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Annals of Economic and Social Measurement, 2/4, 1973 

A TEST FOR SYSTEMATIC VARIATION IN 

REGRESSION COEFFICIENTS 

BY Davip A. BELSLEY* 

This paper offers a statistical test of the constancy of the parameters of a linear regression. The F test is 
based on transformed residuals which result from OLS applied to the given equation under the null hypothesis 
of constancy. 

SOME NOTATION 

We consider the model 

(1) y(t) = x (tpt) + eft) 

Bit) = T2(t) + u(t) 

where 

x(t), z(t) K and R vectors, respectively, 

e(t) spherically distributed with Eee’ = o7/, 

u(t) independent over time with Euu’ = 2Q. 

(See preceding article for motivation. 

In what follows we consider the special case o? = 0, i.e., variation in A(t) is 

systematic and non random. Hence, we may write 

(2) wt) = x(t) + et) T= [py... rp] 

= [x (t) ®@ z (JA + at) 

where 

ry, 

A=|: 

YR 

Let 

x'(1) [z(1) x'(1) ® zl) 

Y=(["y, x=| ° Bae co acme | 

x(T) z(T) x(T)@ z(T) 

Tx K eae: T x KR 

Then (2) becomes 

(3) Y= DA + = 
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and we note that we may write 

(4) D=[(2%,2Z,...Z,)[X @ 1}, 

where 2, = diag Z, and Z, is the rth column of Z. 

Thus, (3) becomes 

R 

(5) Y= )} 2,Xy, + €. 
r=1 

REMARKS 

Our purpose here is to determine a test of the null hypothesis that A(t) = B, 

i.e., is constant, for all t. Clearly a-regression could be run on (3) directly if the z’s 

were known, but alternative modeling tests would be cumbersome given the size 

of (D’D)~' even for moderate K and R. 

In what follows a two-step test is determined that looks to be efficient and does 

not require inversion of D’D. Alternative Z matrices may be compared with a mini- 

mum of computation. The first step is OLS of Y on X without regard to Z. The 

second step consists of regressing a transformed set of residuals from step one on 

the similarly transformed z’s. Hy may be tested with the results of the second 

regression. 

STEP ONE: OLS Y on X 

First regress Y on X to get 

b = (X'X)"'X'Y 

(6) = (X'X)"'X'DA + (X'X)'X'e 

(X’X)"' X'S BO Xy, + (X’X) Xe 

and 

Y— Xb= HY (H = 1 — X(X'X)"'X’) % Ill 

H(DA + €) 

= (HZ ,X...H2pX)A + He 

=[V,...Vg]A + He 

R 
Y Vy, + He ; 
r=1 

where the V, are the residual matrices from an auxiliary regression of 2,X on X. 
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This regression need not be run in practice. The relevance of V, is seen from 

H2,X, = 2,X — X(X'X)'X'Z,X = £X — XB, = V,, 

where B, is the set of regression coefficients from 2,X = XB, + V,.' 

Thus we have 

(8) e = XV,y, + He. 

We recall that H is idempotent, has rank T — K, and hence there exists an ortho- 

gonal C such that C’'HC = in 4 =G. Further we note HV, = V,, 

r=1...Rand He = e. Hence, we may write 

(9) C'HCC’e = C'HCC'XV,y, + C'HCC'e 

or 

GC’e = GCZXV,y, + GC'e 

and, partitioning C = [C,C,] so that the first T — K rows of (9) become 

R 
(10) f=Cie=C, > Vy, + Cie 

r=1 
R 

=C, Y 2X1, +02 
r=2 

This last inequality comes from noting that V. = H2,X, and hence C’V, = 

CH2,X = C'HCC'2,X = GC'Z,X, which implies CV, = C'2,X. We have 

also let C,e = ny. 

We also note that y is spherically distributed, since En = 0, Vy = Enn’ = 

EC\se'C, = 02C,C, = o717_,x, due to the orthogonality of C. 

It is the transformed residuals f = Ce that we make use of in step two. The 

transformation C’, comes from finding an orthogonal set of eigenvectors of 

H = 1 — X(X'X)~'X’, and hence f depends only on knowledge of X and Y and 

does not require knowledge of Z. 

STEP Two 

It is clear from (10) that the residuals from step one depend in a very involved 

way on the interrelation of X and Z through the terms 2, X. However, under the 

null hypothesis Hy: P(t) = B, these terms disappear, and a simpler test is available. 

Consider a mechanical regression of f on Z transformed by C’, (which depends 

only on X): 

(11) f =C\Z6 + yp. 

' In passing we note from (6) that 

b = (X'X)"'X'ZXy, + (X'X)'X'e 

= IB,y, + (X'X)"'X'e. 

Hence, Eb = £B,y,, a weighted sum of the y,, and V(b) = o7(X’X)7'. 
? This latter sum goes from r = 2 to R since, if Z, (the first col. of Z) is a column vector of all ones, 

then 2, = I and hence V, = 2,X — XB, = X — XB,, the least squares residuals of the auxiliary 
equation X = XB, + V,. These residuals must necessarily be zero, since B, = I does the trick of 
minimizing the sum of squares. Hence, C/V, = 0 = C}2,X = C’',X. 
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OLS gives 

(12) d=(Z'C,C;Z)"'Z'C,f and from (10) 

= (Z'C,C,Z)'Z'C,C, 22, Xy, + (Z'C,C,Z)"'Z'C, Cie 

R 
=(Z'QZ)"'Z'Q ¥ Z,Xy, + (Z'QZ)"'Z'Qe 

r=2 
where Q = C,C}. 

Under the null hypothesis H,: f(t) = B, y, = 0 for r= 2...R, and hence 

the first term of (12) is 0. That is, under H,: 

(13) d =(Z'QZ)"'Z'Q« 

= (Z'QZ)'Z'C,f. 

In addition, from (10) we have under H, that 

(14) f =Cie. 

Further, we note for future reference that Q is idempotent—since QQ = 
C,C,C,C’ = C,IC, = C,C;, = Q—and of rank T — K. 

Now consider the residuals g of this second step ; using (13) and (14), 

(15) g=f—C\Zd 

=Cie — C,Z(Z'QZ)~'Z'0e 

=C\[I — Z(Z'QZ)"*Z'Q)e 

=Ne _ where we let N = C;[I — Z(Z'QZ)~'Z'Q). 

Now 

gg =eN'Ne 

= é[I — Q2(Z'QZ)*Z}C,Ci[I — Z(Z'QZ)"*Z'Q)e 

= &(Q — QZ(Z'QZ)*Z'Q)[Q — OZ(Z'QZ)"'Z'Qe 

(16) =e'MMe_ where M = Q — QZ(Z'QZ)'Z'O 

= eMe 

since M is seen to be idempotent with p(M) = tr M = T — K — R. And hence, 

(17) g'g <> OXF _K_R- 

From (13) we have 

(18) d =(Z'QZ)"'Z'Qe = Be 
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BM = (Z'QZ)"'Z'Q[Q — QZ(Z'QZ) 'Z'Q) 

= (Z'QZ)"'Z'Q — (Z’QZ)'ZQ=0. 

Hence, the linear form (18) is distributed independently of the quadratic form 

(17) and the usual tests of significance on d may take place. Under H,:Ed = 0, 

and hence a t value for a specific d at T — K — R degrees of freedom in excess of 

the test level rejects the null hypothesis. 
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