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Annals of Economic and Social Measurement, 2/3, 1973 

WHAT DO REGRESSIONS OF INTEREST ON INFLATION SHOW?* 

BY THOMAS J. SARGENT 

This article investigates conditions under which a regression of the nominal interest rate on current 
and lagged rates of inflation can be expected to yield a consistent estimate of the distributed lag on in- 
flation which characterizes the formetion of expectations of inflation. Not only are those conditions 
stringent, but an estimate of a long lag may be made even when the lag is actually short. In particular, 
the relative slopes of the “IS” and “*LM” curves affect the reliability of the distributed lag regressions. 

1. INTRODUCTION 

There have been attempts to implement Irving Fisher’s [4] doctrine of appreciation 

and interest in a variety of recent econometric studies.' The nominal interest 

rate r, has usually been taken to be the sum of the real rate p, and the public’s 

anticipated rate of inflation z,, 

"=P, + T, 

where the subscript denotes the time period to which each variable pertains. 

It has usually been posited that the public’s anticipated rate of inflation is a dis- 

tributed lag of the actual rate of inflation: 

oo | 
1, = Y V; loge pe . ). 

i=0 s—{={ 

where P, is the price level. 

Substituting the second equation into the first gives 

@ - 
(0) r, =~, + ¥ vlog, | . -]. 

i=0 Pi-i-1 

It has been assumed that p, is statistically independent of log, (P,_;/P,_;_,), 

i = 0,..., 00, making it possible to treat p, as a constant plus a statistical residual 

in (0). For time series data, equation (0) has then been estimated by the method of 

least squares in order to recover estimates of the u;,’s. 

Without exception, the studies using this approach have not delineated the 

restrictions on the economic structure that would deliver the condition that 

p, is statistically independent of current and lagged rates of inflation, which is 

necessary for least squares regression to be a reliable means of estimating the 

* This paper was financed by a grant to the National Bureau of Economic Research from the 
Life Insurance Association of America for a study of the effects of inflation on financial markets. 
Useful comments on an earlier draft were made by Christopher A. Sims, E. Philip Howrey, and Phillip 
Cagan. E. Philip Howrey generously supplied a copy of his computer program for calculating cross 
spectra of dynamic, linear, stochastic systems, which was easily modified to calculate the two-sided 
distributed lags reported in the text. This paper is not an official National Bureau of Economic Research 
publication since the findings reported herein have not yet undergone the full critical review accorded 
the National Bureau’s studies, including approval of the Board of Directors. 

' For example, see Gibson [8], Yohe and Karnosky [19], Friedman [6}, and Feldstein and Eckstein 
(2). 
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v;’s in equation (0). It is interesting to examine these restrictions for a couple of 

reasons, First, estimation of equation (0) on the basis of data extending over very 

long time periods has produced estimates of very long distributions of v,’s, so 

long, in fact, that it seems difficult to believe that expectations actually adjusted 

as slowly as these estimates seem to imply.” The estimates thus seem “implausible,” 

an outcome that might occur if p, is not independent of the regressors in (0), 

making least squares estimates statistically inconsistent. Second, direct applica- 

tions of an econometric test for feedback between r and log (P,/P,_ ,) suggest 

that it is difficult to maintain that p, is independent of current and lagged rates 

ofinflation,* making it seem likely that those estimates of (0) are indeed inconsistent. 

This paper studies the restrictions that are needed to make estimating equation 

(0) a reliable means of recovering the v,’s. I proceed by studying the problem in the 

context of a very simple linear, stochastic aggregative model of output, interest, 

and prices. As it turns out, the restrictions required to make direct estimation of 

(0) a sensible procedure are quite strict. I further show that these conditions 

can fail in a way that makes the estimated v,’s form a very long lag distribution, 

even if the true v,’s form a very short lag distribution. This finding provides the 

basis for building an explanation of the “Gibson paradox” that is an alternative 

to Irving Fisher’s. 

2. A MODEL OF INTEREST, PRICES, AND INCOME 

Let y, denote the natural logarithm of real national output, p, the logarithm 

of the price level, k, the logarithm of the capital stock, j, the logarithm of full- 

employment national output, L, the logarithm of the labor supply, and m, the 

logarithm of the money supply, which I take as exogenous; r, denotes the nominal 

interest rate itself, not its logarithm, while z, denotes the expected rate of inflation. 

