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Annals of Economic and Social Measurement, 3/1, 1974 

THE IMPORTANCE OF KALMAN FILTERING METHODS FOR 

ECONOMIC SYSTEMS* 

BY MICHAEL ATHANST 

The purpose of this paper is to indicate how Kalman filtering techniques are potentially useful in modelling 
economic systems. 

1. INTRODUCTION 

The purpose of this paper is to examine problems of parameter estimation for 

linear and nonlinear econometric models from the point of view of Kalman 

filtering (see references [1] and [2]). It will be shown that if one makes the assump- 

tions that 

(1) all endogenous and exogenous variables can be measured exactly 

(2) the structure and order of the econometric model have been fixed 

(3) the variance and means of the white noise driving the econometric equa- 

tions have been estimated 

(4) the parameters to be estimated appear linearly in the difference equations 

then “on-line” estimates of the parameters of the econometric model can be 

generated in a straightforward manner through the use of the Kalman filtering 

algorithm. 

The Kalman filter represents one of the major contributions in modern 

control theory. Since its original development (references [1] and [2]) it has been 

rederived from several points of view bringing into focus its properties from both 

a probabilistic and optimization viewpoint (references [3] to [9]). Its importance 

in stochastic control can be appreciated in view of the numerous applications 

(references [5], [6], [9] to [16)). 

In spite of the recent interest in modern cuntrol theory by mathematical 

economists the potential advantages of Kalman filtering methods have not been 

fully appreciated by economists and management scientists. One of the reasons 

is that the straightforward application of Kalman filtering methods involves 

estimation of state variables, whenever the actual measurements are corrupted 

by white noise. In most economic applications, the measurements of the endo- 

genous and exogenous variables are assumed exact. 

In this paper, we shall indicate that the Kalman filtering algorithm does have 

potential use for an important class of economic problems, namely those involving 

the refinement of the parameter estimates (and of their variances) in an econometric 

model. Right at the start we should like to emphasize that the use of the Kalman 

filtering techniques is viewed not as a replacement, but rather as a supplement, to 

* This research was conducted at the Decision and Control Sciences Group of the M.LT. Electronic 
Systems Laboratory with partic! support provided by NSF under grant GK-25781. This paper was 
presented at the Second Workskop on Stochastic Control and Economic Systems, University of 
Chicago Business School, Chicago, Illinois, June 7-9, 1973, sponsored by the National Bureau for 
Economic Research, Inc. 

t Room 35-308, Department of Electrical Engineering, M.I.T., Cambridge, Mass., 02139. 
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traditional econometric methods. We visualize that the Kalman filtering methods 

should become useful only after an econometrician has constructed the mathe- 

matical model of a microeconomic or macroeconomic systems. Thus it may 

represent a final “tune-up” of the econometric model. 

To illustrate these ideas, the paper is organized as follows. In Section 2 we 

present a summary of the standard discrete time Kalman filter algorithm. In 

Section 3 we consider the problem of identifying the parameters (constant or 

stochastically varying) of an econometric model that involves the interrelationships 

of a single endogenous variable, y(t), to a single exogenous variable, u(t), through 

the use of the Kalman filter. In Section 4 we consider the problem of parameter 

estimation of an econometric model with several endogenous and exogenous 

variables, and show that this class of problems reduces to those analyzed in 

Section 3. Section 5 contains some additional speculative suggestions on how 

these techniques can be used to reconcile “‘different’’ econometric models. 

Before commencing the technical development the author would like to 

elaborate upon two further points. 

1. The author (not being an expert in the art and science of econometrics) 

does not know if the same technique, under a different name and disguise, 

is not available in the econometric literature ; chances are that it probably 

is. If indeed this is the case, then at the very least this paper can serve the 

interchange of experiences in this area between the economic and control 

community. 

. No simulation results are available up to now to indicate the advantages 

and disadvantages of using the Kalman filtering algorithm for parameter 

identification in econometric models ; such a project is currently underway 

in the M.I.T. Electrical Engineering Department, using the econometric 

model developed by Pindyck (reference [17]) as the first test case. However, 

no numerical results are available as yet. 

