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Annals of Economic and Social Measurement, 2/4, 1973 

RANDOM COEFFICIENTS MODELS 

THE ANALYSIS OF A CROSS SECTION OF TIME SERIES BY 

STOCHASTICALLY CONVERGENT PARAMETER REGRESSION’ 

BY BARR ROSENBERG 

This paper develops a ‘‘convergent-parameter” regression model for a cross section of time series. Cross- 
sectional diversity in the regression parameters results from sequential random increments to the individual 
parameters. These random walks are subordinated to a continual tendency for individual parameters to 
converge to the population norm. The model implies stationary cross-sectional parameter dispersion, with 
nonconstant but serially correlated individual parameters. Maximum likelihood and Bayesian estimation 
methods are derived for the model. An approximation that makes the computations feasible is evaluated 
and found to be satisfactorily efficient. The estimators are compared with ordinary least squares 

I. THE ““CONVERGENT PARAMETER” MODEL 

A. Consider the familiar cross-section, time-series regression problem, where an 

endogenous variable y and exogenous variables x,,..., x, are observed for each of 

N individuals, n = 1,..., N in each of T time periods, t = 1,..., T. The regression 

parameters b,,..., b, are the partial derivatives of the endogenous with respect to 

individual n in period t is determined by the behavior and environment of that 

individual at that date. In most economic applications, it is unreasonable to expect 

these parameters to be the same for all individuals in all periods. 

A variety of cross section, time series regression models have previously 

introduced stochastic variation in individual parameters. The most widely known 

methods are extensions of the analysis of covariance: shifts in the intercept term 

are associated with each individual (“individual effects”) and with each time 

period (‘time effects’’). Sometimes these shifts in the intercept are introduced as 

dummy variables, or equivalently, as stochastic terms with diffuse prior distribu- 

tions (Hildreth (1949, 1950), Hoch (1962), Wilks (1943 : 195—200)). In other applica- 

tions, these shifts are treated as stochastic terms with proper prior distributions, or 

“error components” (Wallace and Hussain (1969)). Serial correlation in individual 

disturbances may be superimposed upon these models (Parks (1967)). However, 

this class of models has the deficiency of postulating that regression parameters 

other than the intercept are identical for all individuals in all periods. 

Where regression parameters do vary, an estimator assuming constant param- 

eters has two important defects. First, the estimator is inefficient and the associ- 

ated sampling theory is invalid, usually leading to downward-biased estimates of 

error variance. Second, when the pattern of parameter variation is of interest in 

' The bulk of this research, reported in “Varying Parameter Regression in the Analysis of a Cross 
Section of Time Series,’ IBER Working Paper No. IP 165, 1969 (revised 1973), was completed under 
NSF Grant GS 2102, aided by subsidized funds of the Computer Center, University of California, 
Berkeley. The research was completed under NSF Grant GS 3306. The resourceful assistance of Daryl 
Carlson, and the indomitable work of Mrs. Ellen McGibbon in preparing various stages of the manu- 
script, are gratefully acknowledged. 
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its own right, a constant parameter model is totally incapable of shedding light on 

this aspect of the economic process. 

Two models have introduced more general parameter variation. In Swamy’s 

work, individual parameters are randomly dispersed across the population, but are 

constant over time (1970, 1971). In Hsiao’s recent paper (1973), regression param- 

eters are the sums of “individual effects’’ and “time effects,” so that the model 

extends to the regression parameters the methods previously applied to the 

intercept term alone. These two approaches are appealing. However, they do not 

allow the individual parameters to vary independently of the rest of the popula- 

tion. If individual parameters do vary stochastically, these methods cannot track 

the individual parameter vectors nor model the stochastic variations. 

B. What pattern of parameter variation can be expected in a cross section of 

economic decision units? There are certainly tendencies for different individuals’ 

parameters to be alike. Social interaction within a population tends to preserve 

similarity among individuals playing the same role. When conformity is highly 

valued, or when the role of a deviate is, for any reason, difficult, individuals will 

tend to converge in behavior and in environment toward group norms, or toward 

subgroup norms if a deviant subgroup coalesces. Under competition, individuals 

will strive for profitable differentiation from the population, but as soon as such 

differentiation is achieved, competitive responses by others will tend to offset it. 

Uniformity may be enforced by institutional devices, such as trade organizations, 

or may result from interdependent individual responses to similar environments, 

as, for example, in loosely organized groups such as consumers. 

On the other hand, within a group of individuals, each being somewhat dif- 

ferent in innate characteristics and in environment, freedom of action will facilitate 

continual developments which are in opposition to, or at least independent of, the 

converging trends. These independent events will be a source of diversity which, 

when balanced against the conforming forces, may preserve a relatively stable 

degree of differentiation in the population. Individual characteristics will be dif- 

ferent, but will not remain constant over time. The differences may behave as if 

subjected to sequential random increments and as if continually converging 

toward zero from the position randomly arrived at. Individual differences will 

then be serially correlated but nonconstant. 

To fix ideas, it may be helpful to consider an example. In analyzing the 

returns to stockholders, it is useful to write for each stock in a universe of N stocks 

and for each holding period within a sequence of T holding periods: 

‘nn = Dont + Di ntl Mt + Don S21 eee a Ds —sJe—12 - Unt> 

wend: i yRase s,s... T 

where r,, is the (excess) return on stock n over holding period f, ry, is the (excess) 

return on a stock market index in period t, and the f;,,, i = 2,...,k — 1, are other 

major economic or social factors which influence the returns on securities. The 

coefficient b, , widely known in finance as the stock’s “beta,” is a partial derivative 

with respect to return on the index. The “‘beta’’ and the other coefficients are 

important in the theory and practice of investment management, since they deter- 

mine the risk of a diversified portfolio (see, for example, Sharpe (1970)). The “beta,” 
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in particular, has been widely studied empirically. It has been shown that “‘beta,”’ 

for any security, is serially correlated but nonconstant. A possible stochastic 

model for “‘beta”’ is: 

Dat _ (1 ye? )b, a ) -- Ent: 

The autoregressive parameter @ induces serial correlation, the term (1 — @) 

implements a tendency to converge toward a normal value b,, and the serially 

independent random increments ¢ introduce stochastic variation over time. The 

characteristics of this process have been studied by Rosenberg and Ohlson (1973). 

The results support the model, and, in particular, show significant nonconstancy 

in beta and confirm the tendency of beta to converge toward a normal value b,,. 

This paper is concerned with the case where the normal value is a population 

norm common to several individuals. Every individual parameter vector is 

regarded as the sum of a population mean parameter vector and an individual 

difference, with the latter tending to converge toward zero. 

Each individual difference is assumed to converge at the same rate and to be 

subject to random shocks of the same variance. This is clearly an oversimplifica- 

tion as a model of many economic processes. For example, in a study of competi- 

tion in the computer industry, one would suspect that the tendency of IBM to 

converge toward the group norm would differ from other firms. Also, in many 

populations, individuals fall naturally into subgroups, so that a two-level hier- 

archy, in which individuals converge toward subgroup norms and subgroups may 

or may not converge toward the population norm, may be more appropriate. 

Nevertheless, the simple convergence structure is used here for several reasons. 

One reason is heuristic: although the computational difficulty of the estima- 

tion problem does not increase as the convergence patterns become more complex, 

the notation becomes more painful. A second reason is one of operational useful- 

ress. When the stochastic parameter process is known a priori; as it may be when 

the process determining behavioral modifications is well understood, it is quite 

possible to operate in the fully general framework. However, when the parameter 

process is to be estimated from the data, a simple structure must be postulated. 

The simplification that all individual parameters have convergence and stochastic- 

shift characteristics which are identical and unchanging over time is analogous to 

the traditional regression assumption that all parameters are identical, in that it 

asserts a similarity across the population which is necessary to develop an opera- 

tionally feasible method. However, while the assumption of fixed parameters was 

originally thought to be needed before computations could be carried out at all, 

here the simplifying assumption is imposed, not by computational necessity, but 

by the experimenter’s ignorance as to the exact nature of the parameter process. 

