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Annals of Economic and Social Measurement, 3/1, 1974 

TOWARDS MODELING HUMAN INFORMATION PROCESSING 

AND CONTROL IN ECONOMIC SYSTEMS: AN APPROACH BASED 

ON MANNED VEHICLE SYSTEMS ANALYSIS* 

BY Davip L. KLEINMANT 

Recent successes in modeling human performance in manned vehicle systems are examined to assess 
whether the modeling techniques may find application to study human decision making in an econometric 
context. The optimal control model of man-vehicle performance is discussed, and several results are 
presented. The important features of the model, that hold potential for studying economic system control, 
are discussed, specifically, the concept of an “internal” model. The similarities and differences between 
man-vehicle control and man-econometric system control are discussed in terms of the man model structure. 
Requirements for extending the existing man model to economic systems are presented. 

1. INTRODUCTION 

An econometric system evolves in time largely under the control of humans. The 

man as a central element is required to correlate and process information arriving 

from several sources. When this information is combined with human experience 

and judgement, there ensues the basis for man’s control decisions. Depending on 

the specific context these decisions may range from adjusting the price of acommod- 

ity to regulating a natural money supply. However, all situations that we study 

are assumed to have a common feature: The human’s information processing- 

control cycle is dynamic, i.e. the man is acting in a feedback control mode to 

regulate the system about some desired condition.’ To be sure, an understanding 

of human control in an econometric context is a difficult challenge. But it is a 

necessary step if one’s methodology is first to model a system, and then to use 

the model to help improve overall system effectiveness. 

The analysis of man’s behavior as an information processor and control 

element in a dynamic system extends beyond econometric contexts. Humans 

function as controllers in literally hundreds of situations. It is therefore prudent 

to explore the state-of-the-art of other fields to determine whether tools and 

techniques exist for human analysis that may have application to economics 

systems. One modeling area that has enjoyed considerable attention over the past 

several years is the manual control of transport vehicles. Recent efforts in human 

response theory have been aimed at developing models of the human operator 

that could be systematically and easily used to predict human behavior and 

system performance in complex vehicle control tasks. 

One of the most general, and most versatile models of human response that 

has been developed in a man—vehicle context is the optimal control model of 

Kleinman, Baron and Levison [1-3]. This modeling approach is rooted in modern 

* Presented at the NBER Workshop on Stochastic Control and Economic Systems, University 
of Chicago, June 7-9, 1973. 

+ Presently with the Dept. of Elec. Engrg., University of Conn., Storrs, Conn. 
' We confine our attention to the behavior of a single humian, as opposed to “team” control. 

117 



estimation and control system theory. It is based on the assumption that the well- 

trained, well-motivated human operator behaves in an optimal manner subject to 

his inherent limitations and constraints, and his task requirements. 

This paper examines the potential for extending the optimal control model 

for human information processing and control behavior as developed in a manned- 

vehicle context, to study human control in an econometric context. The optimal 

control model is reviewed, the similarities and differences between man—vehicle 

and human-economic system modeling are noted, and the model features that 

have analogue in economic systems are discussed. 

2. HUMAN OPERATOR MODELS 

The basic problem that we consider is characteristic of most dynamically 

evolving systems that contain a man in the loop. The generalized loop structure 

is shown in Figure 1. The human makes observations, Y, on the system, and on the 

basis of these observations generates control inputs, u. The human’s task is to 

choose his control inputs so that the resulting system outputs, Y(t), remain “‘close”’ 

to some desired values, Y*(t), as time evolves. Generally there will exist external 

random and/or bias inputs, w and z, that disturb the system from its desired or 

nominal operating point. These unwanted deviations must be countered by the 

human’s control inputs. The basic question is then, how does man, with his inherent 

limitations on the rate and volume of information processing, perform in a stochastic 

and dynamic environment? 
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2.1. System Dynamics 

The types of manned-vehicle problems that have been studied to-date are 

those in which the controlled element dynamics are well-defined in terms of a 

physical model. This includes aircraft, automobiles, and laboratory systems among 

others. Thus, the optimal control model assumes that the system (i.e. vehicle) to be 

controlled, which may include sensor and manipulator dynamics, can be described 

by a set of linearized equations 

(1) x(t) = Ax(t) + Bu(t) + Ew(!) + a(t). 