2. SUMMARY OF THE DISCRETE KALMAN FILTER 

In this section we provide a summary of the discrete time Kalman filter. 

2.1. Mathematical Problem Formulation 

Given a vector system of difference equations (state dynamics) 

(2.1) x(t + 1) = A(t)x(t) + Bithu(t) + L(DE(t) 

where: 

the time index t takes values t = 0, 1, 2,... 

x(t) is an n-dimensional vector (the state of (2.1)) 

u(t) is an m-dimensional vector (the input of (2.1)) 

E(t) is a p-dimensional vector (the system noise of (2.1)) 

A(t), B(t), L(t) are known matrices of appropriate dimensions. 

Suppose that the following measurement equation holds for t = 1, 2,... 

z(t) = C(t)x(t) + O(¢) 
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where 

z(t) is an r-dimensional vector of actual measurements 

Q(t) is an r-dimensional vector (the measurement noise) 

C(t) is a known matrix. 

Assumptions. We assume that 

(a) x(0) is a Gaussian random vector with known mean X(0) and known 

covariance matrix £(0), i.e., 

(2.3) E{x(0)} = (0) 

(2.4) cov [x(0); x(0)] = E{(x(0) — ¥(0))(x(0) — ¥(0))’} = £(0). 

(b) E(t) is a Gaussian random vector with zero mean for all t = 0,1,2,..., 

and independent in time (discrete white noise), i.e., 

(2.5) E{&(t)} = 0 

(2.6) cov (E(t); E(t)] = E{R(OE(s)} = Elo, 

where 6,, is the Kroenecker delta 

1 ift=t 
6, = 

0 ift#r 

and &(t) is the known positive semidefinite covariance matrix of E(t). 

(c) @(t) is a Gaussian random vector with zero mean for all t = 1,2,..., and 

independent in time (discrete white noise), i.e., 

(2.8) E{@(1)} = 0 

(2.9) cov [O(t); O(z)] = E{O(t)0(r)} = O(r)d,, 

and @(t) is the known positive definite covariance matrix of @(t). We 

assume that x(0), E(t), and @(t) are mutually independent for all values of 

t and t. 

(d) u(t) is a deterministic time sequence. 

(e) the matrices A(t), B(t), C(t), L(t) are all deterministic. 

2.2. Problem Statement 

It is desired to construct a “best” estimate of x(t) given past values of the 

input vector 

~ (2.10) U(t — 1) a {u(0), u(i),..., u(t — 1)} 

and past values of the measurement vector 

(2.11) Z(t) + {2(1), 2(2), ..., 2(0)}. 

The best estimate is denoted by &(t\t) and is defined as the conditional mean of 

x(t) given U(t — 1), and Z(t), i.e., 

(2.12) Rt\t) = E{x(t)|Z(t), U(t — 1)}. 
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2.3. Solution to the Problem 

The linearity of equations (2.1) and (2.2), together with the Gaussian assump- 

tions on x(0), E(t), (ct) implies that the conditional probability density 

P(x(t)/Z(t), U(t — 1) 

is Gaussian and, hence, it is uniquely characterized by its conditional mean X(t|t) 

and conditional covariance matrix L(t\t) 

(2.13) Lt\t) + cov [x(t); x(t)|Z(t), U(r — 1)). 

The discrete Kalman filter (see references [1] to [11]}) yields a powerful sequential 

algorithm that can be used to generate X(¢|t) and Ltr). 

The calculation of the conditional covariance matrix is done off-line. 

Initialization at t = 0 

(2.14) (0/0) = L(0). 

Covariance prediction equation 

(2.15) L(t + Aft) = A(HX(e\NA(t) + L(t) S(HL (0). 

Covariance update equation 

(2.16) X(t + Ife + 1) = Xft + Ie) — X(t + 1HNC(t + 1) 

x (Ct + DEE + NC + 1) + Of + YI? 

x C(t + X(t + 1/2). 

