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Annals of Economic and Social Measurement, 2/2, 1973 

RANSACKING CPS TABULATIONS: APPLICATIONS OF 

THE LOG LINEAR MODEL TO POVERTY STATISTICS 

BY FREDERICK J. SCHEUREN 

The log-linear model as developed by Goodman, Kullback, and others affords researchers a powerful 
tool for analyzing tabulations of survey data. Presented are some applications of the model to counts of 
the poor published by the Census Bureau from the annual income supplement to the Current Population 
Survey (CPS). 

In keeping with the use of the word “ransacking” in the title, the approach is exploratory and des- 
criptive. Formal hypothesis testing and other confirmatory techniques are dealt with only peripherally. 
Some attention is paid, though, to the statistical problems posed by the complex (multi-stage) nature of 
the CPS sample. 

1. INTRODUCTION 

The annual income and poverty reports, published by the Census Bureau, from 

the Current Population Survey (CPS) are one of the most important sources of 

information on the economic status of Americans. This paper takes some of the 

well-known techniques for fitting log-linear models to tabular material, and applies 

them to the CPS poverty figures. In the cases examined, the relationship between 

a family’s poverty status and the demographic characteristics of the family head 

can be described quite simply and succinctly. Nearly all the information in several 

long and involved cross-tabulations can be summarized by the models studied. 

1.1. Formulating the Model 

To introduce the notation we will need, consider the following data taken 

from the March 1971 CPS. 

TABLE A 

NUMBER OF U.S. FAMILIES BY Poverty STATUS, AGE, SEX, AND RACE OF HEAD 

(In Thousands) 

Poor Nonpoor 
Age and Sex of Head 

White * Nonwhite White Nonwhite 

Male-headed : 
Under 65 years old 1,821 495 34,649 2,873 
65 years or older 783 181 4,896 300 

Female-headed : 
Under 65 years old 959 773 . 2,552 651 
65 years or older 138 64 737 76 

Source : U.S. Bureau of the Census, Current Population Reports, Series P-60, No. 81, ‘““Character- 
istics of the Low-Income Population, 1970" U.S. Government Printing Office, Washington, D.C., 
1971 (page 67). 
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Table A has four dimensions: Poverty, race, sex, and age. To refer to an individual 

cell of the table let N(ijkm) denote the total number of families having the ith 

poverty status (i = 1 if the family is poor, i = 2 if nonpoor), jth race (j = 1 non- 

white, j = 2 white), kth sex (k = 1 if family is headed by a male, k = 2 if head is a 

female) and mth age (m = 1 if the head is under 65, m = 2 if the head is 65 years or 

older). The true proportions of families in any cell will be denoted by 

(1.1) Ptijkmy = Nk) 

where N is the total number of families in the U.S. noninstitutionai population. 

Estimates {f(ijkm)} are formed from Table A by substituting sample values for 

both N(ijkm) and N in (1.1). 

Depending on the head’s age, race and sex, the odds that a given family will 

be poor vary considerably. For example the odds that a white male-headed family 

will be poor are 34,649 to 1,821 or about 19 to 1 if the head is under 65 but grow to 

4,896 to 783 or about 6 to | if the head is 65 or more. For nonwhite male-headed 

families the odds are not as favorable as for whites: 2,873 to 495 if the head is 

under 65 and 300 to 181 if the head is 65 or more. An interesting result emerges 

if one looks at the relative odds’ ratios for whites and nonwhites at each age level. 

For male heads under 65 this relative poverty ratio is 

N(2, 2, 1, 1)/N(1,2,1,1) — 34,649/1,821 

N(2, 1,1, 1)/N(1,1,1,1)  ——-.2,873/495 
(1.2) = 3.28 

which is not too different from the ratio for families with male heads 65 or more, i.e., 

N(2, 2, 1, 2)/N(1, 2,1, 2;  4,896/783 _ 
(1.3) — = "= 

300/181 
3.77. 

N(2, 1, 1, 2)/N(1, 1, 1, 2 ‘ — 

It turns out, in fact, that for any given combination of age and sex of the family 

head the odds of being nonpoor are about 34 times better for whites than for 

nonwhites. 

1.2. General Model Equations 

To pursue this type of analysis rigorously for Table A, the natural logorithms 

of the cell proportions will be fit to a model with coefficients which are functions 

of the relative odds’ ratios considered above. In its full generality the model 

equation is 

In p(ijkm) = Bo + BP + BF + BE + BR 

(1.4) + Bi? + Bic + Bim + Bie + Bim + Bim 

PRS PRA PSA RSA PRSA + Pin + Pijim + Bikm + Bikm + Pijkm - 

The superscripts P, R, S, and A stand for poverty, race, sex, and age respectively. 

The four f’s having only one superscript reflect the contribution of each of the 

factors taken by itself. There are six f’s needed to account for the factors acting in 
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pairs ; the #’s with three subscripts absorb the interaction of sets of three dimensions 

simultaneously ; Bi, is the four-way interaction. 

Expression (1.4) is the usual dummy variable regression model except that 

the independent variables have been suppressed for the sake of brevity. Readers 

who find the notation troublesome should consult the footnote.’ To have a defined 

system some of the coefficients must be dropped. The convention will therefore 

be adopted of setting to zero all f’s having a “2” as any part of their subscript. 

From (1.4) it can be shown that the log of the poverty odds ratio for a given 

age, race or sex group is 

Y im = \n {p(Ljkm)/(2jkm)} 

= In p(ljkm) — In p(2jkm) 

= Bi + Bij + Brkt Bim 

+ BINS + ptSa + BRS + BRSSA 

The coefficients of the logit model (1.5) are factors which taken together give the 

odds of a family’s being poor. The overall odds are a function of f{ while the 

relative odds by race, sex and age are determined from '', BY),, and B{* respectively. 

The remaining four terms are corrections to these relative odds made necessary 

by the fact that sometimes two or more dimensions act jointly. More will be said 

about the interpretation of the model parameters in Section 3 where the actual 

numerical values for Table A are discussed. 

2. FITTING THE LOG LINEAR MODEL 

Models such as (1.4) or (1.5) can be fit in regression by (weighted) least squares 

[2; 26]. We will, however, employ another estimation procedure here [9; 18), one 

based on the theory of minimum discrimination information. While to some 

extent the choice between these two possible procedures is a matter of taste, there 

are often computational advantages to the use of information—theoretic techniques. 

They also can allow one to visualize in an intuitively satisfying way the implications 

of a particular model for the table being examined. Readers not interested in the 

mathematical details of the fitting algorithms can safely skip the rest of this section 

provided they are willing to accept our measure of fit, 7, and use it as one could 

use R? in ordinary regression. 