There may also be events which induce simultaneous shifts in all of the indivi- 

dual parameters. It will be assumed that the effects of these constitute a series of 

serially independent communal increments occurring in all parameter vectors. 

The individual parameter vector may contain both parameters which vary 

across the population (“‘cross-varying parameters”) and parameters which are the 

same for all individuals in any time period (“‘cross-fixed parameters”). Accordingly, 

each k-element individual parameter vector is partitioned as b,, = (c; :aj,)’, where 

c, is a (possibly empty) x-element subvector of cross-fixed parameters and a,, is a 
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A-element subvector of cross-varying parameters, with k = x + 4. The explanatory 

variables x,,..., x, are partitioned correspondingly, with w,,..., w,, the explana- 

tory variables having cross-fixed coefficients, and z,,...,z,, the explanatory vari- 

N 
n=1 ables having cross-varying coefficients. Let b, = (* = )’_, b,,/N be the popula- 

tion mean parameter vector. 

The convergent parameter regression structure then takes the form: 

~ A 
(1) Yor = >. WimCin + 2X Z int Dine + Une Oe We ae 

i=1 j=1 

E(u,,) = 0 E(tnUnt) = Og¢F7(OmnRn + Re) 

or in vector notation, 

, , C, , 
Yat 7” (Wie: Zar) T Unt = Xi Dar ‘ Un - 

a,,,/ 

Parameter Transition Relations: 

(2) C41=O+7%; t= 1,..., T-1 

and 

(3) Ane+y = 8, + Ayla, — 4) 4 Te oe Mee ice re ee N 

where Ey) =0 E(y,7;) = 5,.07Q. 

En) =9 — EMmMn) = Fs:F*(Om Qa + Qe) 

and EUs) = 9 ElUypsMne) = 9 —— E(Y Mu) = 95:7 Qea- 

Here, 6;; is the Kronecker delta equal to | if i = j, equal to zero otherwise. The 

disturbances are assumed to be serially uncorrelated, and to be composed of a 

communal disturbance with variance o7R, > 0, and uncorrelated individual 

terms with possibly heteroscedastic variances o*R,, n = 1,...,N, with R, > 0 

for all n. The cross-fixed parameter vector is subject to serially uncorrelated incre- 

ments having mean zero and variance matrix o*°Q.. The convergence matrix A, 

is diagonal with diagonal entries ¢;,0 < @; < 1, fori = 1,..., 4. These diagonal 

entries are “convergence rates,” in that @; is the proportion of the individual 

divergence a,,, — 4;, which survives to period t + 1. The cross-varying parameter 

vectors are subject to serially uncorrelated individual parameter shifts. Each shift 

is the sum of a communal component with zero mean and variance matrix o7Q, 

and an individual component with zero mean and variance matrix o*Q,. The 

disturbances are uncorrelated with the parameter process. The contemporaneous 

covariance between the cross-fixed parameter shift vector and any individual 

cross-varying parameter shift vector, or, equivalently, the covariance between the 

cross-fixed parameter shift and the communal component of the cross-varying 

parameter shifts, is ¢7Q.,. The variance matrices of parameter shifts may be - 

positive semi-definite, permitting some parameters to remain fixed over time. 

All stochastic terms are assumed to be independent of the exogenous variables. 

C. lt is important for some purposes to view all individual parameter vectors 

as components of a single “grand parameter vector” B, = (¢’:a):...:ay),, with 
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dimension K = Nd + x. All the individual regressions in each period make up a 

single regression for the grand parameter vector 

[yy mw le\ [uy 

y2 Ww, z, 0 \ja, 

; tor f 

Ynj t Wy Zn) Ay) Un} t 

or i= XB, + U,, E(uu,) ts oR, 

R, + Rg Rg tthe Rg IR, 

Rg et a 2 Pi 
R= ; = 0] + Raw, 

ee See Ry) 

where t denotes a vector of units. The parameter transition relations coalesce 

similarly into a single transition relation 

| €\ ‘A 0 0 a 0 

(I — A,) (I — A,) (I — A,) 
0 ee See a, A, + N N 7 

I-A (l-—A (I — A,) 
ata SS ..ee toe 

N N N 

(I — A,) (I — A,) (I — A,) 
\ #N) t+1 0 oe ae ae es ee. Ay + » ATs 

/ © pan 

a; n; | 

La 

\Ay/ - \nw / 
or : 

B.., = O6,+4,  Efdd’,] = 0°Q 
where 

Q. Q.., Q.., oe Q., 

Q., Q. + Qe Q; ve. Q; 

e-it, 2 2+, ... Q 

Q,, Q, Q, | Q, + Q; 
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D. One important property of the convergent parameter model is the 

stationary cross-sectional parameter dispersion which it generates. If the cross 

section of the individual parameter vectors is examined in any one period, for 

any individual n, 

(6) Qnrti — a.) a Ag lan as fi, ) si Qa — 1, . 

Since parameter shifts between periods t and t + 1 are uncorrelated with the 

parameters in period f, 

(7) E((@ie+1 — 9,4 nee — 941)] = 

- ow ’ N oe l > 
AyE[(a,, — 4,)(a, — 4) JAg + wie (o°Q,) 

and for m # n 

(8) E[(Gme+1 — 9+ 1)(One41.— 9,4 1)] = 

1 
AgE[(@nm: — 4,)(a,, — 4,)'JA, — wt Qa). 

Since A, is diagonal, the stationary solutions to these difference equations are 

easily found to be: 

N — 1 07{Q,} f a a. ae aSij 
(9) {E[(a,, — 4,)(@_ — 4,)')}j; N. 1-40, 

a = \ —§ 0°{Q,};; 
(10) {E[(a,1 «= a,)(a,, _ a.) }}ij = N an form+#n 

where {A},; denotes element (i, j) in the matrix A. Since the eigenvalues of A, are 

smaller than one, this is, indeed, the stationary joint distribution of the cross- 

varying parameter vectors about their sample mean in any single time period. 

Notice that the dispersion about the sample mean is identical to that in a sample 

of vectors drawn independently from a multivariate population with variance 

matrix o7Q given by 

{Q ms 
ee ae (11) oy = {Dy = G6, 

Thus, in any single cross section, the individual cross-varying parameter vectors 

in a convergent-parameter structure are distributed as if randomly drawn from a 

population with dispersion matrix o*Q. Cross-sectional regressions of this kind, 

often called random or randomly dispersed parameter regressions, have been 

studied previously (Rao (1965), Swamy (1970), Rosenberg (1973a)). 

The parameter interrelationships in the convergent-parameter model are 

diagrammed in two ways in Figure 1. In both diagrams, a link between vectors 

denotes a transition relation. Figure la exhibits the interrelationships among 

individual parameter vectors. At the top of the diagram is a representation of the 

stationary joint distribution of the individual parameter vectors in the initial 

period. The vector b, is brought in as the mean of the hypothetical multivariate 

population from which the initial parameter vectors are drawn. 
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In the transitions between successive periods in Figure la, the solid lines 

denote the contributions of the individual parameter vectors to their own subse- 

quent values, and the broken lines denote the contribution of the sample mean to 

the subsequent values of the individual vectors. 

Figure 1b shows the elementary structure of the serially independent transi- 

tions between successive grand parameter vectors. The grand regression is a 

Markovian or sequential parameter regression problem in that the grand param- 

eter vector obeys a first order Markov process. 

II. ESTIMATION IN THE CONVERGENT PARAMETER MODEL 

Let @ denote the vector of parameters in the stochastic specification, includ- 

ing the second moments of the stochastic terms R,,..., Ry, Rg, Q., Q.., Qa, Me 

and the convergence rates ¢,,...,@,, but excluding the scale parameter o*. Let 

R, denote the admissible region of parameter values, which may be constrained 

by a priori information as well as nonnegativity and symmetry conditions on the 

second moments. Let y* = (y; :...:y,)’ denote the vector of all observations 

through period s. 

