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TRENDS IN THE THEORY OF DECISION-MAKING 

IN LARGE SYSTEMS! 

BY PRAVIN VARAIYA 

This paper summarizes the literature dealing with the mathematical aspect of decision-making by a set 
of agents each of whom has partial information and partial control. All the agents have the same utility 
function. The literature is classified into 3 classes : team theory, systems whose prototype is the competitive 
economy, and systems arranged in a hierarchy. An evaluation of the literature is attempted 

1. INTRODUCTION AND SUMMARY 

This paper is a brief summary of the literature dealing with the theoretical and 

mathematical aspects of decision-making in large systems. There is also an attempt 

to evaluate the work done so far, and to guess the potential of different lines of 

investigation. We apologize in advance for any omissions, only some of which are 

forced by considerations of space. 

The generally agreed-upon framework for decision theory consists of the 

following: 

1. a set of agents (decision-makers, controllers, actors), 

2. for each agent a preference ordering (utility function, performance criterion, 

pay-off function, reward function), 

3. for each agent a set of permissible decisions (actions), 

4. each agent makes some observation of the environment (state-of-the- 

world) in which the agent is operating, we call the mapping from the state-of-the- 

world to the various observations the information structure, 

5. finally each agent has a description or model of the system i.e., the way in 

which the state-of-the-world and the combined actions of the agent affect 

consequences. 

Each agent’s behavior is expressed by a decision rule which is a specification 

of the action to be taken when a certain observation is made. We borrow from 

Marschak and Radner [1] the term organizational form to denote a particular 

choice of information structure and set of decision rules, one for each agent. 

Most of the literature with which we are concerned assumes as exogenous to the 

decision problem being studied the set of agents, their preferences, and the permis- 

sible decisions. The focus of the study is the analysis and design of “good” 

organizational forms for one of two cases: 
A. many (>2) agents with the same preference ordering, 

B. many agents each with a different preference ordering. 

The situation envisioned in case B is usually called a game, and we do not deal 

with it further. There is a third possibility, a single agent with more than one 

preference ordering. This can arise in dealing with questions of incentives, or with 

' Research supported in part by the U.S. Naval Electronics Command, Contract N00039-71-C- 
0255 and by a Fellowship from the John Simon Guggenheim Foundation. 
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trying to find decision rules for a public agency. We do not deal with this case 

either. 

The literature dealing with case A can be classified into three categories: 

(a) team theory, 

(b) organizational forms whose prototype is the competitive economic 

system, and 

(c) organizational forms arranged in a hierarchy. 

This classification is guided by the differences in areas of application and in the 

mathematical techniques used. Thus team theory is the most abstract and formal 

treatment of our subject. The literature classified under class (b) deal with decision 

problems whose structures are specified in considerable detail. The last class 

contains little abstract theory and is mostly a collection of “‘case”’ studies. 

2. THEORY OF TEAMS 

A static team? may be formalized as follows. Let S be the set of states-of-the- 

world. Let Y, be the space of observations and ;:S > Y, the mapping which 

generates agent i’s observation, i = 1,..., N. Thusy = (y,,..., my) is the informa- 

tion structure. For each i let D; be the set of permissible decisions so that the team’s 

decision rule is a function 6 = (6,,..., 6) where 6; = Y;, > D; is i’s decision rule. 

An organizational form is a pair (yn, 6). Let p(s), se S, be the team’s common 

subjective probability’ distribution concerning which state-of-the-world will 

occur. From the model of the system and the team’s preference ordering one 

arrives in the usual way at a function u(s, d) = u(s,d,,..., dy), such that the team’s 

objective is to maximize the expected utility 

(1) Q\(n, 6; P, u) = 2 p(s)u(s, 5,(n,(s)), ve OG On(ny(s))). 

Typically the entire state S is not relevant to u. Rather, there is a (many-to-one) 

function z = C(s) such that u(s, d) = w(C(s), d) for a suitable function w, and then 

(1) can be rewritten as (2). 

