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Annals of Economic and Social Measurement, 3/1, 1974 

ON SOME PRICE ADJUSTMENT SCHEMES 

BY MASANAO AOKI* 

The paper compares a stochastic approximation price adjustment equation with three Bayesian pricing 
schemes, of which two have one-period criterion functions and the third has a multi-period criterion 
function including a variable for a desired terminal stock level. The stochastic approximation price adjust- 
ment scheme is shown to be the same with two myopic Bayesian pricing schemes asymptotically with 
probability one. The Bayesian price adjustment equation for a multiperiod criterion function, under static 
price expectation assumption, is shown to be similar to one period price adjustment equation with probability 
one except for the presence of a stock level adjustment term. 

1. INTRODUCTION 

Consider an organized market dealing with a single commodity where trading 

takes place out of equilibrium. We suppose that prices are set either by a marketeer 

(for example, a trading specialist) or by a market authority (for example, in a 

centralized economy). Prices are set by such an economic agent in the face of 

unknown or imperfectly known market response. 

We assume that the excess demand for the commodity in response to price p 

is modeled by x(p) = f(p; 0) + € where f(p; 4) is a known function of p with 

unknown parameter @ and where € is noise.’ For example, the economic agent is 

assumed to know that f(p; @) is linear in p, f(p; 0) = —ap + B, where the para- 

meter vector 0. = (a, #)is unknown except for the fact that they are positive a, 8 > 0. 

Wecan investigate the pricing policy of the economic agent either by assuming 

that the economic agent has his subjective estimate of x(p), in other words, subjec- 

tive estimate of 6 and employing the Bayesian approach’; or by treating @ as an 

unknown constant vector and employing a price adjustment algorithm which is of 

the stochastic approximation type or other programming algorithm such as the 

stochastic gradient method, [1]. The Bayesian viewpoint is used in [3] to formulate 

the pricing policy. 

In this paper, we first discuss the stochastic approximation adjustment in 

Section 2. In this scheme, p,, , — p, is set equal to a,x(p,) where the adjustment gain 

a, approaches zero as o(1/t) as t > oo. 

We then compare it with a scheme in which the marketeer sets the price 

which, in his estimate, clears the market, i.e., he sets the price which clears his 

subjective estimate of the market excess demand. Since his estimate of @ changes 

with time, the equation for updating his estimate of @ implies a certain price adjust- 

ment scheme. 
We show the relation of this equation with the stochastic approximation one. 

This is carried out in Section 3.1. 

* The author wishes to acknowledge helpful discussions with R. W. Clower. An earlier version 
of the paper was presented at the 2nd workshop on “‘stochastic control,” NBER Conference on the 
Computer in Economic and Social Research, University of Chicago, June 7-9, 1973. The participation 
in the workshop was made possible by support from the NBER. 

! We assume a finite variance for noise. 
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In Section 3.2, the price is set to minimize the conditional expectation of x(p,)?. 

We then compare the resulting price scheme with that in Section 2. These two 

pricing schemes are therefore one-period or myopic Bayesian schemes. 

in Section 4 we use a multi-period criterion function in the excess demands 

and the desired terminal stock level. We ask in what way the pricing scheme which 

results from an approximate optimization of the multi-period criterion function is 

related to that of Section 2 and show that except for the presence of a term to adjust 

the stock level, it behaves the same as the stochastic approximation scheme for 

large t. 

2. PRICE ADJUSTMENT BY STOCHASTIC APPROXIMATION 

In [3], we discussed the pricing policy which minimizes the expected multi- 

period cost, conditioned on the past observation. When we specialize it to a one- 

period policy where p is taken to be such that E(x(p)|%,) = 0, then the price at 

period t is adjusted (see Section 3.1 and Appendix | for the derivation) by 

(1) Pray = Pe + KX,¢ = 1,2,... 

where the adjustment gain is approximately given by 

(2) k, = (1 + (>, — B)?/sp)A1 + tho, 

where 

1 t 

(3) bh=— dP 
s=1 

1 t 

(4) s? eter (p,.— p,) 
t s=1 

a, = E(a|%)) 

and where #%, is the agent’s knowledge at time t 

H, = {H,—1,(P,—1)s Pr-1} 

H, = {the agent’s a priori knowledge on 0}, 

so that a, is the posterior estimate of « at period t. 

Equation (1) with the differential adjustment parameter (gain) k, is quite close 

to the adjustment scheme of the Robbins—Monro stochastic approximation [10]. 