The (n x 1) vector Z, consists of a number of exogenous variables affecting 

aggregate demand. Subscripts date each variable. The evolution of the economy 

is described by the following equations: 

(1) (1 — L)p, = Ay, — Je) + Epp» Y > 0; (Phillips curve) 

(2) y, = aL, + (1 — ak, O < a < 1; (Capacity output equation) 

(3) k, — ky = Bo + Bi(e-1 — Ke-1) + Balti-1 — M1) + Se 

B, > 0, B, < 0; (investment schedule) 

(4) m, — p, = bo + y, + birt + Emp 0, < 0 (Portfolio equilibrium condition) 

(5) nm, = V(L)(1 — L)p,, V(L) = > vl’; (expectations of inflation) 
i=0o 

(6) y, — ky = Cg + Cy (7, — M,) + C2Z, + Ey, 

c, < 0,c,a1 x n vector. (IS curve) 

? For example, see Fisher [4], Friedman [6], and Sargent [15]. 
3 The test is described in Sargent [15]. 
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Here we are using the lag operator L defined by the operation L"X, = X,. 

The variables ¢€,,, &;, &,, and €,,, are random terms which we assume are mutually 

independent, but not necessarily serially uncorrelated. They are assumed to have 

zero means and finite variances. Given the random variables and the exogenous 

variables L,, Z,, and m,, equations (1) through (6) form a system that is capable 

of determining the movement through time of y,, y,, k,, p,. r, and 7,. 

Equation (1) is a “Phillips curve” relating the rate of inflation positively 

to the ratio of current output to full-employment output ; y can be regarded either 

as a scalar or as a polynomial in the lag operator L, ie., (L) = 2? 7 »,L'. I have 

omitted z, as an explicit argument of the Phillips curve, but it is straightforward 

to show that including it would simply amount to making y a particular poly- 

nomial in the lag operator.* 

Equation (2) explains capacity output via a Cobb-Douglas production func- 

tion. Equation (3) is an investment demand schedule which depicts the percentage 

rate of growth of the capital stock as varying directly with the output-capital 

ratio and inversely with the real rate of interest. Equation (3) is a version of a 

distributed lag accelerator since it can be rewritten as 

B 1 

ph i "T= Ce Ey Leet a eS ae 

(7) 

so that percentage investment can be written as 

1-L (1 ) 

©) ee Ns ea erie bn ee la i 

(1 — L) 
1-@-ho 

or equivalently as 

k,— &,_. = bY -B; )' Ay, - 1-1 + Ba Y (0 ~ By) Mr i-1 — %-i-1) 

+d (1 — B,) Ae,,_;, 
i=0 

where A = 1 — L. We will regard f, and f, as scalars, although the argument will 

carry through if they are more general polynomials in the lag operator. 

* Thus, suppose instead of (1) we have 

(1 — L)p, = Wy, — ¥,) + On, + &y, 0 < 0 < 1. 

Substituting for 2, from (5) gives 

(1 — L)p, = Wy, — ¥) + OV(L) (1 — L)p, + Ep 

which upon rearranging becomes 

ye ah a RS ee 
{ = op” + Ten” 

Friedman [7] and Phelps [10] have recommended including anticipated inflation as an argument in 
the Phillips curve. 
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Equation (4) relates velocity inversely to the nominal rate of interest; here 

we regard b, as a scalar, though again it could easily be considered to be a poly- 

nomial in the lag operator. Equation (5) explains the formation of expectations of 

inflation via a standard Fisher—Cagan extrapolative scheme. Finally, equation 

(6) is an IS curve relating aggregate demand directly to the capital stock, which is 

a measure of wealth, and inversely to the real rate of interest. The vector Z, also 

influences aggregate demand, and contains variables such as government pur- 

chases and taxes. 

(a) BEHAVIOR OF THE MODEL IN THE LONG RUN 

We assume that the labor supply grows exponentially according to 

L, a L-) =n. 

Under this assumption, a nonstochastic version of the model possesses a long-run 

steady state which, given stability, the system will approach if Z, and m, — m,_, 

are held fixed over time, the stochastic terms being fixed at zero. The determination 
of steady-state equilibrium is easily described by two curves in the (r — m) — 

(y — k) plane. The first is a “capital-equilibrium curve” which for each output- 

capital ratio gives the real interest rate required to keep capital growing at the 

same percentage rate as the labor supply. It is found by setting k, — k,_ , equal 

to n in (3) and suppressing the random term to arrive at 

r—m=—[n— Bily — k) — Bol. 
B, 

which is a positively sloped curve in the (r — 2) — (y — k) plane. 