Filter gain calculation 

(2.17) H(t + 1) = X(t + ijt + C(t + 1I)O~'(t + 1). 

The calculation of the condition mean &(t|t) is done on-line. 

Initialization at t = 0 

(2.18) R(0|0) = X(0). 

Mean prediction equation 

(2.19) R(t + Alt) = A(c)RX(e\t) + B(cu(t). 

Residual (innovations) calculation 

(2.20) rt+° =2(t + 1) — C(t + 1)R(t + IIo). 

Mean update equation 

(2.21) R(t + Ale + 1) = R(t + It) + H(t + 1)r(t + 1). 

3. ANALYSIS OF A SIMPLE MODEL 

In this section we shall consider a simple econometric model involving the 

interrelationship of a scalar endogenous (output) variable, y(t), and a scalar 

exogenous (input) variable, u(t). We shall assume that the current value of y(t) 

depends upon lagged values of itself and of u(t). 
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To illustrate the usefulness of the Kalman filtering algorithm we shall consider 
three distinct cases 

(a) linear model, with constant parameters 

(b) linear model, with time-varying parameters 

(c) nonlinear model. 

In each case we shall illustrate how to formulate the problem so that the general 

Kalman filtering algorithm described in the previous section is directly applicable. 

3.1. Linear Model with Constant Parameters 

Let the input (exogenous variable) to the system be denoted by u(t) and its 

output (endogenous variable) by y(t); we assume that t is a discrete-time index 

attaining values 

(3.1) t = 0,1,2,.... 

Suppose that the system is described by the following linear time-invariant 

stochastic difference equation: 

(3.2) Ww) = ¥ aylt — i) + ¥ bade — j) + O0). 
i=1 j=l 

Let us suppose that the parameters 

aay (3.3) } 1>42 

b,,b2,...,0. 

are known to be constant. Also we assume that the “noise” @(t) is discrete white 

noise with known statistics, i.e., 

(3.4) E{@t)} = 0 

(3.5) E{O(t)(z)} = @5,.: O>0 

where 6,, is the Kroenecker delta. Furthermore, we assume that we can measure 

(and store) exactly the values of the output, y(t), and of the input, u(t), at each 

instant of time. 

Next we shall define certain vectors which shall be used to transform the 

parameter estimation problem into an equivalent filtering problem. 

We define the equivalent state vector, x(t), to be the (n + m) dimensional 

vector of the system parameters a; and b;. More precisely, 

(3.6) x(t) * [a,a,...a,b,b,...b,] 

where x’(t) is a row vector (’ denotes transposition). 

Next we define the (n + m) row vector e'(t) as follows: 

(3.7) e(t) * [wt — Dylt — 2)... y(t — nut — 1ult — 2)... u(t — m)). 

Using these definitions, the stochastic difference equation (3.2) can be written in 

the form: 

(3.8) y(t) = e'(t)x(t) + A(t) |. 
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Note that at time t, the numerical value of the row vector e¢’(t) is known from 

the prior n measurements of the output and the m prior measurements of the 

input. Although the outputs are random (because of the white noise O(t)), none- 

theless at time t they have been observed, and hence they are no longer random. 

It therefore follows that at time t, the row vector c(t) is a known deterministic 
quantity. 

We can now interpret equation (3.9) as a linear noisy measurement equation 

on the equivalent state vector x(t) where 

© \(t) represents the actual measurement at time f. 

© &(t) represents the value of the measurement noise at time f. 

Hence, if we could construct a linear difference equation for the equivalent state 

vector x(t) we could apply directly the Kalman filtering algorithm. 

Under our assumptions, the parameters a; and b; are constant. This auto- 

matically implies that the equivalent state vector x(t) satisfies the trivial difference 

equation 

(3.9) x(t + 1) = x(t) for all t. 

