This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: The Smoothing of Time Series
Volume Author/Editor: Frederick R. Macaulay
Volume Publisher: NBER
Volume ISBN: 0-87014-018-3
Volume URL: http://www.nber.org/books/maca31-1
Publication Date: 1931

Chapter Title: Appendices to "The Smoothing of Time Series"
Chapter Author: Frederick R. Macaulay
Chapter URL: http://www.nber.org/chapters/c9369
Chapter pages in book: (p. 118-169)

APPENDIX I

The Measurliment of Probable Seasocal. Fluctuafions by Means of Operations on the Deviations of the Data from Graduated Curves. The Elimivation of Seasonal. Fiuctuations beforf: Graduation.

One object of the methods of graduation described in this book is the complete elimination of seasonal fluctuations. The problem of measur-ing-rather than climinating-seasonal fluctuations has not been discussed. However, the problem of measurement must not be assumed necessarily divorced from that of climination. Paradoxical as it may sound, the elimination of seasonal fluctuations is generally the best first step in the process of measuring them. For such measurement, operations on the deviations of the data from a smooth "seasonal eliminating" curve are theoretically more desirable than operations on the raw data. It is, of course. true that, as the number of years increases, extreme delicacy of smoothness or fit in the graduated curve becomes less and less practically important.

A few years ago the writer was approached by the statistical department of a government bureau
and asked to propose a good but simple method of discovering any seasonal fluctuations which might exist in economic time series of moderate length. He replied that, as he did not know of any simple and yet really ideal method, he would suggest graduating the data roughly by means of a 2 -months moving average of a 12 -months moving average, taking the deviations of the data from this moving average (centered), and arriving at seasonal fluctuations from these deviations. Rough as is the method, it has been widely used and favorably noticed year after year. Moreover, though the method is extremely simple, in most cases the results are quite good. The averaging process used in obtaining a seasonal index for any one month generally makes unnecessary any great excellence in the graduation from which deviations are being measured.

A common method of obtaining seasonal fluctuations is to take the arithmetic average of each nominal month and then adjust for trend. This amounts to using a straight line as a base from which to measure deviations. If the number of years covered be large and if the assumption be made that the seasonal fluctuation is constant throughout the period, even such a crude and simple method often gives good results. Indeed, only if the number of years covered by the seasonal fluctuation is quite small, would it seem worth
while to employ any particularly refined gradua-tion-and only then if the crratic fluctuations were so small and the seasonal fluctuations so pronounced and regular as to make any deductions from such a short period legitimate.

Unless the number of years is very small, the results obtained from crude and from delicate graduations tend to be very similar. For example, the seasonal fluctuation of the 97 months of Call Money Rates from January 1886 to January 1894 (see Appendix VIII) is practically identical when computed from the average deviations of the data from a 43 -term approximately fifth-degree parabolic graduation and when computed from the average deviations of the data from a 2 -months moving average of a 12 -months moving average.

The reader must remember that the arithmetic average of the deviations of the original data for successive Januaries from the successive January values given by the 43 -term graduation equals the arithmetic average of the original data for suecessive Januaries minus the arithmetic average of the January values given by the 43 -term graduationsimilarly for other months than January and for the 2 -months moving average of a 12 -months moving average as well as for the 43 -term graduation. Hence, only if the quasi-seasonal ${ }^{1}$ obtained by
${ }^{1}$ The variations in the average values of the nominal months of either the 43 -term graduation or the 2 -months average of a 12 -

124 THE sMOOTIING OF TIME SERIES

averaging nominal months in the 43 -term gratination differs appreciably from the quasi-seasonal obtained by averaging nominal months in the 2 . months moving arerage of a 12 -months moving average, will the seasonal obtained from deviations of the data from the 43 -term graduation differ appreciably from the seasonal obtained from deviations of the data from the 2 of a 12 -months moving average. Now an appreciable difference between the quasi-seasonal fluctuations of the 43^{-} term graduation itsclf and quasi-seasonal fluctuations of the 2 of a 12 -months moving average itself will occur only when the number of years covered is quite small-for data such as monthly Call Money Rates, say less than eight or nine years.

On the other hand, if the investigator wishes to make a careful study of changing seasonal fluctuations, he may well use some more delicate graduation than a 2 of a 12 -months moving average, though it would seldom be worth while to use any formula involving much computation. The averaging process used in determining seasonal fluctuations will take care of any slight inadequacies in the smoothing formula. The 27 -term formula remonths moving average do not necessarily constitute any part of a true seasonal. Only by accident does any true seasonal remain in either of these graduations. There would be some variation in the average value of the nominal months of any curve whatsoeverexcept a straight line.
ferred to on page 28 would seem a highly desirable one to use. It is the last word in simplicity of calculation. ${ }^{1}$

Sometimes it is desirable to obtain an extremely close fit to all the factors in the data except seasonal fluctuations. A method of accomplishing this result is to eliminate seasonal fluctuations from the original data before final smoothing. This permits the use of non-seasonal-eliminating graduation formulas, which will follow the adjusted data extremely closely. For example, a Spencer 15 -term formula may be applied to the data after the elimination of seasonal fluctuations and the resulting graduation will only accidentally contain any of the original seasonal fluctuations in spite of the closeness of its fit to all the minor movements of the adjusted data.

Charts VIII and IX show the results of applying a Spencer 15 -term formula to the 97 months of Call Money data after adjustment for a constant seasonal fluctuation. On each chart is given a 43term graduation for purposes of comparison. Chart VIII shows the two graduations and the data after adjustment for seasonal fluctuations. Chart IX

[^0]126 TUE SMOOTIING OF TIME SERIES

shows the same two graduations and the data before adjustment for seasonal fluctuations.'

The heavy solid line in Chart X shows a Spencer 15 -term graduation applied to the adjusted data. This is the same graduation as that shown in Charts VIII and IX. The broken line in Chart X shows a Spencer 15 -term graduation applied to the unadjusted data. A moment's inspection will show that, with such pronouncedly seasonal diata as Call Money Rates, the results of fitting such a graduation as Spencer's 15 -term to the adjusted data are quite different from the results of fitting to the unadjusted data. The "close fit" of the Spencer 15 term graduation shown in Chart IX is a close fit to the "adjusted" data. Only if the adjustment is reasonable is the fit to the unadjusted data reasonable. The degree of reasonableness of the graduation of the unadjusted data depends upon the degree of reasonableness in the "seasonal" which has been climinated.

If the seasonal fluctuations be uniform from year to year, the whole procedure is quite defensible. If the seasonal fluctuations actually eliminated be little more than some sort of an average of radically unlike movements, both the adjust-

[^1]ment for smanal furtuations and the eraduation of the adjusted data become difficult to defend. If the seasonal fluctuations seem to be, as in the case of the 97 months of Call Money Rates shown in Charts VIII, IX, and X, moderately though not pronouncedly regular, the graduation of the data. after adjustment for any "average" seasonal, is open to some slight criticism. It might be contended that it is a graduation of data which in sections has been adjusted for a seasonal fluctuation not existing in those sections.

Such a criticism cannot be made of the 43-term graduation. That graduation eliminates all seasonal fluctuation. It is unaffected by the reality or unreality of such seasonal fluctuation. It gives identically the same results when fitted to the unadjusted data as it does when fitted to the data adjusted for any seasonal fluctuation whateverreal or unreal. The adjustment of the data for an absolutely non-existent seasonal does not affect the results of applying the 43 -term formula.

If seasonal fluctuations are to be eliminated before graduation, it is, of course, highly desirable that the investigator, before eliminating them, consider carefully whether they exist. For example, Call Money Rates since 1915 show a greatly reduced monthly seasonal fluctuation. To eliminate from such rates a seasonal derived from earlier rates would be quite illegitimate. A Spencer 15^{-}

DESCRIPTION OF CILART X

Chart X is in two parts. The upper part shows Call Money Rates (madjusted for seasonal fluctuations) and thre sprouer 15 -term graduations. The lower part of the chant shows a nowing stasonal- on the s:me scale as the upper part of the chart.

The three Spencer $15-\mathrm{term}$ graduations shown in the upper part of the chart are graduations of three different sets of data. The broken line is a graduation of the data as shown on the chart (unadjusted for seasomal fluctuations). The hrayg solid line is :a graduation of the dat:a after adjustment for a constaut seasonal. The light solid line is a graduation of the data after adjustment for the noving seasmal shown at the bottom of the chart.

The constant seasomal was calculated by taking the arithatic average of the deviatious of each uominal month in the 97 from the 43 -term cyclical graduation and aljusting for trend and to ero.

The construction of the moving seasomal maty be illustrated as follows. The deviations of nine consecutive J :manaries from the 43 -term graduation were listed. The largest and the smallest deviations were then thrown out. The arthnetic a verage of the remaining seven deviatious was taken. For example, the January 1886 seasoual was the arithmetic average of seven Jumary deviations out of the nine Jambaries from Jamary 1882 to Jamary 1890 inchasive. A similar procedure for each month grave a moring seasonal. This moving seasonal was corrected for sum by taking a 2 -months moving average of a 12 months moving average of the seasonal and calling the deviations of the first moving seasenal from this graduation the fimal moving seasom:al. As the trend is necess:rily linear such a st raight line formula was admissible.

In the calculations for both the constant seasmal and the moving seasonal, deviations were taken from the 43 -term graduation because that graduation had already been computed. A much simpler formula, such as the 27 -term formula described on page 28 , would give perfectly satisf:ictory resuits.

term formula applied to the monthly rates since 1915, after they had been adjusted for such a defunct seasonal, would give totally meaningless results. From 1857 to diate, the changes in the characteristics of the seasonal fluctuations of Call Money Rates have been great. Generally the changes have been gradual though sometimes the: have been sudden. When they have been sudden. the date of the change has usually corresponded with the date of some eutstanding economic occur-rence-such as the panic of 1873 or the early years of the Federal Reserve System. In such cases a particular seasonal fluctuation may be used up to a particular date, when another seasonal fluctuation will be substituted.