We therefore consider a price adjustment equation 

(5) Pr+a = Pr + 4X; 

where x, = x(p,) = —ap, + B + €,, and where a, is specified below. We assume 

{€,} is a sequence of independently and identically distributed random variables 

with mean 0 and a finite variance o?. 

Fact | (Chung) 

The prices generated by (5) converge to B/a in probability as t — oo for any 

sequence of adjustment gain such that ta, > 1/a,t - oo. 
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Proof. This was established by Chung [6]. 

We can also show that p, generated by (5) converges in mean square. Define 

the variance 

uy, = E(p, = P,)? 

where 

P, = E(p,). 

We use the symbol ~ to indicate the order of magnitude relation. 

Fact 2 (Hodges—Lehmann) 

For the adjustment parameter a, = c/t, we have the order of magnitude rela- 

tions for 2xc > 1, with a constant c, 

(6) E(p, +1) ~ E(p,)/t* + cl — t~™)B/a, 

V.41 ~ 0,/t?* + o7/a*t -(ac)*?/(2ca — 1). 

Equation (6) remains valid for any other choice of a, such that ta, ~ c,2ac > 1, 

as t + 0. 

The Proof is due to Hodges—Lehmann [8]. 

The convergence with probability one also obtains for the price adjustment 

equation (5). ° 

Fact 3 

With ta, > 1/a, the prices generated by (5) converge to B/a with probability 

one. p, of (3) in conjunction (5) also converges with probability one. 

Proof. With a, = 1/at, p, generated by (5) can be written as 

Pr+. = B/a + M41 

where 

1 t 

+1 = = Soe 

Define (, = }"_, ¢,/s,t = 1,.... It is easy to verify that {f,} is a martingale and 

sup, E|¢,| < oo. Thus ¢, converges to a finite limit with probability one (Chung 

[7}). By the Kronecker’s lemma (Chung [7]), the convergence of (, (with probability 

one) implies that y,, , + 0 (with probability one), as t > oo. 

p, of (3) is given as p, = B/a + }*_, n,/t. Since }“ _, n,/u is also a martingale 

and sup, E()“ _, ,/u)? < 0, }*_, n,/t + 0, with probability one, hence p, > B/« 

with probability one. 

3. RELATION WITH ONE PERIOD BAYESIAN PRICING POLICY 

We discuss two pricing policies related to Bayesian policies involving x, 

alone; i.e., we consider one-stage optimization in this section. Multiperiod pricing 

scheme is considered later in Section 4. 
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3.1. Consider a pricing policy whereby the agent sets p, to make the expected 

excess demand E(x,|%,) zero. We have 

E(x) = 76, 

where 

E(0\%,) = 8, = (—a,, By. 

From 

(1) 0 = E(x,|%) 

one has 

(1) DP =B/a,, t=0,1,.... 

See Appendix 1 for the computatien of 6,. 

Equation (1)' is the policy such that —a«,p, + B, = 0 for all t = 0,1,.... In 

other words, this pricing policy is the certainty equivalent policy of getting zero 

excess demand. 

In case of Bayesian estimate updates, the convergence with probability one is 

established by the martingale convergence theorem, since {E(0|¥,)} with &,f is a 

martingale, where %, is the o-algebra generated by %. See Chung [pp. 312-331, 7}. 

Fact 4 

The Bayesian pricing policies generate p, such that p, > B/a as. 

The conditional expectations are rather difficult to compute, except for 

several well known probability distribution functions. 

Even though the marketeer knows that (1)’ is the price that clears the estimated 

excess demand, he may be therefore interested in a suboptimal pricing scheme 

which is easier to implement and which has asymptotically the same behavior 

as the optimal one given by (1)’. 

The pricing equation of (4) given below is one of such schemes. It’s relation to 

the optimal one is clearly seen by comparing (3) with (4). 

From (1)’, we see that p,,, = B,+,/o+,, where ,, , is related to 6, by (2). 

“(Pi a 
‘ A o 1 

2? O..=U- Kd +34] Keer = 

: 1 + (p,, 1? 
oat 

2 

o7A>! = o?Az}, + aera, i 
Pr-1+1 

When 86,,, is expressed in terms of 6, and x,, it is seen that the one period 

price-adjustment equation generating prices in the Bayesian case is approximately 

? This is the same set of equations obtained by the Bayesian rule for independent Gaussian noises. 
In this section we merely consider this set as given. See [3]. 
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equal to that of the stochastic approximation when some small terms are neglected. 

We state it as Fact 5. 