The second schedule is simply the IS curve, which is downward sloping in 

the (r — x) — (y — k) plane. The intersection of the two curves determines the 

steady-state output—capital ratio and real rate of interest. The steady-state rate 

of inflation is found by differencing equation (4) and rearranging: 

(1 — L)p, = (1 — L)m, — (1 — L)y, — b,(1 — Lyr,. 

In steady-state equilibrium, (1 — L)y, = n and (1 — L)r, = 0, so that the rate of 

inflation is 

(1 — L)p, = (1 — L)m, — n. 

In steady state, the role of equation (1) is to determine the steady-state gap between 

output and capacity output. 

(b) THE SHORT RUN 

In the short run, the equilibrium output-capital ratio and real interest rate 

are determined at the intersection of the IS curve with an ““LM” curve in the 

(r — n) — (y — k) plane. To obtain the LM curve, first difference equation (4) 
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and substitute for (1 — L)p, from equation (1) to obtain*® 

(1 wi L)m, = (1 ad L)k, + vO, 2 k,) id (Y, P- k,)) 

+ (1 — L)(y, — k,) + 6,1 — Lr, — 2) + 6,1 — Lyn,, 

which is an equation in r,, ,, (y, — k,) and predetermined variables. Notice that 

(9) is upward sloping in the (r — 2) — (y — k) plane. The endogenous variable 

nm, is easily eliminated from the IS curve (6) and the LM curve (9) by substituting 

for 7, 

1, = V(L) yy, — k,) e (Vr = k,)}; 

upon making this substitution, (6) and (9) become two equations in the two 

endogenous variables y, and r,. The solution in general is a non-stationary one, 

since in the (r — 2) — (y — k) plane, the LM curve usualiy shifts over time as the 

predetermined variables assume new values each period. 

(c) RESPONSE OF THE INTEREST RATE TO EXOGENOUS EXPECTED INFLATION 

If equation (5) is dropped and replaced by the assumption that expected 

inflation 7, is exogenous, it is straightforward to derive an equation that depicts 

the response of the nominal interest rate to an exogenous change in expected 

inflation in the system formed by equations (1), (2), (3), (4), and (5). We simply 

find the “‘final form” equation for the interest rate, which turns out to be 

r, = p+ A(L)Z, + H(L)m, + K(L)n, + u, 

where p is a constant, A(L) is a(1 x n) vector of one-sided polynomials in the lag 

operator, u, is a stochastic term depending on the e’s, and H(L) and K(L) are both 

particular one-sided polynomials in the lag operator. The above equation is 

derived by carrying out the kind of calculations described in Sargent [14]. It 

happens that H(L) and K(L) have the properties 

i=0 

and 

K(1) = 3. K, =1, 
i=0 

so that in the long run a once-and-for-all jump in the money supply leaves the 

nominal interest rate unchanged; but a once-and-for-all jump in expected in- 

flation eventually drives the nominal interest rate upward by the full amount of 

that increase. 

5 Here I am again seiting the stochastic terms to zero. 
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(d) THE INTEREST-INFLATION RELATIONSHIP 

The system consisting of equations (1) through (6) can be written in matrix 

form as 

ay ? 0 (1 — L) 0 0 lf] 

0 1 —(1 — a) 0 0 0 y, 

ae —B,L 0 1-(1—6,)L 0 BL —B,L]} k, 

1 0 0 1 0 b, || p, 

® 90 0 —V(L)(i-—L) 1 0 T, 

ee —1 0 ee eS 

Page oF. Open Se Os 

0 aL, | -|..0 

0 é 

va ig te a oi 

0 0 6 

L fo} L241) Lee J 

or compactly as 

(11) C(L)X, = ¢ + w, + &, 

where C(L) is the (6 x 6) matrix of polynomials in the lag operator on the left of 

equation (10), X, is the (6 x 1) column vector of endogenous variables on the left 

side of (10), € is the (6 x 1) column vector of constants on the right side of (10), 

w, = [0, aL,, 0, m,,0,c2Z,]', and &, = [€,,0, Ex: — Em 0, &y,]’: We assume that C(L) 

is invertible. Then the values of the endogenous variables in terms of the exogenous 

variables (the w,’s) and the structural disturbances are found by premultiplying 

(11) by C(L)7?: 

(12) X, = C(1)"'E + C(L)“1@, + C(L)~'e,. 