Here, x(t) is a vector that describes the vehicle state, i.e. the deviation of the system 

motion from some desired trajectory X*(t); u(t) are the human-generated corrective 

control inputs. The terms w(t) and z(t) represent the external disturbances. Without 

loss of generality w(t) can be assumed to be a zero-mean white noise with covariance 

E{w(t)w(t)} = W(t)d(t — 7). 

The component z(t) represents non-random or bias input disturbances. Finally, 

the matrices A and B in equation (1) may be time-varying in cases where the system 

dynamics change with time. 

Several system outputs 

(2) y(t) = Cx(t) + Du(t) 

may be of concern to the-human, and it is assumed that they are presented con- 

tinuously to the man via some visual display. The quantities y(t) are the deviations 

of system variables from their desired output values Y*(t). In the man—vehicle 

control context, it is assumed that if a quantity yt) is presented to the human, he 

implicitly derives the rate-of-change jt), but no higher derivative information. 

The total observations of y(t), including the variable rates, represents the informa- 

tion base from which the human must generate his control action.” 

2.2. Human Limitations 

Any reasonable mathematical model of the human operator must include 

within its framework, the various psychophysical limitations inherent in the 

human. The optimal control model contains time-delay, human randomness, 

small signal threshold phenomenon, among others as shown in Figure 1. Possible 

discontinuous, or pulsatile control behavior is not considered. The description of 

the human’s limitations, and his resulting compensation or equalization is the 

essence of the optimal control model. 
2.2.1. Time-delay. The various internal human time-delays associated with 

visual, central processing and neuromotor pathways are combined in the optimal 

control model. They are modeled conveniently by a single lumped, “equivalent” 

perceptual time-delay, t 

2.2.2. Randomness. It is assumed that the various sources of inherent human 

randomness are manifested as errors in observing displayed quantities and in 

executing intending control movements. Thus, “observation” noise and “‘motor”’ 

? Note that an obvious design problem is to maximize the “information” content of {y(t)} 
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noise are lumped representations of controller central processing and sensory 

randomness. These noises represent the combined effects of random perturbations 

in human response characteristics, time variations in response parameters, and 

random errors in observing system outputs and generating system inputs. These 

noises are also associated with the level of training of a human, i.e. they are related 

to the degree to which the human “knows” the system dynamics (1) being controlled. 

Thus, a well-trained person can be expected to be less “random” than a novice. 

In the optimal control model an equivalent “‘observation” noise vector is 

added to y(t). A single noise v,,(t) is associated with each display variable y(t). The 

noises v,,; are assumed to be independent, Gaussian white-noise processes with 

covariances 

(3) E{v,(t)v,{t)} = V,At)- d(t — 7). 

Furthermore, it has been found from experiment [4] that the covariance V,, scales 

with the magnitude of the signal to°which it is associated, 

(4) Vjdt) = py: Ef y7(0}. 

Thus, in a very reasonable manner, the human’s errors in perceiving a given 

quantity depend on the magnitude of that quantity. The noise/signal ratios p,,; 

depend on the relevant features of the display, the external environment, and the 

level of human training, among numerous other factors. 

2.2.3. Scanning and interference. When there is more than one display indi- 

cator, the human must allocate his attention among the various displays. Let us 

assume that there are K sources of information and let y, denote the human’s 

attentional allocation to indicator K. Thus, neglecting switching time, 

In the optimal control model, if displayed variable y,t) is obtained from indicator 

k, the effect of attention sharing is to modify the noise/signal ratio p,,; according to 

(6) Pyi = PyilMy 

where p, is the noise/signal ratio that corresponds to full attention on indicator k. 

The human is assumed to choose the n, to “‘optimize”’ his information base vis-a-vis 

the control requirements. Methods for determining ‘“‘optimal” , within the human 

modeling context are discussed in Refs. [2-3]. In some cases a simple assumption of 

equal division of human attention among the primary display channels, ie. n, = 

1/K, suffices for model applications. 

2.2.4. Small signal effects. If a particular signal y,; is very small in magnitude, 

a human may not be capable of detecting its non-zero value (visual threshold). 

Alternatively, he may choose not to react to such small perturbations (indifference 

threshold). These threshold phenomena represent human nonlinear characteristics 

for small signals. Specifically, if a signal y is displayed, the human will react to a 

signal y’ given by 

y =f(y) 
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y-a y2a 

(7) f(y) =4 0 —-a<y<a 

y+a y<-a 

and a is the threshold level associated with y. 

