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incorporates general nonstatic expectations with a general cost of
adjustment technology. The combination of these two features usually
leads to a set of highly nonlinear first order conditions for the:
optimal input plan; the expectational variables work in addition as
shift parameters. .Consequently, an ekplicit analytic solution for
derived factor demand is in general difficult if not impossible to
obtain. Simplifying assumptions on the technology and/or the form of
the expectational process are therefore typically made in the literature.
In this paper we develop an algorithin for the estimation of flexible
forms of derived factor demand equations within the above general
setting. By solving the first order conditions numerically at each
iteration step this algoritim avoids the need for an explicit analytic
solution. 1In particular we consider a model with a finite planning
horizon. The relationship between ﬁhe optimal input plans of the finite
and infinite Planning horizon model is explored. Due to the discrete
setting of the model the forward looking behavior of investment is
brought out very clearly. As a byproduct a consistent framework for

the use of anticipation data on planned investment is developed.
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1. Introduction

In recent years-a large body of literature has developed on
dynamic factor demand models explicitly  incorporating costs of
adjustment. In those studies the planning horizon of the firm is
typically taken to be infinifé and an explicit analytic solution of the
first -order conditions describing the optimal input path is determined.
However, for general technologies and general expectational processes
an explicit analytic solution is very difficult if not impossible to

obtain. This is caused by nonlinearities and the working of the

expectational variables as shift parameters. Consequently, factor

demand models derived from a cost of adjustment technology usually

fall into one of the following two groups. The first group allows for .
general technologies but specifies static expectations.2 An explicit
analytic solution is in general obtained by linearizing the first order
conditions around the steady state solution. Unfortunately, this
approach can empirically handle only one quasi-fixed factor unless
restrictions leading to a diagonal accelerator matrix are imposed.
This, however, rules out a priori interactiqn of the adjustment
processes of different factors. The other group of models relaxes

the assumption of static expectations but assumes rather simple
technologies or specific expectatidnal processes.

Against this backg;ound we construct here a model of investment
behavior that incorporates generai nonstatic expectations with a
general cost of adjustment technology. 1In particular, we consider a
firm with a finite planning horizon and motivate this formulation by

R 4 . .
planning costs. For comparison, we relate the optimal input path of




the finite horizon model to that of the infinite horizon model. We then
develop an algorithﬁ for the estimation of flexible forms of derived
factor demand equations within the above general setfings.. This
algorithm avoids the need for -an explicit analytic solution of the first
order conditions by solving those conditions numerically at each
iteration step of the estimatioﬁ procedure. We note that this approach
allows for more than one quasi-~fixed factor without additional
assumptions on the underlying technology.

Rather than deriving the factor demand equations from a continuous
model and then-dgducing a discrete version of these equations for
empirical purposes, we start out immediately with a discrete form of
the model.5 This discrete analysis makes especially obvious the
interaction between future (planned), present and past factor inputs.
The forward looking behavior of investment is brought out very clearly.
As a byproduct, a consistent framework for the use of anticipatory
data on planned investment is provided.

The paper is organized as follows: In Section 2 the general
theoretical model is specified and the first order conditions for the
optimal input pafh are derived. The algorithm for the estimation of
that model is presented in Section 3. Concluding remarks a?e given

in Section 4 followed by a technical appendix.




case of a fixed (but shifting) planning horizon of T + 1 periods--an
endogenous determination.of thé firm's planning horizon is leff for
future research.12

The firm's objective at Ehe beginning of each period t is to
maximize the expected value of the discounted stream of net cash flows
over the next T + 1 periods plus the discounted value of its stocks at
the end of the planning period.13 In determining the value of its
termipal-stocks the firm may engage itself in more or less complex
methods.14 Consistent with the above remarks on planning costs we
consider a firm that computes the value of its terminal stocks as the
present value of the discounted stream of net cash flows beyond the
actual planning horizon by making the simplifying assumption of a
constant firm size and static expectations past the end of the planning
period. TUnder this assumption net cash flows beyond the\planning period
are constant over time and the value of the terminal stocks can readily
be calculated.

Denote the expectations operator conditional on the firm's
information set at the beginning of period t with Et and expected prices
and discount rates as, respectively, pt’T = Etpt+T and rt’T = Etrt+T'-
Using a "first order certéinty equivalence" formulation the firm is then,
at the beginning of each period t, confronted with the following

. s . 15
optimization problem:

. ) T T
(2.3a) max Vt,T = z R(xt+r’xt+r-1;pt,1) n( + rt,i)
t+1° =0
T -1
+ S(xtﬂ‘;pt,T) T a+r 4
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(2.30)  S(xp,piPe p) i1 e+ ¥ e’ Pe, ) 4 F T p)
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subject to the initial input vector x (Recall that x

t-1° thr | T’

and r = ‘for T '_>__T).16 We shall refer to the

pt,T B pt,T t,T rt;T
optimal input vectors to the above finite T + 1 period problem as the
T-optimal input vectors. The T-optimal input vector planned at the
beginning of period t for period t + T will be denoted as xz’T. Note
that the terminal stocks are endogenous to the above optimization
problem.

In general the firm will revise its plans every period in
response to revisions in expectations and hence only implement the

initial 1 = 0 portion of its respective plans. Therefore, in general,

T for t > 1 where x stands for the actual

and
x t+t

X

= x # xT
t t,O t+t t,

input vector in period t + T.

The firm's optimization proﬂlem (2.3) is of finite dimension.
The following theorem concerning necessary and sufficient conditions
hence follows immediately from standard results on the optimization of
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concave functions.

Theorem 1. Given the above set of assumptions holds. Suppose all

components of the sequence of planned input vectors {xz T}f_o lie in
T T

the interior of the input space D. Then the following first order

conditions are necessary and sufficient for this sequence to maximize

the present value Vt T given in (2.3):
s




2. The Theoretical Model

In this section we specify a general dynamic model of factor
demand. The model consists of the following elements. First, the
firm's technology is described by a general production function with
internal costs of adjustment. Second, the firm's objective function
and conditions for the optimal input path under a finite planning
horizon are specified; the relationship between input plans under a
finite and infinite planning horizon are explored. Finally, a general
expectational model is specified. We thus provide avgeneral dynamic
model that incorporates expectations and a general cost.of adjustment

technology in a consistent analytic framework.