When the nature of the seasonal fluctuation appears to be changing gradually, the natural procedure would seem to be to calculate a changing seasonal. At the bottom of Chart X is a picture of such a changing seasonal. The solid light line in the upper part of the same chart gives the results of applying a Spencer 15 -term graduation to the data after adjustment for this changing seasonal. The solid heavy line gives the results of applying a Spencer 15 -term formula to the data after the elimination of a constant seasonal. ${ }^{1}$ An examination of these two lines will show how much differ-

[^2]ence may appear in the graduation because of the elimination of different seasonal fluctuationseven in a period such as January 1886 to January 1894, when changes in the nature of the seasonal were not particularly violent.

If a less sensitive formula than Spencer's 15 term formula were used, the differences in the graduation resulting from differences in the seasonal fluctuations would, of course, be less. For example, Spencer's 21 -term formula would be less affected by differences in the seasonal fluctuations than would Spencer's 15 -term formula. ${ }^{\text {' }}$
${ }^{1}$ Spencer's 15 -term formula is quite sensitive. Though it gives a graduation which is, of course, much smoother than that given by a simple 5 -months moving average, it fits the data as closely as does the 5 -montlis moving average.

If a formula with only a little greater smoothing power than the Spencer 15 -term formula be desired, the following 17 -term formula may be used: Take a 12 -months moving total of the data with the following weights: $-1,0,0,+2,+2,+2,+2,+2,+2,0$, $0,-1$. (It will be noted that the pius weights constitute two times a simple 6 -months moving total.) Take a 2 -moitlis moving total of a 5 -months moving total of the results. As the total equals 100 , division may be performed by merely moving the decimal point. The weight diagram is excelient. This is a very desirable formula, and the reader should not be disturbed by the fact that the graduation falls $3 / 10$ outside the parabola.

If, however, he desires a closer fit to a second degree parabola, he may use the following: Take a 14 -months moving total with the following weights: $-1,0,0,+1,+2,+3,+4,+4,+3,+2$, $+1,0,0,-1$. (The plus weights constitute a 4 -months moving total of a 5 -months moving total.) Take a 2 -months moving total of a 3 -months moving total of the results. Divide by 108. The weight diagram is excellent. Falls $1 / 6$ outside the parabola $y=x^{2}$.

The sum of the squares of the third differences of the weights is, in each of the above formulas, much smaller than in Higham's

A crude, though extremely simple, procedure for eliminating seasonal fluctuations is sometimes used by financial writers and the editors of financial magazines and newspapers. The quotation for the present month is compared with the quotation for the same month in the preceding year. This comparison is made either by subtracting the quotation for the same month in the preceding year from the quotation for the present month or by dividing the quotation for the present month by the quotation for the same month in the preceding year.
The mathematical significance of any such operation may be described in a multitude of ways. Some ways are enlightening, others are not. There is a simple and enlightening way to describe the operation of subtracting the quotation for the same month last year from the quotation for the present month and using the resulting figure instead of the raw data. It amounts to taking a 12 -months moving total of the data and using the first differences of this moving total instead of the raw data. The

17-term strictly third-degree parabolic formula-a 5 of a 5 of a 5 of $-1,+1,+1,+1,-1$ divided by 125 .

If, on the other hand, a formula is desired which will follow the data even more closely than Spencer's 15 -term formula, the following simple 13 -term formula may be used: Take an 11 -months moving total with the following weights: $-1,0,+1,+2,+3,+4$, $+3,+2,+1,0,-1$. (It will be noted that the plus weights constitute a 4 -months moving total of a 4 -months moving total.) Take a 3 -months moving total of the results. Divide by 42 . When applied to $y=x^{2}$, falls $1 / 2_{1}$ outside the parabola. The weight diagram is comparatively well-shaped.
procedure which consists of dividing the quotation for the present month by the quotation for the same month last year amounts to using the antilogarithms of the first differences of a 12 -months moving total of the logarithms of the data-instead of the raw data.

In either case the results are based upon month to month changes (first differences) of a crude graduation, namely, a 12 -months moving average. Hence, even if an extremely good method of graduation were used instead of a 12 -months moving average, the results would still be of the nature of a first derivative of the graduation. Moreover, as the 12 -months moving average does not extend to the end of the data, its first differences do not tell whether, at the present time, the underlying curve of the data is high or low or whether it is rising or falling, but simply whether it was rising or falling six months ago.

Now, if the cycle were of unchanging period and shape such information would tell us something definite about the present. For example, if the data were a sine curve of 24 months period, we would know that, when the ratio of the present month to the same month last year began to increase, the sine curve had just passed through a low. The low of a 24 -months sine curve occurs six months later than the point of inflection on the downward movement. However, if the data were a 48 -months

136 THE SMOOTHING of TIME SERIES
sine curve, we would know that when the ratio of the present month to the same month last year began to increase, the bottom of the sine curve was still six months ahead.

If the underlying curves are not sine curves, but less simple curves, the conclusions to be derived from the actions of such comparison of the present month with the same montli last year must be considered most carefully. Though this type of operation on the data sometimes yields interesting results, such results must be carefully interpreted. The fact that the final figures are of the nature of a derivative curve must never be forgotten. The procedure seems likely to lead to misunderstandings when its results are intended for general public information.

APPENDIX II

A Computation Suret Ificstrating Graduation by Spracer's 1 -Tyrm Timrd-Degree Paraboric. Formuita.

Some readers of this book may be interested in examining, a computation sheet for calculating a summation graduation. A computation sheet for graduating Rbodes' data (see Appendix V) by means of Spencer's 15 -term formula (see page 55) appears below. The moving totals are calculated before applying the weights. This procedure makes the discovery of errors much easier. The moving totals are self-checking. Any mistake in the weight multiplications or their additions tends to stand out on the graduation like a sore thumb.

There are eleven columns in the paradigm given below. Columns 6,8 and 9 may, of course, be eliminated, reducing the total number of columns to eight. This is, however, not desirable. The extra concentration needed in computation more than offsets the labor involved in copying out these columns as in the paradigm given below.

The columns in the computation sheet are:

1. Dr. Rhodes' data.
2. 5-year moving totals of column 1 .
3. 4-year moving totals of column 2 .
A Spencer 15 -Term Graduation

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
137										
137										
1.31	669									
131	670									
133	661	2034								
138	654		10512							
128	655		10434							
124	649	2597	10350	31302	30798	41400	-. 31536	- 30564	41400	129.38
132	641	2556	10266	31050	30564	41064	- 31302	- 30378	40998	128.12
127	6.31	2535	10188	30798	30378	40752	- 31050	- 30252	40626	126.96
1.30 118	6.35 628	2521	10126	30564	30252	40504	- 30798	- 30207	+0.15	125.98
118 128	628 627	25.1	10084	30378	30207 30205	40336	- 30564	- 30225	401.32	125.41
128	627 624	2514	10069 10075	30252	30225	40276	- 30378	-30300	400175	125.23
125 126	624 6,35	2520	10075 10100	30207 30225	30300	40300	- 30252	- 30402	40153	125.48
127	6.3 .4	2527	101.34	30225 30.300	30402 305.37	40400	-30207	- 305.37	40283	125.88
129	6.3 .4	25.39	10179	30402	30720	40716	-30225 -30300	-30720 -30948	$4(1) 28$	126.34
127	6,36	2548	10240	30537	30948	40710 40960	-30300 -30402	-30948 -31197	40590	126.84
125	6.4	2565	10.316	30720	31197			- 31197	41846	127.64
128	6.51	2.988	10.399	30948	$31+16$	41596	- $30-57$	-31416 -31542	+1228 +1698	128.84
		2015							71098	1.30 .31

\bar{Z}	 													
$\stackrel{3}{3}$														
E	in \|													
)														
E														
-														
n														
き	 													
会	- 													
®														
\bigcirc														

IfO THE SMOOTHINO OF TIME SERIES

4. 4-year movine totals of columin 3.
5. +3 times the values in cohmm 4 . The dirst figne 31302 cquals the seroad higure of cohmin 4 multiplied by 3-i.e., 10434×3. Ete.
6. +3 times the values in cohmm 4 . The first henure 30798 equats the fourth figure of column 4 multiplied iny 3 -i.e., 10266×3. Etc.
7. He times the values in columm 4. The first figure 41400 equats the third figure of colmme 4 multiphied by 4 -i.e., 10350×4 Ete.
8. -3 thmes the values in column 4 . The first figure -31536 equals the first figure of column 4 multiplied by -3 -i.e., 10512×-3. lit.
9. -3 times the values in columm 4 The first figure $-30 ; 64$ equals the fifth figure of cohmm of multiplied by - -3 -i.e.. 10188×-3. Vtc.
10. Algebraic totals of columans $5,6,7,3,9$.
11. Cohmm 10 divided by 3zo.

APPENDIX III

Tifre Sets of Twenty-fine Tera Third-Degree Parabolic Graduation Weiguts.

For the method of obtaining the weights of column I, see page 54. The weights do not climinate 12 -months seasonal fluctuations. For the appearance of the weight diagram, see Figure 7 , Chart I.

The weights of column II, if fitted to a second (or third) degree parabola, exactly fit the parabola. They eliminate 12 -months seasonal fluctuations. The sum of the squares of the third differences of the weights is the minimum possible with the preceding restrictions. See page 58 and Figure 15, Chart I.

The weights of column III are rough approximations to those of column II. The resulting graduation falls $1 / 6$ (a negligible distance) outside the parabola $y=x^{2}$. It eliminates 12 -months seasonal fluctuations. It is computed by taking $1 / 144$ of a 4 -months moving total of a 12 -months moving total of an 11 -months moving total which has the following eleven simple weights: $-1,0,0,+1$, $+1,+1,+1,+1, \circ, 0,-1$.

