty-clay hypothesis implies the

formulation
- Pt—o—1Y - Pt—s—1Y,
I = a+§:ﬂ1,[g—_¢_—_-]+z:ﬂ2_[ug] + u,. (27)
o=0 Ct—p—1 o=0 Ci—p—1

In estimating equation (26), we again truncated the distributed lag at eleven quarters.
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3.4 The Securities-Value or ¢ Model

The securities-value or “Tobin’s ¢ model of investment posits that the rate of net
investment should depend on the ratio of the market value of capital to its replacement
cost (Tobin’s g). Although a strict interpretation of the theory underlying this principle
suggests that current investment should depend only on beginning of period values of g, it
is well-known that investment is related to lagged g as well. Thus the standard empirical

specification is

N
L=a+ Zﬂ-‘b—a + u,. (28)

=0

Clark (1979) and Summers (1981) normalized investment in the above regression by the
capital stock; so as to have the same normalized investment series in each of our equations,
we have instead deflated investment again by potential output. (Note that the g variable

is a relative price and does not require normalization.)

In his study of the securities-value model, Clark used a quarterly g series constructed
by von Furstenburg (1977). However, Summers (1981) has recently shown that adjust-
ment of the g series to reflect corporate, dividend, and capital gains taxes improves the
performance of the model in annual data. In our only significant departure from the em-
pirical specifications used by Clark (other than replacing gross with net investment), we
constructed a quarterly “tax-adjusted” g series to use instead of the von Furstenberg series

(see Appendix A).

These four models were estimated on quarterly aggregate U.S. data. The sample
period covered 1951:1 to 1983:1V. The starting date was chosen so as to correspond to the
starting date used by Clark. The ending date was determined by data availability. Separate
equations were estimated for equipment and for structures. Except as specified, all data
came from the national income and product accounts. Appendices A and C describe the
data and the data sources in detail. In particular, Appendix C describes our development

of a new g series.
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4. Comparisons of the Investment Models

4.1 Estimation Results from the Investment Data

Table 1 presents the maximum likelihood estimates of the investment equations for the
period 1951:1 to 1983:IV assuming normal disturbances and first-order serial correlation.
As in Clark, separate equations have been estimated for equipment and for structures.

The estimated coeflicients and standard errors are qualitatively similar to those found
in other studies and do not require extensive comment. Viewed in isolation, each of the
models appears “successful”: the estimated coeflicients are unmiversally of the right sign
and magnitude.?3 (The effects of the various explanatory variables on investment are,
however, fypically smaller in magnitude and less persistent over time than those found
by Clark.) Even though the distributed lags were estimated without constraints, the lag
shapes are smooth and the implied dynamic response patterns are of a plausible shape. A
less encouraging feature of the results is that the estimated serial correlation coefficients
are high, typically over .95.2¢ In the ¢ model equation for equipment, for example, j is
close to 1.0.

To compare these results with earlier work and to provide a benchmark with past
specification tests, we calculated several conventional specification diagnostics that have
been used in previous work. These diagnostics are reported below in tables 2 through 4.
These conventional statistics provide a mixed assessment of these different models. Overall,
they suggest that there is misspecification in each of the models.

Table 2 contains: (1) estimated standard errors for both the rho-transformed (row
a) and the untransformed (row b) equations; (2) R? statistics, for the rho-transformed
equations (row c), for the untransformed equations (row d), and for the untransformed
equations; and (3) Durbin-Watson statistics, for the rho-transformed equations. These

statistics are comparable to those presented by Clark and others.?® Based on this table,

23 The one exception is the coeflicients of the g variable at some longer lags. Note also
that the sign pattern for the modified neoclassical model conforms to what is predicted if

investment depends strongly on the first difference of output. See Bischoff (1971b).
24 That the serial correlation coefficients found here are higher than those estimated by

Clark is probably due to his use of more lags of the explanatory variables, as well as to his

inclusion of the lagged capital stock on the right-hand side of each equation.
25 In particular, the R?’s presented by Clark, like ours in rows d and e, “give credit” to
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one might be inclined to choose the modified neoclassical model as the best representation
of the data. Its standard errors for both structures and equipment equations are either the
lowest or close to the lowest attained for both the transformed and untransformed data.
The various R2 measures are also somewhat favorable to the MNC, and the Durbin-Watson
statistic indicates little residual serial correlation after the imitial correction. In contrast,
the neoclassical model seems to be the worst by these same criteria. The other two models

yield mixed inferences.