(2) 2(7,5;P,«) = ¥) p(s)a(C(s), 5,(1,(5)), - - - , Sv(ny(s))). 
seS 

_ > AZ,55(Y1),---,n(Yn))P(C = 2,04 = V45---54n = Yn) 
ZxY;*...*%Y 

What sorts of questions can be raised in this formal set-up? At the simplest 

level, assuming n, P, w fixed, we can search for a 6 which maximizes Q(n, - , P, w), 

and then there is nothing conceptually different which is not present in the case of 

a single agent. Let us call such a 6 an optimal rule. A more interesting concept is that 

of a person-by-person satisfactory (pbps) decision rule which is any rule 5* such that 

(3) O(n, dt... dF... 5%; P, cw) > A(n, 6% ...5,... 5%, P, w) for all 6, and all i. 

2 The main reference is [1], which contains an almost exhaustive bibliography. 
3 The common subjective probability is crucial for the theory. Thus many important considera- 

tions, arising from differing expectations, cannot be formulated within this framework. 
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In words, 6* is pbps if a unilateral decision change on the part of any agent will not . 

increase the team’s expected utility. If S is finite, then obvious convexity and differ- 

entiability conditions will imply that every pbps rule is optimal. Another result is 

that if p is a Gaussian distribution, if y is linear, and if u is a concave quadratic 

form, then there are linear pbps rules which are optimal.* 

But these results are of mild interest only. There seem to be three potential 

useful directions. The first involves considering the information structure y as 

variable. Let 

Vin; P,w) = Max Q(n, 6; P, w) 
é 

be the value of n (relative to (P, w)). One may then seek to maximize V(- ; P, w) over 

a suitable class, or better yet, try to maximize 

Vin; P,@) — C(n) 

where C(y) is the “‘cost”’ of the information structure y. But both of these questions 

turn out to be technically not well-posed. The appropriate questions are of the 

following kind. Given two information structures n, n’ find conditions such that 

Vin; P,w) > Vin’; P’,w) for all w. 

For the case of a single agent there is an extensive literature* addressed to these 

sorts of issues since they arise in statistical decision theory, information theory, and 

economics. Extensions of some of these results to the case of teams appear to be 

quite straightforward. However, the form of the set of all decision rules is such that 

extensions of most of these results will be difficult. 

In many situations the agents of the team take their decisions sequentially 

rather than simultaneously. Further, the observation made by an agent depends 

upon the actions taken by other agents. Such a situation cannot be described as a 

static team. Consider the following simple formulation.® Let S, Y,,D;,u be as 

before. However n; is now of the form 

(4) y, = nfs; a’) 

where d' = (d,,...,d,-;,4;4,,---,dy). It turns out that the class of organiza- 

tional forms that can be placed in this form is much wider than the class arising in 

static teams. And there are surprises. Suppose s is a Gaussian vector, the n; are 

linear, and u is concave and quadratic. Then the optimal decision rule need not be 

linear [7]. Since the appearance of this “‘perverse’’ result considerable effort has 

been spent in discovering which information structures imply linearity of the 

optimal rule. To state a recent result say that j is a precedent of i,j > i, if either 

6n,/6d; # 0 or there exists k such that j > k and k > i. The information structure 

is said to be nested if y; contains as a component every n ; for every j precedent of i. 

It has been proved [8] that for nested information structures there exist linear 

* This is surprising in that the statement is not in general true for dynamic teams (see below). 
5 A very nice survey, together with new results, is found in [2]. [3] is still a basic reference. Some 

new developments are reported in [4]. 
© For a more general formulation see [5]. Note that the formulation (3) may lead to an ambiguous 

situation since y; may depend on d; which may depend on d; which depends on y,. For a discussion 
of this point see [6]. 
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optimal decision rules, and the proof consists in showing that the team problem is 

equivalent to another static team problem. The literature contains almost no 

results of a general nature which are relevant to “truly’’ dynamic teams. 

