This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Trends and Cycles in Capital Formation by United States Railroads, 1970-1950

Volume Author/Editor: Melville J. Ulmer

Volume Publisher: NBER

Volume ISBN: 0-87014-357-3

Volume URL: http://www.nber.org/books/ulme54-1

Publication Date: 1954

Chapter Title: Long Cycles
Chapter Author: Melville J. Ulmer

Chapter URL: http://www.nber.org/chapters/c9504

Chapter pages in book: (p. 25-36)

3

Long Cycles

Railroad investment proceeded in towering waves, as may be seen in Charts 2 and 4, and the impact upon the economy of these expansions and contractions, especially in the carlier years when railroad investments formed so large a proportion of total investment in the economy must have been of prime significance. So pronounced are these waves - ceven in the annual series shown in the charts - that their identification would seem to present little difficulty. Troughs appear in the

chart 7

Gross ond Net Capital Formation, U. S. Railroads
Nine-Year Moving Averages, 1874-1946

Source: Estimotes to be published in lorthcoming monograph

Peak Trough $\begin{gathered}\text { Termi } \\ \text { nal }\end{gathered}$

* Initial date rather than peak.
Source: Table rather than peak.
Dates, Duration, and Amplitude of Long Cycles in Gross Capital Formation
Based on Five-Year Moving Averages, $1872-1948$
IN RELATTVES*

	¢0.
國鱼	

mid-1870's, the mid-1880's, the mid- or late 1890's, the ead of the seond decade of the twentieth contury, and again in the carly thities.

When the capital formation serics are expressed in five-year moving averages (as in the solid! lines of Charts 2 and 4) or in mine-year moving averagcs (as in Chart 7), there is a tendency toward diminution, in particular, of the trough of the mid-1880's. In the light of its smaller amplitude and duration, when so expressed, a question may be raised as to wheiher this fluctuation is in basic character similar to that of the other troughs roughly identificd above. This question cannot be answered definitely, for the distinction between long cycles and other fluctuations appearing in our series must perforce be one of degrec. In each case their peaks coincide with or follow at a fairly moderate distance downturns in general business activity of unusual severity. ${ }^{10}$ However, the trough of the mid-1830's is not quite so pronounced as that of the other long eycles but is steeper by a considerable margin than the dips found in other fluctuations. Similarly, the length of the swing from the mid-1870's to the mid-1880's is somewhat shorter than that of the other long cycles but longer than that of the other fluctuations. Finally, the "long" cycle from the mid-1870's to the mid-1880's roughly synchronizes with a single business cycle movement, whereas all the other long cycles embrace more than one such fluctuation. Tentatively, this "questionable" long cycle will be included in our measures as such, though sight will not be lost of the possible effects upon our conclusions which might accruc from its exclusion.

In 'Tables 4 and 5 are provided the dates, duration, and the amplitudes of these long cycles in net and gross capital formation respectively, as derived from the five-ycar moving averages of these serics. The dates in the two series differ at only one tuming point, the peak in the third cycle which occurred in 1909 in net capital formation and 1911 in gross. The lengths of the cycles vary widely from 10 to 23 years - a range which would be reduced somewhat if the trough at 1886 had been ignored. Howeyer, the striking feature of these long

[^0]swings in gencral is the extent and vigor of the movenents involved, as measured in columns 10-15 inclusive in each of the two tables.

The long-cycle relatives appearing in columns 7-9 in the upper panel of Table 5 represent investment at each of these dates expressed as a per cent of the average annual investment during the full course of the cycles in which the turning point falls. The measures of amplitude in columns $10-12$ of the upper panel are derived from these relatives by subtraction. On the average, expansion in gross capital formation involved a rise of 84 per cent of the average annual investment during a cycle, contractions a fall of the same relative amount; rises and falls together involved a gross movement of nearly 170 per cent. Such relative measures are not given for net investment siace the cxistence of negative as well as positive values in this series would seriously limit their meaning.