Table 3 provides further evidence on the specifications of the models based upon their
out-of-sample forecast performance. The two columns of table 3 compare the within—-sample
simulation errors for the period 1951:1-1973:II to the out-of-sample forecast errors for the
forecast period from 1973:111-1983:IV. (This sample break is just before the beginning
of OPEC oil crisis and the 1973-75 recession. It also matches Clark’s sample division.)
In principle, for a model that is correctly specified and stable over time, simulation and
forecast errors should be of roughly equal size. In fact, the forecast errors are several times
bigger than the simulation errors for all of the models. There is a particularly notable
deterioration out of sample in the accelerator and g equations for equipment, and in the

forecasting

o

modified neoclassical equation for structures. In absolute terms, however, th
performance of the various models is not completely dismal; see figure 1 for a graphical

comparison of the forecasts of the various models.

Finally, table 4 significantly weakens the tentative conclusion drawn from table 2 that
the modified neoclassical model is the preferred model. That table presents test statistics
for the hypothesis of no structural change before or after 1973:II. (Our test accounts for
the non-spherical nature of the disturbances, and is therefore a chi-square test; Clark used
an F-test.) The most striking result is that both the modified neoclassical model and of
the accelerator model are unstable models of equipment. investment. This is fairly strong
evidence of misspecification, which contrasts with the generally favorable goodness-of-fit

statistics. for these two models.

We now turn to a more formal nonnested test comparison of these models.

the models for the part of the dependent variable forecast by the term pé,_;. Arguably,

this overstates the success of the various basic models in fitting the data.
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4.2 Test Results

To compare the finite sample properties of these alternative nonnested models of in-

vestment demand, we chose to compare five of the above nonnested tests:28

C1 Pesaran’s (1974) adaptation of the Cox statistic;

C2 the linearized version of Pesaran’s statistic given in equation (4);

P1 the auxiliary regression P-test;

P2 the P-test that employs estimators of the alternative model assuming the null is

correct; and,
P3 the (GLS) t-statistic for A in equation (22).

We have limited our attention to these statistics because they represent the range of com-

putational difficulty and the range of estimators required to test these competing models.

A successive substitution algorithm was used to find the maximum likelihood estimates
of the alternative model assuming that the null is true. (See Pesaran (1974), equations
S.10 to 5.12. Hereafter we shall refer to these estimates as the “Pesaran estimates”.) This
algorithm estimates an initial p19 from the initial maximum likelihood estimates of the slope
coefficients and then determines new estimates of 10 and ¢10. This process is repeated until
the estimates converge. In practice, when the algorithm converged it did so within 20 to 30
iterations, regardless of the starting values. There were several instances, however, where
we had difficulties computing the maximum likelihood nonnested test statistics. First, when
there were more than 12 to 14 lagged exogenous variables in some of the specifications, it was
possible to find more than one solution to the nonlinear equations determining the Pesaran
estimates. This often occurred for modified neoclassical models containing more than 14
lags, and appears to be related to the high correlation among the regressors. Second, when
computing the initial Pesaran estimates of the highly serially correlated equipment g model,
we found that there was no apparent maximum of the likelihood function for values of pyq
less than .9999. As the likelihood function was increasing at this point, we constrained

p1o to equal .9999.27 Finally, there were a number of instances in which the successive

2% To ensure comparability of the signs among the P and C statistics in the following

tables, the signs of P1 and P2 were reversed.
27 Onme could interpret the failure of the Pesaran estimates to have an admissible value
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substitution algorithm failed to converge. For these cases we used a modified Fibonacci
search procedure (on values of py0) to find the maximum likelihood estimates. This modified
procedure was substantially more time consuming, requiring 100-150 iterations on average
(approximately 2.0 CPU minutes on a DEC-20) before successive values of p1g were the
same to five decimal places.

The nonnested test statistics for equipment and structures are reported in table 5.
Under the null hypothesis which we used to develop these statistics in section 2, each of
these statistics is asymptotically distributed as a standard normal random variable. In
comparing the equipment specification test results in table 5, it becomes clear that C1 and
C2 are uniform in their conclusions, while P1 and P2 differ between themselves and are
different from their maximum likelihood counterparts C1 and C2. For example, if we had
only employed C1 or C2 to test these equipment investment models, we would have been led
to conclude that none of the models is acceptable (at a 5% critical level). The accelerator
model, however, is the closest to being acceptable in that it rejects all of the other models
and only is rejected by the g model. If, on the other hand, we had employed only P1,
we would also have concluded that none of the models is acceptable, but this time it is
the modified neoclassical model that rejects the accelerator. Test P2 is the only test that
indicates that the accelerator model cannot be rejected by the other models. When the
accelerator model is made the alternative model, P2 also indicates that the accelerator is
capable of rejecting all but the modified neoclassical model. Finally, P3 provides the most
negative evidence on all the models, indicating that almost all are capable of rejecting each
other.