In this section, Maximum Likelihood and Bayesian methods for estimating 

0, o”, and B, are developed under the assumption that all stochastic terms follow a 
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multivariate normal distribution. The central results are recursive formulae which 

yield : (i) for any 0, the numerical values of the sample likelihood (@ly’) and the 

marginal posterior distribution for 8, p’(@ly”); (ii) the maximum likelihood estima- 

tors B,;,(0) and 62,,(@), and the conditional posterior distributions p"(o7|@, y*), 

p’(B,/®, y"), conditional on that @. Repeated application of these formulae, over a 

range of @ values in R,, allows Maximum Likelihood or Bayesian estimation. 

Moreover, if 8 be known, the estimator B70) is a minimum mean square error 

linear unbiased estimator, without the requirement of normality in the stochastic 

terms. The formulae in this section follow from theorems in Rosenberg (1973b). 

The probability density function (pdf) of the endogenous variables may 

always be decomposed as p(y’) = []7_, ply,ly’'). The Markov process for the 

grand parameter vector, together with serial independence in the disturbances, are 

key simplifying assumptions which permit this decomposition to be exploited by 

a recursive procedure. Two cases will be dealt with in successive subsections : 

(A) a proper prior distribution Tor by; and (B) a diffuse prior distribution for bo, 

or equivalently, b, fixed but unknown. In each case, fully general formulae which 

hold for any regression model with sequential or Markov parameter variation will 

be exhibited and then specialized to the convergent parameter model. 

A. Proper Prior Distribution for bp 

Let by have a proper multivariate normal prior distribution 

Po. cg: | c 
(12) b, ~ Normal (°°) o| 

ao PO ca Po. 

independently of all other stochastic terms. Then all regression parameters and 

endogenous variables follow a joint proper multivariate normal pdf, and it is 

easily shown that 

J , i | 
(13) ply’|lo, 0) = I] (2207) %/2)\F (8)|~ 1/7 exp {- 552% — XB. 1)|l eco -: \ 

t=1 
where 

oF (0) = var [y,|o, 0, y'~'] = o7(X,M,,,- ,(0)X; + R), 

and where, in general, 

u,(0) = E[B,|@,y‘], o°7M,,,(0) = var [B,|o, 8, y*). 

The notation |\e||, denotes the norm e’Ae. The subscript r|s denotes an estimator or 

distribution for an item in period r, conditional on regression information up to and 

including period s. 

Therefore, when p(®) and F(®) are computed by the recursive formulae 

provided below, the sample likelihood is 

T —1/2 F 2 

(14) L(c,9 ly’) = (no) I] <0) exp ~~ oat 

t=1 
where 

T 

C8) we \F,(8)|, v8) cap lly, a XBy:- 1(9) |r, '(@)> s?(0) = 21) 
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Also, from the joint normal distribution of y’ and B,, 

(15) PBz\c, 8, y’) = (2207) *'?)|M7,7(8)| Lia 

] 
x exp - 552 Br om H(8) 7) 7] mr)700) |. 

These formulae provide the basis for Maximum Likelihood and Bayesian estima- 

tion. 

A.1. Maximum Likelihood Estimation 

The maximum value of the natural log of the likelihood function (14), for any 

0, is 

+ | 
; l 2a 

\ T) = T = = (16) K@ly") = max In (0, Bly”) {rs {in| 

T 
+ TN In(TNs7*(®)) + ¥ In ¢,@)). 

t=1 

The maximum likelihood estimators of o? and B,, conditional on 0, are 

(17) 65,10) = 570), By) 70) = wr) 7). 

For maximum likelihood estimation, it is necessary to search R, for that 

0, eg which maximizes the log likelihood function (16). The maximum likelihood 

estimators of o? and B, are then 6?,,(0,,,) and Br) O41). 

A.2. Bayesian Estimation 

Let p’(®) be a possibly diffuse prior pdf for 8, and let p'(c) « 1/o be a diffuse 

prior for o, following Zellner (1971: Ch. 2). Then the posterior pdf for B,, o, 0, is 

(18) p’(Br. 7,8) = piBr\c, 8, y")p"(c, 8), 

where the conditional pdf for B; is given in (15), and the marginal posterior pdf 

for o and 6 is, from (14), 

(19) — p"(o, ®) x L(a, Bly”)p'(o)p'(®) 

i TNs*(0 oc g (TN + 1)py oT Il [64@)) « wf rt 
20 

This may be decomposed into the marginal posterior pdf for 0, 

T —1/2 

(20) p’(0) = p’(c, 8) do x Po I] 0) (s2(@))~ 7/2, 

bd t=1 

and the conditional posterior pdf for oa, 

ite TNs*(0 
(21) p’(c|®) oc a 87 *Y exp ‘- ¥ “( mt. 

Let o7(0) be the conditional posterior mean of o?, o7(@) = TNs?(@)(TN — 
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The conditional posterior pdf for B; is multivariate Student t: 

(22) p"(Brl®)  |s*(@)M7)7(8)~ /7(TN + |r — 2) ryrl\ce2cmrrc0-1) 7 *™?, 

Hence, the moments of the marginal posterior pdf are 

Bair = ElBriy™) = | mnr(®)p"@) 
Re 

(23) 4 Myr = var [B;ly”] 

= | (6°)Mr)r(®) + (r)r() — Brjr)(4r;78) — Brjr')p"(@) 40. 
\ Re 

Thus, the posterior pdfs for 6; and o, conditional on 9, are available in 

analytical form, so that Bayesian estimation may be carried out by numerical 

integration, with respect to p”(®), over Ro. 

A.3. The Recursive Formulae 

The required recursive formulae are well known in the applied physical 

sciences, and are often referred to as the Kalman-Bucy filter. (See, for example, 

Aoki (1967), Ho and Lee (1964), Kalman (1960), and Kalman and Bucy (1961).) 

For the special case of the convergent parameter regression model, the predictive 

pdf for the grand parameter vector in the initial period follows from the prior 

pdf(i2) for b, and the stationary dispersion of the individual parameter vectors (11): 
E> 

a 
(24a) Hijo = ‘| M,)0(8) = 

\ Ao 

| Po. Fae Po ca Wad 

Fes Po. + 28) Poo ng Po. 

Pac Po. Po. + £28) —_ Po. 

PO ca Poa Po. “s Po. + 26) 

In a later period t, suppose that the regression information through period 

t—1 has been exploited to yield the posterior moments p,_,),_ (8) and 

o7M, _ ,),- ;(9). Then the conditional predictive pdf for the parameters in period f, 

has moments given by the 

Parameter Extrapolation Formulae: 

(24b) Bir 1(8) = OO)p, - 1|t- (8) 

(24c) M,),- (8) ~ @(6)M, _ ijt- ,(8)@'(0) + Q(6) 

The predictive pdf for the parameters (24a) or (24b,c) implies a predictive pdf 

for the endogenous variables in that period. 
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Forecasting Formulae 

(24e) e(0) = y, — Ely,0, y'~*) = y, — Xty,- 8) 

1 
(24f) F,@) = — var (elo, 0,y'>') = X. My (0X, + R@) 

1 
(24g) L,(8) = a2 COV (B, — Byj,— (8), €,(8)\a, 0, y'~') = Mi), _ ,(0)X; 

(24h) v,(8) = e\(0)F, '(O)e,(8) 

(241) (8) = |F,(0). 

Finally, the observations on the endogenous wariables in period t are incor- 

porated into a revised conditional pdf, given by the 

Revision Formulae 

(24m) K,(0) = L,(0)F, ‘(®) 

(24n) #8) = p,,- (0) + K,(O)e,(0) 

(240) My,,(0) = M,,_ ,(0) — L,@)F, '(0)L{@) = (I — K,@)X,)M,,,_ ,(@). 

B. No Prior Distribution for b, 

Where no prior distribution for b, exists (or, equivalently, where b, is a fixed 

but unknown vector from the classical viewpoint), a “starting problem” exists. 

This problem proved to be quite troublesome. Indeed, the solution proposed in 

Aoki(1967) was erroneous, because it was based on false “identities” for generalized 

matrix inverses (p. 80). Fortunately, there is a straightforward solution to the 

problem. It may be shown (Rosenberg (1973b)) that the pdf for B,, conditional on 

y', 8,07, and bo, is of the form 

(25) P(,\b,. 0,8, y’) = Normal (E,,(b,, 8), c2M%,0)), 

where the mean value is linear in by, 

E.i(bo, 8) = E[b,|b,, 9, y'] = ph(0) + =,,(0)b,. 