Fact 5 

The Bayesian one-period price adjustment equation generates p, to clear the 

estimated excess demand and is recursively obtained by 

(3) Peta — Pr = KX, 

where k, is given by 

l + (P, cd p,)? 

(t+ 1)o, (t + 1)o,9? 

(P, ad p,)’ 

(t + 1)u,s?]° 

See Appendix 1 for the derivation. 

Motivated by this similarity in the price adjustment equations, we consider the 

convergence behavior of the price adjustment equation 

Peta = Pr + aX, 

where 

a l (P, — p,)’ 

(4) Gy De, * t+ Dos 

with 

1 t 

(5) Jt 2X © — p,)’. 

TH. 
where 6, = | | is generated by (2). 

Note that the price adjustment gain (4) is k, up to the term of((p, — p,)”), 

(t + 1)a,s?)), and that the first term of a, in (4) is the same as the stochastic 

approximation price adjustment gain. 

It is shown in Appendix 2 that the second term of a, is at most o(1/f), a.s. 

Proposition 1 

The price adjustment equation (3), with the adjustment gain given by (4) and 

(5), converges to «/f a.s. if f, = o(t~"), a.s., where f, is defined by (2), Appendix 2. 

Proof. Let r, = p, — B/a. r, obeys the difference equation 

(6) Ney = (1 — aa,)r, + a,€, 

where from (1) and (2) of Appendix 2 we see that 1 — aa, = el — f(t + 1) 

which is less than 1 a.s. 

From (6), denoting by &, c-algebra generated by ¢,, s < t, we have 

E(r?s |B) = (1 — aa,)’r? + apo? < rf + azo’. 
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Therefore, if Za? < oo, where a, = (1 + ¢f,)(t + 1), then by Cor. 1 of [11], r? 

converges a.s., hence r, also converges a.s. to a finite random variable. 

We show in Appendix 2 that f, < q?/)"q? where q? is bounded a.s. and 

4, oo as. Then from Dini’s theorem (p. 125 of [15]), Ef? < o as. Thus, 

La? < © follows if Xf,/t < 0 as. This convergence obtains for any f, = o(t~°), 

6 > 0. 

The a.s. convergence to zero follows from Fact 1 if f, = o(t~'), a.s. See Claim, 

Appendix 2. 

Remark. See Proposition 1 of Appendix 2 for a proof of convergence of ?, to 

zero. 

3.2. Suppose now that the agent wants to set p, to minimize E(x?|3@) as 

close to zero as possible, rather than setting E(x,|#4,) equal to zero. 

This seemingly trivial modification from Section 1 introduces some complica- 

tions, as we will see. Let p, = (p,, Ly’. 

We have 

E(x?|3,) = (60, + 0? + BAD, 

Thus, the agent chooses p, given by 

: Ned o,B, a O7A2, 

7) Pr = a? + 07, 

where from (A.3) of Appendix 1, 2,, = 1/ts? + r,, and A,, = —p,/ts? + r2,, where 

r;, and r,, are o(1/ts?) with probability one. Substituting these into (7) we obtain 

ov 

(7) P, = B,/a, + tstaz Pr — B,/a,) + 7; 

where y, = 0(1/ts?) (with probability one). 

Unlike the certainty equivalent pricing policy, this price given by (7)’ takes 

into account uncertainties (estimation error covariance) of the parameter 6. The 

second term represents this correction. 

From (7), p,., is given as 

_ Bes o (B, — Biss 
Pr+1 = 

; Oey (+ 1)s2, ,02, 1 \ Ors 
ii Vr+1> 

where », is some higher order terms in 1/ts?. We know from (A.6) of Appendix 1 that 

Bra 1/41 na B,/x, + k(x, ue &,). 

Proposition 2 

The one-period Bayesian price adjustment scheme which results from 

minimizing E(x?|%) is the same as that of the certainty equivalent price adjustment 

equation up to 0(1/ts?) a.s. 

4. OpEN-Loop FEEDBACK POLICY AND OTHER POLICIES WHICH INCORPORATE 

PRICE EXPECTATION BEHAVIOR 

In this section we consider a criterion function involving more than one 

period. We show that the approximation under static price expectation to the 
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resultant open-loop feedback optimal pricing policy gives rise to a price adjustment 

equation similar to (3.3). See [5], [9] for the discussion of open-loop feedback 

policy. See [3] for another approximation method. 