2.1. The Firm's Technology

Consider a firm producing a single output good, Yoo from the

cost of adjustment technology
(2.1) B A F(xt_l,Axt,e) . Axt =x =X '

where X, stands for the s x'1 vector of end of period t stock of the

factor inputs and 6 deﬁotes-the vector of unrestricted technolpgy

parameters, The internal costs in terms of foregone output caused by

changes in the stocks of input factors are represented by the Axt term.
" The generalized production funétion F(.) is taken to be twice

continuously differentiable in all arguments. Let ¢y and <y be two

s x 1 vectors of positive finite (possibly very large) constants, then

F(+) is further assumed to be strictly concave in both vector arguments

X, and Axt on the entire admissible input space D = {(xt_l,Axt):




0 < x _y 2 ¢y 0 S_Axt 5-c2}'7 Also, output is bounded on the input

space D by 0 < F(+) §_c3 where c3 is some finite positive constant and

F(0,0) = O.

2.2. The Firm's Finite Horizon Objective.Function and- the Optimal
Input Path | |

Consider a firm that is a price taker in both the output and the
input market. Lét ﬁt denote the price of the output good, LA the s x 1
vector of service prices, qtvthe s x 1 vector of priceé for newly.
purchased investmeﬁt goods, and rt the nominal discount factor.
Consider the.stacked vectors p_ = [ﬁt,wé,q;]' and £ =.[pé,rt]' and
assume that v, lies in a compact subset of the Ris+? with ;t’rt > 0.

Further, let § denote the s x s matrix of constant depreciation rates;

then the net revenue function of the firm in period t is given by

. = A _ ] _ 1
(2.2) R(xt’xt-l’pt) ptF(xt_l,Axt) wtxt_1 qt(Axt + Gxt_l).

Note that under the above assumptions and for a given price vector P,
9

‘the firm's net revenue function is strictly concave in x, and X,y
The planning horizon of the firm is assumed to be finite.10 This
formulation is motivated on the one hand by the existence of planning
cosfs. Extending thé planning horizon typically increases information
requirements and leads at the same time to a more inQolved obtimization
problem. Both aspects are typically conmnected with higher costs. On
the other hand, extending the planning horizon will generally increase

the expected value of the discounted net revenue stream. This suggests

11
that there is some finite optimal planning horizonm. We consider the




xT X xT 3 T 8)
t,t+1’7t,1’ t,r-l’pt,1+1’pt,1’ t,T+l’

T T T
B Rl(xt,'t’ t,7-1°P ) +R (xt +17 %, °Pe, +1)/(1 tr., T+1)
=0, 1T=0,...,T-1,
T T
(2.4b) Cx (e p%e,1-13Pe, 1%, 79
T T ] T T .
- Rl(xt,T’xt,T—l’pt,T) + [Rl(xt,T’xt,T’pt,T)

+ R, (x )]/r

T
, T’ t T t T

where Ri(-)/stands for ;he derivative of R(-) with respect to the i-th
argument vector (i = 1,2). Furthermore, this optimal input'sequence is
‘'unique.

The above first order conditions can be interpreted in familiar
terms. Substituting the definition of the net revenue function (2.2) .
and dropping superscripts T the first order conditions (2.4a) can (after

some trivial rearrangements) be written as:

[pt,T+1Fl(xt T’Axt,r+1) - pt,T~F1F2(xt,T’Axt,'c+l) t T+1]/(14-r ,T+l) -
(=P Fplxp cogo®% ) 9 o ¥ (89 oy w4/ T L
Ax = X - X




where Fi(-) stands again for the derivative of F(.) with respect to

the i-th argument vector (1 = 1,2). The L.H.S. of the above equation
represents the discounted marginal gain in period t + 7 + 1 from
investment in period t + 7, including the marginal gain from not having
to invest in period t + 1 + 1. The R.H.S; represents the discounted
marginal costs in period t + 1 and t + 1 + 1 from investment in period
t + t. The first order condition (2.4b) has a completely analogous

interpretation.

2.3. The Relationship Between the Optimal Input Plans of the

Finite and an Infinite Horizon Model

The finite horizon model is related to the infinite horizon model.
Suppose the firm has an infinite planning horizon; then its optimization

problem can be stated as

(2.5) max
{

1= A

1+ r, T) .

Vt = ZT.—_O R(xt+t ’xt+1:-1;pt,'r) 1 s

[ -3

X_, } *
t+1 1=0

The following theorem gives necessary and sufficient conditions for a
maximum. The proof is of standard kind in the dynamic programming
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literature and hence omitted here.

Theorem 2. Given the above set of assumptions holds. Suppose all

components of the sequence of planned input vectors {xt T}:-O lie in the
o1 T=

interior of the input space D. Then the following first order conditions

are necessary and sufficient for this sequence to maximize the present

value Vt given in (2.5):




(2.62) G(xt,r+1’xt,1’xt,1—1;pt,1+1’pt,1’rt,1+1)
= Rl(xt,T’xt,T—l;pt,r) + R2(xt,r+1’xt,T;pt,r+1)/(1 + rt,T+1)
=0 IS T=0,1,.'. ’
T -1
(2.6b) 1lim Rl(xt,T’xt,r—l;pt,T) nQa+ rt,r) =0 .

T>o i=1

Furthermore, this optimal input sequence is unique.

The first order conditions (2.6a) have the same structure as the
first order conditions (2.4a) and hence the same interpretation.
Equation (2.6b) represents the usual tfansversality condition.