' Let 

1 i=1 (l j=1 1k 
x= | as | x= | Xx, = 

0 i=2, 0 j=2, 0 k=2, 

then there is an exact correspondence between (1.4) and the more familiar model 

ll 

rewo o- 2 2 | ll od 

In plijkm) = By + BPX, + PRX, + PSX, + BAX,, + "XX, 

+ BPSX,X, + BPAX,X,, + BM XX, + BPAX X,, + BAX,X,, 

+ BPPSX XX, + BPPAX,X jXq, + BPAX XX mq + BRAX XX mq 

+ BPPSAX.X XX. 
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2.1. Minimum Discrimination Information 

As applied to tabulated data the Minimum Discrimination approach 

involves consideration of the quantity 

lijkm) 

Plijkm) 

where n is the sample size, the {p(ijkm)} are the survey estimates of the cell pro- 

portions, and the { p(ijkm)} are selected to minimize I( : p) subject to the restrictions 

imposed by the model chosen, including the requirements that 

(2.2) > plijkm) =1 and pliikm)>0O forall i,j,k, and m. 

(2.1) I(p:p) = > nplijkm) In 

To see how the {p(ijkm)} are used to obtain the model parameters we will 

write (1.4) in matrix form. Let y be the column vector of natural logarithms of ‘he 

estimated cell proportions, e.g. in Table A 

(2.3) y = (In p(1, 1, 1, 1), In p(1, 1, 1, 2),..., In p(2, 2, 2, 2))’ 

then the mathematical models to be studied can be expressed succinctly in the form 

(2.4) y= XB+e 

where X is a matrix of exogenous variables (assumed to be of full rank). B is a 

vector of unknown parameters and e is a random variable with zero mean and 

variance—covariance matrix V. 

Using the Minimum Discrimination approach, the estimated value of B is 

obiained from 

(2.5) B = (X'X) 1X9 

where in Table A 

(2.6) ¥ = (In (1, 1,1, 1), In p(t, 1, 1, 2),..., In p(2, 2, 2, 2))’. 

This way of proceeding is just backwards from that in ordinary regression (with 

V = 071). In regression one first gets B from 

(2.7) § = (X’X)"'X’'y 

and then the “‘predicted”’ values § are given by 

(2.8) > = XB. 

2.2. Iterative Scaling Procedure 

For the types of models we will mainly consider in this paper, a direct relation- 

ship exists between the equation one assumes and the marginal totals of the table. 

Broadly speaking, once one has specified what rim totals the table is to have, the 

mode! has also been determined. 

The marginals needed to fit a particular model are found by examining the 

parameters assumed to be nonzero. For instance if 

(2.9) In plijkm) = Bo + BF + BY + BE + BA + BFR 

then the Poverty—Race marginal is needed since ff* is hypothesized to be nonzero. 
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Because this two-way marginal determines the one-way Poverty and Race 

marginals, estimating ff or B* creates no new problems. But to obtain #§ and 

B* the one-way sex and age marginals must also be used.” 

The estimated cell entries implied by the model are found by an iterative 

process. Commonly the initial step in a computer program is to enter “1’s”’ in all 

the cells. These values are then scaled so that the table will agree with the first 

marginal one has specified. The resulting array is used as input to the next step 

where the entries are fitted to a second specified marginal. In subsequent steps 

the other marginals are introduced in turn. The iterative cycle may need to be 

repeated a number of times, each stage beginning with the cell values taken from 

the previous stage until the desired degree of accuracy has been achieved. Con- 

vergence is generally quite rapid. 

One can also use the iterative scaling procedure to “standardize”’ a table’s 

values by fitting it to a marginal or marginals taken from another table. When 

engaged in standardization the iteration does not begin with “‘1’s”’ in all the cells, 

but with the original entries. For an illustration of this technique, see Table D 

2.3. Fitting Criterion 

Considerations of parsimony make it desirable to reduce the number of esti- 

mated 3s as far as possible without leaving out something “essential.” To do this, 

reliance will be placed on a criterion [9:246] similar to R*. Expressed in the 

notation of Table A, the relative information statistic /? is obtained as follows: 

Let {p} be the set of cell proportions estimated when fitting the model 

p(ijkm) , 
2.10) Y on = In—- = pr. ( jkm p(2jkm) B; 

Further, let {jp} be the set of cell proportions estimated for some other variant of 

(1.5), including the parameter f* , such as 

(2.11) Y nm = Bi + BUF + BY. 

It can then be shown [17] that 

(2.12) I(p:p) = I(p:p) + I(p:p) 

where the {f} are the original estimated cell proportions. I(f:)) is the total amount 

of variation in the cell frequencies which remains unexplained when we assume 

that the odds of being poor are constant for all groups. /(p:)) is a measure of the 

variation explained by allowing for the association (regression) between poverty, 

race and sex. I(p:p) is the variation which continues to remain unexplained under 

model (2.11). Thus (2.12) is of the form 

Total variation = Explained + Unexplained. 

? It should be noted for future reference (page 163) that in fitting (3.4) by assumption the race 
poverty effect was taken to be independent of age and sex ; hence all the information about the associ- 
ation between them is found in the race—poverty marginal totals. Similarly the information about the 
age-sex—poverty effect is contained entirely in the age-sex—poverty marginal. Since from (1.4) we must 
also deal with relationships between age, race and sex which do not involve poverty, the age—race—sex 
marginal totals must be preserved. Thus to fit (3.4) a table was constructed which conformed to the 
marginals: poverty crossed with race, poverty crossed with age—sex, and race crossed with age—sex 
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Dividing both sides of (2.12) by 1(p:p) and rearranging terms we define /? as 

Dp I(p: 
(2.13) pe PP) Ly _ MD 

I(p: p) I(p:p) 

Since [17] 

(2.14) I(p:p) = 1(p:p) = 0, p 

then, except for the trivial case when /(p:p) = 0 

(2.15) O<IP <1. 

This definition allows us to interpret /? in much the same way as the R? of standard 

regression. Of course, R? itself could have been used in assessing relative fit. 

However, to do so would be to introduce an extraneous element. We prefer /* 

because it is directly linked to the estimation process. 

2.4. Descriptive Use of Log-Linear Model 

The approach taken to the CPS data in this paper is frankly exploratory and 

descriptive [e.g., 5; 23]. The use of the word “‘Ransacking” in the title was meant 

to imply this. We have not resorted to formal hypothesis testing as such. As a 

matter of fact, given a belief in the inherent granularity of large finite populations 

(like the universe of all U.S. families), one would not expect that any of the f’s 

in a modei such as (1.5) could actually be left out and still have an exact fit to data 

collected in a complete census. Often enough though, some of the higher-order 

interactions, whose meaning can be hard to get hold of intuitively, may be so close 

to zero that to assume that they are does not seriously impair the model’s descriptive 

power. 

With large-scale surveys, like the CPS, a subjective measure of fit such as /? 

may be a better guide for the researcher than considerations of statistical signifi- 

cance. For one thing when the sample size is large relative to the number of cells 

then substantively insignificant effects can become statistically significant. It also 

turns out to be quite difficult to make even approximate significance statements 

when the data come from complex multi-stage samples, designs which seem to be 

so common in practical work. 