Suppose a static price expectation holds. Then the price at time tf, p,, will be 

chosen to minimize the following expression: 

E(J |) 

where the criterion function is taken to be 
T 

Te = (S74, _ s*y? + A Y x2, 
u=t 

where S* is the desired terminal stock and S,., , is the actual terminal stock. Here 

we assume t and T are sufficiently large. 

Using the relation S;,, = S, — }\7_, x,, we express J, as 

_ om T T 
J, =(S, — S*? — AS, -S*)Y x t+ EY xx, + 4¥ x2. 

v=tu=t 

From 

E(x, |%) = 48, 
. Siac og ieee foru>t 

E(x; |) an (6,p,) +¢ + DAD, 

and 

E(x,x,|3%6) = (0;p,)? + 076,, + BAB, u,v >t, 

we have 

E(J,|#%) = (S, — S*? — AS, — S*)[(T + 1 — yp] 

+(T+i-o(T+1-—1¢4+ AH) + FAS) 

+ (A + 1)(T + 1 — to”. 

Hence p* which minimizes the above is given by 

(6) p* sia B, ious O7 Ao _/ By, pes 7. AS, 

sl + Ogle. &. bt Cade 

where 

AS, = (S, — S*)\(T + 1 —t + A). 

Note that with A sufficiently large, AS, ~ 0. Then (6) reduces to (3.7). Substituting 

(A.3b)-(A.3d) of Appendix 1 into (6), we can write p* as 

Al Ant + A, B,/% AS, Ohi, 
(7) pee 11 — FF 2 ) - hl - +e 

a, o,f, a, 

B, o7(B,/a, a P,) AS, a 
oy Sy = SS Sl Fk 

%, ts; a, B, a, US; 

B, AS, o B, , AS, 
aio 7 Ws 4 ae fe Zz 
(é a, ™ ts?a? P +): ion 

where z, represents various quantities of the order o0(1/ts?). 
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Note that except for the term AS,/a,, (7) is identical to (3.7'). Thus, except for 

this term, (7) gives rise to a price adjustment scheme quite analogous to that of 

minimizing E(x?|%). 

From the definition 

T+1-—-t-A a x; 

T-—t+A 
AS,+1 = 

From the above and (A.4), 

AS,,, AS, on 1 X, 6, 1 1 
—. = —|1+— 1 
eos Ot, "a Peake a, a,j/T—t+a ts? 

Then 

6, 6 AS, [6 1 é 1 = pom + ae | 21) 4% 
a\B, a a \a, T—-t+A O, ajT—t+A 

1 
0|— 

* =] 

6,  6,/B, AS, 1 X, 1 AS, — x, 
=— + —/ - — + ——__ +] - + 2, 

ao @\a a' T—-t+dAa, T-t+A @ 

Substituting (A.5) of Appendix 1 into the above, 

x 1 AS, — x 1 
phe — PP = his, ~ &) + pS ++ of 5): wp 

where k, is the same as in (3.3). 

Equation (8) is the price adjustment equation for this case. 

5. CONCLUSIONS AND DISCUSSIONS 

The paper has comparatively discussed four price adjustment equations, one 

stochastic approximation type and three Bayesian schemes corresponding to 

three different criterion functions. 

A perhaps surprising and significant conclusion is that all these four generate 

price adjustment mechanisms that are the same for large t with probability one 

(when the stock level adjustment is ignored). 

The paper also established the convergence with probability one of the 

estimates of the unknown parameters « and f. In this sense it generalizes some 

results in [13], [14]. Related to the one-period policy of Section 3.1 is the estimate 

of @ generated by the Kalman filter, which reduces to the simple form given below 

because there is no dynamics involved. 

6,4, - 6, + ke 1%, — (P;, 1)6,] 
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kisi = 24(*}, 2 = cov (4|.%,). 

The observability condition requires that p,,, # p, for all t. 

Department of System Science 

University of California 

Los Angeles 
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APPENDIX |. BAYESIAN PRICE ADJUSTMENT 

The marketeer’s subjective knowledge on @ at time t is embodied in his 

posterior probability density function p(6|%#). 

It is computed by the Bayes rule recursively from po(6) by 

POH )PX:1FE,, 9, P,) _ PFE) P(%,I4, Pr) 
14.,)= = 

MAK +1) = at) P26. P) 

where 

P(Xol9; Po)polA) 
OH) = 

PAH) =F xo10, PodPol®) a0 

where we compute p(x,|0,p,) from our knowledge of the probability density 
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function for the noise ¢,. For example, when €, is Gaussian, with mean 0 and 

standard deviation o, then we have 

1 1 
P(x,|9, P) - | ~ 9g2 [x; ae f(8, Pir) 

It was shown in [3] that 

A, |P 
(A.1) 64,=U- K,./4 + 4 ")s,| 

where 

A, = cov (6|24,) 

Kyi41 = A B.B,/(o? + pA,p). 