Here C(L)~' is a (6 x 6) matrix of one-sided polynomials in the lag operator. 

Unless C(L) is triangular or block triangular, each element of X, will depend on 

current and past values of all of the stochastic terms in the system. The C(L) 

matrix in our model, shown in (10), is not block-triangular, and so interdepen- 

dence does in general characterize our model: each endogenous variable is in 

general correlated with current and past values of all structural disturbances.° 

A version of Irving Fisher’s equation is obtained by inverting the IS curve 

(6), solving it for the nominal rate of interest and substituting (5) to eliminate z,: 

(13) c 
r= —2 + VIL — Dip, — cf 'e2Z, + c7 y, — k) + cr "ey 

1 

© See H. Theil [18, Chap. 10] and F. Fisher [3]. 
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An alternative version of (13) is arrived at by substituting for y, — k, the appro- 

priate submatrix of (12). Let 6 = [1,0, —1,0,0,0]. Then 

y, — k, = OX, 

and consequently we have 

(13’) 7 - + c7 8C(1)~1E + VIL) — L)p, — cy 'c,Z, 
1 

+ cy 'dC(L)~'w, + cy 'SC(L)~'e, + cy 'e yte 

A version of (13) is what has usually been estimated by the method of least squares 

in the literature summarized in section 1. According to (12), such estimates generally 

lack statistical consistency since there is in general nonzero correlation between 

p, and ¢,,. Furthermore, even if v, = 0, so that only lagged rates of inflation belong 

in (13), least squares fails to give consistent estimates unless ¢,, happens not to be 

serially correlated. In addition, ¢,, is in general correlated with future values of p, 

thus violating one of the conditions required to enable estimating the equation 

consistently by a method based on generalized least squares.’ 

It is straightforward to establish the very special conditions under which 

least squares estimation of (13) does not turn out to give consistent estimates. 

Recall that we are assuming that the disturbances €,,, &:, Em, and é,, are mutually 

independent. On that assumption, least squares will produce consistent estimates 

of (13) if the system (10)‘is block recursive in such a way that y,, k, and p, are in- 

dependent of ¢,,. This will occur if C(L) in (11), and hence C(L)~ ' in (12), have only 

zeroes in the 4 x 2 submatrix in its upper right hand corner. For then, provided 

that ¢,, is independent of the random terms appearing in the first four equations, y,, 

k,, ¥,, and p, will each be independent of current and past values of ¢,,. The condition 

for the desired block recursiveness is thus that B, and b, both equal zero; if they 

are interpreted as polynomials in the lag operator, this requires that the co- 

efficient pertaining to each lag be zero. The interest elasticity of the demand for 

money must be zero, and so must the elasticity of investment with respect to the 

real rate of interest. Notice that as long as ¢,, is permitted to be serially correlated, 

the required recursiveness cannot be obtained by positing that b, and #, are 

polynomials in the lag operator with zero weights on zero lags but nonzero 

weights on past lags. The conditions for block recursiveness seem quite strict, 

but to the extent that they are approximately met, least squares estimates of (13) 

are approximately consistent. 

It is worth emphasizing that the condition that C(L) in(11) be block triangular, 

ie., that B, = b, = 0, is sufficient to render least squares estimation of (13) a 

consistent procedure only if ¢,, is uncorrelated with the disturbances in the first 

four equations of (10).* That requirement is quite strict. In particular, it is natural 

to expect ¢,, and ¢,,, the disturbances in the investment demand schedule and IS 

curve, to be correlated. 

While some studies have attempted to estimate what can be construed as 

versions of (13) or (13’) that include various components of w,, a more common 

7 See C. Sims [6]. 
8 Franklin Fisher stressed this point (3). 



procedure has simply been to regress r, against only current and lagged rates of 

inflation in an attempt to estimate the v,’s of equation (5).° The procedure has 

been to estimate by the method of least squares the equation 

(14) r= Oot 2 h{P,-~; — Pr-i-1) + % 
i=0 

or 

r, = > + WL) — L)p, + u,h(L) = ¥ ALi 
i=0 

where ¢ is a constant and u, is a statistical residual. The estimate of h(L) is taken 

as ai 2stimate of V(L). 

