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Annals cf Economic and Social Measurement, 2/4, 1973 

TIME-VARYING REGRESSION COEFFICIENTS: A MIXED 

ESTIMATION APPROACH AND OPERATIONAL LIMITATIONS 

OF THE GENERAL MARKOV STRUCTURE 

BY J. PHILLIP COOPER* 

This paper applies the Mixed estimation approach to the problem of time-varying regression coefficients. 
A general Markov form is imposed on the time-structure of the coefficients to facilitate estimation. The 
limitations of the approach are briefly considered. 

In this paper, the Mixed estimation approach of Theil and Goldberger (1961) and 

Theil (1963) is applied to the problem of time-varying regression coefficients. 

Stochastic prior information for regression coefficients is developed by imposing a 

general Markov form on the time structure of the coefficients. Given the covariance 

matrix of this prior information, estimators of the variance of the regression 

disturbances, the initial values of the Markov form and the individual regression 

coefficients follow easily. The specification of the time structure of the coefficients 

remains a very difficult problem and it is discussed only briefly here. 

Assume the following regression model : 

(1) y%»=XB+e t=1,2...,N 

where 

y, is a single observation on the dependent variable, 

X,isal1 x k row vector of exogenous regressors, 

B, isak x 1 vector of unknown regression coefficients, 

€, is a disturbance term such that E(e,) = 0, E(e?) = o?, 

E(é,¢,, ;) = 0 for j # 0. 

For the complete sample of N observations, we write 

(2) y = X B - E 

(N x1) (N x Nk)(Nk x1) (N x 1) 

where , 
y =(\1.)2,---, yn) 

B = (B,. By... . By) 

‘6 = (€,,&2,...,&y) 

and 
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Consider now the following general structure for the time-varying coefficients : 

gam OS ae es Soc oe eee ae t=0,1,...,.N—1 

(Kx 1) (kx ky(kxi1) (kx) (kx 1) 

where E(u) =0 j=1,...,N 

E(uju}) = H6;; ij=il,...,N 

E(uz;) = 0 iLj=1,...,N 

T, €, By H given. (5,; is the Kronecker delta). 

Equation (3) can be rewritten he substituting recursively as 

(4) B. = T'Bo + rre+ du. i eee 

In stacked matrix form, this is 

B, T ' I 

B \ 1+T 

(5) B; |=| T? [Bo + 1+T+T? ‘a 

By TN 1+T+T77+...+ 7%"! 

I 0 0 fe, FA 

T I 0 0\j uz 

+| T? T I 0} u,; 

\ ae . haa : 7+? eee I \Un/ 

and with further compacting 

(6) B = T,Bo + T2é + T3u 

where the additional definitions necessary are obvious from the correspondence 

between (5) and (6). 

Now, the structure can be cast in the Mixed estimation format by rewriting 

(6) as 

(7) (T,Bo + T,¢) = B — Tu. 

Comparing (7) with the standard form of the Mixed model, i.e., 

r= RB + v, 
we see: 

Rel 

r = T,By + T2é 

v= —T,u 
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and 

E(v) = 0 

E(vv') = T;(1y ® H)T. 

Letting E(v v') = V, mechanical application of the Mixed estimation formulae 

leads to 

2 1 "at 3 
(8) B= [xx + v- [2% + y- 

OG; OG, 

. 1 *? 
cov (B) = [25%°x zs -' ; 

This is, of course, the same computational result arrived at by Sarris (1973, 

eqs. 56, 57) under the Bayesian approach.’ 

The Mixed estimator is not valid if we interpret the elements of £ as random. 

The form (7), however, indicates that we might regard f as a constant but unknown 

parameter vector about which we have stochastic prior information. In particular, 

B is equal to the given value (7,8, + T,¢), but up to a random error (— Tu); 

“given” should be read as “given, at least so far as the current sample is con- 

cerned.” The similarity of the results has at least one obvious benefit—computer 

programs for the Mixed estimator already exist. 

In the typical application of the Mixed estimator, then, r and V are supplied 

as prior information but o? is unknown; to evaluate (8), a? is replaced by a 

consistent estimate providing the resulting approximate Mixed estimator of B 

with at least desirable large sample properties. 'a the present context, therefore, 

much information is required : values must be supplied for T, ¢, By, and H. Further- 

more, we cannot hope to use the usual approach to estimating a? from the regres- 

sion model (2) since the Nk x Nk matrix X'X is not‘of full rank and is thus 

singular. 

All is not yet lost, however. Assume now that just T, €, and H are given. 

Substitute (6) into (2) and arrange terms to get 

(9) (y — XT,¢) = (XT,)Bo + (X Tzu + 2) 

or 

(9’) y* = X*By + & 

and 

E(e*) = 0 

1 
E(e*e*’) == a1 + og? Fall ® wyrx’| 

e 

For any value of a2, By can be estimated by a simple application of Generalized 

' The occasional, approximate correspondence between Bayesian and Mixed estimators has 
received some limited attention ; see, for example, Theil (1971, Section 12.9) and Zellner (1971, Section 
4.2). 
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Least Squares to (9’);? the appropriate value to use for a? can be found through a 

standard search procedure. 