The results of the tests for the nonresidential structures investment data are similar
to the equipment results as far as the general comparability of the absolute magnitudes of
the different statistics and their rejection of all four specifications. The ¢ model, however,
is now the model that appears to be the closest to being nominally acceptable.

What are we to conclude from this conflict among the test results? Aside from the
obvious point that the ex ante choice of test may influence the outcome, it is important

to note in table 5 that there are very substantial absolute differences in the magnitudes of

of p1o as an indication of misspecification of the {equipment) ¢ model. We, however, chose

to proceed as though it was correct.
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the test statistics. Given they all have the (same) asymptotic distribution under the null
hypothesis, this suggests either that there are substantial differences in the finite sample
distributions of these statistics (for these data and models) or that there can be substantial

finite sample differences in the power of these alternative statistics.
4.3 Monte Carlo Evaluations

The above conflicts suggest that before accepting or rejecting nonnested alternatives
that have test statistics close to the critical values, applied investigators should consider
performing monte carlo or bootstrap evaluations of their test statistics. These evalua-
tions, although somewhat specific to the particular application, could be used to reconcile
any conflicts among the testing criteria and to evaluate empirically their power properties
against any alternative that appears to be correctly specified. Below we illustrate how a
monte carlo analysis could proceed using the equipment models. The equipment models
were analyzed largely because of the marginal rejection of the accelerator model.

The monte carlo analysis was conducted by first generating normal errors whose first
two moments matched those obtained for the original accelerator model.?® Serially corre-
lated errors were then generated using a serial correlation parameter equal to that estimated
for the original accelerator model (pg = .9674). For comparison, we also retained the orig-
inal errors (where implicitly po = 0). Artificial equipment investment series were then
generated using the estimated values of the accelerator regression coeflicients reported in
table 1. A final notable restriction placed on the monte carlo evaluations is that we limited
our experiments to 100 replications in order to reduce the computational and programming
complexity of the comparisons.?® Further, the 100 sets of drawings of the error terms were

constrained to be the same for each test statistic so that the results in tables 6 through 8

28  There are two reasons for the normality assumption. First, normal errors serve as
an important benchmark for the evaluation of the maximum likelihood tests. Second,
inspection of the errors from the actual model could not reject the hypothesis that they
were normally distributed, and indeed the bootstrap evaluations we did undertake did not

produce substantially different results from the monte carlo techniques.
29 Several cases were evaluated 500 times. There was no noticeable changes in the point

estimates of the rejection probabilities for these cases. To obtain approximate standard
errors for the size calculations reported in table 8, one can use the independence of the

(binomial) trials to justify the formula p(1 —p)/100 where p is the test size.
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can be interpreted as 100 comparisons that are similar to those made in table 5 (where all
tests were calculated using the same data). Further details on the monte carlo experiments

are available from the authors.3°

The test comparisons are in tables 6 through 8. Table 6 presents summary central
tendency measures on the empirical distribution of the 100 replications of each test statistic
when the accelerator is the true model. That is, this table attempts to evaluate the adequacy
of the asymptotic normal approximation when the null model is the model that generated
the data. Table 8 presents comparable tail probability estimates that are designed to
evaluate the adequacy of the nominal (asymptotic) size of the four tests when the null

model is true. For the remainder of this sub-section, we consider the results with p = .9674.