3. THE ODDs OF BEING PooR GIVEN AGE, RACE, AND SEX 

One of the problems inherent in using the relative information, J”, as a guide 

in choosing a model is deciding how large it must be for the fit to be “satisfactory.” 

Considerations such as descriptive simplicity, the size of the table, and still other 

concerns all play a part in addressing what is inherently a subjective question. 

For situations like Table A where only a small number of cells are involved we 

propose to use a rather stringent criterion requiring that 1* > 95 percent. Since 

poverty is relatively greater among nonwhites, among families headed by a woman 

or by someone 65 years or older it is natural to begin with a model which brings 

in all of these factors in some way. The simplest form for doing this is 

GH Yum = Bi + BIS + Bik + Bin: 
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In (3.1) we posit that there is only a pairwise association between poverty and 

each of the other three dimensions, i.e. that the relationship between poverty and 

any one “independent” variable is the same no matter what values are taken on 

by the other two variables. To see what is meant, consider again the relative odds 

ratio for whites and nonwhites, as was done in (1.2) and (1.3). From (1.4) with some 

algebra the ratio 

N(2, 2, k, m)/N(1,2,k,m) _ p(1, 1,k, m)/ p(2, 1, k, m) 

oe N(2, 1, k, m)/N(1,1,k,m) — p(1, 2, k, m)/ p(2, 2 ), k, m) 
(3.2) 

= exp {Bri + Bik + Brim + Brition) 

In the special case of pairwise association this ratio becomes 

(3.3) exp {Bit} 

that is, a constant which does not vary from one age-sex combination to another. 

When the pairwise associative model (3.1) was fit to Table A the relative 

eorenaon accounted for was 91.3 p percent. At the cost of including just one 
nee aneiiasane (he aAvartd_acwe =, OTe. . wway BOO fit (1? = 99.9 

percent) was obtained. In what follows we will discuss the latter model in some 

detail. 
First, the fact that the poverty—age—sex interaction is nonzero indicates that 

it might be better to treat age and sex as just one dimension in looking at poverty 

since they do not act separately but jointly. Thinking of age and sex as one factor 

the model can be rewritten as 

(3.4) Vj, = Bi + Bi + Bir* 

where the {fiS*}r = 1,..., 4 are the quantities required to account for the impact 

of sex and age on poverty. The actual numerical values of the f’s were: 

pe = —-2.950 (Overall poverty coefficient) 

BPR — 41.206 = (Poverty coefficient for nonwhites) 

BRSA = + 1.952 (Poverty coefficient for female heads under 65) 

BRSA = +1.341 (Poverty coefficient for female heads 65 or older) 

BPSA — 41.134 (Poverty coefficient for male heads 65 or older) 

where we set Bu = BES‘ = 0 (because of the restrictions required when using 

dummy variables). 

The sign and size of the parameters are of course indicative of the direction 

and strength of the interrelationships we are studying. For example the poverty 

coefficient for nonwhites is + 1.206. The positive sign means that poverty is more 

likely to be found among nonwhites than whites—in fact, exp {1.206} = 3.34 more 

likely. 

The age-sex coefficients show that the incidence of poverty is greatest among 

families headed by a female under 65 with families headed by a female 65 or older 

in second place. Not only are male-headed families less poor than female-headed 

ones but the pattern is also different with poverty being at its lowest for families 
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with a male head under 65. This difference in pattern incidentally is why the effects 

of age and sex could not be treated additively but had to be combined. 

To readers familiar with the literature on poverty none of the relationships 

we have been discussing are at all new. The example was in fact chosen with this in 

mind. It allowed us to put the emphasis on the methodology rather than on the 

findings. 

3.1. Interrelationships Over Time 

An example in which the results are less obvious can be constructed by looking 

at how stable the relationships between poverty and race, age, and sex have been 

over the period 1959-1970. To do this the logit model 

(3.5) Yi = Bi, + BS + Bie 

can be fit using each year’s figures t = 1959,..., 1970. All that is required for the 

analysis is to introduce “time” as an additional dimension of the table. 

The fits obtained using (3.5) were remarkably good in each year (the average 

value of [* was 99.7 percent). However there have been considerable changes in 

the coefficients as can be seen from Table B. Poverty itself, of course, has declined 

fairly steadily from 1959 to 1969 with only a small increase in 1970. 

The impact of race on poverty has also been substantially reduced as the table 

shows. Most of the decline in the relative incidence of poverty between whites and 

nonwhites occurred between 1965 and 1968, a period of quite low unemployment. 

Even so, except for the 1964 figure (which appears to be an anomaly) there has been 

some improvement from year to year in reducing the disproportionate burden of 

poverty borne by nonwhites. 

The relative incidence of poverty by age and sex of head changed over the 

period we are examining but the pattern was not nearly as regular as for race. 

The most important movement seems to be in the growing disparity between 

families headed by a male under 65 and all other families. This is made evident by 

the fact that the coefficients for female-headed families and families headed by a 

male 65 or older tend to get larger and larger as time goes on. The high unem- 

ployment in 1970 reversed this trend somewhat but there are reasons to suspect it 

will continue over the iong run due in part at least to the poverty definition itself. 

This definition is based on a set minimum standard, updated annually using the 

Consumer Price Index. Thus, as has been pointed out elsewhere [25 (81)], those 

dependent on fixed incomes (such as the aged) or in jobs with limited upward 

mobility (often women) necessarily will become a proportionately larger share of 

the poverty population, all other things being equal. 

To summarize then, three trends have been isolated in Table B: An overall 

decline in the incidence of poverty, and tendencies for the declines to be relatively 

greater among nonwhite families and families headed by a male under 65. We will 

now try to assess the relative importance of each of these phenomenon. As part of 

this assessment the model 

(3.6) in = Bi, + BY + Bre 

was estimated. The difference aie the minimum discrimination information 

for (3.5) and that obtained for (3.6) is, of course, a measure of the loss of fit incurred 
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TABLE B 

RACE AND AGE-SEX COEFFICIENTS FOR POVERTY MODEL (3.9) 

Age, Sex and Poverty 
Overall Race 
Poverty and Male Female Female 

Year Coefficient Poverty 65+ Under 65 65+ 

1970’ — 2.950 1.206 1.134 1.952 1.341 
1969” — 3.028 1.243 1.287 2.018 1.625 
1968” — 2.922 1.256 1.142 1.900 1.457 
1967” — 2.798 1.385 1.320 1.766 1.506 
1966” — 2.738 1.487 1.262 1.771 1.156 
1966 — 2.650 1.448 1.298 1.810 1.107 
1965 — 2.473 1.550 1.027 1.686 1.416 
1964 — 2.302 1.461 0.925 1.466 1.079 
1963 — 2.272 1.591 0.953 1.579 1.299 
1962 -- 2.150 1.637 0.891 1.593 1.064 
1961 — 2.070 1.638 0.963 1.428 1.214 
1960 — 2.060 1.658 W.915 1.525 1.016 
1959 — 2.060 1.689 1.073 1.514 1.051 

’ Based on revised methodology for processing income data as explained in Series P-60: No. 81, 
pp. 23-25. 