142 THE: SMOOTHING OH TIME SERIES

$\underset{\text { Hesherson Imfal }}{\text { I }}$ TH! CD - DeGREE l'ahabolf:		
$-.00334$	--. 007.40	$-.00695$
- .00890)	$-.01676$	-. 01.389
-. 01369	$-.02028$	$-.0208 .3$
-. 01456	$-.01700$	$-.0208 .3$
--. 00922	$-.00+62$	-. 00695
+.00321	+. 01607	$+.01389$
$+.02217$	$+.04167$	+. 0416 ?
$+.0 .1580$	+. 06726	- +.0694
+.07138	+. 08795	-. 00028
$+.09572$	$+.10033$	$+.10417$
+. 11576	$+.10362$	$+.10417$
$+.12892$	- +.100099	$+.09722$
$+.13350$	$+.09814$	$+.09722$
$+.12392$	$+.10009$	$+.09722$
$+.11576$	$+.10362$	$+.10117$
+.09572	$+.10033$	+.10417
$+.07138$	$+.08795$	$+.09028$
$+.04580$	$+.06726$	$+.0604+$
$+.02217$	$+.04167$	+.04167
$+.00321$	$+.01607$	+.01389
-. 00922	-. 0046 ?	-. 00695
--.01456	-. 01700	$-.02083$
-. 01369	$-.02028$	$-.02083$
-. 00090	-. 01676	--. 01389
$-.00334$	-. .00740	-. 00695
Total +1.00000	$+1.00000$	$+1.00000$

APPENDIX IV

Tile Weigits Implied in Variols Graduation Formulas.

In the text of this book a number of graduation formulas have been described and discussed as weighted moving averages. The present Appendix contains a table giving weights implied in fifteen of these graduation formulas. The "weight diagrams" for these fifteen graduations (with nine other graduations) are presented in Chart I (pages 77, 78,79). The column numbers of Appendices IV, VII and VIII and the Figure numbers of Chart I are comparable. For example, Kenchington's 27term formula is No. 12 in all three Appendices and in Chart I.

The weights given in this Appendix are those implied in the graduation formulas. For example, the weights implied in a 12 -months simple moving average are 12 in number and all equal. As the total must equal unity, each weight equals $1 / 12$. Chart I, Figure 1, represents such a system of weights. Each ordinate of Figure 1 is $1 / 12$ th of a unit high.

On pages 43 to 46 , the possibility of describing various smoothing formulas as weighted moving
averages was illustrated by discusing the "weights" implicd in a 2 -months moving average of a 12 -months moving aserage (sec Chat I. Figure 2), an 8 -month moring areatre of a 12 . months moving arerage (sce Chart I, Figure 3), a f-months moving average of a 5 -months moving a verage of a 6 -months moving areage (see Chart I. ligure 4), a set of 13 weights such that. if applied to 13 consecutive and equally spaced observations, the result is the mid ordinate of a thirddegree parabola fitted by the method of least squares (see (hart l. Fingure ;).

The weight systems given in this Appendix are:
 ation - ser pase 58 a ad Apmodix VII.
Col. 8. A Henderson Ideal 29-term thirddecree parabolic gradu-ation--see Apperdix VII.
Col. 9. A IIenderson Ldeal 33-term third-desree parabolic gradu-ation--see Appendix VII.
Col. 1t. Spencer's 21-term sumation third-iferee parabolic gradu-ation--see Apperdices VII and VIII.
Col. 12. Kenchingtons 27-term summation third-degree parabolic graduation - see Apendies VII and VIII.
Col. 13. A 29 -term sumation approximately third-degree parabolic graduation (if fitted to paraloola $y=x^{2}$, falls id outside). See Appendices V'II and VIIL.
Col. 14. A 29 term smmation non-parabolic gradmation (it fitted to parabola $y=x^{2}$ falls 3^{1}, outside'). Se Appendices VII and VIII.
Col. 15. A 2 -5erm "Ideal" 12 -months seammal eliminating thirddegree parabolic eraduation. Sie phare -8 and Appeadix
CII
Col. 18. A 35 -term smanation 5 thedegree parabolic qraduation. See Appradices VII and VIII.

Col. 19. A 41 -term summation fifth-degree parabolic graduation. See A ppendices VII and VIII.
Col. 20. A 43 -term summation fifth-degree parabolic graduation. Sce Appendices VII and VIII.
Col. 21. A 45-term summation fifth-degree parabolic graduation. See page 66 and Appendices VII and VIII.
Col. 22. Another 45 -term summation fifth-degree paraboiic graduation. See prage 65 and Appendices VII and VIII.
Col.23. A $39^{-t e r m}$ summation approxinately fifth-degree parabolic graduation. See Appendices VII and VIII.
Col. 24. A 43 -term summation approximately fifth-degree parabolic graduation-this is the graduation used in the study of interest rates and security prices to eliminate 12 -months seasonal and minor erratic fluctuations. See Appendices VII and VIII.

The first five weight systems of this Appendix (columns 7, 8, 9. 11, 12) do not eliminate 12months seasonal fluctuations; the remaining weight. systems do eliminate such 12 -months seasonal fluctuations.

146 THE SMOOTLING OF TiME SLRLES

THE WEIGHTS IMPlifed IN Yarious graduation Fommulas

(The varions praduation furmulas have been wiven the same numbers in Appendices IN, VII and VIII and in (hart I.)

(3)	(3)	(${ }^{\text {) }}$	(11)	(2)
Hevoersay	Henomain	Hevmenas		
25-triny	20 12:3\%	S3 HRy	SbMERS	Kixatemanis
ldeal	Lbas	In, ${ }^{\text {a }}$		г-1Еки
3rdaEijefe Parabolic	3kisplembe Parimalit	Sktaterrai	3reinemer Paknoma	$3_{\text {Ridintionet }}$ l'ak.ublic
- -	- -	\cdots	--. . .
		$-.001140$		
		- 00)118		
	- . 00211	-.(M)7.54		
	$\cdots .00002$	--.010.31		-.00260
$-.003 .34$	-.0101:	$-.011 .37$		- (0)7-9
-. 00890	-.01251	-.00) 1		-- 01190
$-.01369$	-.0119.3	-. (0)30\%		-0155
-. .01456	-. 0 (1) 58	-	-. 000.57	-. 01299
-.00922	+.001311	0.0140	-.0142)	--.00) 200
$+.00321$	+.0173.3	-027.45	--.01429	+.01299
$+.02217$	-t.0.3484	$+04210$	- . 0 (0) 31	$+0.33 \%$
- +.04580	$+0.5113$	+.05354	+.0171t	$+.05714$
- +.07138	$+.07 .338$	$+.0723$	1.0.314.	+.05-52
+ +.09572	$+.09075$	-t.08506	+.09+29	$+.09 .331$
+.11576	+.1045.5	+.09493	$+.13429$	+-.10049
+. 12892	+. 11.341	$+.10118$	$\therefore-1625$	+.11+20
+. 13350	+. 11646	-1. 10332	$+.17142$	+. 11688
+. 12892	+. $11.3+1$	+.1011\%	+.16286	+.11429
+.11576	-+.1045.5	+.09493	+.13429	+. 20649
+.09572	$+.09075$	+.05506	+.09429	+.00351
$+.07138$	$+.07 .3 .88$	$+\mathrm{+} .072 .4$	$+.051-1.3$	+.07392
$+0.580$	$+.05 .11 .3$	+.057\%	$+.0171+$	+.05714
$+.02217$	+.03484	+.0424)	-.00.71	+0.0337
$+.00321$	$+.017 .3 .3$	+02275	-.01+29	$+.01299$
-.00922	+.00.311	- +.01 .100	$-.01429$	-.00200
-. 01456	$-.00678$	+.00294	-.0085	--.01299
-.01.369	$-.0119 .3$	$-.0050 \%$	- (02)	--0155
-. 00890	-.0127i	$-.00981$		-. 0129
-.003.34	-. 01018	-.01137		-.00720
	\cdots	--.010.31		-.00200
	$-.00211$	$-.007 .54$		
		-.00.4		
		-.00140		

The total of each culumen is unity.

The total of each column is unity.