It is interesting to note that our finite horiéon model can be

interpreted as a constrained infinite horizon model. Suppose P, . =P .o
? >

and r for 1 > T. Then upon substitution of (2.3b) into (2.3a)

=
t,T t,T

it is readily seen that we can formulate this finite horizon optimization

problem equivalently as

R VvV 3 ) i =
2.7) maxm ¢ subject to the constraints xt’T xt,T
{ }

xt+‘r =0 for 1 > T.

o

We introduce the following notation. With X(t) =‘{xt T}T;O we
,T T

denote the sequence of optimal input plan vectors corresponding to the
infinite horizon model (2.5); similarly, we denote the sequence of

optimai input plans corresponding to the finite T + 1 period planning

T }°  where xT —

horizon model (2.3) with (t) = {x _ x
t,t =0 t,T t,T

for T > T.
In Appendix A we prove the following theorem relating T-optimal input

plans to those of the infinite horizon model.




Theorem 3. Given the above set of assumptions holds. Assume that the:
firm adopts static expectations over the entire future and that the
smallest eigenvalue of the negative Hessian of the net revenue function
is bounded from below by some arbitrary small number, say p > 0.19 Then

(2.8) lim XT(t) = X(t)

T

}
o

in the sense that lim x:‘

. for all 7 = 0,1,... < =, That is,
T>o0

? ’

for every finite 1 > 0 and any arbitrary small number € > 0 there exists

. T
-— < .
an index To(e,r) such that |xt,1 Xt,rl e for all T z.TO Furthermore,
if t' < 1 then also IXT , - X_ _,| <€ for all T > T,.
t,T t,T -0

The first half of the above theorem shows that under certain
sufficient conditions thé sequence of T-optimal input plans convergeS as
T + @ to the optimal input plan of the infinite horizon model. The
second half of the theoreﬁ implies furthermore that, loosely speaking,
the speed of convergence is higher in the initial than in the léter
periods of the plan. This last result is of interest since (as remarked
above) in each period t the firm realizes only the initial T = 0 portion

of its plan.

2.4. The Expectational Model

We return to the finite horizon model. As a consequence of the
presence of adjustment costs the investment decisions cease to be
myopic as is revealed by the first order conditioms (2.4). Each element
of the T-optimal input plan dependsAon‘the entire stream of expectatiomnal

}T

values {v .
u { t,t =0

10




We allow for expectational processes of the general form

(2.9) Vt T = ¢T(vt—1’vt—2""’wt—l’wt-Z""’e*) s, T = 0’...""?’

where w denotes the vector of exogenous variables entering the
expectatioh formation process’ and 8, is the vector of unéonstrained
expectational parameters.21 We assume that ¢T(') is twice continuously
differentiable in all arguments. |

To add more meaning to the above abstract formulation of the
expectational model we give two illustrative examples:

(1) Rational expectations. Let v, be geﬁerated by the following

linear model

where B, A and C are real matrices and . is assumed to be i.i.d. with
zero mean and nonsingular covariance matrix. Suppose the exogenous

variables W follow the ARMA(p,q) process
a(L)wt = b(L)et

with a(l) = I - al - ... - apr and b(L) = T + Byl + ... + quq, where

. . . . 22
the bi's and ci's are real matrices and Et is white noise. Then if

expectations are formed rationally

-1
(2-10) Vt,T = - (B + A) ' th, Y T = 0,1,0.00 ’
with w = XT c,w | A.+ zw c.w where c(L) = b(L)_la(L) =
t,T j=173 t,1-] j=1+17j t+1-j’
=1 - ClL - chz - +ee +» It is readily seen that the above rational

expectations model répresents a special case of (2.9).

11
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(1i) Expectations as weighted averages. Now let expectations
be formulated by the following simple weighting scheme (or their
logarithmic analog)

T . Zk .

R R A ELAAR R R A ey

where dots denote relative differences. Such weighting schemes are
frequently used in applied econometric work and are seen to also
represent special cases of (2.9).23

The above two examples should demonstrate that the expectational
model (2.9) can handle a wide range of expectational processes.

Clearly, static and adaptive expectations or mixed forms of those

expectations are also special cases of this model.




3. The Estimation Technique

In the following an empifical specification of the factor demand
equations corresponding to the finite horizon model 1s given. We ;how
how thesé equations can be estimated without fequiring an explicit
analytic solution of the first order conditions. As a byproduct‘we
also develop a rigorous framework for the use of anticipatory data on
factor inputs. For notational convenience superscripﬁs T used to

denote the T-optimal input vectors are henceforth dropped.

3.1. The Empirical Model

We assume that the T-optimal input path lies in the interior of
the input space for all parameter vectors 6 of the parameter space.
Theorem 1 then implies that (for given initial and expectational values)
there exists a single-valued mapping from the parameter space into the

. 24
solution space:

(3.1) xt’T = pT(e;zt) , 17=0,...,T ,

where z, = [x! 1'. Theoretically the firm realizes in

| ' |‘
v ceesV
t-1’'t,0°’ >, T
each period t the initial portion of its respective input plans, i.e.,
X o0 = Xer Hence by substituting the above explicit expression for
’

one-period-ahead plans into the initial 1 = 0 first order condition of

the T-optimal input plan (2.4) we get

(3.2) f(xt’zt’e) = G[pl(e'zt) ’xt’xt-l’Pt,l’pt,O’rt,l’e] =0 .

In case of a linear quadratic production function and static expectations

the above system will reduce to the familiar flexible accelerator model

13
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as the planning horizon extends towards infinity (see Prucha and Nadiri
(1981) for details). Our theoretical factor demand model is an
abstraction from reality. Therefore, the above first order relationship
will not hold exactly when confronted with emﬁirical data. We hence

specify the following stochastic relationship

3)=€ ’ 1""’n,

(3.3) f(xt,z ¢

t!

where € denotes the s x 1 vector of disturbances. For ease of
presentation we assume for the time being that the expectational
variables are observ_able.25 Then in the above (in general) implicit
nonlinear simultaneous equation system,xt represents the vector of
endogenous, and zi the vector of predetermined variables. We assume
that typical modeling assumptions are satisfied.26 Computer programs
for the estimation of such systems are readily available.27

Now suppose we have observations on the firm's input plans one
period ahead.28 Then the substitution of the explicit analytic solution

(3.1) for x is unnecessary. All vafiables entering the initial T = 0

t,l
first order condition are observable. We can hence estimate this

relationship directly and our empirical factor demand model will be of

the form
(3.4) B(x »X 152,50) = Glx, 12X >X_19Py goPy 1oT¢ 1000 = €¢ s
t=1,...,n .