Hence, equations (3.8) and (3.9) define a simple linear filtering problem as far 

as the estimation of x(t) is concerned. In addition to the assumed data we also 

need the prior statistical information on x(0), or equivalently the prior means and 

covariance matrices of the parameters 

(3.10) E{a;}, E{b;} 

(3.11) cov [a;, aj], cov [b;, b;], cov [a;, b;). 

Knowledge of these quantities will then define the prior mean of the equivalent 

state vector 

(3.12) E{x(0)} 

and its prior covariance matrix 

(3.13) cov [x(0); x(0)]. 

Direct application of the general Kalman filtering algorithm yields the 

following relationship between successive estimates X(t), X(t — 1) of the equivalent 

state vector and hence of the parameters a;, b; ge 5 

(3.14) R(t) = X(t — 1) + h(t)[y(t) — eRe — 1) 

with the initial condition 

(3.15) &(— 1) = E{x(0)} 

and where the (n + m) dimensional column vector h(t) in equation (3.14) is defined 

by 

| 
(3.16) h(t) = @ ete) L 
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In equation (3.16), X(t) is the (n + m) x (n + m) error covariance matrix which 

can be evaluated by means of the matrix difference equation 

1 
(3.17) | X(t) = Xt — 1) L(t — 1je(t)e(t)X(t — 1) 

~ (L(t — Delt) + O- 

with the initial condition 

(3.18) X(— 1) = cov [x(0); x(0)]. 

Let us now discuss the interplay between this algorithm and the traditional 

econometric model. It should be self evident that in order to apply this algorithm, 

defined by equations (3.14) to (3.18) one must have available: 

(a) the statistics (mean and variance) of the white noise 0(t) 

(b) the general structure of the system and, in particular, the number, n, of 

lags in the endogenous variable y(t) and the number of lags, m, of the 

exogenous variable u(t) 

an initial guess for the parameters (reflected in the value of the prior 

mean E{x(0)} in equation (3.15)), and an initial value of the parameter 

variances and covariances (reflected in the value of the prior covariance 

matrix cov [x(0); x(0)] in equation (3.18)). 

It is precisely this information that is available from standard econometric models. 

Hence, to use the Kalman filter algorithm one does need a prior econometric model. 

The parameter values are then refined through the use of the Kalman filter 

algorithm, and new values for their variances and covariances obtained. It is then 

for this reason that we remarked in the Introduction that Kalman filtering tech- 

niques should be viewed as supplementary to econometric methods, rather than 

as a replacement. 

(c — 

3.2. Linear Model with Time-Varying Parameters 

The above technique can be trivially extended to the case that the parameters 

of the difference equation are viewed not as constant but rather as being time- 

varying and stochastic. Traditional econometric methods do not appear well 

suited for the estimation of time-varying parameters simply because one must also 

identify the variance of the driving white noise @t). One can use the standard 

econometric techniques to process the economic data to arrive at constant param- 

eter estimates. Using these now as constituting prior estimates, one can relax the 

constraint of constant parameters, and utilize the Kalman filter to arrive at 

time-varying parameter estimates. ° 

The technical means by which this is communicated to the mathematics is 

as follows. Each parameter a;, b; now is viewed as being time-varying and, at the 

simplest level, is supposed to satisfy an equation of the form 

aft + 1) = a{t) + E(t) 

(3.19) 
b(t + 1) = bft) + E{0) 

where the &{t) are zero mean white noise sequences. Thus, each parameter can 
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change in time in a stochastic manner. The prior informat.on about the variability 

of each parameter about its mean value (as determined by the standard econometric 

model) is used to select (subjectively!!!) variance levels for the white noise levels 

Cit). 
We should like to stress that the standard Kalman filtering algorithm cannot 

be used to estimate the statistics of the white noise sequences €,t). Rather, one 

has to postulate that they have zero mean and constant variance (although this 

stationary assumption is not crucial), and assign subjective numerical values for 

the variances. 