Source Data for Coefficients : U.S. Bureau of the Census, Current Population Reports, Series P-60 
No. 81, p. 67; No. 76, p. 52; No. 68, pp. 33-37. 

by assuming that the relative incidence of poverty was not changing by age, race of 

sex. Similarly comparing the minimum discrimination information for (3.6) and 

(3.7) Vin = BL + BiS + BIT ir 

provides an indication of the importance over iime of the change in the incidence 

of poverty. The difference between the minimum discrimination information for 

(3.5) and (3.7) provides an overall measure of the total lack of fit from all causes. 

When one examines this total, 90.1 percent is due to uniform shifts in the general 

incidence of poverty in the population. Only 9.9 percent is the result of changes in 

the relative incidence of poverty among age—race-sex groups. Of this remainder 

about one-third of the lack of fit is due to changes in the race effect and two-thirds 

to changes by age and sex of head.* 

At first glance there would seem to be some problem in squaring the above 

analysis with the figures in Table C which show that all of the decline in the number 

of poor families has occurred among those with male heads; in fact the number of 

poor female-headed families has actually increased slightly. 

The logit model and its corresponding coefficient estimates depend on the 

relative number of poor families within each age, race and sex class. They are 

only indirectly affected by the counts in the individual cells being examined. On 

the other hand, Table C summarizes the net result of both an altered pattern in the 

incidence of poverty and also changes in the relative sizes of various demographic 

groups and of the overall total number of families. © 

>It should be mentioned that the relative importance of each of these causes is not independent 
of the order in which they are examined. The sequence followed makes a difference as it does in regression. 
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TABLE C 

NUMBER OF Poor FAMILIES BY SEX OF HEAD, 1970 AND 1959 

(In Thousands) 

Change 
Sex of Head 1970 1959 1959 to 1979 

Total 5,214 8,320 — 3,106 
Male 3,280 6,404 — 3,124 
Female 1,934 1,916 +18 

Source: U.S. Bureau of the Census, Current Population 
Reports, Series P-60, No. 81, p. 29. 

Table D below was created in an attempt to sort out all the factors acting on 

the poverty totals.* However, the partialing out of the importance of any one change 

cannot be done independently of the others. Thus the adjustments shown in 

Table D are conditional in nature. Each represents the net additional change made 

by a factor given the other factors whose effects have already been taken account of. 

Despite this limitation it may be useful to compare the differential impact of 

TABLE D 

ELEMENTS OF THE 1959 to 1970 SHIFT IN THE NUMBER OF POOR FAMILIES 

(In Thousands) 

Male-Headed Female-Headed 
Item Total Families Families 

Poor Families in 1959 8,320 6,404 1,916 

Population Composition Changes : 
Growth overall + 1,282 +987 +295 
Race + 186 +113 +73 
Sex +181 — 198 +379 
Age +85 +55 +30 

Poverty Incidence Changes: 
Decline overall — 4,874 — 3,832 — 1,042 
Race — 485 — 298 — 187 
Age and sex +519 +49 +470 

Poor families in 1970 5,214 3,280 1,934 

Net Changes, 1959 to 1970 — 3,106 — 3,124 +18 

Note: The adjustments are not independent of the order in which they were made. Rather each 
line represents the net change obtained by altering an additional factor. The population composition 
changes were derived by a sequential standardization process. First the overall 1959 table’s total was 
increased to agree with that for 1970 then the marginal totals by race were made to agree with those for 
1970. The increase in the number of poor families caused by this change was then derived. The next 
step was to force the 1959 table to agree with the 1970 race-sex marginals and finally with the 1970 
age—race-sex marginal table. 

* Methodological improvements in the collection and processing of the CPS also had an effect 
on the poverty totals. Adjustments for this have not been made separately. 
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population composition and poverty incidence changes on male and female- 

headed families. 

Since 1959 there has been an overall 15 percent growth in the number of U.S. 

families. The increase has been somewhat faster for nonwhites than for whites. 

The most important change though is the quite rapid growth of female-headed 

families relative to those headed by a male. There were also changes in the pro- 

portion of male and female-headed families by age of head with male heads being 

older and female heads younger in 1970 than 1959. If one does not allow for the 

lowering in the incidence of poverty over the period then these changes have the 

cumulative effect of increasing the number of poor male-headed families by 15 

percent and the number of poor female-headed families by 41 percent. 

However there has been, as the table shows, an overall decline in the incidence 

of poverty for both male and female-headed families. This is not apparent in the 

overall 1959-1970 differences because population composition changes swamp the 

relative decline for female-headed families. 

4. THE ODDs OF BEING PooR GIVEN EDUCATION AND WorK EXPERIENCE 

In this section we will examine the relationship between family poverty and 

the educational attainment of the head. Two 5-way tables will be looked at: The 

classifiers for the first are race (Black, Nonblack), Poverty, Sex, Age (25 to 34 years, 

35 to 44, 45 to 54, 55 to 64, 65 or more) and highesi grade completed (Less than 8 

grades, 8 grades, 9 to 11, High school graduate, some college). The second table 

is exactly the same as the first except that in place of race the family head’s work 

experience (Year-round full-time, other) is used as a classifier. (These tabulations, 

like Table A, are from the 1970 CPS Poverty Report, Series P-60, No. 81.) 

Several purposes are served by introducing these additional examples. Both 

are tables of moderate size (200 cells) and differ in other ways from the small 

(16 cells) table just studied. For one thing, two of the dimensions (age and education) 

can be treated as quantitative rather than strictly qualitative variables if so desired. 

Perhaps the most important topic we will take up is how one can combine the 

results of the separate analyses into one overall model. 

4.1. Model Notatien 

The two tables to be studied can be dealt with in a unified way. Each is a 

(5-way) marginal of the 6-way table formed by the factors ; age, sex, race, education, 

work experience and poverty status. Even though the more detailed tabulation is 

not available to us it is convenient to set up our definitions as if it were. Therefore 

let p(ijkmr) be the estimated cell proportions of the overall table where i = 1, 2 is 

used to designate a family’s poverty status, j = l,..., 10 is a combined index 

identifying the family head’s age and sex;° k = 1,..., 5 denotes the educational 

attainment of the head; and m = 1,2 and r = 1, 2 are used to identify the head’s 

race and work experience respectively. 

In effect, combining age and sex reduces the 6-way table we started with to simply 5 distinct 
dimensions. Age and sex are treated as one dimension since, as we saw in Table A, they act jointly in 
determining a family’s poverty status. 
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The cell proportions in the published tables can be defined as 

plijkm-) = 2 plijkmr) 

(4.1) 

plijk -r) = LP (ijkmr) 

Let us now consider two dummy variable logit models with the odds of being poor 

as the ““dependent”’ variable—one based on the table having race as a classifier, 

the other based on the table separating families by the work experience of the head. 