In this model both X4 and z, represent the predetermined variables.
’

That plans one period ahead should be viewed as predetermined is obvious




from the explicit analytic solu;ion (3.1). The merit of this formulation
of the empirical model is that it provides a consistent framework to
incorporate anticipatqry data into factor demand systems. Note also that
this formulation_brings out the forward—lookiﬁg character of the
investment decision very clearly. Furthermore, estimating (3.4) rather
than (3.3) shou}d yield more efficient estimates. This stems from the
fact that in the latter case x is modeled as avfunction of the unknown

t,1

parameter vector and is hence subject to estimation errors.

3.2. An Iterative Estimation Routine Based on a Numerical

Solution of the First Order Conditions

Consider again the case where anticipatory data are not available.
For generai technologies the first order conditions will be nonlinear
in both variableé and parameters. In case of nonstatic expectations
the expectational variables will in addition serve as shift paramaters.
As a consequenée, practically an explicit analytic solution of the first
order conditions may often not be available{%)lﬁ such a case we are not
able to estimate the model in its compact form (3.3). In the following

we hence show how to estimate the model in the "unsubstituted" form

(3.5a) g(xt,xt’l,zt,e) =&

using the implicit definitidn of the unobserved vector of'one—period—

ahead plans x ‘through the system of first order conditions (2.4):

t,l

We denote this system more compactly as

1

‘ 3
(3.5b) ,2,,6) = 0.

h(xt,O’xt,l"'°’xt;T

15
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The basic ideas how to estimate the pérameters of our factor
demand model from (3.5) are first explained'by means of a simple
"ad hoc" iteration scheme. Thereafter we present an iteration scheme
with proven convergence properties. The disc;ssion is given in terms
of the full information maximum likelihood (FIML) estimator. The
results also apply, with minor modifications, to other estimation
procedures,

Suppose we have some estimate of the parameter vector 8, say 9(1);32
Using this estimate we can then calculate the corresponding value for
the planned-one-period-ahead input vector, say xéfi, by solving the

implicit system of first order conditions (3.5b) numerically--thus avoiding

33
the need for an explicit analytic solutiom. Once we have obtained

(1)

¢ ] Ve use them as "observations" on the planned-
R .

numerical values for x
one-period-ahead input vector.

In this sense all variables of model (3.5a) are then "observed."
We may now apply the FIML routine (or any other estimation routine) to
this model and thus obtain a new vector of parameter estimates, say
6(i+1). We repeat this iteration scheme until there is no significant
change between two subsequent sets of parameter values. (The FIML
routine itself is an iterative procedure. Hence the above iteration
scheme may be modified such that at the estimation stage we only make a
few subiterations.)34 As can réadily be seen from the subsequent
discussion the values of the likelihood functions of model (3.3)

(1)

and x

evaluated at e(i) and that of model (3.5a) evaluated at 6 éi}
s

35
are identical. Hence the maximum of the likelihood function and

consequently the ML estimates of model (3.3) and that of (3.5a) subject




to the constraint (3.55) will be identical.36 The above ad hoc iteration
scheme will stop at the maximum of the likelihood; it has, however, no
proven convergence properties. The appealing part of this scheme is that
it can be executed wifh existing econometric éoftware.

For general application an it;ration scheme with proven convergence
properties is desirable. By construction systems (3.3) and (3.5) are
just different representations of the same model. Hence in developing
such an iteration scheme it seems natural to start out with an algorithm
that could be used to estimate our model in its compact form (3.3) and
then modify this algorithm such that it can handle the estimation of
our model in its "unsubstituted" form (3.5). The estimation scheme
developed below takes the FIML algorithm put forward by Berndtket al.

37

(1974) as a starting point.

The concentrated log likelihood function corresponding to model

(3.3) is
(3.6) L(6) = const + (1/m)];_; In det[J (8)] = (1/2) 1n det[S(6)]
where S = (_l/n)zt 1ftft': and Jt = (_Z)/axt)ft with ft = f(;xt,zt,e).38 The

gradient of the log likelihood function is given by 3L/38' = p - q, where

avec(J )

_ . = —_t 1
P(8) = J 1P, > Pe ser vee (i)
(3.7)
n af =1
a(e) = )19 > e 7 ae' [zt 1fefel Eee

We further need the sample covariance matrix of the gradient multiplied

- by n2

17
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(3.8) R(®) = n],_,[p, - a.llp, - q,]'

Berndt et al. (1974) then showed that the following iteration scheme:

@ e Lo @ DRy ™) - g™

converges to a stationary point, given the stepwidth A(i) is computed
in a certain reasonable way.39 For starting values reasonable close
to the maximum of the likelihood function this iteration scheme will
hence converge to that maximum. The matrix (1/n)R—1 is furthermore a
consistent estimator of the variance-covariance matrix of the maximum
likelihood estimator of 6.