148 THE SMOOTHING OF TIME SERIES

(20)	(21)	(2)	123)	(24)
$\begin{aligned} & \text { 43-teru } \\ & \text { 5TH-de; } \\ & \text { Parabo! } \end{aligned}$				
	$+.00020$	+.000.3. 3		
$+.00056$	$+.00069$	+. 00127		- +.0007 .3
+. 000143	+ 0.00151	+.00272		+. (\%)183
$+.002 .33$	$+.002 .37$	+.00.384	- +.001 .39	$+.00312$
$+.00301$	$+.00300$	$+.00350$	-1. 00034	$+.00417$
$+.00321$	$+.0027 .3$	+t. (001.3s	+.005.6	$+.00460$
$+.60152$	+.0010s	-. 002236	+ (005.56	$+.00292$
$-.00177$	-.00226	-. 0 O008	+-. 00.347	-.0008.i
-.00642	-.0068s	$-.010 \times 2$	- .0020s	$-.00625$
-. 01179	-. 01197	-.01.39.i	-.01042	$-.0127$
$-.016 .39$	$-.01612$	-.01523	--. 01875	--01854
$-.01821$	-.017i1	-.01.398	$-.02 .431$	-.02135
-. 01603	$-.01542$	-.00061	$-.02 .431$	-.01979
-.00923	-. 000×35	$-.002 .37$	-.01806	-.0132.3
$+.00292$	$+.00 .36 \mathrm{t}$	$+.00790$	-.00.35\%	-.0006?
$+.01947$	+.01086	+.0.14.3	+.0159\%	- +01694
$+.03865$	+.0.3867	$+.0 .3816$	$+.0 .3819$	+.0.37.50
$+.05832$	+ +0.03837	$+.05668$	+.00042	$+.0 .58 .54$
$+.07746$	+.07711	+.07501	+0, 08125	$+.03917$
+.09378	$+.00324$	+.09112	+. 09702	$+.09667$
$+.10579$	+.10.543	- + -.10.3.4.3	$+.10972$	+. 10937
+.11333	$+.11302$	$+.11125$	+. 11806	$+.117 .30$
+. 11612	+. 11558	+-. 11380	$+.12084$	-+. 12042
+.11333	$+.11302$	+.11125	+.11806	+.113.39
+. 10579	+.10543	$+1034.3$	$+.10072$	$+.10937$
+.09378	$+.09 .324$	-.09112	$+.09792$	$+.0966 i^{\circ}$
$+.07746$	+.07\%11	$+.07501$	$+.0 \$ 12.5$	+. 07917
$+.05832$	+.0.8.37	$+.05068$	$+.00042$	+-0.5.54
$+.03865$	+.0.3867	+ +0.3816	$+.03819$	+.035 \% 0
$+.01947$	$+.01986$	$+.0214 .3$	$+.01597$	$+.01698$
+.00292	+.00.304	$+.00796$	-.00.47	-. 00065
-,00923	-.008.35	-.00237	-.01806	-.01.22. 3
-. 01603	-.01542	-.00961	$-.024 .31$	-.01979
-. 01821	-.01771	-.01.398	-.024.31	-02135
-. 01639	-.01612	-.0152.	-.0185	-01854
-.01179	$-.01197$	$-.01 .303$	--.01042	$-.0127!$
$-.00642$	-. 00688	$-.01082$	--.00208	-. 000625
$-.00173$	- .00226	-.00668	+.00.34	-.0008.
$+.00152$	+.0010s	-. 00230	+.00.5.56	+.00202
$+.00321$	+ +.0027 .3	$+.001 .38$	+.00535	$+.00469$
$+.00301$	$+.00300$	$+00350$	- +00345	$+.10417$
$+.002 .33$	$+.002 .37$	+.00.38.4	+ (10139	+.00312
$+.00143$	$+.00151$	$+.00272$		+.00137
$+.00056$	$+.00069$	+.0012-		+.00023
	- +.000020	$+.000 .3$		

The catal of each column is unity.

APPENDIX V

Shen Gradempons or Dr. E. C. Rhodes' Test Mortalify Data.

The data are rates of infantile mortality from causes other than diarrheal diseases, for the 42 years from 1870 to 1911. inclusive. See page 82, note 1.

150 THE SMOOTHDNG OF THME SERIES
GRADUATIONS OF DR. RHODES TEST DATA

1	11	111	19	1	Yi	V11	VIII
Rhodes' Original Dita	$\begin{gathered} \text { Rhones' } \\ \text { Po. } \\ \text { Pount } \\ \text { Curve } \end{gathered}$	$\begin{gathered} \text { Rillowes } \\ \text { 1.:- } \\ \text { pons } \\ \text { Curve } \end{gathered}$					$\begin{gathered} \text { Hundent } \\ \text { intrint: } \\ n=2 \end{gathered}$
137	137.2	137.7	137.7	138.5	1.66 .5	1.37 .11	1.30 .12
137	135.0	134.6	134.3	133.7	1.35.4	1.35.10	135.27
131	133.6	13.3 .1	1.3.1	132.7	1.4.3	133.54	$1.34 .0 \%$
1.31	132.8	132.6	132.9	13.4	1.33.2	132.84	1.3.3.11
133	132.1	132.4	132.8	134.2	1.32 .2	1.2 .117	1.32 .27
138	131.5	132.0	1.32 .1	1.32 .2	1.31 .2	1.11 .29	1.31 .35
128	130.7	131.2	1.00 .7	12 C .7	1.0.)	1.30 .4 i	1.30 .31
124	129.7	130.0	129.2	125.6	129.2	129.38	129.10
1.32	128.5	128.4	127.8	125.3	12 x .4	128.12	124.11
127	127.2	126.7	126.7	127.1	127.1	126.96	127.08
130	126.1	12.5 .5	126.0	12 Sc 1	125.7	125.95	126.1\%
118	12.5 .4	12.4.	123.2	127.7	155.2	125.11	125.50
128	125.2	124.3	124.6	127.9	126.1	125.23	125.21
12.5	125.3	12.4 .5	125.0	126.3	126.6	125.48	125.27
126	125.6	12.5 .4	126.2	12.5 .5	125.0	125.88	125.02
127	126.1	126.5	127.4	12.4 .6	125.6	126.34	126.20
129	126.8	127.3	127.7	124.5	126.7	126.44	126.98
127	127.8	128.1	127.6	125.3	1288	127.64	127.96
125	129.0	129.2	128.0	127.0	129.7	$128.8 \pm$	129.15
128	130.4	130.8	129.3	130.6	136.3	1.30 .31	13045
135	131.8	132.3	131.4	134.8	131.2	131.74	1.31 .57
136	132.7	133.1	133.0	137.2	131.7	1.32 .58	132.17
133	133.1	133.0	13.3 .2	135.4	1.11.)	132.52	132.08
131	132.6	131.9	132.1	130.9	131.7	1.31 .59	1.11 .37
125	131.3	130.1	130.4	126.9	1.30 .5	1.30 .17	1.3025
133	129.5	128.0	128.9	12.50	129.1	128.56	12004
127	127.6	126.3	127.4	12.4 .7	127.2	127.14	127.55
125	125.9	125.1	125.8	12.4 .9	126.0	125.91	126.19
123	12.4.4	124.1	12-4.1	125.4	124.7	124.00	124.89
123	122.9	123.1	122.7	126.3	123.5	12.8 nt	123.57
126	121.3	121.9	121.5	126.0	122.6	121.20	122.04
119	119.5	120.7	120.2	122.9	119.5	120.35	120.12
118	117.4	118.9	118.4	117.8	117.5	117.91	117.55
114	114.9	116.1	11.5 .8	112.7	115.0	114.99	114.05
115	112.1	112.7	112.6	10s.t	112.1	111.60	111.8
107	109.1	109.1	109.1	105.1	108.3	$10 \mathrm{s.10}$	10s. 10
101	105.9	105.4	10.5 .5	10.3 .4	10.5 .5	104.55	105.00
105	102.7	101.8	101.9	10.3.2	102.6	101.21	101.8
100	99.6	98.6	98.6	102.7	99.s	96.24	98.83
96	96.7	96.1	9.7	100.7	97.0	95.82	40.30
92	94.2	94.7	93.8	96.7	$9+2$	94.11	94.36
94	92.2	$9+9$	93.0	00.7	91.4	93.30	03.15

APIENDIX VI

Paradigm for Granuating by Robert Hexierson's
Method.
In the immediately following paradigm n is taken as equal to 3. For general discussion of the method see Chapter VI.

Let there be iz observations equally spaced on the x axis. Let the ordinates of the observations be $30009,22009,27018,4027,18045,7054$, $14054,9045,29036,8027,55036,34036$, and 62054. It is desired to graduate these observations in such a manner that $\frac{9^{1}}{1000}$ times the sum of the squares of the deviations of the data from the graduated curve plus the sum of the squares of the third differences of the graduated curve shall be a minimum. The actual computation is in three steps. Mr. Henderson calls the three steps, the preliminary, the first half, and the second half. The paradigm ${ }^{2}$ on pages 155 and 156 should be followed when reading the instructions below.
: The rader will note from page 91 that $k=\frac{9}{1000}$ when $n=3$.
${ }^{2}$ For the paradign the data above were so chosen that all ordinates of the graduated curve would be integers. In actual computation, the calculations would be carried to as many decimals as were desired in the graduated curve.

1ヶ2 THE SMOOTHHO (1F THIE SERIES

The Proliminary:

1. Guess three points on the gradnated curve sone distance from the beginning. The three points in the paradign wore chosen in such a maner as to give immediate results in the graduation. ${ }^{1}$ Their ordinates are 26000, 18907, and 14213 . These values are supposed to be guresses at the roth, gth and 8th ordinates of the graduated curve.
2. Find the first and second differences of the above threr ordinates. (se - 4694 as the first difference (i.e., 14213-18907). The second difference is +2399 .
3. Calculate the figures in the paradigm by filling eath column before begiming on the next. Bequming with the first figure of the first column, we notice:
(a) +2399 is the second difference mentioned above.
(b) -4694 is the first difference mentimed above.
(c) +14213 is the guess at the 8th ordinate of the graduated curve. (See paragraph I.)
(d) $-18776=-4694 \times 4$. (See note 1 , puge 153 .)
(e) $+23990=+2399 \times 10$. S. See mote 1 , paige 153. i
(f) $+19427=+14213-18776+23990$
(g) The first figure $(+4027)$ of the second columu is the 4 th datum ordinate.
(h_{l}) $-15400=+4027-19427$
${ }^{1}$ The preliminary portion of the Henderson method of computation is used simply to obtain suit:able estimated figures with which to begin the first half.
If the three preliminary points are badly chosen, the preliminary operation will be lengthened. In our illustration, it might have to be extended through the first half or cven throngh another return operation. For final results accurate to any particular mumber of decimals, it would be necessary to work backwards and forwards until at two separate stages there values which were identical to the required number of decimals were obtained at one of the ands.
It is highly desirable to choose 3 preliminary values a considerable distance along the curve (say 20 unts when $n=3$ and more when n is larger) and to choose them as well ats posible. Mr. Henderson advocates fitting a second-darare parabola to cleven consecutive points some distance along the curve, and using the 4 th. fth and 6th terms of the parabola as rhe there preliminare points.
(i) $-924=-15400 \times .06^{1}$
(j) $-+1475=-924+2399$
(k) $-3219=+1475-4694$
(1) $+10994=-3219+14213$
(m) $-12876=-3219 \times 4$ et cetera
4. The twelve figures at the end of the preliminary are calculated as follows: The first three figures are the 6th figures of the last three columus. The other 9 figures are obtained from these 3 figures by assmming the 3 figures to lie on a seconddegree parabola and extrapolating the parabola by means of first and second differences.