Least squares estimates of h(L) of (14) in general do not produce consistent 

estimates of the expectations generator V(L) of (5). In fact, least squares estimates 

of h(L) are liable to produce spectacularly biased estimates of V(L). Again the 

reason for this is that p is not a statistically exogenous variable in (14). 

I will proceed by subtracting out the exogenous and systematic parts of the 

endogenous variables in the system.'° From (12) we have 

(15) &, = X, — Cl)" — C(L)'@, = C(L)~'¢,. 

The vector X, consists of values of the endogenous variables from which the 

contributions of the exogenous variables have been deducted. We can think 

of the X, as being ‘“‘detrended’’ data, in the manner of Chow and Levitan!'; 

or we might simply assume in the first place that the exogenous variables are 

nonstochastic and contribute nothing to the stochastic properties of the en- 

dogenous variables. (The stochastic parts of the exogenous variables can easily 

be thought of as being thrown in with the disturbance terms.) 

With the variables in (14) assumed to be replaced with the appropriate com- 

ponents of ¥,, we proceed to describe the special conditions under which least 

squares estimation of (14) yields an estimate of h(L) that is a consistent estimate 

of V(L). In terms of our “detrended”’ variables, the appropriate version of (13) is 

(16) es V(L)(i — L)p, > cr '(y, are k,) + he, oe 

As before ¢, will be uncorrelated with p, y, and k if 8, = b,; = 0 in(10). But estima- 

tion of (14) involves omitting (y — k) as a pertinent explanatory variable in (16). 

This will be a costless omission, in terms of statistical consistency, if y — k is 

uncorrelated with p; y — k and p will be uncorrelated if we replace (1) and (2) 

with the following two equations: 

(1) Y= Vr 

(2') y, = k, + 0, 6 a constant. 

° For example, see Gibson [8]. 
In the calculations reported below, the effects of all exogenous variables except the money 

supply are subtracted out. Subtracting out the effects of the exogenous variables has the effect of making 
it easier for the standard method of regressing interest on current and lagged inflation to provide a 
reliable estimate of V(L), since the bias due to omitting exogenous variables is assumed away. 

'! See Chow and Levitan [1]. 
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Equation (1’) states that output always equals full-employment output j,. Equation 

(2') states that the full employment output-capital ratio is constant over time. 

Together, equations (1') and (2’) imply that the output-capital ratio is constant 

over time, and so omitting it from (16) is harmless from the point of view of ob- 

taining a consistent estimate of V(L). Now if (a) (1’) replaces (1) and (2’) replaces 

(2) in the first row of (10), (b) 8B, = b, = 0 as before, and (c) the e’s are mutually 

independent as before, then y — k is independent of p in (16), and so estimating 

h(L) in (14) by least squares produces a consistent estimate of V(L) of (5). 

An alternative set of conditions will also suffice to make least squares estima- 

tion of (14) a sensible procedure. Replace the downward sloping IS curve (6) by 

the infinitely elastic IS curve 

(6’) r, = B, + by. 

Substituting for 2, from (5) gives 

(17) r, = V(L)\(1 — L)p, + &y. 

If (a) equation (6’) replaces (6) in the bottom row of (10), (b)b, = B, = 0as before, 

and (c) the e’s are mutually independent as before, then least squares estimates of 

h(L) in (14) provide consistent estimates of V(L). For then e, is independent of p 

in (17), making least squares a consistent estimator of the parameters of (17), 

which becomes equivalent in form with (14). 

Each of these sets of conditions is very strict. More generally, estimating h(L) 

in (14) will not usually provide a consistent estimate of V(L). In fact, the probability 

limit of h(L) will in general be a complicated function of all of the parameters of 

the model. In addition, h(L) will really be a two-sided lag distribution, ie., 

WL)= ¥ AL, 

so that in (14) nonzero weights would generally occur on future rates of inflation 

or logarithms of prices if they were included in the regression. This is symptomatic 

of the “feedback” or mutual determination that in general characterizes interest 

and inflation in the model summarized by (10).'? 

An explicit expression for the Fourier transform of h(L) can be obtained by 

straightforward but tedious calculations. (Such an expression is obtained in [13)). 