For given values of x, 1° [xi’l,...,x; 1]'the concentrated log

9 H

likelihood function corresponding to model (3.5a) is

(3.10) L,(6,x, ;) = const + (/m]7; 1n det[d, (8,x, )]

t,1

- (1/2)1n det[S*(e,x'?l)]

= - n ' = i =
where S_ (l/n)zt=1gtgt and J*t (a/axt)gt with 8, g(xt,xt’l,zt,e).
Recall that the explicit analytic solution for X given in (3.1)
]
does not depend on X, . It is then evident from (3.2) and (3.4) that
L(8) = L*[e,pl(e,z ),...,pl(e,zn)]. Consequently, the gradient of L
- ' n 1 ' -

can also be expressed as 3L/38 3L, /38" + zt=1(axt,1/36 )(BL*/axt,l)

= Py ~ o where




n t,l ‘ -1
= = + 2 1]
p*(e’x-,l) zt=1p*t » Pag [ 26" 38" Bxé 1 ] vec(J*t )
?
(3.11)
dgq 4 3q
n t t,l t n -1
q*(esx.,l) = zt=1q*t ’ q*t = [ ael + ae% axv 1 ][ Zt=1gtg£] gt
t,
The derivatives of X with respect to 6 can be calculated from
(3.12) [axt,o % - E)xt,'r]. _[-oh sh -1 _g_lel
. ] > ] 3 e 9 1 9 ecee
36 / a6 36" a#t,O axt’T
and can hence be expressed in the form th,l/ae = w(xt’o.,,,.xt,T,e).

Expression (3.12) follows from differentiating the first order

: 40
conditions (3.5b) implicitly. We define
' n
(3.13) Re(8,x 1) =n) _ [Py = qullp, - 4,1

Now denote the solution values of the first order condition corresponding

to e(i) as xifz; thét is, xéfz = pT(G(i),Zt) or, equivalently,

(3.14) h(xgg,xéfi,...,xff%,e(i)) =0.

Define further axifi/ae - w(xif%,i..,xif;,e(i)); then clearly
p(e(i)) = p*(e(i),xffi) , | q(e(i)) = q*(e(i?,xffi) ,
R(e(i))‘= R*(e(i),xffi)

19




'This implies that the iterating equation (3.9) can be expressed as

L Y N AR ,x(i))]—l[p*(e(i),x.(fi)

(3.15) .1

RIS I

Consequently, the iteration step (3.9) can be equivalently performed by

(1)
t,0’

and then using those values to calculate 8

first solving (3.14) for the plan values x
(i)

...,xéf% (t=1,...,n)
corresponding to § ‘ (1+1)
from (3.15). Note that (3.14) and (3.15) are expressed solely in terms
of elements of the "unsubstituted”" model (3.5). Hence this iteration
scheme is directly applicable to that.form of the model while yielding
identical values as the iteration scheme (3.9) operating on the
"substituted" model (3.3). Knowledge of an explicit analytic solution
is therefore not required. (Note also that setting axt,llae =0 in
all expressions entering (3.15) will yield a special case of the "ad
hoc" iteration scheme discussed above, where only one subiteration is
méde at the es;imation stage.) |

So far the idealizing assumption that observation on the
expectational variables {vt,T}Tz0 are available was maintained. We
now drop this assumption. If the expectational.model is very simple,
that model may be substituted directly into the factor demand equations
(3.3) or (3.5). The teéhnology parameter © and the expectational
parameters @, can then be estimatéd jointly from the so obtained system

without further complications. This approach can e.g. be taken if

expectations are modeled as weighted averages as shown in (2.11).
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The general form of the expectational model is given by (2.9).
If this model represents some forecasting rule from a stgchastic model
the expectational parameters can, in a first step, be estimated
separately from this stochastic model. They éan then be used to

}T

generate a series of estimates on the expectational variables, {vt 2 1=0"
. . =

Treating those variables as data we can then, in a second step, apply
the above discussed methods to estimate the investment model.41 However, as
is common in such two step procedures, the variance of the estimators
of the technology parameters is underestimated. To avoid this problem
the factor demand model and the expectational model may be estimated
simultaneously using iteration. scheme (3.14) and (3.15). 1In this case
the objective function would be composed of the elements of the factor
demand and expectational model and, in addition to the values for
planned inputs, new expectational series would have to be generated
at each iteration -step. Separate estimation of the expectational and
the factor demand model should provide good starting values for this
joint procedure.

- We finally note.that although the estimation procedure (3.14) and
(3.15) was introduced within the particular context of a factor demand
model i;s usefulness is not limited to this context. Rather, the
procedure can be applied to any econometric model that can be written
in the form (3.5a) where x is some unébserved vector implicitly

t,l
defined by a system of equations of the form (3.5b).
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4. Conclusion and Summary

in this paper we have formulated a dynamic model of factor demand
that incorporates nonstatic expectations and costs of adjustment in
a consistent framework; an algorithm for the estimation of that model
has been developed. Several contributions are of interest:

1. The model is fairly general in that there aré no restrictions
imposed on the form of the underlying pfoduction function, the nature
of the expectation process, or the characterization of the adjustment
costs and the number of quasi-fixed factors. Achieving this degree of
generality has been rather elusive in modeling dynamic input behavior.

2. Further, this general model is formulated with a finite
planning horizon and its relation to the optimal input path of the
infinite horizon model is established.

3. Another feature of this model is that it brings out the
forward-looking feature of investment behavior and provides a consistent
framework for integrating anticipation on planned investment with actual
investment.

4. The estimation procedure is based on an iteration scheme that
solves the first order conditions numerically; thus the need for an
explicit analytic solution is avoided.

" A potential extension of the model is to incorporate the
utilization rates of factor inputs as decision variables and thereby
capture some of the variation in input decisions that are presently
left out of the model. Further, the modei could readily be extended
to incorporate various tax parameters. Since the expectation process

is very general, the model lends itself to an analysis of dynamic input




vectors X, 1 and Axt. Then the net revenue function R(xf,xt_i) defined

in (2.2) is strictly concave in the -argument vectors X, and xt¥1'

Proof: Let Rij and Fij denote the matrix of second order derivatives
of R(+,-) and F(-,:), respectively, with respect to the i-th and j-th
argument vector (i,j = 1,2). We then prove the strict concavity of

R(+,+) by showing that the Hessian matrix

Ri1 BRn F2 Flo - F

N
[\
—l

Ria By Foy mFap  Fpy ~Fp - Fy +Fy,

is negative definite. This is the case if and only if

Ry Ry [o Fi1 Ty @

[o',8"] = 5.[8",a" - 8']

R R B : F., F a - B

12 22 12 22

. 5 )
for all nonzero vectors [a',B']'ER s, However, since P, > 0, the
validity of the above inequality follows immediately from the negative

definiteness of the Hessian of the production function. Q.E.D.
Lemma A.2. The sequence of present values of the discounted net revenue

stream corresponding to the finite (T+ 1)-period plamning horizon model
converges to the present value of the discounted net revenue stream of

the infinite horizon model as T tends to infinity: lim V[XT] = V[X].