The relative inferences drawn in table 5 are consistent with the monte carlo results
in tables 6 and 8. Tests Cl and C2 are similar in magnitude and lead us to similar
inferences about the null. The same is also true for the relationship between inferences
drawn with P1 and P2. However, although all of these tests are asymptotically equivalent,
the P and C tests are not very highly correlated. For example, for the 100 trials where
the (correct) accelerator was compared to the neoclassical model as the alternative, the
pairwise correlations between C1 or C2 and P1 or P2 were below .10. This finding is
consistent with differences observed among comparable statistics for the linear model with

31 As far as the adequacy of the

spherical errors (see Davidson and MacKinnon (1981).
asymptotic normal approximation to the finite sample distribution of the individual tests,
we cannot reject the hypothesis that C1 and C2 have zero mean and unit variance. It is

important to note, however, that the standard deviations are uniformly too large and there

%0 We have limited our analysis to the equipment models to conserve space and to limit
the computational burden. (For example, over 1,800 sets of maximum likelihood estimates
had to be computed to construct table 6.) We also experimented with bootstrap techniques
and found the results to be similar in practice. However, there clearly are different compu-
tational and statistical tradeoffs involved with the bootstrap. (See Efron (1979) and Efron

and Gong (1983).)
%1 The pairwise correlation of C1 and C2 was .99 and that for P1 and P2, .98. These

correlations are virtually the same for the other comparisons when the null model is the
accelerator. When the null model is incorrect and the accelerator is the alternative, the
pairwise correlations among the C and P tests increase. (They range roughly between .2

and .5.)
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is a tendency to observe too many extreme values in one tail. The first two moments of
P1 and the P2 are less close to their asymptotic values, and one can usually reject the
hypothesis that they have zero mean. Finally, the computationally simpler P3 statistic’s
empirical density function is furthest from the asymptotic approximation. Thus, on the
basis of these results, we conclude that it may be well worthwhile to bear the increased

computational complexity of C1, C2, P1, and P2.

Further investigation of the empirical density functions of all of these test statistics
revealed that they are skewed in the direction of their mean. In most cases, this skewness
is a consequence of a thick tail. This thick tail of the empirical density implies that the
asymptotic critical levels will tend to understate the finite sample size of the test and
therefore reject the null too often, a conclusion that is in agreement with evidence from
several previous studies of the size of these tests when the errors are homoskcedastic and
not serially correlated. Table 8 indicates that this bias in the size is more consequential
for P1, P2, and P3, although not insubstantial for C1 and C2 given the length of our time
series relative to the usual amount of time series data used in investment studies. Indeed,
if we use the empirical distribution functions of the test statistics in table 8, the accelerator

model is not rejected by C1, C2, or P1, or P2.
4.4 Serial Correlation as a Reflection of Omitted Variables

Table 7 reports evidence on the power of these tests against the (true) alternative
accelerator model. The table is designed to indicate whether these tests can detect a
misspecified null when there is possibility that the serial correlation correction could mask
the misspecification due to the omitted accelerator variables. The major conclusion that
can be drawn from this table is that the power of these different test statistics is uniformly
high, even when one corrects for serial correlation. Further, the magnitudes of the test
statistics can be used to explain the rather large values of the test statistics reported in
table 5. In other words, the discrepancy of the test values in table 5 with the asymptotic
normal distribution can be reconciled with the statistical properties of these statistics when

the alternative is true.

5. Conclusion

23



This paper explored a number of alternative nonnested specification tests of time series
investment models on quarterly U.S. business investment data from 1951:I to 1983:IV. We
concluded that on the basis of various alternative nonnested test statistics (summarized
in section 2), that no model was acceptable when compared against each of the other
alternatives for either the equipment or structures data. Upon investigating the equipment
model test results for bias in the nominal size of the test, we were able to conclude that
the (pairwise) test results were consistent with the accelerator model being a correctly
specified equipment model. Thus, future evaluations of investment models may wish to use
the accelerator as a benchmark for comparison.

We also wish to emphasize several other features of our results. First, the extension of
nonnested testing procedures of Pesaran, Fisher and McAleer, and Davidson and MacKin-
non to time series models with first-order serially correlated errors is similar to principle to
multivariate models. In practice, these nonnested tests appear to have desirable size and
power properties even when a serial correlation nuisance parameter is estimated and the
only serial correlation is due to specification error. We would recommend, however, that if
the values of these nonnested tests are at all close to their asymptotic critical values that

the investigator evaluate empirically the adequacy of the asymptotic distribution.

Second, in time series contexts of the type studied here, it appears as though the more
complicated C1, C2, P1, and P2 statistics have better finite sample properties than their
computationally simpler counterparts (e.g. P3). Clearly, however, this conclusion and our
monte carlo results must be tempered by the observation that in practice investigators may
wish to consider more general serial correlation or moving average error processes than the
first-order processes. Future work might profitably extend the analysis in Walker (1967)
and Pesaran (1974) to these more complicated situations, and provide comparative finite

sample evidence such as that considered in this article.