Denote the elements of A, by 

A,/o? a ™ ay 
t = 4 ° 

21 A3¢ 

—o 
Let 6, = | B | and write (A.1) in terms of components as 

t 
a 

x, — X, 
: =a,— p By nae. PO. Te (A 2) e+ a, (AP, + 207 + pA,p,/o? 

x, —& =8+(A Sale i ease tials. 
Bias B, ( 2Pt 30) + BA,p,/o? 

where 

R, 7 p., = —4,), + B, 

This term is zero for the pricing policy p, = B,/x,, but non-zero for other policies. 

We have computed in [3] that 

$={ t—§ 

[a+ St a+ Do, 
s=0 

oh,! = t-1 
Az+ Dp, Azst+t 

s=0 

where 

atte 
oA;' = ") 

A, As 

There is a very close and interesting relation with the so-called input-signal 

synthesis problem of control theory. The problem is to design input signals to 

excite the dynamic systems so as to minimize some measure of estimation error. 

While this problem makes sense in a control context, it is not too appropriate in 

an economic context, since there is a real cost and information (search) cost 
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associated with changing price in an economic context. See for example [2] on the’ 

search cost associated with changing price. We do not explore this aspect in this 

paper, since it will be outside the immediate concern of this paper. See for example 

(4). 
Inverting the above matrix we obtain 

A, _ 1 Az +t : —(A, + ¥ p,) 

o A\-(,+¥p) 4+ DP? 

with 

= (A, + } pr); +0 -(4.+ Evy 

= (A,A; — 43) + At + 43) p? — 24, ¥ p+ tp? —(¥p)’. 

For simplicity, assume A, = 0.° Then 

. Rae ‘ 
a A(43 + 1), An = a » Ps 

s=0 

and 

1 ei 

Asx: = ne + >» | 

with 

2 

A= (2, + Pipe}; +09 - (0, 

Define 

Lt 

wa Ep <: average price over [0,t —‘1], 

and 

iS 
= Fs E (p, — p,)?: sample variance over [0,t — 1]. 

Using these quantities, we can express the elements of A,/o? as 

Ay, = (A; + 0)/A, Ax, = —tp,-,/A 

and 

t-1 
(A.3a) As, = E +> r| /s 

s=0 

with 

A = t?s? + t[A, + A3(6? + s7)] + A, 43. 

>It is reasonable to assume that the marketeer’s a priori knowledge of the slope of the excess 
demand curve and the point of intercept are uncorrelated. 
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Hence for large t if ts? + oo (with Probability 1), then 

1 
(A.3b) An = is? +11, 

where the remainder term is r,, ~ 0(1/ts2) (with Probability 1). 

(A.3c) A», = <- +r , 2t ts? 2t 

wee 
(A.3d) Ax, = mi ee 

ts; 

where r,, and r3, are both o(1/ts?) with probability 1. 

From the consideration of information search cost, it is reasonable to assume 

that p’s will not be violently changing for large t [2]. Then p, will be nearly a 

constant and ts? will be only slowly growing for large t. See Appendix 2 for precise 

statements on this point. 

Expressions similar to those below can be easily obtained for p, = const. 

Frem (A.3), 

Air + Ane = {As + OP, — tP,}/A 

= [A; + t(D, a7 p,) V/A 

and 

AaDPr ea Ast -. [Ay . ts? — tp{p, — p,)\/A. 

We have also 

BA,p,/o? = [Ay + Asp? + tp, — B,)? + ts?/A. 

Therefore, from the above and (A.2), 

(A.4) +1 = % — 02 

Bi +1 = B, 7 6; 

where 

oe [A; + t(P, < BN (% “a. %,) 

2 t(t + 1s? + t{(p, — p,)? + Ay + AaB? + 87)] + Ay(1 + As) + Asp? 

ve [(p, teal p,) + A3/t}(x, = X,) 

(t+ Ds? + (py, — B)? + Ay + As(6? + 57) + Ay(L + As)/t + Asp; /t 

ie (P, oe B,) 

~ (t + 1)s? 
(x, — &) + u 

and 

sae int (A.5) 5, = S; BAP, — By) 
(t ‘ 1)s2 (x, “ey %,) + v 
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where u ~ o(1/ts?) and v ~ o(1/ts2) (with probability 1). Therefore, 

(Pr+1 ca P)/Pr _ 5, /B, = 62/0, 

or 

(A.6) Posi — Pr = k(x, — &) 

where from p, = B,/a,, we have 

1 1 — p,)? 
(A.7) k, (P. — Pi) + w,, = + 

(t+ 1)e, (¢+1)0,  s? 

where w, ~ o(1/ts2) (with probability one). 