In Table 4 and in the lower panel of Table 5 the amplitudes and rates of change are expressed in millions of 1929 dollars. From these it will be observed that there has been some tendency for the amplitude of expansions to decline since the giant rise of 1897-1909 and for the amplitude of contractions since 1882 to increase, though neither movement has been perfectly regular. This behavior is, of course, a reflection of the secular trend in investment and of the underlying factors, including the trend in output, noted in the preceding scction. Thus until 1918 the rise of railroad traffic had been swift and almost without material interruption, as railroads grew to dominance in United States transportation. During the following decade the volume of traffic remained at a virtual plateau, declined sharply in the thirties and was not to exceed by any appreciable margin its 1918 level until the midst of World War II. Lacking the former buoyancy of steadily increasing business, the advance in capital formation which began in 1921 was relatively modest and short-lived, while the subsequent decline was sharp, vigorous, and relatively lengthy. Finally, the recovery which began in 1934 was hesitant, procceding at a slower pace than in any previous cycle, as column 13 of Table 4 and the lower panel of Table 5 shows.

An alternative approach to the analysis of the long cycles is presented in Tables 6 and 7. Here, the measures presented are derived from nineyear moving averages of net and gross capital formation, respectively,

 気き

per year amplitude of		
Rise	Fall	Rise ©
Fall		
(13)	(14)	(15)
18.2	33.1	26.6
62.9	64.2	63.5
37.9	58.9	49.0
21.6	\ldots.	\ldots.
35.2	52.1	46.4

table 7
Dates, Duration, and Amplitude of Long Cycles in Gross Capital Formation
Based on Nine-Year Moving Averages, 1876.1946 in relatives
long-cycle values at

Termi| AMPlitude of | | | |
| :---: | :---: | ---: | :---: |
| Rise | Fail | Rise \mathcal{E} | |
| (10) | (11) | (12) | |
| 53 | 66 | 119 | |
| 99 | 68 | 167 | |
| 46 | 84 | 130 | |
| 59 | \ldots. | \ldots. | |
| 64 | 73 | 139 | |
| | | | |
| 273 | 341 | 614 | |
| 729 | 499 | 1,228 | |
| 285 | 519 | 804 | |
| 267 | \ldots. | \ldots. | |
| 389 | 453 | 882 | |

between 1884 and 1890
between 1884 and
b
Terminal date rather than peak. Source: Forthcoming monograph nancing by public utilities.
ignored
$1876-1899$ was determined by smoothing the plotted data

Conformity of Railroad Net Capital Formation to Business Cycles, 1910-1949
average chainge per year
during contraction
Minus That duriog
Preceding Succeeding
Expansion Expansion

$$
\begin{array}{cc}
\text { Expansion } & \text { Expanszon } \\
(10) & (11)
\end{array}
$$

$$
\begin{gathered}
0 \\
0 \\
\cdots \\
\infty \\
\hline
\end{gathered} \infty
$$

$$
\begin{gathered}
0 \\
i \\
i
\end{gathered}
$$

Cin en

$$
-148.1
$$

A

$$
\begin{array}{r}
\ldots . . \\
-60.0 \\
-31.2 \\
-178.0
\end{array}
$$

$$
\begin{array}{r}
-133.5 \\
-18.0
\end{array}
$$

$$
\begin{array}{r}
-18.0 \\
-150.3
\end{array}
$$

$$
\mathfrak{c}
$$

$$
-167.0
$$

$$
\begin{array}{r}
-145.6 \\
60.9
\end{array}
$$

$$
{ }_{0}^{0}
$$ Expansions

$$
\underset{-1}{\cdots}
$$

$$
\begin{array}{r}
+28.1 \\
1.12 .7
\end{array}
$$

$$
\vdots N+-N \sim \text { Non oo }
$$

$$
\begin{gathered}
284040 \\
1000_{L}^{(i)}
\end{gathered}
$$ 33

60
100
56
78

- Based on National Bureau of Economic Rescarch reference chronology. Index of Conformity to Reference -
 Dates of
p.eference. CyC Troug
(1)
\ldots
1911
1914
1919
1921
1924
1927
1932
1938
1946