The First Half:

1. The first three figures of column one are ohtained from the last three of the twelve figures just discussed in the preliminary.
(a) +2009 is their second difference.
(b) -19045 is a first difference. As we are now going backwards, it equals $+91099-110144$.
(c) +91099 is the foth figure of the last 12 of the preliminary.
2. The computation now runs as it did in the preliminary except that the first figure of the second column $(+36009)$ is the first datum ordinate instead of the fourth as in the preliminary.
3. The last three figures $(+35036,+46036,+59054)$ are extripolated from $+14144,+19090,+26054$, by means of first and second differences.

The Second Half:

1. The reader will be able to understand the second half quite easily if he will notice that the figures at the tops of the

$$
\begin{aligned}
&{ }^{1} \text { If } n= 3 \\
& n+1=4 \\
& \frac{(n+1)(n+2)}{2}=10 \\
&(n+1)(n+2)^{2}(n+3)
\end{aligned}=.06
$$

For the theory back of all this, see the Henderson articles referred to in note 1 , page 91 .
columns are not data ordinates (as in the first half) but are the 6th figures of cohums in the first half take: in reverse order.
2. The first three figures of the first columu of the second half are obtained from the last three (extrapolated) fignres of the first half in the same manner that the first three figures of the first half were obtained from the preliminary.
3. The 13 ordinates of the graduated curve are the sixth figures of the columus of the second half (taken in reverse order) to which are added the last three figures of the first half. They are $+35009,+26009+19018,+14027 .+11045,+10054$. $+11054,+14045,+19036,+26027,+35036,+46036$, +5y0.54. If the reader will calculate the sixth differences of these fignes, he will discover that each of them equals minus $\frac{9}{1000}$ times the corresponding deviation of a dathim ordinate from the graduated curve, and hence the sum of the squares of the third differences of the graduated curve plus $\frac{9}{1000}$ times the sum of the squares of the deviations of the data from the graduated curve is a minimum.

The Paramicim

Paradigm for graduating data in such a manner that $\frac{9}{1000}$ times the sum of the squares of the deviations of the data from the graduation plus the sum of the squares of the third differences of the graduation shall be a minimum. ${ }^{1}$

[^3]THE SMOOTHING OF TIME SERIES

Preliminar'

	+ 4027	+2\%018	-22000	1, 26000	
	-15.400	+14150	- 7750	+ 2500	+10099
	- 924	+ 829	- 465	+ 150	$+11063$
± 2399	$+1475$	+ 2324	+ 1859	+ 2009	+14036
- 4694	-. 3219	- 895	+ 964	+2973	+19018 +19009 $+\quad 3009$
+14213	+1009:	$+10099$	$+11063$	$+14030$	+26009 $+\quad 35009$
-18776	-12876	- 3580	+ 3856		+35009 +40018
+23990	-i+150	$+23240$	$+18590$		+40018 $+\quad 50036$
+19427	$+12868$	+29759	+ 33509		+59036 +74063
					$+91099$
					$+11014 t$
					$+131198$

	+36009	+22009	+27018	+ 4027	$+18045$
	+1000 +100	- 4000	+11150	-155.50	+13000
	+100 $+\quad 60$	- 294	$+\quad 669$	$\begin{array}{r}\text { - } 933 \\ \hline\end{array}$	78
+ 2009	+ 2069	+ 1775	+ 244.4	+ 1511	+ +2291 -8955
-19045	-16976	-15201	-12757	-11246 +34910	+8955 +25964
+91099	+74123	+58922	+ +46165	+34919 -41984	+25964 -35820
-76180	-67904	-60804	-51028	-41984 +15110	+22910
$+20090$	$+20690$	+17750	+2440 +19577	+1510 $+\quad 5045$	+13054
$+35009$	$+26909$	$+15868$	+1957	+ 504	
+ 7054	$+1405$.	$+9045$	+29036	$+8027$	$+550.36$
$+700 子$ -6000	$+1409 \%$ +3900	-7250	$+13300$	-25200	+32450
- $-\quad 360$	+334 $+\quad 21$	- 435	+798 $+\quad 72508$	- 1512	+1947 $+\quad 2963$
-1931 +1	+ 2165	+ 1730	+ 2528	+ 1016	$+\quad 2963$ $+\quad 3378$
-7024	- 4859	- 3129	- 601	- 415	+ +14144 +
+18940	+1.1081	+10952	+10351	+10760 +1600	+13512
-28096	-19436	-12516	+2404 +25280	+1600 +10160	+13512 +29630
+19310	$+21650$	+17300	+25280 +33227	$\begin{aligned} & +10160 \\ & +22586 \end{aligned}$	+57286
$+10154$	$+16295$	$+15736$	$+33227$	+225s6	+5188
+33036	+6205				
-23250	+ 7500				
- 1395	+ 450				
+ 1568	+ 2018			+13018	
+ 4946	+ 6964	$\begin{array}{r}\text { + } \\ +8982 \\ \hline \mathbf{3 5 0 3 6}\end{array}$	$\begin{aligned} & +11000 \\ & +46036 \end{aligned}$	$+59054$	
$+19090$	$+26054$	$+35036$	+46030		
+19784					
+15680					
$+54554$					

156 TIIE: SMOOTHING OF TIME SERIES

	Seond Ital				
	$+10766$	$+10351$	+10952	$+11081$	-189.10
	- 4.50	+ 4.50	- 300	0	150
	- 27	+ 27	-- 18	0)
+ 2018	$+1991$	+ 2018	$+2000$	+ 2000	+ 1991
-11000	-9009	- 6091	-4991	-- 2991	- 1090
$+35036$	- 26027	+19036	+14045	$+11054$	+10054
-41000	-36036	-27904	-1990t	-11904	-4000
+20180	$+19910$	$+20180$	+20000	+20000	+ 19910
$+11216$	+9901	$+11252$	+14081	$+1900$	$+25964$
$+2590.1$	+34919	$+46165$	+58922	+74123	
0	0	+ 300	- 150	+ 150	
0	0	$+18$)	+ 9	
+199!	+ 1991	+2009	+ 2000	+ 2009	
+ 991	$+2982$	+ +901	+6991	+9000	
$+11045$	$+14027$	+19018	$+26009$	+35009	
+3964	+11928	- 19904	$+27904$		
+19910	+19910	+20090	+20010		
+-34919	$+45865$	+-59072	$+73973$		

Sicmmary

Data	Graduation
36009	35009
22009	26009
27018	19018
4027	14027
18045	11045
7054	10054
14054	11054
9045	14045
29036	19036
8027	26027
55036	35036
34036	46036
62054	$5 \% 054$

APPENDIX VII

Tief Respits of Appiqing Ninetern Differint Grad-

 vamon Formulas to Eguintant Ponets on IndmiNithiy Extended Sine Siries.The entries in the table show the percentages of the amplitudes of the various sine curves which are preserved by each formula.
(The various graduation formulas have the same numbers in Apperdices IV, VII and VIII and in Chart I.)

(3)	(2)	(i)	(8)	(9)	(11)
Shem	208312		Mr:0restix 19. Texy	Hesmensos	Spemers
creve	Simple		${ }^{29}$	cis-teks	21-trks
Pertod	Movisif	SRD-DEGKfe	3 kl -17:Sk.f.	3Hidergeme	3kijobriraf. Pakabomic
(Potirs)	Asfrate:	Pasabolic	Pakabolic	Pexabollit:	Prabioste
12	0	24.54	8.07	-1.40	55.22
15	23.04	53.53	36.12	20.21	76.09
18	40.93	71.98	58.70	4.31	86.65
20	50.01	79.75	69.22	57.05	90.66
24	63.30	88.93	82.47	74.42	95.10
30	75.41	91.97	91.77	87.54	97.29
36	8250	97.44	95.73	93.41	98.94
40	85.67	08.28	97.11	95.47	99.29
48	89.59	99.14	98.54	97.70	99.63
60	9.3 .48	99.64	99.38	99.0 .3	99.87
120	98.33	90.98	99.96	99.96	99.95

Notes:

Col. (0) Sine curre pmiads. The first entry in column 2 (zero) means that if the formula of column 2 be applied to equidistant monthly points on an indefinitely extended sine curve whose period is 12 months, such sime curve is entircly chminated. The formula will give a horizontal straight line. The first entry in column (7) means that if the formula of column (7) be appiied to such a 12 months sime curve, whose amplitude is 100 (vertical distance between minimmon values and maximum values), the curve resulting from the appication of the formula will be a 12 -montlis sine curve whose amplitude will be 24.54.

Col. (2) Sice pase 43 .
Col. (7) Siee paye 59.
Col. (8) Sec Appondix IV.
Col. (9) Sor pase 37 and 1 pprodix $[1$.
The first cutry in this column (minius 1 fo) may disturb the reader. It significs that it this particolar formula be applied to a 1 mmonth: sine curse the resultimit smooth carve will be a sine curve whene amplitude will be 1.40 per cont of the amplitade of the original since curve but which will have maximal where the orisinal carve had minima and vice versa. It will slighty ateromet for a 12 -months sine semonal.
Col. (11) Ser pases 51, 52, 33 .

	(1)!	(1)	(1):	151	(18)
12	9.85	0	0	0	0
1.5	40.86	29.27	33.45	35.29	45.15
i8	6.3 .07	$5 \cdot 4.56$	00.05	60.02	72.81
20	72.90	66.52	22.06	70.81	$\therefore 2.90$
24	84.8S	81.60	86.56	8.3.3	92.89
30	93.03	92.03	95.86	92.59	97.78
. 30	96.42	90.32	99.24	96.21	99.20
40	97.58	97.13	100.19	97.4	99.35
4	98.78	99.12	100.92	98.15	99.82
60	99.50	99.86	101.05	9). 17	99.97
120	99.94	109.09	100.10	99.95	99.98

(oi. (12) Sice papes 20, 58 .
Col. (13) 1 /36 of a 2 -months moving total of a 12 -months moving total of the results of subtracting a 17 -months moving total from a 4 -months movint total of an 8 -months moving total. This formula is not rinidly parabolic. It falls \% outside the parabol:a $y=x^{2}$. Sec paces 59 and 60.