Finally, we wish to emphasize that this application also illustrates how useful nonnested
tests can be in detecting whether serial correlation reflects misspecification error. In par-
ticular, our experience with these investment data and models indicates that these tests
perform quite well in a situation where the disturbances of each model are highly serially

correlated and the regressors are temporally correlated within and across models.
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APPENDIX A

The Data and a Description of the Variables

The Dependent Variables

The dependent variable I, is net investment by nonfinancial corporations. Corpo-
rate investment was chosen because the securities-value, or ¢, model is more relevant to
this component of total investment. Corporate investment was constructed separately for
equipment and structures by the following procedure. First, annual nonfinancial corporate
gross investment data (from the Bureau of Economic Analysis) were used to construct a
quarterly gross investment series. Our procedure for interpolating the investment series is
that due to Chow and Lin (1971), where we used a constant and a quarterly series on total
nonfinancial business investment (from the Survey of Current Business: National Income
and Product Accounts) as predictors. Next, the predicted quarterly gross investment series
were cumulated to form gross investment capital stocks. As a benchmark, we used capital
stock data for 1947:IV and 1982:IV in Musgrave (1981), and then set rates of depreciation
(0.03784 for equipment, 0.01412 for structures) to interpolate these values. Finally, net
investment was obtained by subtracting the product of the lagged capital stock and the
relevant depreciation rate from the gross investment series.

In estimating the investment models described in section 3, the net investment series
were divided by potential output, according to the convention of Clark. The potential
output series was obtained from Gordon (1984) and updated assuming 3% growth.

The Independent Variables

Most of the independent variables used in this study also come from the Survey of
Current Business. The output variable, Y;, is the NIPA real gross domestic product of
nonfinancial businesses. In the neoclassical model, p; is the deflator corresponding to Y,.
The variable c; is the rental price of capital and was derived according to Clark’s (1979,

appendix B) procedure using the formula

c__pE(6E+r)-(1—ITCE—D‘ZE-U-ITCE—ZE-U)
B (1-0U)

for equipment, and
ps(bs +r)- (1= ITCs - 2S5 -U)
(1-0)
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for structures. Here, §g and és are the rates of depreciation derived above, pgp and pg
are the deflators for nonfinancial business investment (from NIPA), U is the corporate tax
rate (we took the highest marginal rate on corporate income from Seater (1982)), and D
is a dummy variable that was set equal to 1.0 when the Long amendment to the Revenue
Act of 1962 was in effect. The discount rate r was constructed exactly as in Clark (1979,
footnote 40). The present value of a dollar’s worth of depreciation allowances (ZE and ZS)
used the formulae given in Hall and Jorgenson (1967), where data on the average lifetime
of investments from Jorgenson and Sullivan (1982) and the BAA bond rate (from Survey
of Current Business) were used in the discounting. The rates adopted in the investment
tax credit, ITCg and ITCg were also taken from Jorgenson and Sullivan (1982).

The tax-adjusted g variable was constructed using the general form of Summers’ (1981)

q series,

_ 1 (V - B
=1-v 'K
but with several modifications.. The major deviation from Summers’ formula is that we did

—1.0—b—ITC+U-Z>

not include a correction for future tax liabilities on dividends. A rationale for this omission
can be found in Poterba and Summers (1983). The components of this equation are defined
as follows.

The nominal market value of firms, V, is the ratio of dividends paid by the nonfinancial
corporate sector (NIPA) to dividend yield (Standard & Poors 500). The nominal capital
stock is K = ppgKg + p,Ks + INV, where pg and pg are the investment deflators, Kg
and K are the stocks of real equipment and structures. The variable INV is nominal
inventories of nonfinancial corporations. This series was also interpolated from annual data
by the method of Chow and Lin. The interpolation formula used quarterly data on business
inventories from NIPA and a constant term.