Contractions
REFERENCE EXPANSION

$$
\begin{aligned}
& 2 l \\
& g e \\
& \cdots
\end{aligned}
$$

$$
\begin{array}{r}
\frac{4}{\cdots} \\
-1,635 \\
+303 \\
+187 \\
-12 \\
+44 \\
+189 \\
+243 \\
+346 \\
+34 \\
\hline 352
\end{array}
$$

$$
\begin{aligned}
& \text { Average } \\
& \text { Change } \\
& \text { per Year } \\
& (6)
\end{aligned}
$$

$$
-408.8
$$

$$
\begin{array}{r}
\cdots \\
-2.0 \\
-408.8
\end{array}
$$

$$
+93.5
$$

$$
\begin{array}{r}
-6.0 \\
+22.0 \\
+37.8 \\
+40.5 \\
+173.0 \\
+\quad+28.1
\end{array}
$$

Total Inter-

$$
\begin{array}{cc}
\text { Change } & \text { Years } \\
(7) & (8)
\end{array}
$$

Source: Forthcoming monograph on capital formation and firancing by public utilitics.

9

 TABLE 9Conformity of Railroad Gross Capital Formation to Business Cycles, 1910-1949 REFERENCE EXPANSION Total valin Change Change Years perYear (9)
-9.0 -32.0 0
$1+$
$1+$
1 +12.0
-14.0
-10.0
-33.0
-103.0
-7.0
+3.0
-21.9 $\frac{\pi}{9}$

$$
\begin{array}{rr}
\ldots \ldots & 1910 \\
1911 & 1913 \\
1914 & 1918 \\
1919 & 1920 \\
1921 & 1923 \\
1924 & 1926 \\
1927 & 1929 \\
1932 & 1937 \\
1938 & 1944 \\
1946 & 1948
\end{array}
$$ average chancif per year during Conjraction minus that during uotsundx

uonsuvdxG
suipajong suppoorid $\begin{array}{cc}\text { Expansion } & \text { Expansion } \\ 10)\end{array}$ 11.0
-9.0 0
0
1
1
1

 --15.5 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 1 |
| 1 |
| 1 | \qquad $\stackrel{+}{\underset{1}{i}}$ $\stackrel{+}{8}$ (10)

\ldots
-31.9
-12.2
-20.0
-46.0
-7.0
-38.5
-130.2
-13.5
-25.0
-36.0
23.7 Dates of
Reference cycles.
Trough \quad Peak \quad Trough $\begin{array}{cc}\text { Total val in } & \text { phange } \\ \text { Change Years } & \text { pear }\end{array}$ - - - - - - - ghange in reference cycle relatives during $\begin{array}{lr}\text { Index of Conformity to Reference - } & \\ \text { Expansions } & 66 \\ \text { Contractions } & 60 \\ \text { Cycles, trough to trough } & 100 \\ \text { Cycles, peak to peak } & 100 \\ \text { Cycles, both ways } & 100 \\ \text { A Based on National Bureau of Economic Research reference chronology. } \\ \text { Source: Forthcoming monograph on capital formation and financing by public utilities. }\end{array}$ Average
Avcrage

$$
\begin{gathered}
\ldots . . \\
2
\end{gathered}
$$ -18.2 Average

Change
her Year
(6)
\ldots
+0.1
-13.8
+32.0
+32.0
-3.0
+5.5
+27.2
+6.5
+28.0
12.7
13.8

$$
\begin{array}{ll}
1914 & +0.2 \\
1919 & -5.5 \\
1921 & +32 \\
1924 & +64 \\
1927 & -6 \\
1932 & +11 \\
1938 & +13.6 \\
1946 & +39 \\
1949 & +56
\end{array}
$$

লッ in8888 datrs of (8)
i Average deviation
and the shallowest trough of the long cycles -- that in the mid-1880's - has been ignored. The general observations made above remain in the main intact. The amplitude of fluctuations is still substantial when viewed in this framework, and the secular tendency toward increasing contractions and declining (since the rise of 1899-1910) expansions is even more regular. The average length of cycles is of course increased - to nearly twenty years - while the range in duration is very substantially reduced.

Long Cycles and Business Cycles

It has been asserted above that long cycles are the "dominating" movements in the record of railroad investment. In one sense this is visually evident from Charts 2 and 4 ; the amplitude of long swings obviously exceeds that of other fluctuations. It is of interest, however, to investigate explicitly the extent to which long cycles condition the pattern of those fluctuations in railroad investment that mirror business cycles. This question will be explored only for the period subsequent to 1909, when long cycles were less vigorous, because of the more limited reliability of the carlier annual figures.