Adhering to the notation established earlier in this paper these models can be 

expressed by 

(4.2) P jikm = In {p(1jkm - )/p(2jkm - )} 

= BL + BIS + BY + BT, 

and 

(4.3) P ine = In { p(Ljk - r)/p(2jk - r)} 

= Bi + BY + Bik + BiY 

(The dimensions not in our first example are identified by the super-scripts “*E,” 

education, and ““W,”’ work experience.) 

4.2. Goodness of Fit 

Despite the fact that the above equations do not include any high-order 

interaction terms, they seem to represent an adequate summary of the relationship 

between poverty incidence and the other variables. The relative amounts of ex- 

plained variation were 1? = 96.2 percent for (4.2) and J? = 95.8 percent for (4.3). 

The reader might find the J? value for (4.2) inconsistent with the much better 

fit (99.9 percent) obtained earlier in (3.4). After all both models include age, race 

and sex and (4.2) also includes education. Arguing from the similarity we said 

exists between R? and I? one’s expectation would be that the fit for (4.2) would be 

better, not worse. 

The apparent anomaly is explainable chiefly by taking account of the dif- 

ferences in the sizes of the tables being used.°® In fitting (3.4) to Table A there are 

only 16 cells involved and five (poverty) parameters were needed for the model. 

With (4.2) we have a 200 cell table to describe and do so quite well with just 15 

parameters. To properly compare models (3.4) and (4.2) the fitting should be done 

using the same table for both. When this was tried age, sex and race taken together 

had an J? value of 68.7 percent as compared to the 96.2 percent fit obtained with 

education added. 

The situation we are discussing is an instance of what happens when one goes 

from one level of aggregation to another. Commonly the amount of “‘noise”’ in 

our figures grows relatively faster as we disaggregate than does the amount of 

° Differences between the two tables in the classifications used for the race and age variables also 
play a minor role. 
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additional information obtained. A well-known example of this phenomenon can 

arise with R? itself when one looks at the same relationship in a cross-section or 

over time. The R? value is typically smaller with the cross-section data. Disag- 

gregation tends to raise the importance of “accidental” factors and thus lower 

R? (or I’). 

4.3. Coefficient Estimates 

Rather than display all the coefficients for models (4.2) and (4.3) we will look 

only at education and age to see to what extent these dimensions can be treated as 

quantitative. 

The education coefficients are shown in Table E below. Both sets of coefficients 

are in reasonably close agreement and exhibit the expected pattern of getting 

TABLE E 

EDUCATION COEFFICIENTS FOR MODELS (4.2) AND (4.3) 

Equation 
Notation — Interpretation 

(4.2) (4.3) 

prt + 1.026 + 1.038 Poverty coefficient for heads with 
less than 8th grade education. 

pre + 0.327 +0.274 Poverty coefficient for heads who 
completed the 8th grade. 

pret 0 0 Coefficient for those with some high 
school (set to zero by definition). 

Bre — 0.706 — 0.634 Coefficient for High School Graduates. 

pre — 1.123 — 1.018 Coefficient for heads who completed 
one or more years of college. 

smaller (algebraically) as the head’s education increases. What is not clear is how 

we can incorporate the actual values for highest grade completed in explaining the 

relationship to poverty. However, if attention is confined to the rank order of the 

classifications then a fairly satisfactory model for the poverty—education interaction 

is given by 

(4.4) BEE = B(k — 3) for k = 1,..., 5. 

Whether one would actually resort to (4.4) as a summarization device is open to 

question but it does point up the fact that education is an ordinal rather than an 

interval-scaled variable. (After all it is simply not true that the difference between 

an eleventh and twelfth grade education is the same as the difference between 

completing the tenth and eleventh grades.) 

Chart A displays the age-sex—poverty coefficients graphed against the middle 

of the age bracket to which they apply. In every case the coefficients for female- 

headed families are larger than those for families headed by a male. The (log) odds 

of being poor seem to decline with age in a regular (almost linear) fashion for 

female-headed families. This pattern is strikingly similar for (4.2) and (4.3), perhaps 

due to the infrequency with which female heads work year-round full-time. 
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CHART A 

AGE-SEX COEFFICIENTS FOR (4.2) AND (4.3) 

Coefficients for (4.2) 

Females 

Value 
of = + + 4 70+ ee 

Coefficient 30 40 50 60 

Males 

aia 

Coefficients for (4.3) 

+2.00 4 

Females 

+1.00 + 

Value 
of + 4 4 470+ 

Coefficient 30 40 50 6 

eR is Hn ANS 

-1,00 - 

AGE OF HEAD 

For male-headed families, the age—poverty coefficients are affected not only 

by the head’s labor force participation and earnings which tend to grow until 

middle life but also by contributions to the family income of working wives. 

4.4. Combining Tables 

In order to incorporate race and work experience together in a logit model with 

poverty, age-sex and education, all six dimensions must be cross-classified. As we 

have already mentioned, such a 6-way table is not available. However there is an 

option short of rerunning the survey data tapes which can be employed to create 
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the needed tabulation. What will be done is to use the published marginals to 

obtain a fitted version of the table sought. Obviously such a procedure will be 

satisfactory only under certain assumptions. 

For the particular example at hand three 5-way marginals were available—the 

two we have been discussing and a table crossing age, sex, race, and work experience 

of the head with the family’s poverty status [25 (81)]. These three tables were then 

incorporated as marginals in the usual iterative fitting process to produce the 

needed overall table. 

The model 

(4.5) P ixme = In { p(Ljkmr)/p(2jkmr)} 

= Bi + BY + Bik + Bim + Bie 

was then derived from the constructed table with the value of the relative information 

being J? = 94.3 percent. 

Implicit in the way we created the overall table is the assumption that the 

relationship between poverty and the other factors is simple enough to be ad- 

equately mirrored in the three marginals we possess when taken together. While 

the estimates of (4.5) are not themselves affected by the validity of this assumption, 

we may be mislead as to how good a summary the model represents. After all in 

the overall fitting process some smoothing takes place which necessarily reduces the 

amount of residual error. Thus J? as computed above should be considered only 

an upper bound, although in this case one may guess that it does not overestimate 

the true value by very much. 

A second assumption is made by the procedure just outlined. Not only are 

some poverty relationships disregarded but there are also interrelationships 

among the other factors which are ignored. In particular, the race-work exper- 

ience—education interaction is treated as if it were zero. Table F illustrates the 

effect on the poverty coefficients of different assumptions about how the nonpoverty 

factors vary. The first column provides the greatest possible interaction given the 

way the overall table was constructed. Column two was derived by letting the 

nonpoverty factors interact in sets of three (with the exception already noted). The 

third column allows the nonpoverty factors to interact only in pairs and the last 

column treats the nonpoverty factors as if they were conditionally independent. 

The agreement between the first two methods (columns one and two) is 

extremely good. Even when the fit is confined just to two-way relationships the 

coefficients are not badly off. In this instance, there does not seem to be much 

sensitivity in our estimates to relationships of order higher than two. As the last 

column of the table demonstrates, however, we cannot ignore interrelationships 

among the nonpoverty factors altogether. 