It follows that 

T 
(26) Ay" |by,o,0) = [] (2n07)~%/?|F*@)|~ */ 

t=1 

1 —_ 
x xp {seal x Xi, - (8) <s XS 1),- 1(8)bo|lF, «@)- } ° 

where 

l 
F#() = — var [y,|bo, 0,0, y'~") = X,Mj,_,()X; + RO). 

This is formally equivalent to the pdf in a regression with regressands e*(9), 

regressor matrices Y¥(0), and with b, the unknown parameter vector, where 

e*(8) = ye X py, (8), Y(9) = X=), - (9). 
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In analogy with the familiar linear regression, it may be shown that 

-1/2 T 

(27) (bo, 0, ly") = (ot) I cr) exp \-33 ~ ks*@) 
t=1 o 

+ ||bo — Bu Olwon)t 

where 
T =i ov T a 

(28) 6) =| > H70) > bF@), = W,(8) = Ly H70) . 
t=1 t=1 coat 

529) = Le=s He) — Yb Olleo-+ _ Lvs ¥P@) — 6 D7, br) 

TN —k Fe TN —k 

and where, for each t, 

vf (0) = e* (0) FF ~ ‘@)e* (6), H*(6) = Y(0)F*~ *(0)¥ 0) 

C*(0) = |F*)I, h*(0) = Y(0)F*~ '(O)e*(0). 

B.1. Maximum Likelihood Estimation 

From (27), the maximum value of the natural log of the likelihood function, 

for any 9, is 

l 
(29) K@ly7) = max In Y(c, ®, bly”) = 4 TN +1 

obo - 

In| 2n 

[TN 

T 
+ TN In((TN — k)s*(8)) + ¥ In cr) 

1 ¢= 

The Maximum Likelihood estimator of b,, conditional on 9, is b,(@) given in (28). 

The Maximum Likelihood estimators for o” and B,, conditional on @, are 

(TN — k mM 
30) Gu(0) = 50), Brn) = wFir®) + Erpr)Bo(0) 

As in A.1 above, the unconditional Maximum Likelihood estimators are 

8 xcr Bo Orr), 63¢:Oy1), and B76), where 6,,, maximizes (29) over Ry. 

B.2. Bayesian Estimation 

Assume the same prior densities for 8 and o as in A.2, above. The posterior 
pdf for all parameters is 

(3 1) p’(Br, bo, 0, 6) _ P(Br|bo »o, 0, y’)p" (Bo 9, 0). 

The conditional pdf for B; is given in (25). The marginal posterior pdf for the other 

parameters is 

(32) — p"(bo, o,8) = p(bo, o, Oly”)p'(a)p'(®) 

-1/2 1 

eer” "(TI 10) exp - 7g2 (TN — k)s?(0) + bo — Bu ®lwoe)} 
1=1 
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Integrating with respect to by and o, the marginal posterior pdf for @ is found to be . 

r —1/2 

(33) p"(®) x r0 I] 10) |W(8)|"/7(s7(@))— 7" —”?. 
t=1 

The conditional posterior pdf for a is 

207 

The mean is o7(0) = ((TN — k)s?(0)(TN — k — 2)]. The conditional posterior 

pdf for B; is again multivariate Student r: 

(35) p"(Br 18) o |s*(0)M7,7(8)|- "7 

x (TN relay Br a 17) il,s2@m7,r@)-1) 7” ***"?, 

= 

(34) p’(o|®) « a “T*!- exp { 

where 

(36) Br) 7(8) = pF,7(8) + =, r(0)b,(8), 

M,)7(8) = M?,7(8) + =,,7(0)W,(8)E,, 7(8). 

The moments of the marginal posterior pdf of B; are again given by formula (23). 

B.3. The Recursive Formulae 

The recursive formulae are closely related to those in the previous case. The 

initial conditions are somewhat changed. 

Initial Conditions: 

I 90\ 

(37a) BT) o(8) = E08) = ° e 

0 0 0 | 

0 26) 90 0 

M,0)=|0 0 26) 0 

Si ae ae: si 

All other formulae in the previous list (24b, . .. , 240) carry over to the present case, 

with the variables p, M, e, F, v, ¢, L, K having a superscript *. In addition, the follow- 

ing formulae are inserted in the list in alphabetical order : 

Parameter Extrapolation: 

(37d) Si: (8) — @(O)E, 1|r- (8) 
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Forecasting : 

(37) Y(®) = X,&,,,- ,(8) 

(37k) h*(0) = Y¥,@)F* ‘(O)e*(6) 

(371) H*(0) = Y,@)F* ‘(8)Y,@) 

Revision: 

(37p) =,,(0) = =,,,- (0) — K*(@)Y,@) = (I — K*(0)X,E,,, _ ,(0). 

C. Both Maximum Likelihood and Bayesian estimation require an efficient 

means of searching R,. It is sometimes convenient to transform the parameters to 

a vector 0* such that the admissible region for the transformed parameters, R,., 

coincides with Euclidean space. For instance, the variance matrices are required 

to be positive semi-definite symmetric. This constraint may be imposed by 

expressing each matrix as the-product of a lower-triangular matrix with its trans- 

pose, for instance, Q, = TT’. Searching the space of unconstrained lower-tri- 

angular matrices T is equivalent to searching the space of positive semi-definite 

symmetric matrices Q,, and the constraints are removed frora the transformed 

problem. Similarly, for the convergence rates ¢;, a convenient transformation is 

o; = d?/(1 + d?), since the admissable range 0 < @; < 1 is equivalent to the range 

— co <d; < «. However, note that in both cases — 0* and 0* yield identical values 

for 0, and also that 00/00*|,... = 0, so that attention must be given to avoiding 

the spurious local extremum at 0* = 0. 

A good initial estimate of the stochastic specification is also helpful. The 

following algorithm provides an initial estimate when the sample size is large: 

(i) First, under the temporary simplifying assumption that parameters are 

not dispersed across the population, estimates of the mean parameters in every 

period, b,,..., b,;, are generated. If the population mean is assumed to be 

essentially unchanging over time, (Q. = Q,, = Q, = 9), this is done by ordinary 

least squares. Otherwise, the population mean changes sequentially over time 

according to a Markov process with incremental variance 

Q.: Qa 
o- 

Q0:Q5 +S 

This variance, together with the realized values of the population mean parameters, 

may be estimated by an application of the previous formulae to this simpler 

sequential model. The communal disturbance variance oR, may also be estimated 

at this stage. 

(ii) If the sample size is large, the residuals about these sample mean param- 

eter estimates will approximate the contributions of the parameter dispersion and 

the disturbances, 

en = Ynt — x), b, =~ Vat — x), D, = Zine +a) + Un, - 

Therefore, 
ae | 

(38) Ele] = o + > i 8 ee Ge) 7 alate y 
i=1 ji 
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where 

Zo=07(1+ Rg), gi =O @,;, and g, = 207m, forj >i. 

(Note that, for simplicity, R,, is assumed here to equal unity for all n.) Also, for any 

time lag t, 

A A 
GH He2..-J= >) Y saliatas-: OSL tees h...; T 

i=1 j=1 

where 

a 2 t 
S:ij =<¢ 0; iQ}. 

If (38) is treated as a regression equation, with the squared residuals regressed on 

the cross products of the explanatory variables, then estimates of gy, 2,,..., Zias 

..+52,, and, hence, of o? and Q are obtained. Similarly, for each time lag t, a 

regression of the lagged products of the residuals on the lagged products of the 

explanatory variables of form (39) provides estimates of o7A\,Q. 