The investment credit ITC and the present value of a dollar’s worth of depreciation
allowances are investment-weighted averages of the relevant constituent variables. The
variable B is the ratio of debt to capital (K'), where the debt of nonfinancial corporation
was derived as the ratio of net interest payments (NIPA) and the rate of interest (the BAA
corporate rate, from Survey of Current Business). To derive B, the present value of depreci-
ation allowances of nonfinancial ccrporations, we defined the taxable capital stock, KT AX,

as the capitalized difference of the value of total investment (equipment and structures)
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minus capital consumption allowances, CC A (excluding capital consumption adjustment,
from NIPA). To reduce the effect of an inaccurate initial value, we set KT AX equal to the
actual capital stock in 1931:4 and started the capitalization from that date. B is then the
present value of reduced taxes due to depreciation of the current taxable capital stock,

br
B=U-: -KTAX,
54+7‘3(1-—=U)

where rg(1—U) is the quarterly, risk free, after-tax interest rate (on long term government

bonds, Standard & Poors), and §; = }%,QAA—X is the rate of tax depreciation.
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APPENDIX B

Simplification of the Pesaran/Cox Statistic
for Autocorrelated Errors

This appendix outlines the asymptotic simplifications of Pesaran’s Cox statistic. The

numerator of the Cox statistic is given by Pesaran’s equation (S.4
g q

T, o} 1, 1-p
=2In -

2 0%, 2 1= g3

(A.1)
Taking a Taylor series expansion of this expression, and retaining all terms that do not

vanish asymptotically when C1 is standardized by the square root of the sample size,

yields

T 2 _ 2
cz:a(ﬁ?;ﬂ). (A.2)
10

It is easy to show that the asymptotic standard error of C2 is

VVar (C2) = \/Var (C1) = =2 (¢'De)} (A.3)

O10
where € = XA — Zv10 = (y — Z710) — (y — XB) = u1 — u,, D =R7'[R, - X(X'R;* X)™!

X'|R7Y, and 02R;! = Q, and 0fR7 ' = Q;. The asymptotic t-ratio for C2 is therefore

2_ 2
_c T <___—"1 Tio. ) (A.4)
Var (C2)3 2 \oo(e'De)3s

This expression can be simplified by noting

!’
2 uy R1U1
= A5
71 T (A.5)
and using Pesaran’s estimating equation (S.6),
? ! p
o € Rioe  u. Riot,
= 6
%10 T T (A )

where Rjg is the probability limit of R; assuming the null hypothesis is correct. Substituting
equations (A.5) and (A.6) into (A.4)

o9 (u{,(Rx—sz)"o + f'(Rl';R”’)e + G'Rm“o)

Var (C2)3 N oo(e'De)d

(A7)
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Under H,, p; converges to p1o and Slutsky’s theorem can be used to show that the first two

terms converge in probability to zero. Thus, asymptotically Pesaran’s statistic is equivalent

(ienaw) s

to
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APPENDIX C
The Quarterly. Tax-adjusted q-series

This appendix contains our g-series, as computed using the formula in appendix A,

and compares it to that of Summers (1981).

A plot of both series for the years in which we have comparable data is provided in
figure 2. The series move similarly over time and a have a high correlation (0.9618 for
the comparable 31 values: 1948-1978). The differences between the two series are small.
The main difference between the two series is in the levels. Apart from differences in data
sources (in particular on lifetimes of investments), this can be explained by our decision
not to over-adjust for dividend taxation. This adjustment increases Summers’ values for

q during this sample period because the factor i:; in Summers’ equation (A-13) is larger

than unity.

The g values obtained from the procedure described in appendix A are:

YEAR Ql Q2 Q3 Q4
1947 .29304 .20494 17301
1948 -.02211 .03242 .03353 -.09147
1949 -.18694 -.21096 -.27100 -.22595
1950 -.17827 12042 .11087 09067
1951 .01004 -.06918 -.216438 -.05107
1952 .04803 -.04260 11115 .01932
1953 .26288 ) .00076 -.03113 -.08092
1954 00608 -.00066 04727 23899
1955 30523 41870 .60327 .69960
1956 .68475 .64726 .50422 35758
1957 51130 41282 47948 .25969
1958 155696 .31948 .47858 61340
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1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

.66751
.87025
.78022
1.1711
91359
1.3366
1.4187
1.5800
75480
.94291
1.3085
.61683

- .41017

.49333
81111
.29029
-.32589
-.00733
.26697
.00895
-.04132
-.26105
-.21476
-.30348
-.15509
.01456

.76526
.64007
95603
1.1954
1.0969
1.3032
1.3145
1.3682
1.0410
1.1026
1.1033
41176
.60627
.78818
70776
18521
-.03713
13449
.08044
-.08243
-.09700
-.35382
-.20165
-.43277
-.02692

31

.88520
70412
98640
.78334
1.2176
1.3952
1.2910
1.0920
1.1412
1.2270
.88763
13344
.51983
72924
.59122
.12560
.04003
.25051
.05727
-.09559
-.15138
-.23600
-.23772
-.43434