The equivalent state vector x(t) is still modelled by equation (3.6), and the 

row vector c(t) is still defined by equation (3.7). Then the measurement equation 

(3.8) relating the current measurement y(t) to the current value of the equivalent 

state vector still holds. 

In this case, the stochastic variability of the parameters can be modelled at 

the simplest level by the vector différence equation 

(3.20) x(t + 1) = x(t) + Es) 

rather than by equation (3.9). One assumes that 

on E{&(0)} = 0 

(3.22) 
cov [E(t); &(t)] = 5d,, 

where = can be selected diagonal, but, at the very least, positive semi-definite. 

Under these assumptions, the equivalent state estimate X(t) is still given by 

equation (3.14), and the vector h(t) is still given by equation (3.16). The only 

equation that changes is the covariance equation (3.17). The correct covariance 

equation for this time varying parameter case is 

1 

c(t) [X(t — 1) + Elje(t) + O 
X(t) = X(t — 1+ S- 

(3.23) 

x [X(t — 1) + Eje(the(t)(e(t — 1) + &) 

with 

(3.24) X(— 1) = cov [x(0); x(0)). 

Roughly speaking, the covariance matrix = of the white noise E(t) increases 

the parameter uncertainty at each instant of time. 

3.3. The Nonlinear Model Case 

Up to now we have assumed that the difference equation relating the input 

sequence u(t) to the output sequence y(t) was linear. 

This is not a necessary assumption as far as the parameter estimation problem 

is concerned. What is important is to have the parameters to be estimated appear 

linearly in the difference equation. To make this point precise, suppose that we 
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have a difference equation of the form 

Q 
(3.25) wt) = ¥ a fft) + Ot) 

i=1 

where the a; are the parameters to be estimated, and where f(t) are functions that 

are allowed to depend nonlinearly upon 

yt — 1), y(t — 2),...,(t — n) 

u(t — 1), u(t — 2),..., u(t — m)| 

The important thing is that prior measurements of the input and output sequence 

uniquely and exactly define the numerical values of the f,(t). 

If this is the case, we once more construct the equivalent state vector x(t) 

(3.26) x'(t) + [a,a,... ag] 

and if the a; are constant we have 

(3.27} x(t + 1) = x(t). 

We define the row vector c'(t) by 

(3.28) e(t) = (AO f2(0). . . fold) 

so that equation (3.25) takes the form of 

(3.29) y(t) = e'(t)x(t) + A(t). 

Once more equations (3.27) and (3.29) define a linear filtering problem for 

x(t) and the Kalman filter algorithm given by equations (3.14) to (3.18) can be 

used. 

4. MULTIVARIABLE PROBLEMS 

Complex microeconomic and macroeconomic systems are in general charac- 

terized by several endogenous and exogenous variables. We shall denote the 

endogenous (output) variables by 

(4.1) y(t), y2(t), ..-. Y(t) 

and the exogenous (input) variables by 

(4.2) Uu,(t), up(t), . . . ,Uag(t). 

Once more we can consider both linear and nonlinear econometric models. 

For the sake of exposition we shall only analyze linear models. 

In linear econometric models one relates the current value of each endogenous 

variable y(t), i = 1,2,...,N to 

(a) linear combinations of lagged values of (possibly all) endogenous variables 

yAt), t= t — 1,t—2,...,t—n, 

(b) linear combinations of lagged vaiues of (possibly all) exogenous variables 

u,(t), t= t—1,t —2,...,t—m; 

(c) and in the presence of additive discrete white noise 6,(t). 
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In order to write the structure of the econometric model in a compact form we 

define the endogenous N-dimensional column vector y(t) as the one naturally 

defined by the endogenous variables y,(t), y(t), ..., yy(t), Le. y(t) = Ly, (dy2(t)... 

yy(t)]. Similarly, we define the M-dimensional exogenous vector u(t) by 

(4.3) w(t) = [u,(t)ua(t)... usyg(?)). 