The various g’s are nonlinear functions of the underlying parameters A, and 

Q,. The estimates g,;, may be examined for their implications about the pattern 

of parameter variation, and initial estimates of the underlying parameters may be 

obtained by inspection or, if necessary, by nonlinear regression of the various @,,; 

onto A, and Q,. ; 

D. Minimum Mean Square Error Linear Estimation 

Suppose that @ is known. Let a minimum mean square linear unbiased 

estimator be defined as follows: 

(i) An estimator B,)7 is linear unbiased iff it is a linear function of y’ such 

that E(B;,7|@) = E[B,/8). : 
(ii) The minimum mean square error linear unbiased estimator B,,; is defined 

by the condition that for every linear combination of the parameters, 

a'B,, and for every linear unbiased estimator Bry. El(a'B,,7 — a'B,)7|0) < 

E((@Br\7 — a'B)?\0} 

Then it may be shown (Rosenberg (1973b)) that the estimators B,-,7(8) derived in 

Sections II.A.2. and II.B.2. are minimum mean square error linear unbiased 

estimators, with mean square error matrices ¢*>M,)7(®). Also, s*(®) is an unbiased 

estimator of o*. These properties do not require that the stochastic terms be 

normally distributed. 

III. APPROXIMATE FORMULAE 

The number of arithmetic operations in the recursive formulae increases as 

N*?, and the number of entries in M increases as N*A*. Consequently, the exact 

method requires excessive computer time and storage when N is large. For- 

tunately, a natural simplifying approximation eliminates these problems. 
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The parameter covariance matrix 07M may be partitioned as 

T / ae —¢, | ey), —c, \] rc i ee 

As: — a5 ys): — a1; D; Ai; Ai2 obs Aw 

o?M,, = E ; i = a? D; A>, A> eee Aan 

L Ani: — ans Ans): — @ys/ | | Dy Ay, Ay2 --- Ayn | s|t 

Throughout the recursive procedure, the largest part of the covariance 

between the parameters of different individuals arises from the common influence 

of the population mean. As a consequence, the matrices o7A,,,,m # n, giving the 

covariance between the mth and nth individual parameter vectors, are similar for 

all pairs of individuals, as are the matrices D, for all individuals. Accordingly, the 

following approximation suggests itself: 

c D D D 

D A,+A, A; Ag 

(40) M =| D’ Ag A, + A, Ag 

i se fe: as lige 

Here 

) >: Ann 
2 at 2 mtn 

oh = 0°\ ND 

is the average interindividual covariance, 

N 
2 2 ll 1 D,, oD = o2(2n=1D. 

is the average covariance between cross-fixed parameters and individual cross- 

varying parameters, and the matrices o7A, = o7(A,,, — Ac), n = 1,...,.N are the 

excess of intra-individual over average interindividual covariance. The superscript 

tilde denotes an approximation to a statistic. 

The simplifying approximation reduces the number of distinct entries in M 

to order 4?N and the number of arithmetic operations to order k?N. Estimation 

for a given @ then requires the same order of magnitude of storage and computa- 

tions as would be required by ordinary regressions for all individuals in the popula- 

tion, in which similarities across individuals would be in no way exploited. 

In this section, the recursive formulae resulting from this approximation are 

given in terms of the individual parameters. These formulae, the exact recursive 

formulae, and the formulae for another approximation were derived in detail in. 

(Rosenberg (1973c)), but only the approximation that was found to be preferable 

will be reported here. To simplify the presentation, the notation (8) and the 

subscript t on the variables y, e, X, Z, W, F, K, L, ¥ will be omitted where no 

confusion can result. 
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A. Approximate Recursive Formulce 

The initial conditions (24a) and (37a) both satisfy the approximation exactly, 

and may be used in the forms already given. 

Parameter Extrapolation 

Suppose that for some t, M, - ij:-1 Satisfies the approximation (40). Then the 

parameter extrapolation formulae are 

i = ©,—iye-1 

Bo se-1 = Aglias-ay-1 +0 —AQM-y-1. = = 1,...,N 

er a Sante i + Q. 

D,.-1 - mo: + Q., 

‘ } eee © oF ae 
c Agus = Ags-ij1-1 + Qe + a 7 aii 

_ A.A. - ijt- Ay + Q, 

4 MalAne— sea — Araya = Ay) + = Ag Ans aye — Atay Dy 

N 

& ae N 
Sctlt—1 = Sct—1ft-1 

S - "Weg Sere +@- A,)=,- 1jt-1 n=1,...,N 

where ji and = have been partitioned as 

- — 
é =. 

~ = 
- a = =1 p = . s= ° 

. = 
ay/ = 

and where the bar denotes an average over n = 1,..., N, €.g., 

= oe t—1|t-1 —_ <wm=i1 “mM, 
a —-iy-1 = N 

Note that if M,_ ,),-, satisfies the approximation, then M,,,_ , also exactly satis- 

fies it. 

Forecasting 

The forecast error vector is R 

yi — (Wy: (' le, 
Qi! yr-1 

eJe = y — XBy-1 = 

¢ en 

\ \ ay tlt— Jy 
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When M, _ ,;,_, satisfies the approximation (40), F simplifies to 

2s 

Wy 0 tn 

+ Row + 

where 

Sn = TyAnti—12n + Ra n=I1,..., N, 

and where 1 is again a vector of units. 

When the communal disturbance variance R, is zero, the middle term 

vanishes. Otherwise, it may be adjoined to the first term: 

w, z[1]\/C D_ [0] | Wi +) Wl hi 0 

rs F ait 5 D™ Ag [0] Z, rae Zy + ; ; 

Wy Arlt} \f0} (0) [Rel/n-s\(1] ... Cy) \o In 

= WP,,,_,¥' + Ay. 

Let y,, = (w;,:z, :[1]) denote the nth column of ¥’. Here the communal disturbance 

changes status from a component of the disturbances with variance o*R, to a 

cross-fixed parameter, with a coefficient vector of units, having forecast value of 

zero and forécast error variance of o7R,,. Square brackets enclose terms which 

appear only when this artifice is in use. k [or k + 1] dimensional matrices such as 

P will be partitioned in the self-explanatory notation: 

P Pc Pea [Pew] c 

P=) PL) =| Po Pos [Poul]. 

[P.,]; [Puc [Pua] [Pau] 

When M, _ ,),_ ; satisfies the approximation, L simplifies to 

Cc oO 0 0 

D A; ir asess ie | ee 

Bite m : (" oe = 0 0 

D A bo Ay tt — 1 2n/ q 

P. 0 0 0 | : 

P, 1. © 0 
= - 1’ + “ae 

P, “BL Eaten 

where 2, = Ay i: 12Zn- 

The inversion of F can be simplified by the matrix inversion identity 

(41) Fo’ =A," — A; (WA, 'Y + Po) WA; . 

The matrix WA; '® = }°*_, (,;/f,), which has the form of a precision matrix, 
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will be denoted by H. Let S = (WA; '¥ + P~')"'=(H + P™')"'. Also, let 

h = WA; 'e = )"_, WW, ¢,/f,). Then the residual sum of squares is 

v, = &F-'e = eA; 'e — eA; 'WSW'Ap'e = ¥ “ — w'Sh. 
l ante 

The determinant of F is given by the determinantal identity 

(42) |F| = |A, + YP" = |A,|-|P|-|P~' + A; 'Y| 

( N 2 

(h) 4 

which yields 

(i) bi . (TI f -|P|-|S~ "|. 

Whether or not M,_ ,,,_ , satisfies the approximation, Y is given by 

[1.01 1 i DE at 1 | Y; | 

(/) Y= X=, — = 

| Wye e.tl1 1 T Zy=N tlt 1 Yy 

Therefore, 

N eo , 

w} he = YF-'e= y r,(© ve ; n=1 I, 

j a, of eed Se: : aot pry — , es oe n“n nYn nYn (1) | H* = YF" 'Y = Pa ates (> s( y i | 

Revision 

The first term of L, when post-multiplied by F~', assumes the simple form 

- We ; 
W(A;' — A; "WH + Po') WA, ') = (I — H(H + P-')"')W’A;' 

P, P, 

P. 1 -1)\— 1)’ 1 , 1 =\p (P ‘(H+ P-*) ')®’A, © = (1:[0)S®’A, *. 

The revision matrix K may therefore be written: 

( I 0 (0) /0 
| 

0 I (0) aT Bee, 
m = . SPA! +, - (A; ' — A; 'WS¥'A, *). 

0 I [0) BD; soto: snare tel 

Row-by-row evaluation of the revision equation for B yields 

| Ch - Crr— 1 + Sh 
n 

>, — Sh 
| fins = Byrn, + Sch + 2,{— we " n=1,...,N 

417 



Thus, a communal revision equal to Sh is made. Each cross-varying parameter 

estimate vector is further incremented by a multiple of the corresponding vector 
ip 

For revision of M, it is necessary to evaluate the term —LF™~ 'L’. After substi- 

tution of the expressions for F~' and L, use of the equality P —- SHP = 

(I — SH)P = SP“ 'P = S in partitioned form yields the revision formulae for the 

various components of the matrix: 

oO C,, = S.. 
x! 