It might be noted in passing that the coefficients obtained under the assump- 

tion of conditional independence are the same values one would obtain if looking 

at each dimension’s contribution to poverty without regard to how much of the 

association is explained by the joint action of several factors.’ To be specific, 

consider the poverty parameter for blacks in the tables we have examined. The net 

’ The distinction being made here is the same as that between the coefficient of an independent 
variable in a simple or a multiple regression. 
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TABLE F 

POVERTY COEFFICIENTS FOR AGE, Race, SEX, WORK EXPERIENCE AND EDtUCATION OF HEAD COMPUTED 
UsING ALTERNATIVE STANDARDIZATION TECHNIQUE 

Type of Fit (Marginals Employed) 

Coefficients Three 5-Way All Possible All Possible Two-Way Poverty 
Marginals 3-Way Marginals* 2-Way Marginalst Marginals Onlyt+ 

Overall Poverty 
Coefficient — 1.518 — 1.517 — 1.446 — 0.594 

Male Heads: 
25 to 34 years — 0.189 —0.190 — 0.266 — 1.432 
35 to 44 years —0.129 —0.129 — 0.184 — 1.300 
45 to 54 years —0.574 — 0.576 — 0.608 — 1.600 
55 to 64 years — 0.491 — 0.491 —0.551 —1.114 
65 years or older — 0.441 — 0.441 — 0.490 —0.215 

Female Heads: os 
25 to 34 years + 2.068 + 2.067 + 2.021 + 1.572 
35 to 44 years + 1.253 + 1.252 + 1.215 +0.774 
45 to 54 years + 0.665 + 0.664 + 0.644 + 0.303 
55 to 64 years 0.000 0.000 0.000 0.000 
65 years or older — 0.380 —- 0.380 — 0.427 + 0.100 

Education completed 
Less than 8 grades + 0.939 + 0.938 +0.911 + 0.933 
8th grade +0.319 + 0.319 + 0.295 +0.109 
9 to 11 grades 0.000 0.000 0.000 0.000 
12th grade — 0.545 — 0.544 — 0.562 — 0.567 
Some college — 0.879 — 0.880 — 0.903 — 1.392 

Poverty Coefficient 
for Negroes + 0.855 + 0.855 + 0.856 + 1.397 

Poverty Coefficient for 
year-round workers — 1.638 — 1.638 — 1.646 — 2.039 

* Except the work experience—Education—Race marginal. 
+ Age and sex are treated as one dimension. 

overall disadvantage of being black is summarized by the value p{® = + 1.397; 

when the contributions to this differential due to age, sex, education and work 

experience are taker out, the poverty—race relationship declines to BY = +0.855. 

4.5. Some Analytic Issues 

The subject of combining tables is an important one especially when con- 

sideration is given to the nature of the CPS figures we have been using. In govern- 

ment-conducted surveys, like the CPS, traditionally results have been displayed 

only in tabular form with the information on individual schedules not being 

subjected to further examination. For example, published CPS data on the dis- 

tribution of personal income (in Series P-60) exists from 1947 on but only in recent 

years, beginning with 1964, has there been any release by the Census Bureau of the 

complete survey files.* Thus researchers interested in looking at relatively long- 

* Computer files with some information on families (but not individuals) exist from 1959 income 
year on. For both families and persons identifying items have been removed to protect the confidentiality 
of the interview. 
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term shifts in income patterns must employ techniques like those in this paper for 
dealing with grouped data. 

For the earlier years the published tabulations are not extensive enough to 

look at more than two or three variables at a time. Even using the 1970 CPS 

poverty tabulations, which were quite voluminous, one cannot study relationships 

of order higher than that already dealt with above. Without at least two-way tables 

relating all the variables it would seem that the only course open to us is to prepare 

a number of separate (incomplete) analyses. An alternative exists however which 

we can only just mention for reasons of space. This is to standardize the published 

historical material with data taken from more recent surveys. There are inter- 

pretative issues which must be faced in adopting such a procedure but useful 

results can emerge. In biological and medical settings and in demography, 

standardization techniques are widely accepted ; perhaps they have a role to play 

with CPS income data as well. A paper on this subject with some empirical findings 

is in preparation. 

5. BIAS AND MEAN SQUARE ERROR OF MODEL COEFFICIENTS 

Fitting log linear models, as we have tried to show through some examples, 

provides the researcher with a powerful data analysis tool for describing a surveyed 

population. What have not been dealt with are the statistical properties of the 

figures obtained. This section will investigate such properties—in particular, the 

bias and variance, or more precisely mean square error, of the logit model co- 

efficients. 

5.1. Bias in Coefficient Estimates 

In regression analysis, bias in the coefficient estimates is often discussed in 

terms of errors made in specifying the model. Such a context is inappropriate here 

because we are just using the logit fitting process as a device for summarizing 

interrelationships among factors in the finite population from which the observa- 

tions were drawn. Ignoring some of the more complicated interactions, as we have 

said, does not necessarily imply acceptance of the hypothesis that they do not 

exist but rather that a “satisfactory” parsimonious description (as measured by /*) 

can be achieved without them. 

However, even with misspecification error ruled out, the coefficient estimates 

{B’s} are biased. Nonetheless under quite general conditions it can be shown that 

the expected value of f, denoted Ef, is 

l 

7 

where the term O(1/n) goes to zero as the sample size “‘n” gets large. 

Some situations for which (5.1) does not hold may be worth mentioning. If 

the sample elements were not selected with equal probability, then preparing the 

cell proportions using the unweighted counts will lead to a bias which may not 

disappear with increasing sample size. In a stratified cluster design, like the CPS, 
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(5.1) may not apply to small subpopulations concentrated in parts of the country 

(e.g. outside the big cities) which are not included with certainty. The difficulty is 

that the number of sampled areas or PSU’s must be “‘large,”’ not just the number 

of families or individuals in the survey. A final note of caution should be sounded 

in cases where the marginals being used to obtain the model coefficients contain 

one or more cell entries which are close to zero. Two methods for alleviating this 

last type of bias, which is of 0(1/n), will be discussed below. 

Bias Reduction 

One method of bias reduction which is often advocated [e.g. 9: 229-230] 

involves adding a small amount, usually 1/2n, to the original cell proportions 

before fitting the table. Only in one very special case can such a technique be 

shown to be beneficial, namely when all the f’s are assumed nonzero. (The 

assumption of simple random sampling is also required.) In point of fact, adding a 

fixed amount to every cell can actually be harmfu! when fitting models in which some 

of the coefficients are set to zero.” 

A far more general bias reducing procedure is a method called the ““Jackknife,”’ 

by Tukey [19 ; 134], “‘to suggest the broad usefulness of the technique as a substitute 

for specialized tools... , just as the Boy Scout’s trusty tool serves so variedly.” 

To see how the Jackknife can be applied to survey data let us assume that the overa!] 

sample can be divided into “‘r” independent subsamples or replicates each identical 

in design and of size “‘i.”” 