Col. (14) 1/232 of a 3 -months moving total of :1 12 -months moving total of the resules of subtacting a i6-months moving total from a 4 -mouths moving watal of a 7 -months moving total. Falls $31 / 2$ outside parabol: $y=x^{2}$. See pages 27,60 .
Col. (15) See page 58.
Col. (18) See pages 67, 68.

	(19)	(20)	(21)	(22)	(23)
		$\begin{aligned} & \text { 43.tery } \\ & \text { STHERERERE } \\ & \text { Pars } \end{aligned}$			
12	0	0	0	0	0
15	36.41	34.16	33.13	26.89	43.03
18	65.34	63.22	62.21	56.55	73.25
20	73.27	75.60	74.80	70.41	84.28
24	90.01	89.10	88.67	86.33	94.83
30	96.74	96.39	96.21	95.35	99.35
36	98.78	98.64	98.55	98.21	100.25
40	99.32	99.23	99.19	98.99	100.37
48	99.74	99.71	99.71	99.62	100.34
60	99.94	09.93	90.92	99.90	100.21
120	99.98	100.00	100.00	99.98	100.03

Col. (19) See page 67.
Col. (20) See pages 66, 67.
Ccl. (21) A 3 -months moving total of a 5 of a 5 of an 8 of a 12 of 17 weights. See page 66.
Col. (22) A 2 -months moving total of a 3 of a 3 of a 4 of a 6 of an 8 of a 10 of a 12 of 5 weights. See page 65 .
Col. (23) $1 / 1 \pm 40$ of a 3 -nonths moving total of a 5 of an 8 of a 12 of 15 simple weights: $+2,-3,0,0,0,0,0,+3$, $o, 0, o, o, o,-3,+2$. See pages $71,72,73,74,75$.

	(24)	(25)	(29)	(27)
SINE $\substack{\text { Curve } \\ \text { Priod }}$ (Poists)	43-тERM APPROXIMATELV Sth-degree Pararolic	$\underset{\substack{\text { Whittaker- } \\ \text { Mexdrspos } \\ \text { n }=3}}{ }$ $\mathbf{n}=3$	Writtakre. Meniebsua r $=4$	Winittaker- HENDERSON $n=5$
12	0	31.87	11.75	4.53
15	38.78	63.52	33.13	15.00
18	69.76	83.68	59.34	34.21
20	82.05	90.56	73.19	49.31
24	94.17	96.60	89.00	74.25
30	99.39	99.08	96.84	91.62
36	100.36	99.69	98.92	97.02
40	100.44	99.83	99.42	98.39
48	100,33	99.94	99.8 !	99.45
60	100.18	99.99	99.95	99.86
120	100.02	100.00	100.00	100.00

160 THE SMOOTHAXG OF TME SERHS
 12 of 17 simple weights: $-17, \quad 10,0.0,0,0,0,0$, f-10.0.0, o, o, 0. 0, ․ 10, 7. Ser page 73. 7t. 75.
Col. (25) Sice Appendix VI.
Col. (26) See Appendix YI.
Col. (27) See Appendix VI.

APPENDIX VIII

Foertren Different Graduations of Cale Money Rates on the New York Stock Exchange for 97 Monthe-January 1886 to January 1894 Inclusne.
(The various graduations have the sane column numbers in Appendices IV, VII and VIII and in Chart I.)
The reader will notice, when examining this Appendix, that the various graduations have been applied to the logarithms of the monthly Call Money Rates. In any graduation, the first problem which presents itself is to decide what function of the variable shall be used as raw data for purposes of graduation. This problem cannot be solved by refusing to think about it. There is nothing magical in the form in which the data happen to be originally presented. For example. if the investigator were interested in the history of bond prices and bond yields. it would make an appreciable difference whether he selected prices or yields as the variable to which he would apply a graduation formula. This would be true even if the bonds were all perpetuities-when it would seem legitimate to have averaged their prices. Many economic series are of this type-where it would seem about equally reasonable to select as the raw data for graduation a series or its reciprocals. Of course, if
the logarithms of a series be taken, it becomes mathematically indifferent whether the logarithms of the series or the logarithms of its reciprocals be graduated. There are ahways disadvantages associated with the choice of any particular function of the data-natural numbers, logarithms, reciprocals, etc.

Some of the reasons which led us to graduate the logarithms of monthly Call Money Rates, rather than the natural numbers, are concerned with the nature of the data, while others are concerned with the mature of graduation. The nature of the data is such that the significance of changes would seem to be measured better by ratios than by differences. A change from a 3 Call Money rate to a 4% rate would seem more nearly comparable with a change from a 6% rate to an 8% rate than with a change from a 6% rate to a 7% rate. As an index of change in general money market conditions, a movement from a 3% rate to a 4% rate would seem more important than a movement from a 6% rate to a $7^{\%}$ rate. The nature of graduation is such as to suggest graduating the logarithms of Call Money Rates rather than the natural numbers. The distribution of deviations of the rates from the graduation is more symmetrical when the graduation has been applied to the logarithms than it is when it has been applied to the natural numbers. The Call Money data when charted in the form of natural
numbers tend to show flat minimum areas and sharply cusped maximmon areas. If the logarithms are charted, there is a tendency for the data to show more of a sine-like appearance with the shapes of maximum areas more nearly the same as those of minimum areas. A graduation applied to the natural numbers will not give as close a fit to the cusped maximum areas as to the flat minimum areas. If the graduation be applied to the logarithms of the data, the closeness of fit will iend to be more nearly the same for maximum and minimum areas.

No function of the data can be chosen such that its graduation will not have peculiarities which, for particular purposes, might be undesirable. For example, a graduation of the logarithms of Call Money Rates will be such that if a borrower had a loan of constant size throughout a period of some years, his interest charges would be somewhat less if he paid the graduated rates than they would be if he paid the actual rates. In the case of most economic data, it is extremely difficult to be sure that some particular function of the data is overwhelmingly more significant than any other function. We decided that the logarithm was the most significant function for our purposes.

[^4]164 THE SMOOTHINO OF TIME SERIES

	18:	18.55	1304	1305
J	279	076	. 009	. 3.30
F'	. 27.1	.158	(1)0)	.17
M	24.3	. 117	. 0.37	. 3 S
A	..32:	.130	.053	. 3 2 2
M	1.176	. 158	. 0.41	.121
J	. 537	016	(M0)	.0.4
J	279	. 130	. 000	. 1.16
A	.24.3	. 176	. 000	. 01.3
S	. 24.3	. 190	(MK)	. 193
0	.2\%)	.iss	. 000	. 336
N	. 1.8	. 4.0	. 01.1	29.4
1)	. 176	.43)	. 158	.659

		(2)	(11)	(12)	(13)	(14)
		20 Hati SMMCL: Mowin: A:trator				
1886						
J	. 328	3525	. 36.52	. 3501	. 350.3	. 2467
F	. 314	. 3 S 46	38.7	. 3845	.3878	. 38.56
11	123	. 4.11^{7}	. 308.	.4220	. 426.4	. 466
A	. 37	4716	. 42.30	. 4613	4653	. 4672
11	.49)	.500\%	+ 488	. 4980	. 5029	.50.59
J	.525	.5349	. 5076	. 5350	. 5383	. 5416
J	. 352	. 5080	. 56.50	5700	. 5725	.57.48
A	. 725	..5901	. 0216	. 6052	. 60.59	. 6070
S	. 771	. 0117	. 6.14	6.381	. 6380	. 6383
0	. 704	. 6404	.7078	.6704	. 66.9	.6091
N	.751	. 6080	. 7288	. 6987	. 6950	. 6981
1)	. 940	. 6923	. 7361	. 7217	.780)	. 72.37
1887			7360	3386	.7357	745
1:	.022 .551	.7196 .7326	.1 .300 .7 .325	.7880 .7480		. 5156
M	.703	. 7295	. 7288	.7500	.7552	7626
A	. 787	. 7236	. 7275	. 7502	.7574	. 70.27
M	. 710	. 7165	. 7296	.74	$\therefore 542$. 6.75
J	. 857	. 7028	. 7315	. 730.4	. 7.56	. 7485
J	. 677	. 6108	.7308	. 726.3	. 7308	. 7348
A	. 712	. 0839	. 7230	. 1110	.7089	.7153
5	. 710	.6679	. 7075	. 6.896	.6801	. 6885
0	. 622	. 6410	.6829	.6.593	. 6.451	. 6535
N	. 66.3	6074	. 6476	. 6187	. 60.44	. 6106
D	. 699	. 5600	, 000	.5691	.5593	. 5614