Using the above notation a linear econometric model with constant parameters 

can be written using the vector difference equation 

(4.4) = y(t) = A, y(t — 1) + A,y(t — 2) +... + A,y(t — n) + B,u(t — 1) 

+ Bu(t — 2) +... + B,u(t — m) + Or) 

where @(t) is the N-dimensional vector defined by the scalar white noise sequences 

(4.5) 6(t} * (0; (0)0,(t) . . . Ax(0)] 

and 

(4.6) n = max n,, m = maxm; ; t 

and where the constant parameters appear as elements of the matrices 

Sey 
(4.7) 

B,,B2,....B,, 

(Note that because of the variability of the lags appearing in each endogenous 

equation many of these matrices may have several zero elements.) 

The available econometric methods provide at the very least 

® mean values for all parameters 

® their variances (and perhaps covariances) 

@ the covariance matrix of @(t) 

We now introduce the following notation. Let 

a/’ denote the j-th row vector of the matrix A; 

b}’ denote the j-th row vector of the matrix B;. 

Using this notation we can write the general econometric relation (4.4) as follows. 

For i = 1,2,...,N 

(4.8) y(t) = ¥ ajy(t —j) + ¥ byult — k) + (0). 
j=1 k=1 

For each i, we can now define an equivalent state vector x(t) which contains all 

uyiknown parameters in the i-th endogenous equation (4.8). 
4 * 
(3.9) x(t) = [af,ay,...,a¥, by, bé,..., bi’). 

We also define the row vector c’(t) (independent of i) by combining all appropriate 

past measurements of all endogenous and exogenous variables 

(4.10) e(t) + [y(t — ly(t — 2)... y(t — nu'(t — Du(t — 2)... u(t — m)). 
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Using this notation, we write equation (4.8) in the form 

(4.11) ydt) = e(t)x{t) + At) |; i= 1,2,...,n 

which represents a linear noisy measurement relationship in the equivalent state 

vector x,t). Once more, the assumption that the parameters are constant leads to 

the trivial difference equation . 
—— 

(4.12) x{t + 1) = x{t) | 

for the parameters associated with the i-th equation (4.8). 

Hence, exactly the same techniques as those described in the previous section 

3.1 can be used to determine the appropriate parameter estimates 

(4.13) R(t); i=1,2,...,N 

and the corresponding error covariance matrices 

(4.13) Xt); i= 1,2,...,N 

namely : 

(4.15)  —- R(t) = R(t — 1) + ht)[y{t) — e'(ORAt — 1); K(—1) = E{x,0)} 

l 
(4.16) ht) = 6 L(t)e(t) 

1 

~ e(HE At — Delt) + 0, 

(4.18) Z4{—1) = cov [x{0); x{0)). 

(4.17) Zt) = Lt — 1) Lt — 1)e(te'(HEAt — 1) 

Once more the standard econometric model is necessary to specify 

1. the prior estimated white noise variances 6; 

2. the prior parameter estimates E{x,(0)} 

3. the prior per? meter covariance matrices cov[x{0); x,{0)]. 

The estimate generation of all parameters in the econometric model, then reduces 

to running N independent Kalman filters. 

It is self evident that the remarks made in Section 3 regarding time-varying 

parameters and/or nonlinear models are also applicable to this multivariable 

case. 

5. RECONCILIATION OF DIFFERENT ECONOMETRIC MODELS 

In this section we shall examine an extension of the previous results, which 

may be of potential usefulness in reconciling different econometric models. As we 

have remarked, different assumptions and statistical techniques enter in the 

construction of econometric models. Hence, it is not surprising that the predictions 

and forecasts of econometric models are variable. Reference [18] contains several 

papers dealing with this question, where attention was focused upon comparisons 

of quarterly econometric models of the limited states. See also reference [19]. 
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It is, of course, extremely difficult to draw any precise conclusions about the 

“goodness” of any given econometric model, since they are usually different from 

the aggregation viewpoint, and they differ in the time series techniques utilized to 

estimate the parameters. Thus, this is not the type of problem that we shall address 

in this paper. 