T

~ N o N
Proof: Consider the input sequence X (t) = {x } where x = x
—_— ty,t =0 t,T t,T

for 1t = 0,...,T and X = for 1 > T. That is, the first T + 1

x
t,T t,T

elements of this input sequence correspond to those of the optimal input
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plan of the infinite horizon model while all subsequent elements are
kept constant at the optimal input level for period t + T. The present
value of the discounted stream of net revenues corresponding to this

input sequence is

T+1
- T T :
(A.2) VIR = Doog RO 0% )Y+ T3 RGx, pox )

l-vy
By definitdon XT(t) is that input path that yields the maximum present
values among all input paths for which input levels are kept constant
from period t + T onwards; hence V[iT] §_V[XT]. Since the finite
horizon problem may be viewed as an infinite horizon problem with an

(additionally) restricted solution space stemming from the constraints

xT = xT
t,T t,T

the two inequalities gives V[iT] f-V[XT] < V[X]. Therefore, in order

for all 1 > T, we further have V[XT] < V[X]. Combining

to prove the lemma it is sufficient to show that lim V[ﬁT] = V[X].
T

Our catalog of assumpfions implies that the net revenue function is

bounded on the input space, i.e., k= sup{lR(',-)I} < », Hence

T+1

YT < 2k T— .

V&1 - vixl| = |ZT=T+1[R(xt,T’xt,T) - R(x -

X
t, 7’ t,r-1

Note that 0 < y < 1. Hence for every € > O there exists an index Td
T+1
such that 2k %jj; < ¢ and hence,lV[XT] - V[X]I < g for all T Z_IO. This

of course implies that lim V[f(T] = V[X]. Q.E.D.

T




23

- behavior under different nonstatic tax regimes. . Finally, the

model could be extended by endogenizing the length of the planning
horizon of the firm. It would be important to know the determinants
of the length of the planning horizon of the firm and whether the
planning horizon of the firm is different with respect to different

inputs.
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Appendix A: Proof of Theorem 3

Throughout this appendix we maintain the assumptions underlying
Theorem 3. Specific reference to the conditional character of the
revenue function on the static expectational values will be suppressed

in the following. Consider the optimal input plans for the finite

T @ T T
horizon model, XT(t) = {xt,T}T=0 vhere xt,1'= xt,T for all 1 > T, and
that for the infinite horizon model X(t) = {xt T}:_O. Note that the
ST T=
assumption of static expectations implies in particular that L =T
) £ ’

for all T > 1. Hence the present value functions of the finite and

infinite horizon model can be written, respectively, as

T+1
- T T T T Y T T
(A.1a) V[XT] Z_T= R(xt’T,xt’T_l)Y +1T7 v R(xt’T,xt’T)
(A.1b) VIX] =7}, R(x, % )Y
) = tyr’ t,T-1

-1
where vy = (1 + r ) *. The strategy of the proof is as follows.

t,0
First we show that the sequence of present values corresponding to the
finite (T + 1)-period planning horizon models éonverge to the present

value of the infinite horizon model as T tends to infinity:

lim V[XT] = V[X]. We then use this result to prove the convergence
T .

of the optimal input plamns, i.e., lim XT = X in the sense that
T->0

1lim xT =X for all 7 3_0.42 Several lemmas are needed.

Toe EoT t,T

Lemma A.l. Suppose the output price ﬁt is positive. Further, let the

production function F(xt—l’Axt) be strictly concave in the argument
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Lemma A.3. The difference-between the present values of the discounted
net revenue stream correspsnding to the finite (T + l)Fperiod’planning
horizon model and the preéent value of the discounted net revenue stream
of the infinite horizon model can be expressed as: V[XT] - V[X] = z:=o¢fYT
where ¢£ = (af)'Afaz with

+ 4+ +

T
T xt,T T Xt T Rll(xt,T’xt,T—l) RZl(xt,T’xt,T—l)
(A.4) & = I _ ] A Rt ot ) R w )
T “t,1-1 xt,'r—l 12V7t, 177t , 11 22 7t, 177,11

+ . . T +
and where x is some point between x and x and where x is
t,T t,T t,T ' t,t-1

T
some point between x

£,1-1 and xt,T—l’ respectively.

. T T ' .
Proof: Expanding R(xt,r’xt,r—l) around (xt,T’xt,T—l) in a second order

Taylor series gives

T T T
(A.5) R(xt’T,xt,T_l) - R(xt’T,xt’T_l) Rl(vxt’T,xt,T_l)(xt,T xt,T)
+ R, (x X )(xT' - x + ¢
2t e,1-1 t,1-1 t,r-1 T
Making use of the definition of an infinite sum we can write
. M T T : T
(A.6) VIX,] - VIX] = lim ZT=O[R(xt,T,xt’T_1) R(x, %, Dy .

By employing the first order conditions (2.6a) and the Taylor series

expansion (A.5) it is readily seen that

M T T T _
(A.7) Lomo[RO, 0%y () = RO % )]y =
M T 1 T M
= oY +R1(xt’M,xt’M_1)(x X )Y .