APPENDIX 2. ALMOST SURE CONVERGENCE 

The Nonlinear Recursion Equation 

The equation numbers refer to equations in this Appendix unless specified 

otherwise. 

We have from (5) of Section 3 

p es (P, bis PJs 
-=al—D), D, = @gepe— Eee 

" « ' p pict (Pp, = p,)? 

where (, = ¢,/a,s = 1,.... 

We have 

| t 

” a0, tial 

where 

2 t at 2 

(2) j 4 = t 4: a (Py B,) + D/jt 

~ (t+ 1) 1-D, 

Substituting into the recursion equation (6) of Section 3, we obtain 

t 1 t 

ers onee poe + he — 10. 
(3) e+ 

Note that f, is a function of (,,s < t. 

Since f, depends on r,, s < t and ?,, (2) and (3) are rather complex nonlinear 

recursion equations. We use some order of magnitude estimate of f, to circumvent 

the complexity. We carry out first order analysis to see that q? is less than one 

for t sufficiently large and } q? = oo a.s., where q, = r, — ?,. We also obtain from 

the first order analysis that f, = o(t~'). ; 

Let y, = tr,. The recursion formula (3) may be rewritten as 

(4) Yer = (1 — fy, + 1 + HOG. 
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Define ?, by p, — B/«. Letting z, = t?,, its recursion equation is 

(5) (i-f) d+ 
241 = 2% + t+1 y, + t+1 Cee 

Recall q, is r, — ?,. Let o, = t?q,. Then its recursion equation is given by 

(6) O41 = (1 — fo, + (1 + (tl, — %). 

Solving these recursion equations, we obtain 

8 

(7) Ve = Ceri + d Cr5+1(1 + Sf). 

where 

(8) Cr+i,s = (1 — fers» Cs = (1 — fr-1)--- (1 — fy). 

Also ? 

ae p=3 nant D3 Sey oe Se. 

i¢s* 1 1+s 

Substituting the expression for y, into that for z,, we have 

‘11+ Sf, *<'. 
(9) nent 2 ri. (+ Tutu y 7 Ceut1 

i HZ 

+L Tes 

and substituting the expression for z, into that of o,, we get 

t-1 

(10) O, = Cy 10, + > C5411 ss Sf,)(sC, Sng Z;) 
s=1 

t-1 

d &, 
s=1 

— f. t-1 

1 ry cmd > Crs+1(1 + Sf.) 
s=urtl 

3 + uf, ti 

. Crs+i(1 “5 Sf,)z, — : ‘ | »% Crs4+101 + s) 
s=1 “Il+u s=u+l 

7 
t-2 t-1 s=t Sas 

Faueul ¥ ceil + | r e--tat} 
u=1 s=ut+l t=ut+l 1 +T 

The term c, ,o, vanishes since ¢, = 0. As will be shown later f, is small for large 

s, and sf, will be shown to be o(1), hence these equations show the relative magni- 

tudes of approximation conveniently. 

First-order Approximation 

For example, collecting terms not involving f’s, we obtain the expressions 

for r, and ?, when the gain 1/{(t + 1)«] is used for a,, ie., 
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eae 

45 r 
Cae a 

oo t 

4 4°=2 r a px) — /_+- In Rae = me UES 

. 1 T4+s° 7 a+ i} ¢ ¢e8te4s* 

since ?; =r. 

We have 

gi? = rf) — py 

=A-& 

where 

q =! 1 
A, =- 1 — 

: >a ile 

Le, t Int 
=— In C+ r,—. 

Ms 7 u+ 1 Su , t 

We evaluate how fast they approach zero. We prove two lemmas for that purpose. 

Lemma | 

t'/2-9) +. Oa. for arbitrarily small 5 > 0. 

Proof. The proof is by the method of subsequences. We first show that t*/, + 0 

a.s. for appropriate chosen «. Since the variance of /,, denoted by V, is given by 

‘Bie 

ert? (i - 
U s=1 

2 1 

s+ 1 

1 
eg 

t 

we have by the Chebychev inequality 

iss eet. PUD AL > €] S er ep 

Choose a subsequence t = n?. Then for « satisfying 0 < « < 4, }’, 1/n?~** < o. 