(43) Day: = Sea — 3%! *, n=1,...,N 

hadhin| , Mn SM Ay DS, 

ra Fe In 

mol... N n= 1,...,N: 

(44) Aunn,t|t — S.0 5 mI ae 4 i 

— SMikn 
f, . 

From these formulae, it is apparent that S gives the variance in an individual 

estimate stemming from the communal sources of error after the new regression 

information has been incorporated. 

The revised interindividual covariances (43), (44) are not identical unless 

Xn>¢ = 1,... Tand R, are the same for all individuals. Hence, if the regressors and 

disturbance variances are identical for all n, so that M satisfies (40) without 

adjustment, the “‘approximate’’ formulae in this section coincide with the true 

recursive formulae. When this is not the case, in order to preserve the simplifying 

conditions of the approximation, it is natural to force the interindividual co- 

variances to equal their averages. This arbitrary adjustment is the sole cause of 

inefficiency in the approximation. The average values are: 

: 

ae a Spee es te 

“ i ae N 
II t\t 

N 

> ; Aunn,tt 

Ce Me YN (Wan fr) O < Ag nt  —_—h S..—- a 

N 

DL nnn SMP Sn Sr) 

-[s fae (W,A,/fn)\ 
\’ 4 une 1 

; ; 9 
NN — 1) 

"Note that the factor multiplying 4 is equal to that part of the forecast error not explained by the 
communal parameter revision, divided by the individual increment to forecast error variance. Thus, one 
part of the forecast error, ,Sh, is attributed to an error in estimating the population mean parameter . 
vector ; a proportion of the communally unexplained forecast error, equal to z;A,/f,, is attributed to an 
error in estimating the individual cross-varying parameters ; and the balance of the communally unex- 
plained error, the proportion 1 — (z,A,/f,) = R,/f,, remains as a residual after revision of the parameter 
estimates. The communally unexplained forecast error is therefore divided between error in fore- 
casting individual parameters and the individual disturbance in proportion to the contributions of these 
sources of error to prediction error variance. 
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For computational purposes, the last term can be simplified : 
N 

Dy MSW hn! SS) 
— zi AMG, § Oi We/ Su) “ aed fa) , 

N(N — 1) te~«<J N N 

= ~ 1 (A,W/Sw,0,/ 12) 
N(N — 1) 

The intra-individual variance increments are then set to be exact. 

o{ An iit i Annt\t e Ag at 

When N is small, an “increment” A, ,, may occasionally fail to be positive definite 

in the first few periods of the sample, because the previous data for that individual 

have provided more information about an individual parameter than all sample 

data have provided about the sample mean. In this event, the approximated matrix 

M is not positive definite, and the method can break down. During the recursive 

algorithm, difficulties arise only when f, is nonpositive in the following period 

t + 1,in which case the negative eigenvalues of ) can be retrospectively adjusted 

to equal 0. After completion of the algorithm, the individual increments A, ,.; 

can be checked for nonpositive eigenvalues, but this check is probably unneces- 

Sary, since nonpositive eigenvalues were never encountered in more than 150 

simulations with N = 10, 20, or 40 at times T = 10, 15, or 20. 

B. An Approximation to the Distribution of B, 

In Maximum Likelihood estimation, the asymptotic approximate distribu- 

tion for Br) is normal (By, 64,(84,)M7)7(9,,,)). In order for this distribution 

to be tractable, M,,; may be approximated by M,,,;, so that the variance matrix 

for B will satisfy (40). In Bayesian estimation, where B;,; has the second moment 

given in (23), the numerical integration is facilitated by the use of M,,; and by the 

further approximation : 
€7)7(8) ta Crir 

@,)7(0) — a,); 

Hy) 7(9) - Br ~ , for all 0. 

87)7(8) — App 

After this simplification, the integrand satisfies (40), and hence Mair will satisfy 

(40) as well. . 

Statistical inference in the presence of a distribution with variance matrix M 

satisfying (40) requires evaluation of |Mj|, and of the term 

(45) 

ie. @ \’ gF Fe 

= ~ 0 
a, —at a, — a; 

a a° | -i4, —a q =| *2 2 1M~ | 82 2 

i, — ay iy — ay 
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By an application of the determinantal identity (42), 

IM| =| /€ iT "\e 0 “by 

A, 0 0 1\\D A,/\0 I I-1 

(46) A, +10 1 

0 ; 

Ay 0 I 

Cc D | 

KS N -1] l< x N - 

=| Ao+(5 As‘) |-]¥ A] TTA} 
j n=1 n=1 n=1 

An application of the matrix inversion identity (41) yields a rank k formula for 

M_~'. After some matrix manipulations, an expression for the statistic gq may be 

derived in terms of the matrix 

N 
a= > Ay! + (Ag - Be'y'); 

n=1 

N 
(47) q =F —Ce-4, + Y a, — a& — DCE — Mae y 

n=1 
N 
> A; '@, — a° — D'C-'€ — ¢°)) 

[A-"} 

IV. THE STATISTICAL EFFICIENCY AND VALIDITY OF THE APPROXIMATION 

In this section, the properties of the approximation (hereafter referred to as 

A.I), conditional on @ being correctly specified, will be analyzed. Upon examina- 

tion of the recursive formulae that make up A.I, it may be seen to yield a linear 

unbiased estimator that is inefficient as a result of the simplifications in step (0). 

Recursive formulae for the true mean square error matrix of 6,7. as opposed to 

the approximation M, may be derived. Then, for any @, and for any set of explana- 

tory variables X, the exact properties of A.I may be computed, and two questions 

may be answered : 

(i) How much larger is the mean square error of A.I than that of the exact, 

fully efficient method? 

(ii) How valid is the approximated mean square error matrix M,,, as an 

estimate of the true mean square error matrix for the approximate estima- 

tor, and how accurate is the approximated likelihood? 

In addition, the properties of A.I may be compared with those of Ordinary Least 

Squares (OLS). These calculations, for a variety of convergent parameter regression 

structures (0, X), are reported in detail in Rosenberg (1973c, Sec. 5). The broad 

outlines will be summarized here. 
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A. Convergent Parameter Structures To Be Analyzed 

Under the simplifying assumption that the cross-fixed parameters are 

constant over time and that the individual disturbance variances R, = R are 

identical for all n, a convergent parameter structure is specified by: 

(i) the exp!anatory variables, X 

(ii) the communal disturbance variance, o?R, 

(iii) the communal parameter shift variance, ¢7Q, 

(iv) the individual parameter shift variance, o7Q, 

(v) the convergence rates for parameters, $,,..., d,. 

In selecting a set of representative structures among the infinite variety of 

options, the first problem is to construct the explanatory variables. The per- 

formance of the approximation is easily seen to be invariant to a linear transforma- 

tion on the explanatory variables and a simultaneous inverse transformation on 

E the parameter process. Accordingly, the explanatory variables can be normalized 

to have mean zero and variance unity, with inclusion of a constant being optional, 

4 provided that effects of changing scale are introduced through the parameter 

¥ process. The correlation structure of the explanatory variables may be specified 

by four parameters, X(p;, Po, Py. P,), aS follows: 

Po ix~j, m#n 

COLT (X ints X jm) = Po + Py? for 4 i=j, m#n 

Po + Py i#j, m=n 

corr (Xines X jma-s) = Pr corr (Xine > X jm): 

Thus, py is the correlation between different variables for different individuals in 

the same period, p, is the increment to this when the same variable is observed 

for different individuals, p, is the increment when two different variables are 

observed for the same individual, and p; is the attenuating factor for serial correla- 

tion. A set of pseudo-random, normally distributed explanatory variables obeying 

this correlation is easily constructed. In specifying 0, the covariances between 

parameter shifts for different parameters can be assumed to be zero, since varia- 

; tions in correlation are introduced in X. 