In the first three columns of Tables 8 and 9 are listed the reference dates, as fixed by the National Bureau of Economic Research, of the nine and onc-half business cycles that occur in the 1910-1950 period. The reference cycle relatives that underlie the computations in columns. 4-9 are obtained by expressing railroad capital formation in a given year as a per cent of the annual average capital formation during the reference cycle in which it occurs. The final results of the computations in all columns are summarized in the indexes of conformity given in the lower portions of the tables.

In accord with the standard procedure of the National Burcau of Economic Research the index of conformity to expansion was obtained by entering +100 for each positive figure in column 6, and -100 for each negative figure, and computing the algebraic average of these grades. A similar procedure, with the signs of grades reversed, was employed for the index of conformity to contractions using the data of column 9. The indexes of conformity to cycles from trough to trough and from peak to peak were obtained from columns 10 and

11 respectively. In these cases +100 was entered for each negative sign, -100 for each positive sign, and algebraic averages computed. The index of conformity to cycles, both ways, is the weighted average of the two preceding indexes.

It is clear from these indexes that railroad capital formation in every case mirrored the changing currents of general business over the course of reference cycles, including even those noted for their mildness and brief duration. The index of conformity to business cycles as wholes is perfect for railroad gross capital formation and very high for railroad net capital formation. On the other hand, the analysis leaves little doubt that long cycles dominate the railroad investinent pattern. For when a long-cycle expansion was under way, conformity to business cycles was often reflected simply in a slower rise during reference cycle contraction than in reference cycle expansion rather than in an actual decline in the former phase. Similarly, when the long cycle was in contraction, there was a tendency for investment to fall more slowly during reference cycle expansions rather than to increase. This is reflected in the relatively low indexes of conformity to reference cycle expansions and contractions taken separately.

Thus during the two long-cycle expansions in this period - from 1920 to 1925 and from 1934 to 1948 - there wcre four business cycle expansions. In each one, railroad investment rose. On the other hand, in these same intervals there were five business cycle contractions, and in only two of these five did railroad investment decline. There is a corresponding phenomenon on the downside of capital formation long cycles. There were two such contractions in this period -- from 1909 to 1920 and from 1925 to 1934. These intervals embraced five business cycle contractions and five expansions. In all of the contractions capital formation declined, but in only two of the five expansions did it increase. ${ }^{11}$
${ }^{11}$ As might be expected from the conformity indexcs above, there is a close relationship between the specific (short-term) cycles of railroad investrnent and business cycles. It will be noted from the turning points listed below that each reference cycle is, in fact, matched by a specific cycle in capital formation and that except for the years of World War II there is a pronounced tendency for railroad capital formation to coincide with reference peaks and to lag one year behind reference troughs. Omitting the cycle from 1938 to 1946, the average lag of net capital formation at the trough is 0.89 , in years. At the peak there is a very small average lag of 0.11 years.
(Continued on page 36)

Of course it must be acknowledged at once that had monthly data been ayailable for this analysis, it might have developed that railroad investment had actually declined during every business cycle contraction and had similarly increased during every business cycle expansion. Nevertheless, the nature of the systematic differences in the behavior of the annual data, as described above, attests to significant variations in the amplitude and duration of such monthly fluctuations and to the power of long swings in altering the pattern of these shorter cycles.

The turning points of the specific cycles are as follows:
Specific Cycles of Railroad Capital Formation

Trough	Peak	Trough
1912	1910	1912
1915	1913	1915
1919	1917	1919
1922	1921	1929
1925	1923	1925
1928	1926	1928
1933	$1929-30$	$!933$
1939	1937	1939
1943	1942	1943
is the pert	1949	1950 (tentative)

The year 1929 is the peak for net capital formation and the year 1930 (tentative) for gross capital iormation. All other peaks and troughs are the same for both scrics.

[^0]: ${ }^{15}$ The downturns referred to culminated in the six depressions which have been rated by the National Bureau of Economic Research as the most severe on record - those with troughs in 1878, 1885, 1894, 1908, 1920, and 1932. See Arthur F. Burns and Wesley C. Mitchell, Measuring Business C.icles (National Bureau of Economic Research, 1946), pp. 78, 455, 46 .