.09708

.81454
66715
1.0181
.82370
1.3046
1.4098
1.4601
.79381
1.1478
1.3367
.68819
.25157
.50884
73995
.52288
-.26462
-.09201
.25916f
.02158
01047
-.18714
-.21014
-.30317
-.33526

.06253



APPENDIX D

Computational Details

The calculations reported in this paper came from two sets of programs. An econo-
metric program, PEC©), was used to obtain the initial maximum likelihood estimates and
to generate the random numbers. (The random number generators were initialized with
random seeds.) A fortran program was written to calculate the Pesaran estimates. Both
of these programs were run on a DEC-20. Further details on the programs, computations

and data are available upon request.

32



68° 1L 6971 Ma 8Ll 65" 1 Ma
. . 0 . . 0
£0-366 20-361 0 £0-399 20-391 0
. . . . 0 . . . Y
(e0") 096 (20°) G666 d 666 (20°) 696 d
(7000") (0100*) (100°) (200°)
2L000" - 1L9000° (11-)d L100° 9500° (LL-)DNX
(k000 ") (0100°) (100"} (€00°*)
10000° - €9000°~ (0L-)0 1200° hoo " (OL=)ONX
(h000") (1100") (100°) (€00°)
11000° - £6000° - (6-)d 0200° 9.L00° (6-)ONX
(8000°) (1100°) (1007) (€00°)
8L000" 70L00" (8-)0 9100° 0600° (8-)ONX
(800") (0100°) (100°) (€00°)
01000" - nl100° (L-)b Hl00° Lio* (L-)ONX
(7000°) (0100") (100°) (£00°)
0£000° -~ S7000° (9-)0 0£00" GeLo"” (9-)ONX
(R000") (0100°) (100°) (£00°)
62100° 82100° (6-)0 6€00° Lz1o® (G-)ONX
(h000°) (0100°) (100°) (£00°)
16000° 79100 (k=)0 9500 zZnio” (-)ONX
(4000°) (1100°) (100°) (€00")
12500° 9.200° (€-)d 2¢00° hG10° (£-)0NX
(r000°) (1100°) (100°) (€00°)
th 00" 08200° (2-)d 2100° GELD® (2-)DNX
(#000°) (1100*) (100°) (£00°)
80100" G200 (=)o S100° gLio- (1-)ONX
(7000°) (0100°) (100*) (200°)
L0000 - 0%200° (0)d " 9000° £500° (0)ONX
(1100*) (0g10") (921°¢) (£86°2)
9.600° LyLio” uoj 690°€ 90%°9 IdX
£34N310NnJd1S pcwEaﬁsdm saTqerJEp £3JNn30NJlg quEQﬁ:Um saTqeTJdBp

B

T9DPOW TBO[SSBID03N
ATI:€861 Ol I:1G61 ¥OJ S1INSIM

I 371avl

Lit 60°2 na
. . 0
£0-319 20-3¢1 0
(20°) 196°  (20°) L96° Og
(900°) (EL0")
9000° 1650 (LL1-)XKd
(L00") (R10°)
610" GEE0” (01-)KXQ
(L00°) (g10°)
nLio® 26G0° (6-)Xxd
(L00") (gl0°)
2910° 88ho0 " (8-)kXa
(800°) (910°)
gh1o" 6€04° (L-)Xxd
(800°) (Li0")
6120° €£g0L° (9-)XXa
(800°) (L10°)
9z¢0° geelL:” (S-)XXd
(800°) (L10*)
12r0" wezlL: (h-)Xxd
(g00°) (910°)
6L20° G2EL” (E-)XXa
(8007) (910°)
wheo” GOEL" (2-)Rxa
(L00") Gi0°)
90£0° gzzL- (1-)Xxd
(L00*) (h10°)
9610°* Lwlo® (0)XXa
(oL°1) (82°2)
969° % Lew ¢ I1dX
§94n30NJ1S quaudinby saTqQeIJep

T9POW JOJBRJIDTE00Y



Variables Equipment
YPI -2.025
(1.831)
X1MNC(0) L0152
(.0035)
XTMNC(-1) . 0259
(.0037)
X1MNC(-2) L0271
(.0039)
X1MNC(-3) .0301
(.o0u1)
XTMNC(-4) .0266
(.0041)
X1MNC(-5) L0276
(.0042)
X1IMNC(-6) L0248
(.0042)
XIMNC(-T7) .0242
(.0040)
X1MNC(-8) L0113
(.0039)
X1MNC(-9) L0134
(.0038)
X1MNC(~-10Q) .0070
(.0037)
X1MNC(-11) .0157
(.0036)
Py .899 (.02)
% .13E-02
DW 2.01