What we shall examine is the problem of estimating the parameters of a 

single econometric model starting from N econometric models with “identical” 

structure, but different parameter values. 

In order to make precise the concepts and calculations involved, we shall 

outline the method and objectives in a mathematical framework. Then we shall 

explain what one may have to do when one deals with “real’’ econometric models. 

The ideas will be illustrated by considering linear time-invariant econometric 

models involving the interrelationship of a single endogenous variable, y(t), and a 

single exogenous variable, u(t), of the type described in Section 3. The techniques are 

also applicable to multivariable models of the type discussed in Section 4, in view 

of the decomposition properties. 

Suppose that the true econometric model is of the form 

n m 
(5.1) wt) = ¥ ayt — i) + Y diult — j) + Ot) 

i=1 ji 

where a; and b; are the true unknown parameters, and @(t) is the actual white 

noise. 

Let us now suppose that different econometricians have constructed N 

different econometric models that in their view represent a “good” approximation 

to the true system (5.1). We shall let k = 1,2,..., N index these distinct econo- 

metric models. Thus, each of the models constructed is described by the equation 

(5.2) wo) = ¥ aft —) + Y¥ hut — j) + Od) 
i=1 j=1 

where, fur the sake of simplicity, we assume that 

(5.3) E{6,(t)} = 0 for all k 

(5.4) E{6,(t)0,(t)} = ©,6,,. 

In addition to the estimates af, b} of the parameters, each econometric model also 

provides us with the variances and possibly covariances, of the parameters ; these 

would also differ from model to model. 

Now imagine that a central agency, e.g., the Federal Reserve Board, would 

like to make some econometric predictions, and that it has these N different 

models at its disposal. Roughly speaking, it may be interested in “‘combining” 

all these models into a single one; this may correspond to obtaining new estimates 

for the parameters of the model (5.1), on the basis of information already available 

by the N econometric models. The central agency may have some prior prob- 

abilities 

(5.5) P,(0), P2(0), ..., Py(0) 

that reflect their subjective prior confidence on the accuracy of each econometric 
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model. One simple way then would be to construct new parameter estimates by 

weighing the different coefficients, i.e., 

N 
(5.6) a,= > P,(O)at. (5.6) 

k=1 

However, this technique may strongly be influenced by the prior biases of the 

agency as expressed by the prior probabilities P,(0). 

A more sophisticated way is to utilize the Kalman filtering algorithm described 

in Section 3, together with a hypothesis testing algorithm, with each econometric 

model corresponding to a distinct hypothesis. We describe below how this can 

be accomplished. 

Following the techniques of Section 3 each econometric model is described 

by its equivalent state vector x,(t) satisfying the trivial difference equation 

(5.7) x,(t + 1) = x,(t) 

and the equivalent measurement equation 

(5.8) y(t) = e'(t)x,(t) + 4,(0) 

where c(i) is common to all models and given by equation (3.7). Each model is 

characterized by different values of 

(5.9) ' E{x,(0)} 

(5.10) cov [x,(0); x,(0)] 

(5.11) 0, 

where (5.9) implies that the numerical parameter estimates of the parameters of 

each model are different, equation (5.10) reflects the fact that the variances of the 

parameter estimates are also different, and (5.11) implies that the estimated 

variance of the driving white noise also differs from model to model. 

The problem faced by the central agency is to construct an estimate X(t) of 

the parameters associated with the overall model (5.1). This estimate &(f) can be 

constructed by the following algorithm 

N 

(5.12) R(t) = Yo ROP) 
k=1 

where 

&,(t) is the estimate generated by the Kalman filter matched to the k-th 

econometric model [see equations (3.14) to (3.18)]. 

P,(t) is the posterior probability, given measurements up to time f, that the 

k-th econometric model is the correct one. 