To illustrate, let Q = XT;(1y @ H)TX’ be written in the form 

(10) Q=GDG 

where G is an orthogonal matrix that diagonalizes Q,and Disan N x N diagonal 

matrix. Then, 

1 
(11) Bete) = 03] 1+ 606 

1 
= 26 + =p | 

O; 

= 07G'D*G 

where D* is a diagonal matrix whose elements are (1/02) times the corresponding 

elements of D plus unity. (We start with some arbitrary value for o,?.) Let P = 

D*~ '/?G be used to transform (9’) to 

(12) (Py*) = (PX*)B, + (Pe*) 

or 
(12’) y** — X**B, + e** 

and 

E(e**) = 0 

E(e**¢**’) - D*~ 1/2 G(a?G' D*G)G' D*~ 1/2 

= 07]. 

With these properties, we estimate B,, conditional upon the chosen value for 
2 o;, as 

(13) Bo - (X**’X**)— 1X #* y** 

and can form a new value to use for a? by 

1 a aia (14) 6? pa (3) (y** kee X**B,)(y** nai X**B,). 

Actually, it can be shown that if we add the assumption of normality so that 

e~ N(0,671) 

u~ N(0,[Iy ® H)) 

and use N instead of N — k as the deflator for é?, then (13) and (14) give the maxi- 

mum likelihood estimators of B, and o?, respectively. Iterative solution of (13) 

and (14) leads to a local maximum of the likelihood function. 

In summary, given T, € and H, we can use an iterative technique, based simply 

on ordinary least squares of transformed data, to estimate a? and fy and then 

? Estimation of £, from the current sample violates the spirit of the mixed estimator; it is to be 
regarded as an asymptotically valid approximation in which f, is replaced by a consistent estimate in 
the same manner as 6? replaces a?. 
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employ the estimates in calculating the approximate Mixed estimator of f. This 

is essentially the point to which Sarris (1973) has brought us, though, through a 

different and more lengthy route.* Obviously, the same asymptotic properties 

apply that he claims. The question remains as to what to do about T, € and H. 

The problem of identification of so many more parameters (3k{k + 1]) is 

formidable in the typical sample size. It is reasonable to assume that the investi- 

gator would be willing to impose some structure on the movement of the time 

varying parameters. One special case is that of T = 0, in which 8, drops out of 

the problem. We could then estimate ¢, the “mean” of the time varying coeffi- 

cients, in the same manner as that by which B, was handled. That is, we might 

rewrite (9) as 

(15) y = (XTL)E + (Xu + 8) 

and use iterative Generalized Least Squares analogous to (13) and (14) for — and 

6? ; applying (8) we would then calculate (for nonsingular H) 

1 s 
=3X'y + [ly @ H~")T€}. 

€ 

a 1 - | 
(16) p= pX'X + (ly @ H'] F 

Another special case is the random walk with zero drift: 

Bias = By + teas t=0,1,...,N —1; 

that is, 

T=! and €=0. 

Both these cases still leave us the specification of H.* If we were to assume 

further that H is diagonal, then it might be possible to obtain estimates of the k 

diagonal elements. Such an assumption was employed by Hildreth and Houck 

(1968) in treating the first of the special cases given above.* Estimates of the diagonal 

elements of H follow from an auxiliary regression in which the dependent variable 

is the vector of squared residuals of an ordinary least squares regression of y 

on (XT,).° 

3 The iterative technique differs somewhat from the one Sarris describes in his Section 4. He 
specifies E(u,u}) = 02H 5,, with o2 unknown and defines @ = o2/s? as the parameter on which he 
iterates. o? is not identifiable, though ; starting with (1/A)H instead of H simply leads to an estimate of 
o2 that is A times larger than previously. 

* This is a good point at which to quote the assessment by Rosenberg (1972) of the problem remain- 
ing. “*... the complex covariance structure of the parameters must either be specified a priori or else 
estimated from the data: the former seems unlikely, and the latter is virtually impossible.” In the 
presentation here in the text, (6) and (7) show the covariance (of the stochastic prior information) to 
be 73(1y ® H)T;,. An attempt has, thus, been made to split the problem into components—one due 
to T and the other due to H—because it was felt that an investigator in a particular case might have 
more to say about one of these than the other; for example, he might be willing to say something 
a priori about the numerical values in T, but be unable to do more than restrict the general form of H 
to, say, diagonality. Logically, of course, the Mixed estimation approach as generally presented, is 
founded upon our being able to make these specifications of T and H (and also f,) before we face the 
current sample. 

5 Hildreth and Houck’s model excluded the additive disturbance vector ¢«. The difference can 
easily be resolved if one of the regressors is identically unity—i.e., the model includes an intercept. For 
a detailed discussion of this point in a somewhat different context, see Hsiao (1972). 

© Other variants are available to ensure the nonnegativity of the k diagonal elements. 
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The second case mentioned above cannot be handled in a similar manner, 

however. Rewriting (9) for this case, we obtain 

(17) y = (XT,)Bo + (XTyu + 2). 

In (15) the compound disturbance term has a diagonal covariance matrix, a 

feature not shared by the compound disturbance term of (17). Hildreth and Houck 

(1968) observed that “the extension of procedures of [their] paper to [the non- 

diagonal case] is straightforward in principle but complicated in some details.” ’ 

It appears that the computational problems associated with H unknown and 

T # 0 require further investigation before the generality of the structure of (3) 

becomes very useful in the absence of a good deal of prior information. 

University of Chicago 
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