THE SMOOTHING OF TIME SERIES 165

		(2)	(11)	(12)	13,	(1.1)
		2 18 A i 2	Srrotrs:	K-vases.	29-1FRS	
		Supple: Howds:	21.2684	2-17ki		ग=.tery
		Mowist	36deneme		3RD yecreve	Pramonic
				Pakdimime	Pakabolic	
1885						
.	. 376	.5100	. 5441	. 5156	. 5123	. 5097
F	. 4.31	. 4667	. 4789	. 4627	. 1659	. 4594
M	. 439	. 4340	. 4097	. 4148	. 42.30	. 4146
A	. +20	. 414.5	. 34.59	. 3769	. 3868	. 3784
M	255	. 395.3	297.4	. 3493	. 3594	. 3523
J	. 176	. 3812	. 2710	. 3.316	. 3420	. 3356
1	. 158	. 37.54	. 2700	. 3251	..3.332	. 3274
i	. 190	. 3702	. 2926	.3282	. 3324	. 3260
S	449	. 3694	. 3320	.3380	. 3377	. 3.309
0	. 11.5	. 3784	. 3791	. 3.545	. 3487	. 3416
S	. 108	. 3918	. 4.32	. 3761	. 36.59	. 3.501
1)	. 016	. 1106	. 4560	. 4005	. 3806	. 3836
1889						
I	.51)	. 4.395	.4.52	. 488	. 419.5	. $\ddagger 147$
i	. 364	.4725	+624	4593	. 4.550	. 4.18
M	. 486	.4988	. 18.31	.4920	. 1942	. 4927
A	. 580	. 529.5	.157\%	. 5270	. 3.337	. 5343
, 1	. 407	. 5600	. 5001	.5628	. 3110	..5736
1	. 47	. 5995	548	. 5967	.6038	. 6080
1	. 5.50	. 6268	.5941	6.85	. 6.313	.6.364
1	. 58	6.531	.6557	.6,59	.0.5.50	.6.59.4
5	.682	. 6800	. 716.4	.68.3)	. 6768	. 679.3
0	. 919	.6738	. $3 ¢ 4$.70.54	. 6982	. 6986
N	. 85.3	. 691.3	. 7910	. 72.50	. 7189	. 7179
D	.90.3	711.7	. 7935	. 7419	. 7385	. 7382
J	. S86	. 7244	771	.75.5.5	.7562	.7581
F	628	. 7490	.750.7	. 7668	. 7702	. 77.5
11	.628	. 7.750	725.5	.7i45	.7789	.787.
d	6.33	.7719	. 712.3	.7i6	. 7822	. 7915
11	.688	. 7624	.7172	.7129	. 7795	. 7873
J	.675	.7536	. 7.371	. 76.51	.717	. 7763
1	. 66.3	.7328	7626	.7549	. 3602	. 7610
i	1.066	.71.35	. 8818	. 7436	. 7446	. 7439
S	. 820	.6) c_{4}	.786. 3	. 7308	. 72.55	. 7251
0	.69\%	.6876	. 2707	. 7145	. 7039	. 70.54
N	A 45	. 6809	. 7.348	. 6038	. 6814	.68:0
I)	.699	.6720	. 6818	. 6087	. 6.590	. 6031

		(2)	(11)	(12)	(13)	(14)
	$\begin{aligned} & \text { DATA } \\ & \text { (Licis } \\ & \text { BITHY(i) } \end{aligned}$			FEWHANO10 N 's: 27-12EMS 3RD-DFRREE Pakatmile	29-15kM yayti.j ixD-0ヶ6RKE: I'ARAHOIII:	
1891						
J	. 591	. 6518	. 6288	. 6300	. 6365	. 6.397
1	. 459	. 6077	..5758	. 006 הs	. 6140	. 61.46
M	. 459	. 5696	. 5321	. 5764	. 5913	. 5889
A	. 519	. 5593	. 5027	. 55.516	. 568.4	. 564.5
M	. 641	. 5478	. 489.4	. 5324	. 5460	. 5430
J	. 512	. 5297	. 4914	. 5184	. 266	. 5249
J	. 342	. 511.3	. 5092	. 508.3	. 507.3	. 5085
A	. 328	. 49.59	. 5148	. 4980	. 4879	. 4909
S	. 6.53	. 4828	. 5220	. 48.4	. 4669	. 4701
0	. 628	. 4671	. 5186	. 46.38	. 4.3 .3	. 4445
N	. 641	. 4386	. 4987	. 4.361	. 4180	. 4166
D)	. 468	. 40.40	. 4611	. 4046	. 39.38	. 3891
1892						
J	. 380	. 3859	. 4077	. 3755	. 3728	. 3656
F	. 301	. 3824	. 3477	. 3517	. 3566	. 3484
M	. 301	. 3802	. 2926	. 3.363	. 3478	. 3391
A	. 301	. 3838	. 2.578	. 3.324	. 3470	. 3392
M	. 176	. 3919	. 2531	. 3.401	. 3546	. 3481
J	. 146	. 4100	. 2826	. 3.579	. 3706	. 3648
J	. 274	. 4315	. 3.126	. 3869	. 3061	. 3899
A	. 312	. 1511	. 1222	. 1259	. 4327	. 1217
S	. 616	. 4840	. 5058	. 4752	. 4797	. 4715
0	. 751	. 5256	. 5820	. 534.3	. 5365	. 5303
N	. 712	. 5576	. 6427	. 5979	. 5992	. 5971
D)	. 833	. 6068	. 6858	. 0591	. 6590	.6044
1893						
J	. 602	. 6659	. 7151	. 7139	. 7092	. 72.31
\%	. 477	. 7093	. 7355	. 7547	. 74.51	. 76.57
M	. 914	. 22.54	.7516	. 7745	.7624	. 7864
A	. 688	. 7081	.7655	.7714	.7593	.7817
M	. 556	. 6724	. 770.3	. 7454	.735.4	. 7528
J	. 948	. 6203	.7553	. 6991	. 6929	. 7037
J	. 889	. 5635	.7127	. 6391	. 6.349	. 6398
A	. 740	. 5190	. 6.38 .5	. 5691	.5647	. 5673
S	. 514	. 4625	. 3.355	.4919	.4884	. 4907
0	. 377	. 399.5	. 41.49	. 4119	. 4099	. 4126
N	. 230	. 351 i	. 2920	. 3302	. 3,303	. 3332
D	. 064	. 2907	. 182.5	. 24.3	. 2526	. 2529
1894 J	. 009	. 2141	. 0976	. 1681	. 1787	. 1742

THE SMOOTHING OF TIME SERIES 167

108 THE SMOOTHING OF TIME SERIES

		(1, ${ }^{\text {a }}$	(1\%	: \because	at
		35-TERM SIH DECMER Iaraboht			
1839					
J	. 519	. 4119	. 4202	. 4209	4212
F	. 364	. 4517	4573	-4.974	+45\%
M	. 480	. 4973	. 4967	.4964	.4961
A	. 589	. 54.38	. 530.1	. 5352	.536
M	. 107	. 58.54	.573\%	. 5716	. 5710
J	. 477	. 6180	. 0167	. 004 H	(f) 11
1	. 550	. $0+13$.6.348	. 6.338	.63.2
i	. 589	. 6.586	. 0.589	. 6.587	.0.58
S	. 682	. 67.37	. 6803	. 6810	.681.3
0	. 919	. 0906	. 7002	. 7018	.7022
N	.853	.7108	. 7199	. 21212	.7218
D	. 90.3	. 73.37	.738S	. 7.398	. 740.3
1890					
J	. 886	. 7501	. 7563	. 7569	. $5: 70$
F	. 625	.77.7	.77:0	. 7709	.7807
M	. 628	. 7882	.7816	. 7802	.isto
A	. 63.3	. 7918	.7858	.7845	. $88+1$
λ	. 088	. 7872	.7836	. 7827	. 2821
J	. 677	. 7767	.77.54	. 7747	.734
I	. 60.3	. 7616	.7621	.7619	. 620
A	1.060	. 74.3 .3	. 74.50	.745]	.722
δ	. 829	. 2229	. 72.51	. 22.53	.7254
0	.699	. 7010	.70.3.	.7036	. 20.38
N	. 845	. 6788	6)805	. 6811	.6810
D	. 699	. 6.571	.6573	. 6576	. 6576
1891	. 591	. 63.59	. 6.310	. 6340	6.34 .3
F	. 4.59	. 6119	. 6107	. 6114	. 0115
.1	.4.59	. 5871	. 5885	. 5.596	..900
A	. 310	. 56.32	. 5681	. 5688	. 5695
. 1	. $0+1$. 542.1	. 5491	.5494	. 5409
J	. 512	. 5259	. 5.306	. 5307	. 5308
J	. 342	. 51.32	. 5121	. 5116	. 5114
A	. 328	. 5000	. 492.5	4911	+905
S	. 0.5 .3	. 4816	4703	. 600	4685
6)	. 628	. 4.567	+467	+4.4)	4412
N	. 041	. 4268	+208	. 4196	. 1189
D	-168	. 3952	. 39.51	. 3043	. 30.42

THE SMOOTHING OF TIME SHRIES 16O

		(1s)	(19)	(20)	(21)
1892	. 3 \% 0	. 3674	. 3714	3712	. 3710
F	. 301	. 3471	. 3519	3516	. 3518
M	. 301	. 3364	. 3380	. 3382	. 3386
A	. 301	. 3338	. 3319	.3328	.3334
M	.176	. 3387	. 3355	.3370	. 3379
J	.146	. 3502	. 3505	. 3524	. 3538
J	. 274	. 3692	. 3775	. 3804	. 3819
A	. 312	. 4001	4173	4213	4225
S	. 616	. 484	4697	+4737	. 4752
\bigcirc	. 751	. 5141	. 5321	. 5350	. 5362
i	. 712	. 5912	. 5096	.6008	. 6013
D)	. 833	. 6701	. 6057	66.51	
1893		. 386	7235	. 2207	. 7193
J.	. 602	. 7866	8660	. 7614	.7597
$\stackrel{1}{1}$.477 .914	. 8088	. 7876	. 7825	. 7802
M A	.914 .688	. 8040	. 7856	. 8810	.7880
A M	.688 .556	. 7126	. 7602	. 7568	7553
M	.556 .948	.7126 .7179	. 7141	. 7125	. 7116
J	.948 .889	. 6127	. 6517	. 6516	. $651 ?$
I	.889 .740	. 5685	. 537	. 5782	. 5783
A S	.70 .574	+4874	. 4962	. 996	. 4972
5	.574 $.37 \%$. 4069	. 4109	. 114	. 4115
)	$.37 \%$.230	. .3282	. 3248	. 3246	. 3248
N V	.230 064	. 2491	. 2404	2401	. 2404
1804	. 009	. 1684	.1608	1615	. 1620