=0 t,M t,M




The boundedness-of the admissible input vector and the transversality
condition (2.6b) imply that the last term on the R.H.S. of the above
equation converges to zero as M » «. Therefore, substitution of (A.7)

into (A.6) yields

© T 1 )
. .E.D.
Y Q

_ M T 1t _
V[XT] - VIX] = ;i: ZT=0 ¢TY - z'r=0 ¢

Proof of Theorem 3: The strict concavity of the net revenue function

T ) T
implies that the Hessian matrix AT is negative definite. Clearly, --AT
is positive definite; let AT be the diagbnal matrix containing the

T
(positive) eigenvalues of this matrix and UE the matrix of corresponding

T
eigenvectors. Then -—AT = (UT)'ATUT where (UT)'UT =71 . Let )\ .
‘ T T T T T T 2s T,min

T
be the smallest eigenvalue; then by assumption AT min 2 ° > 0 for all
’

1T>0and T > 0. Further, let af i be the i-th component of the vector
3

T, . . . . .
a ; it then follows as an immediate consequence of the above consideration
T

that for all i = 1,...,2s:

T TTT

(A.8) lor] = |(a) ' (@) 'A uta T 1al'at T 42
T T T TTT

alzp(a )

l kd )‘T,min] T T T,1

Lemas A.2 and A.3 imply that lim V[X ] - V[X] = lim|[ T oyT1 = 0.
=071
Toyoo T

T‘ -

® T
That is, for every ¢ > O there exists an index T, such that IZT=0¢TY

= z:=0|¢f|yT < g for all T >T (The last equality follows since all

o'
T
¢f are negative,) This implies that |¢T|yT< g for all T Z_To'and finite

Tt > 0. Making use of the inequality (A.8) implies further that

T (2

(A.9) (aT,i) f_p—1|¢£| < e/(py")

for all T > T, and finite 1 > 0. Therefore, for every finite 1 > 0 and

0
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any arbitrary small €' > 0 we can find an index TO(T,e') such that
Iaf i|2 <g' for all T 3_T0(e',r) by choosing € = e'pYT in (A.9). This
, v ‘ - PY .

of course implies that 1lim (aT
T+ T

2 = 0 and further 1lim aT = 0, It

,i) Toroo T,1

then follows from the definition of the vector af that 1lim xz T = X
T ?

t,T
for all finite 1 > 0. This proves the first part of Theorem 3. The

second part of Theorem 3 regarding the speed of convergence is obvious

from (A.9) since 0 < y < 1.
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Footnotes

1. We benefited from the comments of Jess‘Benﬁébib, Erﬁst'Befndt,
George Bitros, Ronald Gailant, Zvi Griliches,-Romén Frydman,'BrohWyn—
Héll, Harry Kelejian, Peter Sarnak and Mark Schankerman. The paper is
an updated version of sections of Prucha and Nadiri (1981) and was
presentediat the R&D Workshop of the 1982 Summer Institute of the
National Bureau of Ecénomic Research. We thank the members of this
workshop for helpful discussions. All remaining errors are our
responsibility. For general assistance we are indebted to Mark Gould,
Peter McAliney, Piérre Mohnen and Shirley Riddell. The financial
support of the National Science Foundation, Grant PRA-8108635 is
gratefully acknowledged.

2. Most of these studies choose a continuous time framework.
Examples are Eisnmer and Strotz (1963), Gould (1968), Lucas (1967),
. Mortensen (1973) and Treadway (1969, 1970, 1971, 1974). For empirical
applications see Berndt, Fuss and Waverman (1977, 1979, 1980), Berndt,
Morrison and Watkins (1981), Denny, Fuss and Waverman (1979a, 1979b,
1981), Morrison and Berndt (1981), Nadiri and Rosen (1969, 1973) and
Schramm (1970).

3. See, e.g., Bitros and Kelejian k1976), Gould (1968), Lorie
and Smith (1970), Norstrém (1974), Taylor (1970), Timsley (1970, 1971)
for cost of adjustment models with nonstatic expectations in a
continuous time framework. TFor such models in discrete time see Craine
V (1971, 1975), Hartman (1972, 1973), Kennan (1979), Lucas and Prescott
(1971), Meese (1980), Nerlove (1967, 1972), Pindyck and Rotemberg

(1982) and Sargent (1978, 1979).
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4, The case of a infinite planning horizoem is discussed in -
Prucha and Nadiri (1981).

5. The optimal path of factor inputs derived from a continuous
time model is typically described by a set of‘second order differential
equations--see, e.g., Treadway (1974) and the references cited therein.
Transforming the set of differential equations into difference
equations involves judgment about the proper discrete dual of the first
and second order differential operator. This, however, is not always
a trivial task. For instance, the expressions for the flexible
accelerator derived from a continuous or discrete model are in general
not identical, See Prucha and Nadiri (1981) for further discussion
of this issue.

6. The discussion of the various sources of adjustment costs
is for instance summarized in Soderstrom (1976); hence, this discussion
will not be repeated here. The assumption that output in period
t depends on flows from stocks at the end of period t - 1 implies that
investment in perioed t only becomes productive in period t + 1. This
assumption could easily be relaxed without changing the analysis in
any essential way by using some weighted average of the stocks at the
end of periods t'- 1 and t. Similarly, net investment could be replaced
by gross investment to represent adjustment costs without essentially
affecting any of the subsequent result.

7. The strict concavity assumption in the second argument
vector of F(*) implies that we are considering only nonperfectly
variable factors. . Perfectly variable factors could be incorporated

with only minor changes in the analysis.
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8. For expositional reasons we neglect all tax parameters. They
can, however, easily be incorporated.
9. For a proof of this result see Lemma 1 in. Appendix A.

10. Most of the investment literature assumes an infinite planning
horizon. We speculate that one of the reasons for the prevalence of
this unrealistic assumption is that in the case of an infinite horizon
model, no explicit specification of the value of the terminal stocks is
needed. See Telser and Graves (1972, p. 1), and Arrow and Kurz (1970,
p. 30), for further discussion.

11, See Elliasson (1976) for an empirical description of the
planning behaviof of approximately 80 U.S. and non-U.S. firms. The
longest planning horizon encountered in this study was up to the year
2000. Furthermore, the details of the plan are reported to decrease
with the length of the planning period. In particular, plans beyond a
five-year period are typically found to be rather sketchy.