‘ For each specification of X, any combination of the remaining options— 

R,, Q;, Q,, and A,—may be selected. The stochastic specification can be sum- 

marized by two statistics: the average convergence rate, @ = }?_, ¢,/A, and the 

approximate proportion of variance due to parameter dispersion, f = 

VQi(VvQu + R + R,). The first statistic captures the degree of serial memory in 

the parameter dispersion, and the sécond expresses the importance of parameter 

dispersion as a source of noise in the system. 

In Rosenberg (1973c), efficiency and validity measures were computed for 166 

structures. In all of these, x and 4 were set to 3. Cross-section sizes of N = 10, 20,40 

were tried, with 40 being the largest feasible cross section because efficiency evalua- 

tion requires calculations increasing as N*. The performance of the approxima- 

tion was evaluated after each five time periods through to a maximum of thirty 

time periods, and it was found to stabilize within fifteen periods. Accordingly, all 

results are based on evaluations after fifteen or more periods. 
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Fifty-one widely varied structures were tried first in an effort to discover 

which of the parameters in the specification most influenced efficiency. Then fifty- 

one additional structures were studied to analyze the effects of extreme values in 

the more influential parameters. Finally, a study of sixty-four structures was carried 

out tocompare A.I with OLS, again for extreme values of the influential parameters. 

In these last structures, communal parameter shift variance ¢7Q, was set to zero, 

so that the inefficiency observed in OLS would be due solely to nonresponsiveness 

to parameter dispersion. 

The most important conclusions based on results in all the structures are 

summarized below. Also, detailed results for the last 64 structures are reported by 

grouping the results according to the presence or absence of serial correlation in X, 

and by eight pairs of values for the two summary statistics ¢ and f. In this way, the 

64 structures are segregated into 16 groups, and the results will be summarized 

by the worst value for each group. This simplification hides the systematic effects 

of variations other than serial correlation that were made in X, but since these 

effects are small relative to the effect of serial correlation, the summary tables do 

give an accurate representation of the performance of the approximation. 

B. The Statistical Efficiency of the Approximation 

Each measure of efficiency will be reported as a percentage inefficiency, i.e., 

as 100(z,/z, — 1), where z, is a mean square error measure for the method under 

analysis, and z, is the same measure for the exact method. Perhaps the most in- 

teresting single measure of efficiency is the kth root of the determinant of the mean 
square error matrix (the “generalized mean square error’’) for the population 

mean parameter vector. The pattern of inefficiency is summarized in Table 1. 

The inefficiency of A.I is far less than the inefficiency of OLS, but inefficiency 

does increase as serial correlation in X increases. Detailed analysis of mean square 

estimation errors for the separate parameters shows that almost all inefficiency 

in A.I arises in estimating the cross-fixed parameters. The maximal inefficiency 

of A.I. for a cross-fixed parameter is 95 percent, whereas the maximal ineffi- 

ciency for a cross-varying parameter is only 2.5 percent. (OLS reaches 258 percent 

inefficiency for a cross-varying parameter.) In a large sample, the mean square 

error in cross-fixed parameters, even when inflated by substantial inefficiency, is 

very small relative to the mean square error in cross-varying parameters. For this 

TABLE | 

MAXIMUM PERCENTAGE INEFFICIENCY IN GENERALIZED MEAN SQUARE ERROR FOR THE POPULATION 
MEAN PARAMETER VECTOR 

(16 Groupings from 64 Different Specifications, with N = 20, T = 15) 

Stochastic Specifications 
Serial 

Correlation @=0.600 0833 0.600 0833 0800 0.517 0800 0.517 
in X f=0957 0977 0.938 0972 0.963 0.938 0.971 0.980 

All 07 17 06 16 13 06 14 12 
pr =9 

OLS 232 392 269 378 338 234 368 536 

pr = 0.6 A.l 10 26 09 25 36 20 38 34 
or 
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reason, if the criterion of performance is taken as the arithmetic average of the 

eigenvalues of the mean square error matrix (rather than the geometric average 

implied by the generalized variance), A.I performs extremely weli, with a maximum 

inefficiency of less than 5 percent versus over 200 percent for OLS. 

The following influences of the parameters in the stochastic specification 

emerge: 

(a) As N increases, the inefficiency of A:I tends to decrease. 

(b) As @ increases for any parameter, inefficiency increases for that param- 

eter, and as @ increases for a regression, inefficiency increases for that regression. 

(c) As f increases for a regression, inefficiency increases. 

(d) As the communal parameter shift variance Q,, increases, inefficiency 

decreases. 

(e) The variance of the communal disturbance, R,, has little effect. 

(f) With regard to the structure of the explanatory variables, the presence of 

a constant has little effect, the presence of serial correlation increases inefficiency, 

the presence of correlation across variables for the same individual has little effect, 

and correlation of the variables across individuals reduces inefficiency. The last is 

to be expected, since if the correlation rises to one, the approximation becomes 

exact and hence perfectly efficient. 

Comparison of forecasting efficiency provides another important test of the 

approximation. Consider forecast errors for single dependent variables 

(¢,.7 = YaT — - ,,n = 1,...,N) and for the population aggregate (e , = 

>», Yar — D ,Xars.rir- ,). The sources of error are the unpredictable disturbances 

and parameter shifts in period T, and the estimation error for the parame‘ers in 

period T — 1. Differences across methods in mean square estimation error in 

period T — 1 therefore determine differences in the mean square forecast error. 

Moreover, since the explanatory variables are generated by a stationary stochastic 

process, the mean square forecast error weighs the efficiency of estimating various 

dimensions of the parameter vectors by the expected magnitude of the components 

of the explanatory variables corresponding to these dimensions. 

For A.I, two possible forecasting procedures are available: to forecast each 

individual by the estimated parameters for that individual (Method 1), or to fore- 

cast all individuals by the population mean parameter estimate (Method M). 

Method M should be less efficient, since it discards the disaggregated parameter 

estimates. For OLS with fixed parameters, these two methods coincide. 

The criterion of forecasting performance for the single dependent variables 

is the sum of the mean square errors in the individual forecasts: 

N N " 

S$, = y E((Yar — Xar n.T\T - 7), Sy = » E((var — x, 7D rir 7), 
n= n=1 

where the subscripts indicate the use of individual or population mean parameter 

estimates. For the aggregate forecast, the criterion is the mean square error: 

A, = el y YaT — y xisbenr-} 
n=1 n=1 

Ay = e|( Pete xe} ) | 
n=1 n=1 
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TABLE 2 

MAXIMUM PERCENT INEFFICIENCY IN SUM OF MEAN SQUARE ERRORS IN INDIVIDUAL FORECASTS 
(16 Groupings from 64 Different Specifications, with N = 20, T = 15) 

Using the Individual Using the Forecast 
Parameter Forecasts Population Mean 

(S,) Parameters (S,4) 

Specification All Al OLS 

@ = 0.600 0.957 1 39 53 ’ 
0.833 0.977 1 138 131 
0.600 0.938 0 29 43 
0.833 0.972 0 156 149 

en 0.800 0.963 97 117 
0.517 0.938 1 45 53 
0.800 0.971 0 78 118 
0.517 0.980 1 189 212 

@=0.600 f =0.957 1 76 71 
0.833 0.977 0 155 184 : 

pr = 06 0.600 0.938 0 56 55 
or 0.833 0.972 0 166 199 

pr = 09 0.800 0.963 0 115 131 : 
0.517 0.938 0 76 62 a 
0.800 0.971 0 141 130 
0.517 0.980 0 338 233 

TABLE 3 

MAXIMUM PERCENT INEFFICIENCY IN MEAN SQUARE ERROR IN FORECASTING THE AGGREGATE 
(16 Groupings from 64 Different Specifications, with N = 20, T = 15) ’ 

Using the Individual Using the Forecast 
Parameter Forecasts Population Mean 

(A;) Parameters (Ay) 