170 THE SMOOTHING OF TMME SERIES

		(22)	(23)	(2)		(2)
			5-16E:	15.1t.ms		
		¢5-7R8M	Artowi-	Aurmas		
		Sthimithe		$\frac{\text { Matrsis }}{}$		
		Parahemic	I'vRAMOLA.	Sthebrigif		
				--.. --....-.	- ---	
1586						
J	. 328	. $3+77$. 3491	. 3528	. 3076	2i.43
F	..314	. 380	. 3×67	3885	. 3128	. 3.304
M	. 4.3	.4282	.4259	.4254	. 3817	. 385
A	. 377	.4652	.40.52	463.3	. 424.5	. 4365
M	. 4.5	. 4094	.50.3!	. 501.3	. 4111	4.932
]	.53	. 5300	.535S	. 5360	. 5206	. 5333
J	. 52	. 97.37	.5328	. 57.31	. $5: 10$..3734
A	. 275	. 00 St	.6057	. 6071	.0194	. 0179
S	.771	. 6405	. 0.37 .4	.6.391	. 6018	$0{ }^{6}+1$
0	. 304	(60) 4	. 6676	.668i	.6951	. 6854
N	. 7.51	. 60.4	6095	. 6956	. 7181	. 7114
1)	. 940	. 7168	. 7201	. 7192	. 731.1	.7319
185\%						
J	622	.73.54	. 7391	. 7.381	.73i4	. 7469
F	.551	. 7.490	.7525	.7524	. 7308	. 7566
.11	. 703	.7506	. 7605	. 7616	.7415	. 7611
A	.785	. 76.37	. 76.33	. 76.54	. 732	. 760.3
M	. 710	.7615	.7609	. 763.4	.740	. 540
J	.85\%	.752.3	.75.39	.7559	. 7422	. $i+20$
J	.67\%	.7357	.714	. 7149	7.55	. $\because 24$
A	. 712	. 7122	.721)	. 305	-72.2	. 7003
5	. 110	6311	. $60+4$. 6913	.7129	. 6009
0	.62	(0.48	. 6.587	6.545	.6i36	. 6.361
N	. 60.2	. 6016	. 014.5	. 610.4	. 63.46	. 5971
I)	. 099	5564	.56.3s	.5612	. 5860	.5551
1888						
1	. 576	. 510.5	. 5104	. 5101	. 30.5	. 5117
I	. 431	. 46.57	457	f(0)1	(fis)	.4689
II	.1.3)	.4245	+105	+145	. 1194	. 4288
A	+ 20	. 3584	. 3720	. 376.3	. 350	. 3935
M	.255	. 350	. 3143	. 3474	.163	. 3649
J	.176	.33:0	.3270	. 3.70	2935	. 3415
J	.15s	.324	. 3194	. 3175	. 288.3	..3.331
\therefore	. 100	. 3004	.319)	. 316	. 3015	. 3.308
5	.49	. 326.3	: 265	. 313	.3\%)	. 3.370
$1!$	-115	. 340.3	. 3.30	. $3: 1$.iol!	. 3.50
N	.408	. 36.37	. 35%	ミ5\%	. 31	.3500
I)	.616	.iol.	, $\times 10$.isul	425	. 3942

THE SMOOTMING OF TIME SIERIES 171

		(2)	(13)	(24)	(15)	(27)
					 Heximemes $11=3$	
1889						
J	. 519	. 4238	. 11.59	. 1194	4504	+ 4219
F	. 364	. 4593	. 4.551	. 4.72	. 4709	4522
M	. 486	. 49 ± 7	. 498 ?	. 4976	. 4902	. 4845
A	. 589	. 5302	. 5408	. 5374	. 5117	. 518.3
M	. 407	. 5649	. 5798	. 5745	. 538.5	..5530
I	. 477	. 5982	. 6129	. 6079	. 5726	. 5880
I	. 550	. 6293	. 6.395	. 6365	. 6135	.6225
A	.. 589	. 6581	. 6604	.6606	. 6580	. 6.535
S	. 682	. 6842	. 6787	. 6821	. 7010	. 6858
O	. 919	. 7071	. 6970	. 7024	. 7367	. 7123
N	. 853	. 7267	. 7163	. 7215	. 7003	. 7341
1)	. 903	. 7435	. 7371	. 7402	.7702	. 7508
1800						
J	. 886	.7574	. 7571	. 7580	.7683 .7590	.7625
F	. 628	. 7687	. 7742	. 7727	. 7596	.7697
M	. 628	. 7767	. 78.56	. 7826	.7504	.77.32
A	. 63.3	. 7804	. 7906	. 7873	. 7457	. 7737
1	. 688	. 7790	. 7879	.7855	. 7476	. 7716
J	. 677	. 7725	. 7783	. 7771	.7548	. 7669
J	. 603	. 7616	. 7635	. 76.37	. 7634	. 7593
A	1.066	. 7461	.7451	.746.	. 7679	. 7484
S	. 829	. 7270	. 7243	.7257	. 76.30	.7339
0	. 699	. 7051	. 7023	. 7633	. 7460	. 7158
N	. 84.5	. 6815	. 6800	. 6804	. 7171	. 6945
D	. 699	. 6578	. 6569	. 6565	. 6789	. 6707
1891 I	. 591	. 6346	. 6331	. 6327	. 6360	. 6453
F	. 459	. 6125	. 6094	. 6101	. 5937	.6193
N	. 459	. 5917	. 5868	. 5887	. 5566	.5935
A	. 519	. 5718	. 5658	. 5684	. 5274	. 5684
M	. 641	. 5519	. 5472	. 5498	. 5070	$\stackrel{5442}{9207}$
J	. 512	. 5314	. 5306	.5320 5137	.4956 +936	. 2907
I	. 342	. 5097	. 514 ?	.5137 .4938	.+936 .4955	.4749 .479
A	. 328	. 4865	.4967 .464	.4938 .4718	. 4952	. 4.519
S	. 65.3	. 4625	.4764 .4520	.4715 .443	.4892 .4894	. 4285
O	.628 $.6+1$.4 .386 .4149	.4520 .4240	.4210 .4210	. 4698	. 4051
N D	$.6+1$.468	.4149 .3923	. 3954	. 3943	. 4330	. 3827

I72 THE SMOOTHING OF TIME SERIES

		（12）	（2）	（21）	（25）	U：
		$\begin{aligned} & \text { 45-тFRM } \\ & \text { 5TH-DEGHE: } \\ & \text { Pababoble } \end{aligned}$	3）－1よEい AperaNi－ MATEES 5スA Devikfe l＇akabolle		$\begin{aligned} & \text { Whifiakta- } \\ & \text { Heximer } \\ & n=3 \end{aligned}$	
1892			3603			
J	． 380	． 371.4	． 3693	． 3693	． 390.3	． 30.30
1	． 301	． 3527	． 3477	． $3+76$	． 3459	． $3+4$
M	． 301	． 3391	．3332	． 3319	． 3087	． 3401
A	． 301	．33．4	． 3267	． 3245	2881	．$i+1$（1）
M	． 176	． 3390	． 3290	． 3271	． 2838	． 3519
J	． 146	． 3579	． $3.40{ }^{\circ}$	． 3413	． 3049	． 3737
J	274	． 3898	． 36.52	． 3693	． 3485	．4039
A	． 3 ！ 2	． 4337	． 4037	． 4112	． 4096	． 431
5	． 616	． 4869	． 456.5	．+661	． 4003	．490
0	． 751	． 5460	．522．4	． 5309	． 5317	．stos
N	． 712	． 6002	．596	． 6013	． 0166	．59x\％
1）	． 83.3	． 0025	． 6711	． 6707	． 0712	． $0+80$
1803						
J	． 602	． 7095	． 7364	． 7309	． 7147	． 69.31
1 ：	． 477	． 7459	． 7848	．775．3	． 7483	． 7296
\cdots	．91．t	．76．52	． 8002	． 7988	． 7727	． 7535
A	． 088	． 7639	． 8057	． 7977	． 7860	． 7602
A	． 536	． 7465	． 7761	． 7724	． 7872	．7652
I	． 948	． 7080	． 2250	． 7259	． 7703	． $74+1$
J	． 889	． 6500	． 6576	． 6618	． 7306	．302S
A	． 710	． 5816	． 5791	． 5849	． 6142	． 6.397
S	． 574	． 5005	． 4957	． $5000-1$	． 5698	． 5538
0	． 377	． 4127	． 4103	． 4117	． 4482	． 4446
N	． 230	． 3238	． 3240	． 3217	． 3011	． 3120
I）	． 064	． 2383	． 2386	． 2341	． 1299	． 1560
189.4 J	． 009	． 1611	． 1567	． 1528	$-.0647$	$-.0234$

[^0]: ${ }^{1}$ Take a 16 -months moving average of the data with the following simple weights: $-1,0,0,0,+1,+1,+1,+1,+1,+1$, $+1,+1,0,0,0,-1$. Take a 12 -months moving total of this weighted 16 -months moving total. Divide each of the final results by 72 .

[^1]: ${ }^{1}$ In both Chart VIII and Chart IX, the Spencer 15 -term graduation is that obtained by graduating the adjusted data. Of comrse, no such statement need be made in comection with the 43 -term graduation, as it gives the same results whether applied to adjusted or unadjusted data.

[^2]: ${ }^{1}$ For a description of the methods used in obtaining the constant seasonal and the dianging sfasomal, see page 130.

[^3]: ${ }^{1}$ In the following paradigen data ordinates are itahicized and ordinates of the final eraduation are set in heavy fall face type.

[^4]: In all but two of the graduations below, data outside the range January 1886 to January 1894 have been used. The data (logarithms) for two years before 1886 and two years after 1894 are:

