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Annals of Economic and Social Measurement, 3/1, 1974 

SOME BASIC IDEAS IN STOCHASTIC STABILITY 

BY H. J. KUSHNER* 

This paper provides several definitions of stability for stochastic systems. It also 

suggests techniques for ascertaining the stability of a stochastic system. 

1. INTRODUCTION 

Control theory and systems analysis is deeply concerned with problems of a 

stability nature, yet it is not a well-defined subject. It is concerned with a broad 

family of qualitative properties of stochastic and deterministic dynamical systems ; 

asymptotic properties of the paths and their dependence on parameters; and, 

whether certain properties hold under perturbation of parameters, input, initial 

conditions, or structure of the system itself. Some of the basic ideas for the discrete 

time stochastic problem will be briefly discussed in this paper. The methods yield 

much information of value, but constitute only one tool or point of view among 

many which must be brought to bear in the analysis of stochastic systems. 

Suppose that the discrete system 

(1) Puss = I(Pus Sn) 

represents a price adjustment mechanism, where {€,} is some sequence of random 

variables. Suppose that, if €, = 0, then p, — p, some stable price, independent of 

Po. What information would we like to have when ¢, # 0? When can p, — p? 

Even if x, — p in some sense, there are many statistical senses in which it can 

occur (with probability one, in probability, in r-th moment, etc.). Furthermore 

the random perturbation €, (or its effects) would have to be proportional in some 

sense to (p, — p); i.e., the random effects would have to degenerate as p is ap- 

proached. This would not be a very common situation. However, among the 

above choices for convergence the “with probability one” (w.p.1) convergence 

is the easiest to treat, and probably also yields the most information. The w.p.1 

convergence is a property of the path, the others are properties of the distributions. 

As will soon be seen there are very many stability properties of (1) (or senses in 

which p, converges) which we could try to investigate, and which would frequently 

be more appropriate than w.p.1 (or similar) convergence. Yet, the current status 

of the pertinent techniques and results is unsatisfactory. 

Consider the following specific example. 

Let a,,a,,b,,b, denote positive constants with b, > b,, a, > a,. Let supply 

be given by s, = d, + b,p,_, — €,, demand by d, = a, — byp,, subject to all 

Pp, = 0. Under the “clearing” assumption, s, = d, and 

(a, — 4,) b s on 
(2) P, = Max g by : bf + at 
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With b, > b,, there is a stable price p. It is conceivable, but not likely, that €, 

would be (in some sense) proportional to (p,_, — p). If the €, were due to random 

variations in manufacturing efficiency, rejects, effects of other demands, etc., then 

one would expect that the paths {p,} would never settle down. 

What notions of stability are then appropriate? We mentioned only a few 

of many possibilities. 

(a) Bounded paths in probability ; 

sup P{|p,| => N} — 0, N > o. 

(b) Bounded paths; 

P{sup |p,| => N}— 0, N - o. 

(c) Recurrence; the path (almost always) repeatedly returns to some bounded 

set. ‘ 

(d) No finite escape time. 

(e) Boundedness or convergence of some moment. 

(f) Existence and uniqueness of an invariant measure u, and u, > u, for all 

Ug, Where u,(A) = P,,{p, € A} = probability (given initial distribution uo) 

that p, € A. uis invariant if P,{p, € A} = u(A); the distribution maintains 

itself. 

In-(2), if {&,} is a sequence of independent identically distributed random 

variable with bounded variance, then all (a), (c}-{f) hold. In general, one would 

expect that ¢, would depend on p, _, . (a) and (b) speak for themselves. (c) is a type 

of stability—there is some bounded set so that wherever the paths go, they always 

ultimately return to that set. The property is often not hard to verify, and is required 

for (e)-(f). Property (f) is one of the more interesting, but is difficult to treat, and, 

even if verified, may not yield enough information, unless good estimates of other 

properties (moments, correlations with respect to u, etc.) are also obtained. 

Next, in order to motivate some of the techniques, the deterministic case will 

be dealt with briefly, then some of the stochastic results will be presented for w.p.1 

convergence, and some related properties. Then an example will be given, and, 

finally, we make some remarks concerning recurrence and invariance. A more 

thorough, but still elementary, treatment appears in [1], and more sophisticated 

treatments appear in [2], [3]. 

2. DETERMINISTIC (DISCRETE PARAMETER) STABILITY 

Let 

(3) Xn+1 = ST (x,) 

represent an autonomous system, and V(x) a non-negative function which tends 

to 00 as |x| + oo. Suppose that 

(4) V(f (x) — V(x) = —k(x) < 0 

for some function k(x) > 0, and all x (such V(x) are referred to as Liapunov func- 

tions). Then 

(a) There is some v > 0 so that V(x,) | v,n > o. 
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(b) 0 < V(x,) = V(xo) — }?-} k(x;) implies that k(x,) > 0 as n — oo. 

(c) If k(x) is continuous and {x,} bounded, then x, — {x:k(x) = 0}, n > oo. 

Note that the purely local calculation gave us the global results (a){c). The 

dynamical property (3) was crucial to the local global implication. 

Suppose that (4) only holds locally, say in a set including Q, = {x: V(x) < A}. 

Then (a)}(c) hold if x, € Q,. Suppose that (4) holds for x ¢ Q,, and k( - ) is continu- 

ous. Then x, + Q, as n > oo. Here Q, is an attracting set, and we have bounded- 

ness of the paths. We can draw no implication concerning the behavior of the 

paths in Q,, except that once in Q, they never leave Q,. 

There are interesting stochastic analogs to all of these techniques and results. 

3. STOCHASTIC (LIAPUNOV) STABILITY 

Let {x,} denote a random process. To produce a stochastic analog to Section 

2, we require that {x,} have a dynamical property ; we suppose that it is a Markov 

process. Of course, it may be of interest to study the stability of only some com- 

ponents of x,,. Let E, denote expectation with initial condition x, = x,and suppose 

that {x,} is a homogeneous (for convenience) Markov process. 

Suppose that (analogous to (4)) 

(5) E,V(x,) — V(x) = —k(x) < 0. 

Then also E, V(x,4,) —‘Vix,) = —k(x,) < 0. Define V, = V(x,). Many conclu- 

sions of interest can be drawn. We have (conditional expectation) 

(6) Re Ge Kx. Vi<V,. 

Such a sequence is called a supermartingale. it can be considered to represent the 

sequence of fortunes in an unfair game: Given the past history Vo,..., V,, the 

average value of the next fortune V,,, is no greater thar the current fortune V,. 

Such processes are quite important in probability theory, and have been extensively 

studied (see e.g. [4]). We can assert 

(a) (Martingale convergence theorem). There is a random variable v > 0 such 

that V(x,) > v w.p.1. 

(b) 0 < E,V(x,) = V(x) — E,, ¥°*~' k(x;) implies that k(x,) + 0 w.p.1, n > oo. 

(c) If k(x) is continuous and {x,} bounded, then x, — {x:k(x) = 0}, n — oo. 

(d) P.{sup,>n>0 V(x,) = A} < V(x)/A, for any A > 0. 

Thus, in the stochastic case also, the local estimate (5) yields global results. (b) 

is a consequence of (5) and the Borel—Cantelli lemma. (d) is a consequence of the 

fact that V, is a non-negative supermartingale. Note that it gives us a bound on the 

path excursions. Suppose that (5) holds for x € Q,. Then we can localize the result 

and obtain (a), (b) (k(x,,) ~ 0), (c) for (almost) all paths which never leave Q, . (d) is 

still valid, and, hence, the paths never leave Q, with a probability at least 1 — V(x)/A. 

(a}Hc) are analogous to the results in the deterministic case. (d) is fundamentally 

stochastic : some paths may leave Q, , as opposed to the deterministic case. Indeed, 

if the right side of (d) were zero for all x, A such that V(x) < A, there would be no 

noise in the problem. 

Next suppose that there is an ¢ > 0 so that E,V(x,) — Vix) = —k(x) < —e for 

x €Q,. Then a modification of the above result yields that x, always returns to Q,. 
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Indeed, the average return time is < V(x)/e. Q, is a “recurrent” set. The recurrence 

property gives us a type of stability analogous to (loosely) boundedness of paths. 

In a sense the results are the best possible. (d) can be an equality if all we know 

is that (5) holds. Good Liapunov functions are tailored to the system as much as 

possible. 

4. AN ELEMENTARY EXAMPLE 

The following example is taken from a sampled data problem in control 

theory, and I do not know what its analog in Economics would be. Yet it does 

illustrate some of the basic features of the stochastic Liapunov function approach. 

We have a first order system X = —ax — Ke, where ¢ is a ‘feedback’ quantity. The 

output is sampled at moments t,,n = 0,1,..., where t, = )% ' A; where A, are 

independent random variables; fort, < t < t,,,, let e(t) = x(t,). Define x, = x(t,). 

Such systems occur frequently in automatic control, and its stability will be 

analyzed. We have 

Xn+1 = A,Xn> 

A, = [(1 + K/a)e~**" — K/a}. 

Stability problems often arise in such systems owing to the delayed information 

that is used as an input. Let V(x) = |x|° for some s > 0. Then 

(7) E,V(Xn+1) — V(x,) = (EIA, — 11x, F. 

If sup, E|A,|* < 1 for some s > 0, then x, — 0 w.p.1. The larger is s, the better the 

bound (d), since 

(8) P,{ sup | |xal 2 A} = Px Sup |Xql? = A} < |xl'/4". 
o>n> orn> 

Eventually, as s increases, we usually (though not always) have that E|A,|*° > 1. 

Thus powers of Liapunov functions are not necessarily Liapunov functions—this 

is related to the difficulty of obtaining w.p.1 instability results for stochastic 

problems. In a sense, above, the fastest growing Liapunov function gives the best 

path estimate (8). The {A,} or {A,} need not be identically distributed. Also A, can 

depend on x,,; say, smaller errors x, at t, giving a longer wait A, on the average, 

and conversely for large errors (whose sampling takes place more frequently). 