Specification All A.l OLS 

@=0600 f =0.957 l 85 148 
0.833 0.977 3 28 170 
0.600 0.938 1 51 153 

-0 0.833 0.972 3 8 183 
oka 0.800 0.963 4 15 255 

0.517 0.938 4 44 278 
0.800 0.971 2 56 234 
0.517 0.980 14 228 326 

@ =0.600 f = 0.957 l 50 112 
0.833 0.977 3 60 182 

pr = 0.6 0.600 0.938 1 29 105 
or 4 0.833 0.972 2 71 205 

pr = 09 0.800 0.963 1 139 148 
0.517 0.938 I 5 79 
0.800 0.971 1 10 131 
0.517 0.980 0 12 210 
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In Tables 2 and 3, maximal percentage inefficiences of A.I and OLS are com- 

pared. A.I is almost perfectly efficient in forecasting the individual dependent 

variables but suffers a percentage inefficiency of up to 14 percent in forecasting the 

aggregate, due to relatively greater inefficiency in estimating the cross-fixed 

parameters. OLS has a percentage inefficiency of more than 200 percent in many 

cases. Notice that the results are dependent upon the (X, 8) specifications chosen, 

but that for each specification, the results are the exact theoretical values, not the 

output of some sampling experiment. 

C. Validity of Approximated Mean Square Error and Goodness of Fit 

Let &? denote s?(6) from A.I or from OLS, and let ¢? denote s?(@) from the 

Exact Method. Let / and / denote the approximate and exact log likelihoods of the 

true structure, and let /,, denote the exact log likelihood of the fixed-parameter 

structure. 

In order to validate the approximated mean square error yielded by A.I or 
OLS, the statistics 

y ,/\approximated mean square error matrix for b,| P ' N 
= — —_—__—_—_—_—_—_—.——— forn=11.,..., 

" |true mean square error matrix for b,| 

and 

V ees mean square error matrix for b| 

|true mean square error matrix for b| 

are computed. The generalized mean square error ratios V, are relatively constant 

across the population, so their value is summarized by the arithmetic mean 

V=)_, V,/N. The effect of estimation error in o”, which is omitted in these 

ratios, is introduced by computation of the additional ratios (é7/é7)V. and 

((é7/67)V). The ratio (é7/é?) and the difference in log likelihoods are also com- 

puted. If A.I were exact, all ratios would be equal to their ideal value of unity, and 

the difference in log likelihood would be zero. 

The results show a clear pattern. The validity of the approximation increases 

with N in more than 95 percent of the cases, an extremely encouraging property 

since sample sizes will be much larger in applications. Moreover, as the sample size 

doubles from N = 20 to N = 40, the difference / — / declines in almost all cases, 

although the magnitude of | typically doubles. Thus, the proportional error in / 

declines more rapidly than 1/N. If these results persist in large samples, the 

approximated log likelihood should be virtually perfect. 

The values of the statistics that deviated most from the ideal values are given 

in Table 4 for the sixty-four structures already reported. The approximation is 

everywhere more valid than OLS. Moreover, the error in the approximated log 

likelihood is nowhere more than one-twentieth of the difference between the 

approximated log likelihood for the convergent-parameter structure and the 

log likelihood of the fixed-parameter structure. Hence, the approximated log likeli- 

hood reliably rejects the fixed-parameter model despite the small sample size. 
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TABLE 4 
APPROXIMATED VERSUS TRUE PROPERTIES OF A.I AND OLS: Most Deviant CASES 

N = 20T = 15° 

- 6? 6? 1-1 
V v rad rad 3 ae 

lpp — | 

Ideal Values 1.0 1.0 1.0 1.0 1.0 0.0 

A.l 1.025 1.028 1.043 1.039 1.032 8.5 

sae OLS 0.002 0.007 0.069 0.239 64.66 — 369.4 

pr = 0.6 All 0.493 0.446 0.499 0.451 1.027 8.9 

Pr = 0.9 OLS 0.001 0.003 0.048 0.117 67.91 — 269.6 

* For OLS, the values computed under the erroneous assumption of fixed parameters are compared 
to the true properties of OLS. The difference in log likelihoods is an exception: the figure is the (exact) 
log likelihood of fixed parameters minus the exact log likelihood of the true structure. 

Throughout the results, A.I appears to be entirely valid when the explana- 

tory variables are serially independent, but to understate the estimation error 

variance when the explanatory variables are serially correlated. In the most severe 

case, one with serial correlation of 0.9, the approximated mean square error falls 

to 45 percent of the true value. This is a serious defect, in view of the prevalence of 

serial correlation in econs:mic variables. It will have to be taken into account in 

applications. Fortunately, the degree of understatement decreases with N and, in 

large samples, the downward bias may be small. It is interesting to note that the 

approximated sampling properties of OLS are far worse. In fact, the estimated 

generalized mean square error of OLS {alls be!ow one-twentieth of the true value 

for individual parameters and below one-ninth of the true value for the population 

mean parameters. These deficiencies highlight the dangers of using the fixed- 

parameter assumption where it is inappropriate. 

In summary, the approximation is highly efficient in estimating the cross- 

varying parameters and satisfactorily efficient in estimating the cross-fixed 

parameters, and the approximated likelihood can apparently be used with confi- 

dence. The only defect of the approximation that must be taken into account is 

understatement of the mean square error in the case of serially correlated explana- 

tory variables. Subject to this caution, the approximation may be substituted into 

the recursive formulae of Section II. The results also imply that the method is 

sharply superior to ordinary least squares—in terms of efficiency and in terms of 

validity of sampling theory—when parameter dispersion is present. These results 

are overly favorable to the method, since 8 is presumed known, whereas, in fact, it 

must be estimated. However, the very large difference in sample log likelihood 

between the true structure and the fixed-parameter structure suggests that, if were 

estimated by maximum approximated likelihood, then the estimated structure 

would be relatively close to the true structure. Hence, much of the gain in efficiency 

due to recognition of parameter variation would be achieved. Moreover, the very 

large sample sizes in many cross-section, time-series applications promise excel- 

lent estimates of 8, and therefore full exploitation of the potential efficiency of the 
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method—provided, of course, that the model permits an appropriate description 

of the true parameter process. 

Finally, notice that the computations involved in the method are feasible : the 

calculations required to evaluate a single stochastic specification with N = 40 

were equivalent to repeating the approximation more than 500 times, enough 

iterations for Maximum Likelihood estimation or Bayesian estimation with 6 of 

reasonable dimension. : 

V. CONCLUSION 

There are numerous extensions of the method that need not be added to an 

already lengthy paper. ““Smoothed” estimates of parameter vectors B, for t < T 

may be computed by modifications of the recursive formulae derived here (see, 

e.g., Rosenberg (1973b)). A more complex model, where individual parameters 

converge to subgroup norms, which in turn may converge to the population norm, 

is relatively easy to implement. An underlying population mean, which serves as 

the norm for convergence in place of the sample mean in every period, may be added 

to the model if variations in the sample mean are not desired to affect the con- 

vergence pattern. Nonconstant variances or convergence rates, which differ across 

individuals or over time as functions of known characteristics of the individual or 

time period may be easily introduced, and the parameters specifying these func- 

tions may be adjoined to 8 without changing the estimation approach. 

To summarize, a model of parameter variation in a cross section of time 

series was presented, in which individual parameters obey random walks sub- 

ordinated to a tendency to converge toward the population norm. The model 

involves an intuitively plausible dynamic model of the determinants of individual 

diversity, and it is consistent with the empirical observation that, in some cross 

sections of time series, individual parameters vary relative to one another as if 

subjected to sequential random increments, but that cross-sectional parameter 

dispersion nevertheless remains roughly constant. Next, a computationally feasible 

method for Maximum Likelihood or Bayesian estimation of the parameters 

specifying the stochastic structure, as well as of the individual regression param- 

eters themselves, was derived. The approximation involved in these computations 

was validated, subject to the one defect of understating mean square error when 

explanatory variables are serially correiated. The method was shown to be superior 

to Ordinary Least Squares in the presence of stochastic parameter variation of 

the type conjectured. 

University of California, Berkeley 
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