The total signal y, that is perceived by. the human must reflect the time-delay 

and observation noise limitations discussed above. Thus, the human perceives the 

quantities 

(8) Ypdt) = (yt — 1) + v,At — 1) 

i.e., delayed, noisy and modified replicas of the signals actually presented on the 

display. As shown in Figure 1, it is the signal y, that is “processed” internally by 

the human (through some equalization network) to yield a commanded control, 

u.. 

2.2.5. Neuromotor dynamics. Because of central processing and neuromuscular 

dynamics, a human cannot effect control action instantaneously. Thus, there is 

a lag between the internal “commanded” control and the actual control input 

generated by the human. We model the neuromotor dynamics as a first-order 

system 

(9) Tya + u = u.. 

However, the dynamics (9) are not imposed directly in the human operator model 

structure. We include them indirectly in perhaps a somewhat more natural manner, 

by implicitly limiting the human’s control rate, a. This aspect of the model will be 

discussed further in Section 2.3. 

2.2.6. Motor noise. The motor noise v,(t) is the second component of modeled 

human randomness. This noise is used to represent the effects of random errors in 

executing the intended control movements (tremor), or the fact that the human 

does not have perfect knowledge of the system input u(t) because of “noisy” 

proprioceptive feedback channels. The motor noise is added to u,(t). Thus, 

(10) T,a + wu = u(t) + v0). 

The noises v,(t) are assumed to be white Gaussian processes, with covariances V,, 

that scale with the control magnitude, 

(11) VAt) = py E{up(t)}. 

2.3. Control task representation 

Our basic assumption in man-modeling is that the well-trained human 

behaves in an optimal manner subject to his inherent limitations. The human’s 

limitations have been discussed ; it remains to define what is meant by “optimal.” 

In the optimal control model it is assumed that the control task is adequately 

reflected in the human’s choice of a control input that minimizes the quadratic cost 

functional . 

T 
(12) J(u) = E\; | (y'Qy + wou ar | 

T Jo 
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conditioned on the perceived information y,( - ) in equation (8). The terminal time 

T may approach oo if we are interested solely in modeling man’s steady-state 

performance. 

The cost functional (12) was chosen because of its physical appeal (the human’s 

task is to keep the variations y(t} small), its mathematical tractability, and the 

resulting analytic simplifications it provides. The cost functional weighting para- 

meters Q = diag(q,;) and G = diag(g,;) may be either objective (specified by the 

experimenter or designer), or subjective (adopted by the human in performing and 

relating to the task). Clearly, the selection of any subjective cost weightings is a 

nontrivial matter and is tantamount to mathematically quantifying the human’s 

control objectives. In some simple cases weighting selection can be chosen on the 

basis of task requirements. However, in complex multivariable situations, repre- 

sentative values for gq; and g; may have to be elicited by model-data matching 

procedures or by questionnaire. 

As mentioned earlier, the neuromotor dynamics are not included directly 

among the inherent limitations of the human. However, note that included in J(u) 

is a cost on control rate. This term may represent an objective or a subjective 

weighting on control rate. (It should be noted that rapid control movements are 

rarely made by trained operators.) Alternatively, this term could account indirectly 

for the physiological limitations on the rate at which a human can effect control 

action. Including the control rate term in J(u) introduces a first-order lag in the 

optimal controller. In the optimal control model, therefore, these dynamics can be 

associated with the dynamics often attributed to the “‘neuromotor” system. 

2.4. The Optimal Control Model of Human Response 

Within the postulated framework, the human’s control characteristics are 

determined by the solution of a well-defined optimal linear regulator problem 

with time-delay and observation noise. Figure 2 shows the feedback loop structure 

of the optimal control model. The control that minimizes J(u), conditioned on the 

“perceived” information y,{ - ), is generated by the linear (separable) feedback law, 

(13) Ty + u = —L&(t) + v,(0) 

+99 
where X(t) is the “human’s” best estimate of the system state x(t) based on the 

perception y,(c), o < t. The feedback gains L are time-varying when T < oo in 

equation (12) or when the system dynamics are nonstationary. The first-order lags 

and time-constant matrix Ty are the consequences of weighting @ in the cost 

functional.? The parameters L and Ty, are obtained from the solution of a non- 

linear matrix equation (Riccati equation) once values are chosen for the weightings 

Q and G. 

The correspondence between the control rate weightings G and the values of 

Ty allows for (indirect) adjustment of T,. In this manner T, can be chosen to be 

commensurate with human performance data concerning neuromotor lags. Thus, 

the neuromotor dynamics discussed earlier are included naturally in the man-model 

through the weighting of t. 

In general, weighting wu” in the cost functional will give rise to m-th order dynamics in the 
resultant feedback loop. 
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Figure 2. Optimal control model of human response 

The best estimate of x(t) is generated by the cascade combination of a Kalman 

filter and a least mean-squared-error predictor. The Kalman filter compensates 

optimally for the human’s observation noise to generate a best estimate of the 
delayed state 

(14) p(t) = X(t — tt) = E{x(t — t)ly,(o),0 < t} 

according to 

(15) p(t) = Ap(t) + Ba(e — ct) + K[y,(t) — Cp(t) — Da(t — 1)] 

where fis the human’s best estimate of the actual control input, u. The filter gains K 

are determined from a matrix differential equation. 

The predictor compensates optimally for the human’s inherent time-delay rt, 

generating an estimate of x(t) by predicting p(t) ahead by t seconds. The estimate 

R(t) is generated by 

(16) R(t) = AX(t) + BA(r) + (t,t — 1)K[y,(t) — Cp(t) — Da(r — 2)] 

where @(-, -) is the state transition matrix associated with A. Thus, the human’s 

equalization, as portrayed in Figure 1, is modeled as consisting of an optimai 

filter-predictor combination (information processor) that first estimates the state, 

followed by a set of optimal gains. The feedback process is sequential, ie. first 

estimation and then control using the estimated signals. 

3. APPLICATION OF THE OPTIMAL CONTROL MODEL IN MAN-—VEHICLE SYSTEMS 

In order to use the human operator model to predict closed-loop system 

performance, it is necessary to prespecify various system/human parameters. It is 

assumed that the quantities A, B, E,C, D that specify the input-output characteristics 
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of the controller system-display are known. The statistics of the input disturbances 

w(t) and z(t) must also be assumed known. The control task must be translated 

into mathematical terms via the selection of the cost functional weightings Q. The 

specification of any human subjective weightings may be a nontrivial matter as 

noted earlier. Finally, it is necessary to choose values for the human response 

parameters t, Ty, P,:, Py; and thresholds a;. Reasonable approximations to these 

quantities are available from various data in the manual control field. For example 

the effective time delay t = 0.2 + 0.05 sec. Human performance data concerning 

neuromuscular lags indicates that (Ty);; ~ 0.1 sec, and the control rate weightings 

G are adjusted accordingly. Experience with the optimal control model, and inde- 

pendent experiments, have shown that 

Py =~ 0.01x (—20dB noise/signal ratio) 

Pyi = 0.0032 (—25 dB noise/signal ratio). 

The thresholds a; depend on man’s physiological limitations. Typically, a, ~ 0.05° 

visual arc for position and 0.05°/sec visual arc for rate observation. For most high- 

resolution, well-designed displays, the thresholds can be neglected. 

We illustrate the wide spectrum of man-vehicle problems that have been 

studied using the optimal control model by discussing briefly some applications. 

3.1. Simple Error Regulation [2, 3] 

These laboratory experiments consisted of single-input single-output vehicle 

dynamics in the transfer function form 

y(s) _ (17) da* a, 
S S$ 

The task was to regulate mean-squared error y7(t) when the system was subjected 

to a random noise disturbance. This is a steady-state error minimization task, i.e. 

T > o inthecost functional. Since the vehicle dynamics are stationary, the human’s 

feedback control strategy becomes time-invariant (after an initial learning period) 

and may be described in the frequency domain by a transfer function 

(18) u(s) = h(s)y(s). 

The transfer function h(s) can be measured experimentally and can also be predicted 

by the model. A comparison of both results serves as a model validation. Figure 3 

shows the data-model comparisons of the magnitude and phase of h(s), over the 

pertinent frequency range, for k/s? dynamics. The agreement is excellent and shows 

that the model can describe man’s input-output behavior in this simple, but 

important, class of problems. 

3.2. Pilot--Aircraft Studies 

3.2.1. VTOL hovering task [2, 3]. The model’s application to study the 

human’s precision control of a hovering VTOL-type vehicle represents an extension 

of the error regulation tasks described above to more complex dynamics. The 

effects of changes in aircraft stability derivations on rms hovering performance 
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were computed using the model. The results were compared with experimental 

flight simulator data, and showed excellent correlation. 

3.2.2. Aircraft display evaluation [5]. A piloted approach-to-landing task of a 

light aircraft was studied using the model. The effects of different display formats 

and display symbology were predicted in cases where the aircraft was subjected to 

turbulence and/or constant updrafts. The ability of the pilot to estimate these 

external disturbances, aid take the appropriate corrective action to minimize 

glide path errors was analyzed. Predictions of system performance were compared 

with data obtained in independent experimental investigations. The model-data 

agreements were remarkable and demonstrated the model’s ability to predict the 

time-varying adaptability of a pilot to bias (updraft) disturbances. 

3.2.3. STOL landing [6}. In a recent effort, the optimal control model was 

applied to predict pilot performance during the flare and touchdown phase of 

STOL aircraft landing. This was an ambitious modeling effort since the vehicle 

dynamics were highly complex, ground effects and turbulence affected the motion 

of the aircraft, and the pilot was required to land within a short touchdown area. 

In modeling the pilot, it was assumed that the human generates a nominal flare 

path, and then tries to correct for deviations about this path caused by his own 
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inherent randomness and the external disturbances. Thus, the model gives predic- 

tions of flare path and touchdown dispersions, as well as of numerous other per- 

formance measures. Figure 4 compares predictions of flare path dispersion (dotted 

lines) with the flight path data from ten simulation runs (scatter points). The agree- 

ment is quite good, for this complex task. 

3.3. Anti-Aircraft Tracking [7] 

In this modeling effort, the human’s task was to track an aircraft target in both 

azimuth and elevation using a visual gunsight. The dynamics of the sight and 

associated gun mount varied with time, making the tracking task very difficult. In 

addition, the target motion could be quite arbitrary (although not stochastic) and 

was unknown a priori by the gunner. 

The model outputs for this study consisted of the ensemble statistics of the 

tracking error waveforms in both axes. The mean, or average, error is the result 
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one would expect to find by averaging the results of many experimental paths. The 

standard deviation about the mean is the run-to-run variability due to human 

and/or external system randomness. Figure 5 is a comparison of model vs. human 

ensemble statistics for the azimuth axis tracking error, as a function of time, for a 

typical aircraft trajectory. Although the experimental data is the average of only 

10 sample paths, the results are in good qualitative and quantitative agreement. 

3.4. Summary 

By way of a brief overview of several case studies, we have shown the flexibility 

of the optimal control model to predict human response across a spectrum of 

manual control tasks. We have seen that modern control and estimation theory, 

coupled with human response theory, provides a unified framework for the analysis 

of manual control systems. Within a single optimality context, a model was 

developed for the human’s inherent limitations and for his compensating informa- 

tion processing and control behavior. Indeed, the methods for representing these 

limitations, and the resulting compensating elements are the unique and crucial 

features of the model. 

Although it has not been pointed out explicitly, the various input parameters, 

T, Ty, Py: etc. associated with the human’s limitations are assumed to be independ- 

ent of the vehicle dynamics and control task. This is a reasonable assumption when 

the effects of the external environment (light, heat, stress, etc.) do not change in 

large measure. Therefore, if these parameters are independent of the control task, 

then complex control situations may be analyzed using the same parameters that 
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are applicable to simple tasks. Indeed, experience to date indicates that such an 

approach is possible. For example, all of the modeling case studies described above 

were performed with the same numerical values for the human response limitation 

parameters t, Ty, Pi, Pyi- The differences in human strategy from case to case arise 

in response to changes in the system dynamics and associated task requirements. In 

this respect the model may be considered ‘‘adaptive.”’ 

4. POTENTIAL FOR ECONOMIC SYSTEM MODELING 

The preceeding sections have described a validated model for the human in a 

manned-vehicle control context. Modern control theory supplied a generalized 

framework in arriving at a conceptual model of the human’s information processing 

and control behavior. The state-space techniques are ideally suited to the analysis 

of complex multi-variable systems. The generality of modern control theory admits 

a highly flexible model—one capable of a modular “growth” as more complex 

facets of human behavior are considered and understood. 

In this section we examine, albeit superficially without the benefit of example, 

the potential for extending the conceptual framework of the optimal control model 

to study human control in an economic context. 

4.1. Elements for Decision Making and Learning 

It is reasonable to expect that a human’s role in an economic system will 

involve decision: making and learning as well as control. Therefore, a model of 

human behavior in an econometric context must have the ability to treat man’s 

decision making and control processes. The primary attribute of the optimal 

control model for studying human decision making lies in the characteristics 

associated with the Kalman filter-predictor submodels. The combination of these 

elements provides the framework for modeling the information processing behavior 

of the man, and consequently, his decision abilities. Several features of the informa- 

tion processing submodel are discussed. 

4.1.1. State estimate. The output of the Kalman filter/predictor, &(t) is the 

model’s best (linearized) estimate of the system state x(t), generated on the basis of 

the perceived y,(t). This “‘internal’’ estimate of system status is updated continu- 

ously and provides a mechanism for studying decision/detection phenomena that 

are wholly dependent on the vehicle state. Examples of such problems are de- 

cisions based on whether or not certain variables lie within desired limits at a 

given time. Thus, deciding to land or to go-around during aircraft approach is 

such a case. 

A continuous time, monitoring and decision model using the generated state 

estimate X(t) has been suggested by Levison [8]. His basic assumption was that 

a human’s decision involving x(t) is made on the basis of &(t) and its error covariance 

(or uncertainty) matrix. The model was partially validated by an experiment in 

which subjects decided whether a signal was within given bounds on the basis of 

observing signal-plus-noise. 

The modeling of a human’s continuous-time state detection process is an 

important application of the optimal control model. However, this model needs 

considerable modification before it can be applied in an economic context, where 
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decisions might be whether or not to raise taxes depending on whether certain 

key indicators are above given limits.* Concepts of utility theory will prove 

necessary in the modeling endeavor in determining the “cost”’ for a wrong decision 

vs. a correct decision. The familiar trade-off of false alarm vs. non-action will be 

encountered when setting thresholds on the state detection process. Despite the 

difficult modeling issues, it is reasonable to expect that the internal estimate 

R(t) will be of paramount importance for decision and control in any human 

econometric model that has a similarity to the optimal control model. 

4.1.2. Internal model. It is important to note that in the description of the 

Kalman filter (15) and predictor (16) that comprise the information processer, 

there is an explicit model of the system dynamics (1) and (2) via the parameter 

matrices A, B and C. Put another way, the filter includes an internal model of 

the environment. This concept is important and appealing. In broad terms, an 

internal model characterizes the human’s knowledge of the controlled vehicle 

dynamics, a process arrived at and refined through past perceptions, training and 

experience. The use of internal models in the description of human response is 

not new [9, 10]. Virtually all attempts to model human fault detection in manual 

control have postulated an internal model. Indeed, the concept of expected vs. 

unexpected response associated with detection implies some type of internal 

model of the controlled element dynamics. Within the context of internal models, 

one can view the phenomenon of human learning as the process by which man 

improves his internal model of his environment. 

In the optimal control model, the human’s entire information processing and 

control behavior is conditioned on the specific internal model. Generally, it has 

been assumed that the internal model is the same as the system being controlled. 

This assumption was reasonable as long as the system dynamics were simple, 

linear and the human was well-trained. However, the equivalence of system and 

internal models is not a necessary prerequisite in our modeling approach. What 

is necessary is that the internal model be a good (linearized)* “approximation” to 

the true system. Thus, in both the STOL landing and antiaircraft modeling efforts 

described in Section 3, the system dynamics were nonlinear yet internal models 

were chosen that well-approximated the true dynamics. This approach is reason- 

able in situations where the system dynamics have a well-defined structure. 

In a more general, and potentially more complex case, where the system 

being controller was nonlinear, high-order, stochastic, and not well-understood, 

discovering the form of an internal model would not be an easy task. This problem 

may arise in human modeling within an econometric system, where the system 

model itself is not well-understood, not to mention the form of any internal 

human model. However, the concept of an internal model is still a valid—indeed, 

a necessary—ingredient in modeling human behavior in an econometric system. 

Future research efforts should concentrate on defining the process through which 

man develops his internal model from observed data, and the model’s relationship 

to the actual system. Control theoretic results on learning and self-organizing 

systems will be of potential benefit in these endeavors. 

* How much to raise taxes is the ensuing control problem. 
5 Although admitting simplicity, linearization is not necessary. Extended Kalman filtering or 

nonlinear filtering schemes could be used in the information processor. 
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4.1.3. Innovations process. Consider the method by which the Kalman filter 

(15) updates the estimate p(t) = X(t — t) as a function of time. The driving term 

(19) r(t) = y,(t) — CX(t — t) — Dat — 1) 

represents the difference between the human’s perceived information y,(t) and 

the filter’s internal estimate of y(t). Thus, r(t) is the difference between actual and 

expected observations, and is called the residual or innovations process. Basically, 

r(t) is the new information that is brought to the filter by y,(t). 

In the nominal case, when the internal model in the Kalman filter adequately 

represents the controlled element dynamics, the process r(t) is a zero-mean, white 

Gaussian noise with covariance matrix V,(t). In other words, y, and (CX + Da) 

are statistically equivalent and their difference—which is tantamount to the 

human’s observation or central processing noise—has no information content. 

However, when the internal model and system dynamics are not commensurate, 

the human’s estimate of system behavior would deviate in a mean sense from 

observed dynamic behavior. These differences will produce a non-zero mean, 

correlated, innovations process. This fact provides the link between the state 

estimation process and the construction of an internal model. It may be postulated 

that, as a result of training, a human refines his internal model to “whiten”’ the 

innovations process, the mismatch between model and true system being reflected 

in the observation noise variance. Thus, it is more than coincidental that manual 

control experiments have shown lower observation noise levels for better trained 

subjects. The concept of learning, as modeled via the innovations process, may 

hold an approach to the difficult problem of selecting an appropriate internal 

model for complex human control tasks. 

4.2. Man-Vehicle vs. Econometric Modeling—Similarities and Differences 

The preceding sections have described a validated model of the human 

operator in a wide class of manual control tasks. Several attributes of this model 

that may be cornerstones for its extension to study man as a controller of an 

econometric system were discussed. Below, the similarities and differences between 

the man—vehicle and economic modeling contexts are discussed in more detail. 

4.2.1. System dynamics. Modeling human response via the optimal control 

approach assumes that the system dynamics are well defined, and that the state 

evolves according to physical laws. This assumption is valid for vehicular systems 

that obey the laws of nature, but is dubious for econometric systems that may or 

may not obey the laws of man. There are, nevertheless, similarities between the 

physical man-—machine systems, and the metaphysical man-—socio-economic 

systems. Both are compiex, multi-input, multi-output and stochastic. Input 

disturbances cause system behavior to deviate from desired norms. Measurements 

on these systems are generally corrupted by noise. The eventual mathematical 

analysis of such systems is well-suited to modern state space techniques. 

The difficulty in modeling the econometric system being controlled looms as 

a major stumbling block for manual control analysis. Extending the optimal control 

modeling approach requires a specification of man’s internal model of the environ- 

ment. If the internal model is based on the true system’s evolution, the modeling 
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of the latter is necessary. The alternative is to postulate an internal model that is 

(at least partially) divorced from the true system, representing a simple relation 

between cause and effect. This may degrade seriously the applicability of any 

subsequent man—model. 

The majority of efforts in manual control have been with continuous time 

systems, where the man continuously processes information and provides control. 

Certain economic systems are basically discrete in form, with economic indicators 

and control inputs supplied periodically, e.g. monthly or quarterly. The discrete 

time evolution of these systems does not present a problem for analysis via the 

modern control techniques. However, whether the mode of human behavior in 

systems with long sample intervals and stretched time scales is similar to that in 

continuous systems, is a matter for research. 

4.2.2. Concept of control. In both man-vehicle and economic systems the 

human’s control task is to minimize unwanted deviations in system response 

from a desired goal. These deviations result from external disturbances (noise and 

bias), as well as from human errors and randomness. In the vehicle control case 

the minimization of a quadratic error cost functional was used to generate a 

“human” control. The utility of quadratic cost functionals has been demonstrated 

by many researchers in econometric control. Thus, the use of this type of cost 

functional to describe a human’s economic control objectives is not at odds with 

present thinking in this field. The most difficult aspect of this approach will be 

in determining subjective weightings, especially when they differ from the relatively 

straightforward objective weightings. The difficulty is often compounded by 

having different control objectives being expressed by different individuals. 

In the optimal control model, the use of a quadratic cost functional results 

in a separable feedback control mode. First the human model generates a best 

estimate of the system status that is independent of his eventual control desires. 