To motivate the third line of development we hazard a generalization based 

upon the results in static and dynamic teams concerning the Gaussian, linear, 

quadratic case. It appears that the computational effort necessary for calculating 

an optimal rule for a team (two or more agents) is considerably greater than for 

centralized decision-making that is, when there is only one agent (see e.g. [(9]), so 

that from considerations of design one would use a team decision framework only 

if decentralization of decision-making were enforced because of physical or 

institutional constraints.’ But implicit in some of the literature in team theory is 

the assertion that decentralized decision-making will result in savings in informa- 

tion-processing and computation. If this assertion is to be treated seriously, we 

need to study decision processes in teams where the agents communicate some 

messages to each other (and receive messages from the environment) while at the 

same time the agents update their decisions in the light of the new information 

received. We now mention two examples [13,14] where such processes are 

studied.® 

The problem considered in [13] is that of synchronizing (i.e., acheiving a com- 

mon frequency among) a finite set of geographically separated oscillators. A 

centralized solution might be to choose one of the oscillators as a “master clock” 

and transmit its frequency to the rest. Each one of these would lock onto (tune into) 

the master clock. The decentralized scheme that was studied in [13] was to transmit 

to each oscillator the frequencies of some of the rest. Each oscillator locks onto an 

‘average’ of the received frequencies. It is shown that some simple feedback loops 

around each oscillator can achieve stability in the sense that the oscillators con- 

verge to a common frequency. Note that an additional benefit of the scheme is that 

it is reliable since a break in a transmission link will leave each connected sub- 

network synchronized. 

Reference [14] develops a decentralized scheme for finding the maximum flow 

of a single commodity through a capacitated network. An agent is located at each 

node of the network, the agent observes the capacities and the flows in those 

branches of the network which are incident to that node, and in part controls the 

flow on these branches. Each agent continuously sends messages to its neighbors, 

and based upon the received messages updates its decision. The interesting points 

about the scheme are that (1) the messages are selected froma finite alphabet whose 

size depends only upon the maximum number of edges incident to a node and not 

on the size of the network, and (2) the messages need not be synchronized i.e., the 

order and the time at which messages are transmitted or received are unimportant. 

We need many more results of the kind represented in [11—16] so that we can 

modify the team-theory framework presented earlier in such a way that these 

problems can be formulated on an abstract level. 

7 This may be a reason for the paucity of applications. Although the subject was introduced in 
1955 [10], one finds only two “applications” papers consistently referenced [11, 12]. 

8 This is quite different from the usual tat6nnement processes one encounters in the economic 
literature, since the processes we are discussing are occurring in real time. However these are similar 
to the tat6nnement processes where “recontracting”’ takes place. 

° Two examples from economics can be found in [15, 16], both compare alternative processes. 
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3. ORGANIZATIONAL FORMS REMINISCENT OF THE 

COMPETITIVE ECONOMY 

Aside from its social implications, the most celebrated property of the com- 

petitive economy derives from the proposition that it achieves an efficient allocation 

among thousands of agents by transmitting to each agent a minimal amount of 

information, namely, the prices of the various commodities in the economy. This 

has lead to a tremendous amount of research directed to devising algorithms for 

computing optimal decisions in large systems which stimulate the competitive 

economy. With the growth of non-linear programming the search has broadened 

to include any algorithm which leads to decentralization in the sense that the 

algorithm decomposes into many “‘parallel’’ procedures each dealing with a small 

number of variables the motivation being that such algorithms will permit current 

computer facilities to solve problems of increasing size. Since there is available an 

excellent survey of this entire area [17] we will not pursue it any further except for 

three remarks. First of all, most of these decentralizing schemes (““decomposition 

algorithms” in nonlinear programming parlance) impose fairly stringent con- 

vexity conditions although promising recent developments are overcoming some 

of these ([ 18], [19]) at the cost of increased information transmission. Our second 

point is to emphasize that almost all of these schemes are suitable for static 

decision problems only.'® Finally, uncertainty has not been introduced in any 

interesting way. 

4. ORGANIZATIONAL FORM ARRANGED IN A HIERARCHY 

We start by assuming that the system is to consist of a number of interacting 

subsystems each one of which is under the control of one agent. Furthermore, the 

subsystems are arranged in a hierarchy of levels. The subsystem in each level 

communicates with several subsystems in the level under it and with one sub- 

system in the level above. The stratification into levels is not arbitrary. It is implied 

that the agents at different levels perform different “tasks” or “‘functions.’’ The 

agents at the lowest level perform “‘routine’’ tasks while those above take “‘long- 

term”’ decisions. A significant portion of control engineering designs have the 

structure of a hierarchical organizational form. However, there are no well- 

articulated design philosophies. There is no mathematical theory of such forms 

(although [21] is an attempt to formalize the notion of a hierarchy and also gives a 

useful classification of different designs), and there is no serious attempt to explain 

why hierarchical forms are worthwhile.’ Because of the lack of any substantive 

mathematical theory we merely give an example of a simpie hierarchical form due 

to Minsky and Papert [23]. 