Suppose the distribution of A, depends on x, (but not on n otherwise) and that 

E,|A,|* => 1 for small x (x € some Q,), and E,|A,|° < 1 for x¢Q,. Then we have 

recurrence—a natural situation in many applications—but not asymptotic 

stability w.p.1. 

A variety of related situations can be investigated, where control (feedback 

policies) or parameters vary. 

5. AN ERGODIC RESULT 

For some b > 0, k(x) > 0, let 

E,V(x,) — V(x) = —k(x) + b, 
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where k(x) > b + ¢ (for some ¢ > 0) outside of some set, say Q,. Then, of course, 

we have recurrence. Also (we can also use lim or lim for lim, if appropriate) 

a~i 

(8) lim*E, ¥ K(x, < b — lim [Pe 
n nn i=o a n | <s. 

If E,.V(x,)/n > 0, then the limit exists and is simply b, and we have a type of moment 

estimate. Unfortunately, to show that (if true) E,k(x,) ~ b is considerably more 

difficult. This question is connected with the subject of invariant measures. 

6. INVARIANT MEASURES 

If {x,} is a Markov chain with transition matrix P and u,(i) = P(x, = i), 

then (u, is a row vector) u,,, = u,P and the problem of when u, — u, such that 

u = uP, is completely solved. The situation is far more difficult if x, can take values 

in some Euclidean space. 

Problem | 

When is there are least one invariant measure? For practical purposes there is 

a rather complete solution, e.g., there is one if [5] 

(a) For a function g(x) — 0 as |x| + 00, E,, g(x,) is uniformly bounded for 

SOME Uy. 

(b) {u,} are weakly compact for some u = up: e.g., if P,,{\x,| > N} > 0 as 

N — o, uniformly in n, for some ug. 

(c) There is a compact set A such that for 

-Ms 
u; = u",limu"(A) > 0. 

=s|— 

((c) is implied by our recurrence criterion in Section 6). The proofs are 

rather involved. 

Problem 2 

Uniqueness? [6]. The basic criterion is that the state space not contain any 

proper self-contained subset. A set B is self-contained if P,(x, € B) = 1 for all xe B. 

However, the criterion is not always easy to verify. 

Problem 3 

Assuming existence and uniqueness of an invariant measure u, when does 

(and how) u, > u for any initial measure uy? There is a fairly general criterion due 

to Doob [7]. Let m and u denote probability measures. m is said to be absolutely 

continuous with respect to u if m(A) > 0 implies u(A) > 0. m is said to be singular 

with respect to u if m(A) > 0 implies u(A) = 0. Here m is concentrated on a u-null 

set. For any m and u, there is a unique decomposition m = m* + m*‘, where m* and 

m’ are singular and continuous, resp., with respect to u. 

Let u denote an invariant measure, and decompose u, into u, + ui, with 

respect to u. If u3(A) + 0, each A, as n + 00, then u, — u. All one need do is verify 

that us — 0, often not easily done. 
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There are, however, several cases where it can be readily verified (see also 

Doob [4]). Suppose that there is a transition density p(x, n, y) so that for some no, 

p(x,n, y) > 0 each x, y, for n > no. Then 

u(A) = ) ay| f P(x, nya 

and u has a density which is nowhere zero. Similarly u, (n > 0) has a density and 

us = 0. One must still prove that such a density p(x, n, y) exists. 

The requirement that such a density exists is restrictive. One can refine the 

ideas somewhat, but (as for nonlinear controllability, and for some similar reasons), 

much work needs to be done before a satisfactory understanding will be available. 

Even if one can prove the desired convergence, the information will often 

be of limited value. Suppose that x,., = /(x,.¢,) represents a price adjustment 

mechanism where {¢,} are independent and identically distributed. With €, = 0, 

let {x,,} be stable in the large in the Sense that there is a bounded set which, asymp- 

totically, contains all paths but otherwise we let the system have any behavior at 

all; e.g., there can be many limit cycles (stable and unstable), etc. Suppose that, 

with €, reput back into the dynamics, there is a transition density p(x, n, y) of the 

type above, and the process is recurrent. Then there is a unique invariant measure 

and u, — u for any u,. Thus the noise has wiped out all the detail of the deterministic 

behavior. The convergence result gives us little information on the path behavior, 

correlation of functions, etc., unless both u and p(x, 1, y) are available. So even 

establishing this type of convergence is only a first step in the analysis of the process. 

Indeed, important as the above mentioned stability concepts are, it is only one 

approach to the analysis of stochastic systems. One can, and no doubt should, in- 

vestigate criteria for various types of stochastic stability. Yet, in doing so, especially 

in applications where invariant measures are involved, it is important not to lose 

sight of the important questions concerning the path behavior which arise as soon 

as the stability question is settled. 
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