Next, the estimated quantities are suitably combined into.a control policy. Esti- 

mation and control proceed continuously. This type of human behavior seems 

entirely reasonable for a man in an econometric environment. The state estimation 

process is one of gathering facts, correlating information, and prediction or extra- 

polation. The control input is then some function of man’s best estimate. However, 

unlike vehicle control, the time period for information processing is very long 

relative to a human’s central processing time. Thus a man model in such a context 

would probably consist of long periods of information gathering and digesting, 

followed by a control decision, followed by a wait-and-see period and more 

information processing, etc.° 

4.2.3. Human limitations. It is unlikely that all of the human limitations 

appropriate to vehicle control will find their counterparts in economic system 

control. Certain limitations are similar, e.g. human nonlinear threshold phenomena 

for small signals. However, other limitations may be more system-oriented than 

human-oriented. For example, the time-delay in obtaining information will 

probably dominate the various internal human processing delays. The neuro- 

motor dynamics may not be pertinent in an explicit form; however, a subjective 

limitation on the rate of control input may be appropriate in view of public 

© This type of human response is observed in controlling submarines and supertankers where 
system time constants are very long, giving the human more time to “think.” 
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response. Observation noise may not have the same interpretation as in a man- 

vehicle context ; however, this “‘noise’’ may be appropriate to represent the errors 

in a human’s internal model of the environment as discussed earlier. 

Other inherent limitations of the man and the system may be important, and 

would have to be modeled. Examples include political or policy constraints. 

However, the basic approach in human modeling would be to define and para- 

metrize the important human limitations, and then to determine suitable values 

for the limitation parameters. Unfortunately, the ‘““average”’ parameters that work 

so well in man-vehicle control will probably have little relation to economic 

control. Thus, data analysis and parameter identification techniques will be 

mandatory in the parameter selection task. 

4.3. Man—Econometric Modeling—Where to Now? 

The optimal control model*for man—vehicle analysis has a flexible structure 

that holds potential for its adaptation to model human control in economic 

systems. The basic assumption, that the man behaves in an optimal manner 

subject to his inherent (and imposed) constraints is a valid hypothesis for the 

modeling work. Note that any such model eventually developed will be normative, 

i.e. we attempt to define what an experienced human should do. The fact that this 

assumption has worked well is evidence of man’s adaptability and learning. 

The extensions of the modeling techniques are nontrivial as noted. However, 

a representative problem or class of problems should be defined for a first analysis. 

The specific problem to be selected for a man—system modeling effort should be 

sufficiently well-defined. The system should have a mathematical representation 

that requires a low number of state variables and is not overly complex ;’ suitable 

descriptions of the input disturbances and data presented to the man are needed. 

This will permit an internal model to be constructed in the overall man model. 

The specific problem to be selected must also have sufficient data available that 

can be useful in the modeling effort. This data is mandatory for determining values 

of parameters associated with human limitations, for validating the system model 

and the subsequent man model, and for determining human-oriented control 

goals. The type of data needed includes time histories of the information presented 

to the man and the associated time histories of his control inputs. 

It is quite likely that the type of data needed in developing the man—model 

may not be readily available from a real-world, well-defined economic subtask. 

In such a case, contrived and controlled laboratory experiments are in order, 

using experienced economists as subjects. If we can understand and model how 

this class of people implement control decisions in simple tasks, then perhaps this 

knowledge may have extension to more complex tasks. The ability to repeat 

laboratory tasks is a powerful tool, for it allows us to study intersubject differences, 

the effects of different information, and provides us with a measure of variability 

inherent in the human’s decision processes. The successful modeling of complex 

man-—machine systems interactions followed the path from simple laboratory cases. 

7 For example, the day-to-day adjustment of a commodity price is a more logical starting point, 
than the task of managing a large firm. 
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It appears likely that a similar approach will be successful in man-socio-economic 

modeling. 

5. CONCLUSIONS 

An existing, validated optimal control model of human response in man-— 

vehicle control systems has been discussed. This model possesses a generalized 

structure that provides a conceptual framework for modeling human control in 

an economic context. Extending this model to a man—econometric system first 

requires an adequate description of the system being controlled. Necessary are 

descriptions of the information base and control inputs available to the man and 

his control objectives. The external inputs that disturb the system must also be 

modeled. 

The successtul development of a human model in such a control task depends 

on characterizing the human’s internal model of the environment and specifying 

a suitable cost functional. Obtaining adequate data from which to determine 

values for the human-oriented parameters, and for model validation is a needed 

step in the development program. We are optimistic that human modeling tech- 

niques, based on modern control theory, and proven by application, hold promise 

for understanding man’s role as a controller in dynamically evolving economic 

system. 

University of Connecticut and 

Systems Control, Inc. 
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