(continuation)

Modified Neoclassical Model

Structures

3.991

(1
(

(
(

.952 (.03)

.615)
.0024
.0013)
.0048
.0013)
.0024
.0015)
L0042
.0015)
.0060
.0016)
.0054
.0015)
.0031
.0015)
.0022
.0015)
.0030
.0013)
.0033
.0013)
.0033
.0012)
.0022
.0012)

.60E-03

1.86

Standard errors are in parentheses.

by potential output.

Variables

X2MNC(0)

X2MNC(-1)
X2MNC(-2)
X2MNC(-3)
X2MNC (-4)
X2MNC(-5)
X2MNC(-6)
X2MNC(-7)
X2MNC(-8)
X2MNC(-9)
X2MNC(-10)

X2MNC(-11)

Equipment Structures
-.0128 -.0026
(.0037) (.0013)
-.0254 -.0045
(.0039) (.0014)
-.0268 -.0020
(.0041) (.0014)
-.0295 -.0035
(.o0u2) (.0015)
-.0272 -.0059
(.0043) (.0016)
-.0278 -.0050
(.0043) (.0016)
=, 0247 -.0033
(.0043) (.0016)
-.0251 -.0022
(.0042) (.0015)
-.0105 -.0032
(.0040) (.o001L)
-.0137 -.0030
(.0039) (.0014)
-.0066 -.0034
(.0037) (.0013)
=,0153 -.0008
(.0036) (.0012)

All equations are estimated by maximum likelihood.’

The dependent variable is net investment divided
The

standard error for the equation, 00’ and the Durbin-Watson, DW, are for the

differenced residuals.

The variables are defined as follows:
(YPI = 1/YP); DYY(i) is the i-th lag change in output divided by potential output

(DYY (i) =

capital stock (XNC(i) =

X2MNC (1) =

Ppojo1¥g-i-1
period value of g.
sources, see Appendix A.

C, s 43
t-i-1’
For a further description of the variables and the relevant

-1 Y17

Con is a constant term; and Q(i) is the beginning of

Ce-i-1

and

YPI is the inverse of potential output

AYt_i/YPt_i); XNC(i) is the i-th lag on the first difference of desired
A(pY/cYP), _.); XIMNC(1i) = p__,



Table 2

Conventional Model Diagnostics
(Equipment/Structures)

Accelerator Neoclassical MNC q
Standard (a) .13/.061 .16/.066 .13/.060 .15/ .059
=2
error x 10
(b) .49/.22 .59/.41 .26/.17 1.19/.20
R (¢) .53/.29 .24/.14 .56/ .40 .34/.35
(d) .94/.95 .90/ .95 .94/.96 .91/.96
(e) .93/.94 .89/.94 .93/.95 .89/ .96
DW (f) 2.05/1.77 1.59/1.78 2.01/1.86 1.89/1.89
Notes
(a), (e), (f) -- Calculated using quasi-differenced data
(b) =~ Calculated using undifferenced data
(d) -- Calculated using undifferenced data, including forecastable

part of residual in prediction of dependent variable;
unadjusted for degrees of freedom
(e) Same as (d), adjusted for degrees of freedom



Table 3

Simulation and Forecast Errors
(Equipment/Structures)

Accelerator Neoclassical MNC
Standard (a) .12/.064 .17/.069 .12/ .061
-2
error x 10
(b) .65/.18 .53/.26 .u8/.24
(a) == Within-sample root mean square simulation error,

1951:I-1973:11; quasi-differenced data

(b) —- Out-of-sample root mean square forecast error,

1973:III-1983:1IV; quasi-differenced data

q

.15/ .062

.637.17



Table U4

Tests of Structural Stability
(Equipment/Structures)

Accelerator Neoclassical MNC q
x> 23.2%%/12.6 11.1/10.8 49.1%%/33.6 11.4/8.4
d.f. 13 13 25 13

The test is of the equality of the coefficients between the subsamples
1951:I-1973:I11 and 1973:11I-1983:1V.

(*) denotes significance at .10 level
(*%) denotes significance at .05 level
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