But inspeciing that expression isn’t especially enlightening, and only serves to 

confirm our claim that A(L) in general depends on all of the parameters of the 

model. (Of course, it also serves as an alternative vehicle for deriving the special 

conditions under which h(L) = V(L) in large samples). Rather than derive that 

expression, here I simply display h(L) functions for various combinations of param- 

eters. Since the model is linear, h(L) can be calculated analytically by extending 

the cross-spectral calculations described by Chow and Levitan [1] and Howrey 

[9].'3 The function (1 — L)h(L) has been calculated for the parameter values 

'2 Christopher Sims [17] shows the connection between two-sidedness and feedback. 
'3 The cross spectrum between r and p, f,,(w), and the spectrum of p, f,(w), were calculated analyti- 

cally in the same manner used by Howrey [9] and Chow and Levitan [1]. The Fourier transform of 
(1 — L)h(L) was then obtained as f,,(w)/f(w). The function (1 — L)h(L) was then recovered by taking 
the inverse Fourier transform of f,,(w)/f,(w). (See Fishman [5] for a description of frequency domain 
methods in econometrics.) The resulting (1 — L)h(L) function should be interpreted as what would 
emerge from a simulation of infinite length. It is the probability limit of (1 — L)h(L). 
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TABLE | 

PARAMETER VALUES* 

Phillips curve: y = 0.2, ¢,, = 0.01 
Capacity output: « = 0.75 
Investment function: B, = 0.05, 8B, = —5., 6, = 7.071- 107? 
Demand function for money: ¢,,, = 0.005; m, = 0.99m,_, + Unis Tum = 9.005 
Expectations: x, = 0.5(1 — L)p, 
IS curve: €,, = 0.99, 1; + Uy, Oy = 0.01 

* The symbol o,,, denotes the standard deviation of ¢,, etc. 

displayed in Table 1 and for several combinations of the parameters c, and b,. 

The function (1 — L)h(L) is the response function from p, to r,, since (14) can be 

rewritten as 

r, = @ +41 — L)h(L)p, + u,. 

The results are reported in Table 2. The calculations assume that all exogenous 

variables except the money supply are constant (or that the effects of all other 

exogenous variables have been purged). The money supply is assumed to follow 

the process 

m, = 0.99 m,_ 5 + Um: 

where u,,, is serially independent and uncorrelated with all other random terms 

in the model. The random term in the IS curve follows the process 

Ey = 0.996, + u,, 

where u,, is serially independent and uncorrelated with all other random terms 

in the system. The random terms ¢,, é,, and ¢,, are each serially uncorrelated and 

mutually uncorrelated with each other and with u, and u,,. 

The interest elasticities of the various schedules are easily calculated by 

multiplying the coefficient on the interest rate by the interest rate itself. I think of 

the interest rate as being measured as a pure number (e.g., 0.05), so that with an 

interest rate of five percent and a value of b, of —1, the interest elasticity of the 

demand for money is —0.05. For all the calculations reported in Table 2, I have 

assumed that V(L) is simply the scalar 0.5, so that expected inflation is 0.5 times 

the current rate of inflation: 

n, = 0.5(1 — L)p,. 

Table 2 reports (1 — L)h(L) for various (c,,b,) combinations and for the 

values of the other parameters listed in Table 1. Column (0) reports (1 — L)V(L), 

which (1 — L)h(L) is supposed to estimate. Figure 1 consists of graphs of h(L) 

for various (c,,b,) combinations formed by adding up the values of h; — h,_, 

from lag zero upward.'* 

None of the h(L) functions reported in Figure 1 equals V(L), although as 

would be expected from our discussion above, h(L) more closely approximates 

V(L) the higher in absolute value is c, (i.e., the flatter is the IS curve) and the smaller 

in absolute value is b, (i.e., the steeper is the LM curve). Thus, of the h(L)’s shown, 

'* There is a very small error here since this calculation assumes, contrary to fact, that the co- 
efficients on leading values of p are all zero. The error is imperceptible as far as concerns the graphs 
shown. 
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the one corresponding to c, = —6, b, = —1 best approximates V(L). On the 

other hand, the h(L)’s for b, = —21, which correspond to a flatter LM curve, 

are very long distributed lags which bear no resemblance to V(L). It is thus possible 

for the distributed lag regression of interest on inflation to be a very “‘long”’ one 

even though expectations of inflation are formed with a very short distributed lag. 