Thus applying the Borel—Cantelli lemma, we see that t*A, + 0as. for 0 < a < } 

along the subsequence t = n?,n = 1,2.... Let 

D, = max |(A, — A,2)| 
k 

where k ranges over n, < k < (n+ 1)?. We have 

k—n? (k? —n‘*) 1 
var (A, — 4,2) < —3g— Car =o | 

Thus 

a const. 
p(\D,| > e/n**] < syd 
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With a < 4, ¥ 1/n*~** < 0, hence 

n**D,, > Oa.s. as n increases. 

Since 

"A, = n**A,2 + (t*A, — n*A,2) 

= n?*),. + n?%(A, — A,2) + (t* — n**)A, 

where 

var (t* — n**)A, < (t* — ny < oe for n? <t <(n + 1). 

Therefore, each of the three terms on the right converges to zero, a.s. for0 < a < }. 

The a.s. convergence can be established by using a subsequence, t = n° or t = n™ 

for m = 3,4,..., in similar manners. With t = n”, 

const n?2" const 
p(n" A,.m| > &) < e2n™ = nm —2a)° 

Thus t*A, ~ 0a.s. along the subsequence t = n”,n = 1,2,..., for 

m—1 1 1 
0<a< =->-—. 

2m 2 em 

This establishes the assertion. 

The variance of 1, is 

t—2 1 t 
var (11,) = a > (Int/u + 1)? ~ pa (ain x)? = 2xIn x + 2x + const) 

u=1 

where x = (t — 1)/t. Therefore var (y,) ~ 1/t, and the virtually same proof of 

Lemma 1 establishes t'/?~°y, + 0a.s. for arbitrarily small 5. From this fact and 

Lemma 1, we establish Lemma 3. We use Lemma 2 to prove Lemma 4. 

Lemma 2 

yr (p, — p,)? = oe. — p,)’, for all t > 2as. 
u=2 2 

Proof. Let the sum on the left hand side be named C,. Then 

Crea = (Pra: — Brot)? + x, (P. — Br+1)?- 

Substitute 

Bis. = (CB, + Pro /t + 1 

in the above to obtain 

ted 
t+1 

2 

Cr+ act C, + (Pr +1 Si Bi+ 1)? + | (b, 4, Pri)? 2 C, + (Pr+1 a P.+1)?. 

By iterating the above, we obtain the lemma. 
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but q?/}* q2 > 0, a.s. 

he hy ae 

Therefore 

Let 

By Claim we see that 

The assertion follows since f, and f, are equivalent sequences as proved at the end of 

Appendix 2. 

Higher Order Terms 

effects on y, and z, are at most the same order of magnitudes as first-order effects. 

Lemma 3 

t'/2-¢q\)) _, 0 for arbitrarily small 5 > 0, a.s. 

From Lemma 3, we see that 

gi” = oft- */**4 as. 

Cor. f, is o(t~ '), as. 

Proof 

Claim 

t d t 

a/> a= 7_ > gz = 0(26/t), a.s. 
u=1 t 1 

Proof of Claim. From Lemma 3, q? = o(t~'*?*), a.s. Thus, ¥' q? is divergent 

Define a positive monotonically decreasing function h(t) and set h(n) = q?, 

From Theorem 3 in Section 3.3 of Knopp [15], we have 

> a = { h(t) dt = o(t?*). 
1 

ht) Qe 

fi, ht)dt Yq? 

d t 
—| Tt = , nf h(t) dt 

i= [a/ So |e +. 
u=1 

From Lemma 2, we see that 

dif. 
i<@/La=Sin{ gidu 

tf, = 0(26), as. 

With this first-order approximation, we are able to show that the higher order 

For example, with tf, < k, a.s., the higher order term in r,, 

t-1 

sy Cts+ i Sf,f,/t 
s=1 
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shows the same convergence behavior as the first order term, 

t-1 

Y é/t, 
s=1 

since ¢,,,,;Sf, < const., a.s. Actually we need only t'~°f, bounded for all t a.s. for 

some small 6 > 0 to obtain the results. 

Convergence of Prices — 

pag <a 
Proposition i 

Assume t' ~°f, is bounded for all t, a.s. for very small 6 > 0. The z,/t and y,/t 

converge to zero a.s., i.e., r, and ?, both converge to zero a.s. 