The Jackknifed coefficients are defined by 

- oer 
(5.2) B=-) B 

r ~=1 

with 

(5.3) B, = rp EP nm 1), 

where is the estimator we have been discussing all along and the {B,. are con- 

structed just like B except instead of adding together all “‘r”’ replicates the fit is 

obtained with only r — 1 of them, i.e. by leaving out the kth, k = 1,..., r. Now if 

the 

A ~ T_— 1 2 = 1 
(5.4) Bias {Bp} = — Bias {p,' + 0 2] 

° Adding small amounts to cells is also suggested in the literature on contingency tables for dealing 
with zero cells (e.g. [6]). Zeroes can be a sericus problem in applied work when they are found in the 
marginals one wishes to fit. For example in creating the 6-way table of the previous section there were 
a few zeroes in the 5-way marginals. Arbitrarily a small amount was added to each cell. The analyses 
of the coefficients in Table F shows that in this case the zeroes made very little difference ; however, 
that will not always be true, particularly when there are a great many. It should be recognized that 
when the marginal cell proportions are very small the coefficient estimates can be quite unstable and 
very large samples will be needed to obtain satisfactory results. 
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then 

(5.5) Ep = y Ep, 
1 

r x=1 

r[B + Bias {B}) 

—(r - ofp + —— Bias | +0 | 
r—1 n- 

1 
n2 . 

The CPS is not made up of independent identically-designed subsamples [24], 

so if the Jackknife is to be applied at all certain practical compromises are necessary. 

One way of Jackknifing in the CPS is to divide the overall sample into “replicates” 

on the same lines that are used to create the-eight rotation groups which make up 

each month’s survey. Such subsamples, while identical in design, would not be 

independent. 

Dependence among the replicates makes it impossible for (5.4) to be satisfied ; 

nonetheless, given the nature of the CPS, it can be shown that appreciable reduc- 

tions in the absolute value of the expected bias may still be achieved by Jack- 

knifing, making the extra trouble taken worthwhile (particularly for large tables 

where the average cell size is small). 

A numerical illustration of the Jackknife appears in Table G below. For 

purposes of the example the CPS rotation panels for March, 1971, were considered 

B+0 

TABLE G 

ILLUSTRATIVE JACKKNIFED RACE AND AGE-SEX COEFFICIENTS FOR POVERTY MODEL (3.4) USING 
EIGHT “REPLICATES” 

Age, Sex and Poverty 
Overall Race ———— 

Item Poverty and Males Females Females 
Coefficient Poverty 65+ Under 65 65+ 

Original coefficients, 6 — 2.9496 1.2062 1.1337 1.9521 1.3407 
Jackknife Average, B — 2.9488 1.2077 1.1333 1.9504 1.3358 
Individual values: 
B; — 3.1135 1.4468 1.2519 1.9730 1.2826 
B; — 2.8936 1.0256 1.1639 1.9491 1.7346 
Bs ~2.9454 1.1881 0.9913 2.0197 1.3157 
Bs — 2.9314 1.2061 1.0792 2.0339 1.4311 
B: — 2.9554 1.2116 0.9402 1.9378 1.4389 
B, — 2.9054 1.0705 1.1705 1.8225 1.3611 
B: — 2.8881 1.2555 1.2168 1.8703 1.0255 
Bs — 2.9579 1.2574 1.2529 1.9965 1.0968 

Note : For the sake of convenience the coefficients {p,} were constructed using the CPS rotation 
panels rather than subsamples selected to be identical. Although all the panels start out the same in 
terms of the way they are drawn, at any one survey point each rotation group will have been interviewed 
a different number of times. Since re-interviewing has some effect on response patterns, using the panels 
as “replicates” would not be desirable in genera!. Technically (see, for example [22]), each repiicate 
should be weighted using the same scheme that is applied to the overall sample. This refinement was 
also skipped since the figures are only meant to be illustrative. Instead the estimates were prepared 
simply using the already existing weights. 

177 



to be identically designed (dependent) replicates and Jackknifed poverty coeffi- 

cients for Table A were derived. Although some of the fine points have been ignored 

(as the note to Table G makes clear), the figures shown may be of interest. 

There are onlv siigat differences between our original estimates and the 

Jackknife average, something one could almost have predicted ahead of time given 

the smallness of the table and the size of the sample. The differences also exhibit the 

expected pattern of being larger for coefficients based on marginals which are 

smaller. 

5.3. Variance of Coefficient Estimates 

A convenient way of dealing with any study’s variances {v7} is to relate them 

to the variances {a7} one would have obtained from a sample random sample (with 

replacement) of exactly the same size. This can be done using the expression 

(5.6) v? = 6,07 

where, following Kish [15:258], the {6;' are called “design effects.” 

Typically in a cluster sample the {6;} are larger than one. For example, in the 

CPS when looking at proportions the estimated simple random sampling standard 

errors sometimes understate the actual standard errors by as much as 50 percent 

or more. The variances of logit coefficients are related to the variances of the table’s 

cell proportions. Thus, unless some adjustment is made to the sample random 

sampling estimates normally computed, confidence interval statements will be off. 

(For the 1970: poverty tabulations analyzed in this paper the square root of the 

design effect for proportions averaged about ,/6 = 1.23.) 

5.4. Calculating Variances 

The s‘andard survey approach to the variance of a nonlinear function, like B, 

involves the use of a Taylor expansion. One either implicitly or explicitly depends 

on being able to express the statistic, to a close approximation, as a linear com- 

bination of sample means and totals. Variance calculations based on replication or 

jackknifing are comparatively easy since they only implicitly rely on the Taylor 

Series results. Procedures which require that the expansion be exhibited explicitly 

will not be discussed in this paper since they are too difficult to apply routinely as 

part of the analysis of a contingency table. Instead we will briefly deal with three 

“short-cut” techniques which, as applied to the CPS, yield approximations good 

enough for most purposes. 

The first and best known “short-cut” method of estimating variances involves 

replication. If the overall sample is made up of “‘r’’ independent identically designed 

subsamples, one can obtain an estimate of the variance—covariance matrix of B by 

deriving the coefficients §, for each replicate and using 

: ~~ l oa = = ~ 
(5.7) V(p) = —_ > (B, — B.)(B, — B.)’ 

rr — 1),24 

where f. is the average of the replicate values, ie. 

- P=. te 
(5.8) B.=- > f,. 

r= 
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A related method which also produces an asymptotically unbiased variance 

estimator of V(B) is to use the Jackknife values 6, in the calculating formula 

(5.9) 7B) = = y 6.8, - Ab 
k=1 

where 

(5.10) . => b.. 
rai 

Both of these methods suffer from the disadvantage that the variance of the 

variance estimator can be large. This, of course, is the price one pays for ease of 

computation. Of the two, the Jackknife is to be preferred because it will be less 

sensitive to the problem of zero cells which can arise when looking at the sample 

replicate by replicate. 