The optimality of the estimate (5.12) is most clearly understood if one makes 

the following assumptions. All random variables are Gaussian. Then X(t) is the 

true conditional mean given the measurements up to time f, &,(t) is the conditional 

mean under the hypothesis that the k-th model is the correct one, and P;,(t) is the 

conditional probability that the hypothesis of the k-th model being the correct 

one is valid (see reference [20)). 
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Since we have already given the algorithm that generates the individual model 

estimates &,(t) using the Kalman filtering algorithm of Section 3, we shall now 

describes how one generates the probabilities P,{t). Use of Bayes rule yields the 

equation 

(5.13) P(t) = A Y(t)|H,)P,(0) 

d PY (HP {0) 
j=1 

In equation (5.13) the P,(0) are the prior probabilities reflecting the initial con- 

fidence of the central agency upon the k-th econometric model. The term p( Y(t)|H,) 

is the probability density function of observing the entire set of measurements 

(5.14) Y(t) = {y(0), W(t — 1),..., u(t — 1), u(t — 2),...} 

under the assumption that the k-th model is the correct one. 

Let p(Y(t)|H,) denote the conditional density function, so that P(Y(t)|H,) 

can be obtained by the integration of p(Y(t)|H,). We write 

(5.15) ¥(t) = {y(t), ¥(t — 1} 

and, hence, by Bayes rule 

(5.16) p(Y(0)|H,) = pO), Y(t — IIA,) = pO| Y(t — 0), A,)p(V(t — 1A). 

Equation (5.16) provides a recursive relationship between the conditional density 

functions p(Y(t)|H,) and p(Y(t — 1)|H,); hence, given p(Y(t — 1)|H,), the only 

additional quantity to be evaluated is 

(5.17) P(y(t)| Y(t — 1), Hy) 

so as to compute p(Y(t)|H,). 

Under the Gaussian assumptions, the density (5.17) turns out to be Gaussian, 

and hence uniquely characterized by its mean and covariance matrix. The condi- 

tional mean is 

(5.18) E{y(t)|¥(t — 1), Ay} = eR (t — 1) 

where &,(t — 1) is the estimate generated by the Kalman filter matched to the 

k-th econometric model. The conditional covariance matrix is given by 

(5.19) cov [y(t); W)| Y(t — 1), Ay) = e(OE,(¢ — le(t) + O, 

where the covariance matrices £,(t — 1) are also generated by the Kalman filters 

(see references [20] to [22)). 

In summary, the use of the N Kalman filters can be used to generate: 

1. The probability that each econometric model is the correct one, 

2. A weighted probabilistic average for the parameters of the econometric 

model to be used by the central agency, based upon the individual param- 

eter estimates of each econometric model. 

Although the theory and algorithms are relatively straightforward, much 

research needs to be done before one can use this method to “reconcile’’ and 

62 



a ee = 

“combine” actual econometric models, because existing econometric models can 

be drastically different in their structural and aggregation properties. The method 

described does not seem to extend itself naturally if one wants to reconcile, say, 
a linear and a nonlinear econometric model. 

However, it may be possible to compare different linear econometric models, 

with different dependence on lagged endogenous and exogenous variables. In this 

case, the central model must contain all lagged variables appearing in all models. 

If in a particular econometric model, a lagged variable does not appear, then it 

should be introduced with a zero coefficient. To be specific, suppose that in the 

k-th econometric model the dependence on y(t — 3) is absent. We can introduce 

this dependence by adding the term f, y(t — 3), ie., 

(5.20) y(t) = original terms + f, y(t — 3). 

The fact that the prior model did not include this term is communicated by setting 

(5.21) E{B,} = 0. 

However, one must subjectively use a non-zero initial variance E{B?} whose size 

reflects the feelings of the central agency on the importance of this term. Then 

the k-th Kalman filter will generate a non-zero estimate of ,. 

If this procedure is adopted, then each individual econometric model can 

indeed be made to have the same structure, and the techniques described in this 

section can be used. However, no numerical simulations are available at this time 

so as to make a definitive judgement even on the potential usefulness of this 

technique from an econometric viewpoint. 

Massachusetts Institute of Technology 
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