Proof. From the expression for z,, one needs to verify the almost sure converg- 

ence of h, defined below, 

h/t = 
| 

1-2 

Y Cl + uf,)D,— 1 u+1> 
u=1 

where 

ut+1° 

since f, > Oandc,,,, < 1 for alls and u, a.s. Let c be a positive constant such that 

1 + uf, < cu’ for all u, a.s. by assumption. We have 

¢—3 1-2 t 
2872 26 Yu D?-suei ~ | u (n 

u=1 . 1 u+ 

Then for any ¢ > 0, 

2 
1 du < t'*?(1 + o(t)). 

vy 
> 64'S -s- 22 

a = 5 (1 + uf,)?D?_, 441 < const t'*%{1 + o(t)). 

1 t-2 

Pp t > (Al + uf,)D,— 3 4+ 1 
u=1 

where 

Rg, 

Take the subsequence t = n?,n = 1,2,.... Then 

. ae 1 
dint s—e of a= 5i=a8 < 0, where c is some const. 

112 

Sn en ae 

————E 



See ae DR RTE 

ATR Teg ort 

Thus, h,2/n? + 0 a.s., by Borel—Cantelli lemma. Let 

d,= max |h — hl n 
n? <k<(n+1)2 

k 
= max Y Cl + wD, ~ 1.041]: 

n2+1 

Then 

(n+1)?-1 

Edvsc* Y Dias uy?-tu41 
n?+1 

< c*((n + 1)? — n? — 1) 

= 2c*n. 

Therefore, 

2 

Pld, > ne] < “2 

hence 

d, + 0a.s. 

For 

ny <k<(n+ 1)’, 

2 
\h,\/k < Ol 

The identical technique proves the almost sure convergence of y,/t to zero also. 

This proves the proposition. 

Convergence of Estimates 

To establish the convergence of 6, to @ with the adjustment equation (2) of 

Section 3, we note that 

a, = a1 — D,) 

where 

a Le-1 @ — AN 

" oom te = AF 

= D} + D}, 

where 

p ee (Ps ag dCs 

» >t (Py erp p,) j 
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D2 a aH (6, La BCs 

: ) aH (P, ee p,)? 

Claim. D} converges to zero a.s. 

Proof. Let X, = }*-' (p, — p./YS_ , (P, — B,)?. Then it is a supermartingale 

and converges to a finite random variable from Kushner’s lemma [11]. The 

conclusion follows from lemma 2 and the Kronecker’s lemma since }“ q2 t « as. 

Lemma 

D? converges to zero a.s. 

Proof. Let 

‘xs © — bX, 

s= >a _—- p,)?” 

Then from 

os = (B, Ey Br +105 

mea = p> } dee (Pp, = p,) 

(p, — Br+ he m < ” (Bs i p, + B, i P+ es 

“F6—a | .6- ° 

we obtain E(x, ;|B,) = x, + p,, where 

a (B,+1 - ae — (P41 — BN. | 

a . ae (p, ma p,) is s=1 ie (p, a all 

where 

Pr+1 a p, = Pest se r, 

1 + tf, M : 
= (+ 1p af, + (quantities depending on €,,s < 2). 

Thus 

pelt 00? os - BM 

' (+1 .,0.-6 YL. —- 6, 

Pe (1 + tf, ao? . (Pray x PCs 

etree See 

Now, from 

(+1 — PCs wel aa 
E(P,41 — ’ 

ely LO. Be p,)?|~ atthe Sn es, 

as 



where 

3 t, 2 (ie 1 2 

7 2 MES pea a * - py Is (P, sag a | 

i. zr 1 2 

<|E =} |, 
L tis Isa] 

where the last inequality is by Lemma 2. Note that for all t > 1, 

ead 1 
=—3]| = o(1). 

p> Iss zi . , 

From (5), 

Z; (1 — fy) (1 + tf), 

a+)’ @+)* @+ 12 

Substituting (7) and (9) into the above equation, after straightforward but tedious 

calculation we see that 

e+ -h= x 

E(?,.; —?,)*? = o( 50). 

Thus, we establish that 

E 2 \p,| < 0. 

Thus x, converges to a finite random variable a.s. The assertion follows from the 

Kronecker’s lemma. Combining Claim with Lemma 4, we establish the next two 

propositions. 

Proposition 

Proposition 

21 
f,-—f,70as. where f, = (Pp = Y(t + 1) 

In the above discussions, the distinction between f, as defined by (2) and f, 

which puts D, = 0 has been ignored. This is justified because the two sequences { f,} 

and { f,} can be shown to be equivalent sequences since 

Pll — fl > qx Sy) = var (5) - 4 