12. At the estimation stage we may compare estimation results
obtained under various assumptions concerning the length of the planning
horizon. We speculate tha; the choice of the propér planning horizon
may be undertaken in a way similar to the choice of the maximum tag
length in ARMA models.

13. Our subsequent results can feadily be modified to a cost
minimizing framework.

l4. Extreme methods would be on the one hand to set the value of
the terminal stocks equal to some fixed constant--in particular, equal
to zero. This approach is taken by Schramm (1970). On the other hand,

the firm may formulate expectations with respect to the exogenous




35

the familiar linear algebra problem of finding a solution to a fourth
order polynomial. There also, in general, no explicit analytic solution
is available.

31. For a discussion of linear explici£ models containing

unobserved variables see, e.g., Robinson:(1974) and the literature cited

therein.

32. Initial estimates may be obtained by replacing xt,l in (3.5a)
by the actual input vector LT For the use of the actual input vector
X4 in the specific context of an infinite horizon model with rational

expectations see Pindyck and Rotemberg (1982).

33. Numerical solution algorithms for nonlinear implicit
equations are readily available; e.g., TSP provides such a routine.
For a general survey on solution algorithms see Ortega and Rheinboldt
(1970). |

34. Compare Fair and Taylor (1980) for a related iteratiomn
scheme in the context of a nonlinear rational expectations model.

35. 1In deriving the likelihood function of model (3.5), xt’1 is
treated as "obServed;" Explicit expressions for the likelihood
functions are given in (3.6) and (3.10).

36. An alternative method of findiﬁg maximum likelihood estimates
without the need for an explicit analytic solutiqn wqgld hence be to
formulate the problem as a constrained optimization éroblem. Computer
programs supporting this approach are available. These programs are,
however, generally not carried by econometric packages.

37. ©Note, however, that the subsequent discussion applies as

well to most other estimation algorithms.
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38. 'We use the conventions on vector differentiation of Dhrymes
(1978).

39, See Berndt et al. (1974) for details. The matrix - R(8)
converges to the Hessian of the log likelihood function as n -+ .

Hence, the above iteration scheme is closely related to the Newton
method.

40. Inspection of the first order conditions shows that the first
matrix on the R.H.S. of (3.12) is block-tri-diagonal.

41. This two-step procedure is analogous to the one proposed by
Wallis (1980) in the context of a rational expectation model in which
the exogenous variables are generated by an ARMA process. Those
exogenous variables correspond to our expectational variables, which
are exogenous to the investment process.

42. 1In this paper convergence of a sequence of finite dimensional
vectors is understood to be defined in terms of the "maximum absolute
element vector norm." That is, consider the sequence of s x 1
dimensional vectors zl,zz,... and the s x 1 dimensional vector z. Let
zi be the i-th element of the vector zj and zg the i-th element of the

vector z. Then if for every £ > 0 there exists an index J such that

max ]zi - zil < ¢ for all j > J, then we say the sequence of
i=l,...,s
1 2 ' . s J
vectors z ,z ,... converges to the vector z; in symbols: 1lim 2z° = z.

B o




variables over the infinite horizon and then take the maximized present
value of the net revenue stream past the planning horizon as the valug
of its terminal stocks. This, of course, would lead us back to the
infinite horizon model.

15. On the certainty equivalence principle see, e.g., Simon
(1956), Theil (1957, 1964, 1965) and Malinvaud (1969). The method of
certainty equivalence can be viewed as a limited information approach
in that only the first moments of the distribution of Piyr and T’

1 =20,...,T, rather than the exact distribution must be known. For an
interesting limited information approach based on the knowledge of the
first and second moments see Bitros and Kelejian (1976).

16. TFor a related objective function in the case of a multiperiod
consumption plan see Day (1969) and the literature references therein.

17. Sufficiency and uniqueness follow from the strict concavity
of the net revenue function. For theorems on the optimization of concave

functions see, e.g., Takayama (1974).

18. The proof can be obtained from the authors upon request.
Sufficiency and uniqueness follow again from the strict concavity of
the net revenue functiom.

19. The strict concavity of the production function implies the
strict concavity of the net revenue function as shown in Lemma A.1l of
Appendix A. This in turn implies that all eigenvalues of the negative
Hessian of the net revenue function are positive. We assume here in
addition that those eigenvalues are bounded from below.

20. TFor this paper, convergence of a sequence of vectors is

defined in terms of the "maximum absolute element vector norm." See

footnote 42 for more details.
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21. To accommodate perfect foresight models we could also include
future values of v into the argument list of the function ¢T(-).

22. This model is considered in Wallis (1980). It contains, as
special cases, various rational expectations‘models'introddced in the
literature. For the case where W, follows a pure AR pr;cess see also
Revankar (1980).

23. See, e.g., Ando et al. (1974) and Coen and Hickman (1970).

24. Since the first order conditions are continuously differentiable
in all arguments and their Jacobian is nonsingular the implicit function
theorem implies further that this function is continuously differentiable
at each and hence all admissible parameter values.

25. This assumption will be relaxed later on.

26. For the statistical theory on 2SLS, 3SLS and FIML estimation

in implicit nonlinear simultaneous systems see Amemiya (1977), Gallant

(1977), Gallant and Holly (1980) and Gallant and Jorgenson (1979). Since

our model contains lagged endogenous variables we have to keep in mind
the qualifications made in Gallant (1977, p. 73).

27. For instance, TSP allows in its FIML routine for the
estimation of implicit nonlinear simultaneous equation systems.

28. Plan values for inputs are, e.g., reported in the annual
McGraw-Hill capital expenditure surveys on a firm-by-firm basis. This
body of data has been considered in Eisner (1978).

29. Clearly, this argument neglects the possibility of
measurement errors.

30. This is not to say that a solution of the first order

conditions does not exist. For clarification consider, for instance,
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