It is worth noting that the (1 — L)h(L) functions reported in Table 2 all 

have very small lead coefficients. Consequently, finite samples of data generated 

V, h, 

6Fr 6+ 

4 4 

2+ 2+ 

i 1 j i i 1 l 1 > as a oo 
0 2 4 6 aoe 0 2 a 6 8 j 

True V(L) c, = -6,6, = -1 

h, hy, 

8 + BE 

6 6+ 

4} 4r- 

2+ Py? 
aS 

re 2 4 6 YY 0 2 4 6 os 

c, = -1,.6, = -1 c, = —6,6, = -21 

h, 
6+ 

4+ 

N +. oa oo n 

c, = —-1,6, = -21 

Figure 1 Graphs of V(L) and Various h(L)’s (Parameters other than c, and b, assume values given in 
Table 1.) 
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TABLE 2 

VALUES OF (1 — L)h(L) FOR VARIOUS PARAMETERS* 

(0) (1) (2) (3) (4) 
(1-L)V(L) (ce, = -6, (c, = —6, (c, = -1, (c, = -1, 

b, = -1) b, = —21,) b, = -1) b, = —21,) 
j D;— V;-4 h, — hy, h,—hy_, h,—hy-, h,—hy_, 

~5 
-4 0.001 0.000 —0.002 0.001 
-3 0 0.001 0.001 0.004 0.001 
~2 0 0.001 0.001 —0.004 0.002 
~1 0 0,000 0.001 0.008 0.002 
0 0.5 0.560 0.150 0.715 0.072 
1 -0.5 —0.469 ~0.045 ~0.752 0.068 
2 0 —0.069 —0.022 0.053 —0.037 
3 0 -0.017 _~  -0.017 —0.034 —0.026 
4 0 —0.004 ~0.013 0.022 ~0.019 
5 —0.001 —0.010 ~0.014 —0.014 
6 —0.000 —0.008 0.010 ~0.010 
7 —0.006 ~ 0.006 —0.007 
8 —0.005 0.004 —0.005 
9 —0.004 ~0.003 —0.004 

10 

* All other parameters assume values listed in Table 1. 

by the models with the parameter values assumed in Table 2 would most likely 

fail to detect feedback from r to subsequent p, if subjected to the statistical test of 

Sims [17]. Not being able to detect feedback from r to subsequent p in such a 

test is a minimal requirement for being able to interpret regressions of r on current 

and past (1 — L)p, as providing an estimate of the distributed lag on inflation 

by which the public forms its expectation of inflation. The results in Table 2 

emphasize the fact that that is only a minimal test, since (1 — L)h(L) can be 

approximately one-sided and still be a very bad approximation to (1 — L)V(L).'* 

3. CONCLUSION 

This paper has investigated the conditions under which a regression of the 

nominal interest rate on current and lagged rates of inflation can be expected to 

yield a consistent estimate of the distributed lag on inflation which characterizes 

the formation of expectations of inflation. Those conditions have been found to 

'S For the systems analyzed in this paper, the regressions of p on r are also approximately one- 
sided, so that one is likely to fail to detect feedback either from r to subsequent p or from p to subsequent 
r by using Sims’s test. This outcome is symptomatic of a system in which the only relation between 
rand pis a contemporaneous correlation between “innovations.’’ Sims’s test will not detect a feedback 
which is purely contemporaneous between innovations; but in this case, where the entire relation is 
contemporaneous between innovations, the appropriate conclusion from Sims’s test is that neither 
the r on p nor the p on r regression can be regarded as structural (see Sims [17]). A careful application 
of Sims’s test, checking for feedback in both the r on p and p on r regressions, would thus still lead to 
the correct conclusion, namely that it is not appropriate to regard the r on p regression as providing a 
consistent estimate of the structural relationship through which inflation influences subsequent rates 
of interest. 
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be quite stringent. It has also been shown that those conditions can fail in such a 

way that interest appears to be a long distributed lag of inflation even where 

expectations of inflation are a short distributed lag of actual inflation. How re- 

liable distributed lag regressions of interest on inflation are as a means of estimating 

the response of expectations to inflation depends on the values of a number of 

“structural’’ parameters, paramount among them being the relative slopes of the 

“IS” and “LM” curves. Empirical work using data over long time periods has 

typically produced estimates of very long lag distributions of interest on inflation. 

In light of the results above, a good measure of caution is called for before one 

imputes those long lags to long lags in forming expectations of inflation. 
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