The perceptron is a pattern recognition device arranged in a two-level hier- 

archy as follows. The pattern is displayed on a plane divided into a square grid. 

Each square is either black (1) or white (0), and a pattern corresponds to a particular 

'° [20] is one of the exceptions. It is shown that the problem of the optimal control of a dynamic 
linear system has a structure which makes the Dantzig-Wolfe decomposition principle applicable. 

'! For a thought-provoking statement explaining the presence of hierarchical structures in the 
natural and man-made universe in terms of reliability, adaptability and reduction of computational 
requirements see [22]. 
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distribution of black and white squares. Corresponding to every set of n squares 

there is a lower-level agent who observes these n squares (i.e., observes n binary 

numbers) and computes a binary function of these n numbers and reports its value 

to the higher level. Thus if there are N lower level agents, they can be represented 

by N Boolean functions ¢,,...,@y where @;:{0, 1}" > {0, 1}. There is only one 

agent at the higher level. This agent receives the N binary numbers ¢,,..., dy 

from the lower level, computes a linear function Wy = «,@,,... + &y@y and makes 

a binary decision using the sign of yw. Thus this agent’s decision rule is given by 

ately _ if Lap; > 0 
Decision is 

No <a; < 0 

Every organizational form {¢,,...,@y, W) divides the class S of all patterns into 

two disjoint jets Sy, Sy by 

sé Sy if W(d,(s),..., Py{s)) > 0 

sé Sy if W(p,(s),..., Py(s)) < 0. 

We say that S, is the set of patterns recognized by the organizational form. Within 

this framework it is shown in [23] that there is no organizational form {@,,..., 

oy, W} which recognizes exactly the set of all connected patterns. However, there 

is an organization form of order 3 (i.e. n = 3) which recognizes the set of all convex 

patterns. Similar questions and other classes of organizational forms are also 

considered. 

This study [23] suggests that we may make interesting discoveries picking an 

appropriate class of organizational forms and ask which set of tasks can be 

accomplished within the chosen class. We end with illustrating this idea with one 

more example. 

Consider a linear system 

X(t) = Ax(t) + Bd(t) 

where d(t) is the decision vector of dimension N. The ith component of d(t), d{t), is 

under the control of agent i. Suppose that the state vector x(t) is decomposed into 

N subvectors x(t}, . . ., x(t), and suppose that the ith subvector x,t) is observed by 

the ith agent who is also in charge of “controlling”’ it.!? Now consider the following 

class of organizational forms. Suppose all the agents report their observations to a 

“managing” agent who chooses a linear feedback control scheme represented by a 

matrix C so that the other agents now face the task of controlling the system 

X(t) = Ax(t) + BCx(t) + Bad(t). 

Does there exist a matrix C which permits the task to be accomplished? We can 

enlarge the class of organizational forms even further to allow systems of the form 

X(t) = Axit) + BCx(t) + BKd(t) 

which means that we are allowing the iower level agents to affect every input. A 

fairly complete theory for these classes of systems is now available ({25], [26]). 

‘2 For example the ith agent’s task may be to stabilize x, at a prespecified target x*. For an 
application to a problem in economics see [24]. 
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5. A CONCLUDING REMARK 

Our objective has been to show that researchers in diverse fie’ 4s are facing the 

problems of designing organizational forms for decision-making in large systems. 

The problems that they face are varied and they have devised many ingenious 

schemes for tackling them. Perhaps the most acute need is to develop an abstract 

framework within wh:ch many of these schemes appear as “special cases.” At the 

same time the framework should be sufficiently operationally useful so that some 

detailed questions of comparisons of organizational forms can be formulated and 

answered. 

Department of Electrical Engineering and Computer Sciences 

University of California, Berkeley 
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