As we have seen, since the CPS cannot be divided into independent identically 

designed subsamples the replicate and Jackknife variance estimators are not 

strictly appropriate. However, if the eight rotation panels are treated as independent, 

the resulting standard errors calculated are underestimates. For most statistics, 

except those based heavily on persons living outside metropolitan areas, an upward 

adjustment in the standard deviation on the order of 6 percent is required. For 

nonmetropolitan area statistics somewhat larger correction factors should be 

used.'° 

For researchers using only the published CPS tables, perhaps the best that 

can be done is to calculate the simple random sampling variance } and then 

correct it with an adjustment factor derived from the standard error tables which 

accompany all CPS reports. y is obtained [18] by first calculating the quantity 

(X'TX)~' where T is a diagonal matrix of the table’s weighted cell counts as 

fitted under the model and X is the array of independent factors in equation (2.4). 

Dropping the first row and column of (X'TX)~', one then obtains W times y 

where “W” is the average sampling weight. 

For proportions, the published CPS standard error tables are calculated using 

the expression 

b 1/2 

— PL — a (5.11) Standard Error of p = 1; 

where Y is the estimated total number of persons or families in the subpopulation 

(e.g. black males) to which the proportion applies. “*b” plays a role similar to the 

design effect and in fact 

b (b/W) 6 
5.12 — = — = -, ( ) Y (YW) 7 

'° CPS tapes can be bought from the Census Bureau that allow one to calculate variances based 
on the collapsed stratum technique. Collapsing strata, however, often leads to an overestimate of the 
variance. See [1], [11] and [21] for details and a discussion of still other methods. 
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For example, the value of b = 2,074 was used to create generalized standard error 

estimates for proportions of families in the 1970 CPS report [25 (81)]. Since the 

average weight for families was 1,372, the overall design effect for proportions is 

6 = 1.5. 

The work of Kish and Frankel [16] suggests that it would be unwise to simply 

apply the “6” appropriate for proportions to } . For the usual regression para- 

meters, Kish found that, on the average, the increase in the standard error for a 

complex design was 6 percent or about one-third of that for sample means 

(17 percent). Using this result as a guide, the effect for proportions (,/6 = 1.23) 

in the 1970 CPS report was reduced to 1.00 + (0.23)(;%) = 1.08 when calculating 

the standard errors of the f’s in Table H. 

Table H compares standard error estimates for the CPS poverty coefficients 

obtained as part of our analysis of Tabie A. All three approaches are in quite 

close agreement, considering the rough nature of the approximations employed. 

Further work on the validity of these methods is needed however, and the reader 

is cautioned to take the results in Table H only as illustrative. 

TABLE H 

ILLUSTRATIVE STANDARD ERROR ESTIMATES: 1970 RACE AND AGE-SEX COEFFICIENTS FOR POVERTY 
MODEL (3.4) 

Age, Sex, and Poverty 
Type of Overall Race 

Standard Error Poverty and Males Females Females 
Estimate Coefficient Poverty 65+ Under 65 65+ 

Replicate 0.0285 0.0490 0.0488 0.0489 0.0894 
Jackknife 0.0269 0.0509 0.0449 0.0501 0.0807 
Adjusting Simple 
Random Sampling 0.0288 0.0478 0.0526 0.0482 0.1052 

Note: Replicate and Jackknife estimators were calculated by treating the 8 CPS rotation panels 
as independent. A correction factor was then applied as is explained in the text. The simple random 
sampling errors were adjusted by 1.08 before being shown. See the note to Table G for furtuer limitations 
on these results. 

6. COMPUTER PROGRAMS AND BIBLIOGRAPHICAL NOTES 

The models fit in this paper have a simple dummy variable structure. However 

the computer programs employed are applicable to more complicated para- 

meterizations [4]. There is also no necessity, for instance, to look only at logit 

models where the “‘dependent”’ dimension (in our case poverty) is dichotomous ; 

polychotomous dependent variables present no new problems [9 : 238]. 

6.1. Computer Programs 

At the Office of Economic Opportunity (OEO) three contingency table 

programs for fitting log linear models are in use. Two of these are for batch process- 

ing on an IBM 360/50 and the third is an APL program. All were developed at the 

George Washington University Statistics Department. C. Terence Ireland wrote 
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the first of these programs—CONTAB II [12]. A main feature of this algorithm is 

that there is practically no limit (except CORE) as to the size of the table which can 

be analyzed. Marian Fisher modified CONTAB II to increase its flexibility still 

further. Her program CONTAB MOD [7] allows the researcher to fit genera! 

models, not just dummy variable ones. Also marginal totals can be introduced 

from outside the sample. In addition to these, Ireland prepared an APL contin- 

gency table package which has since been augmented at the Office of Economic 

Opportunity by H. Lock Oh. As yet the APL program is restricted to tables of less 

than 500 cells. 
Future refinements in some or all of these programs are anticipated. In 

particular, we are looking at the possibility of modifying the iteration scheme so 

that it can deal efficiently with stratified designs where the probabilities of selection 

vary considerably from stratum to stratum. So long as the sampling weights are 

used, the present iterative procedure gives asymptotically unbiased coefficients ; 

but, if the weights differ widely from cell to cell, competitive techniques exist which 

can yield estimates having smaller variances [14]. Since the CPS begins as a 

“self-weighting” sample no modification of the standard fitting procedure was 

deemed necessary for the work presented in this paper. 

6.2. Bibliographical Notes and Acknowledgements 

Lack of space has iead us to slight many aspects of log-linear model fitting. 

For example much more could be said about methods for hypothesis testing with 

survey data, e.g. [20], and their implications. We have only dealt with this indirectly 

by looking at the variances of a model’s coefficients. The implicit assumption has 

been made that approximate normal theory confidence intervals for the coeffi- 

cients can be constructed using the estimated standard errors (once corrected for 

design effects). Another important part of the theory which needs to be considered 

is the examination of residuals and the suppression of outliers. [13]. 

The title of this paper comes in part from a 1969 article by Goodman [8] 

“How to ransack social mobility tables and other kinds of cross-classificatior 

tables.”” Ransacking seemed just too good a word not to use again, especially since 

it so aptly conjures up the kind of hunting for relationships that researchers must 

engage in if they hope to tap the riches of data like that obtained from the Current 

Population Survey. There are, of course, elements of subjectivity in such a search. 

It was because of this subjectivity that the statistic /* was used. Unlike R?, it is 

linked closely with the fitting process and for this reason to be preferred. A full 

discussion of the development and properties of the class of measures of which /? 

is a member can be found in Goodman [e.g., 9: 246; 10: 42-44). 

The nature of an applied paper is to take many results for granted. Such is the 

case here. Heavy reliance has been placed on ideas to be found in Goodman [9] 

and Kullback [18]. The writer has also profited at various points from conver- 

sations with Dr. Ireland and Dr. Kullback. Editorial and other assistance were 

provided by Wray Smith, Gary Liberson and Lock Oh of OEO and Easley Hoy of 

the Census Bureau. ; 
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