This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Executive Compensation in Large Industrial Corporations
Volume Author/Editor: Wilbur G. Lewellen

Volume Publisher: NBER

Volume ISBN: 0-870-14481-2
Volume URL: http://www.nber.org/books/lewe68-1
Publication Date: 1968

Chapter Title: Appendixes
Chapter Author: Wilbur G. Lewellen
Chapter URL: http://www.nber.org/chapters/c9355
Chapter pages in book: (p. 288-361)

APPENDIXES

APPENDIX A

DEDUCTIONS AND EXEMPTIONS AS A PER CENT OF INCOME

Information on the personal exemptions and the deductions from taxable inconce claimed by individuals having incomes of the same order of magnitude as those enjoyed by the executives in the sample was obtained from the Statistics of Income data published by the Internal Revenue Service for the six years 1944, 1947, 1950, 1953, 1956, and 1959. The ratio of the total of deductions and exemptions to the aggregate income received by all taxpayers with adjusted gross incomes greater than $\$ 25,000$ in each of those years was computed. Aggregate income was defined as the sum of the reported adjusted gross income and the amount of net long-term capital gains not already included in AGI. The resulis were as follows (the underlying figures are recorded in Table A-1).

Clearly, the ratios within each year are quite uniform across a broad range of income classes, and they encourage the assumption of a single

APPENDIX A
IAbll A-I
Income Iata
(dollar figures in millions)

							Itcop tion. and
AGI Class (thousand dollars)	$\begin{aligned} & \text { Total } \\ & \text { A(i) } \end{aligned}$	Capital (iains $150 \% 1$	Total Incone	Peasonial Fxemp tions	Deduc- tions	Exemp. fions Plus Deduc. tions	Deduc tions a) "r of Toat Income

19.44 1)ata							
25-50	3.388 .7	118.5	3.507 .2	118.7	261.1	379.7	10.8
$50-100$	1,926.0	98.3	2.024 .3	31.7	168.6	200.2	4.9
100-150	584.7	43.4	628.1	4.9	58.7	63.6	10.1
150-200	267.6	26.4	$29: 4.0$	1.5	29.9	31.3	107
$200-500$	419.7	57.2	476.9	1.4	50.7	52.1	10.9
$500-1000$	149.0	31.7	180.7	0.2	17.7	17.9	4.9
Over 1000	1199.6	19.8	129.4	0.1	16.1	16.2	12.5
10471016							
$25-50$	4.923 .4	201.5	5.125 .0	180.2.	4.31 .3	611.5	11.9
50-100	2.525 .7	176.3	2.702 .0	41.9	250.4	292.3	10.8
100-150	759.9	89.4	849.3	6.3	87.3	93.5	11.0
150-200	352.6	51.0	403.6	i. 9	44.6	46.5	11.5
200-500	573.6	127.1	700.7	1.7	75.0	76.7	11.0
$500-1000$? 01.8	53.0	254.8	0.2	29.3	29.6	11.6
Over lomo	214.9	73.2	288.2	0.1	28.8	28.9	10.1
$19501) \mathrm{lta}$							
25-50	7.425 .5	376.3	7.801 .7	+45.0	620.9	1.1665 .4	13.7
$50-100$	4.192 .5	304.6	4.497 .1	123.4	386.3	509.7	11.3
100-150	1.386 .5	15.6 .6	1.543.1	21.9	143.8	i65.8	i0.:
1.50-200	676.8	98.3	775.0	7.4	73.6	81.0	10.4
200-500	1.141.2	229.9	1.371.2	7.3	144.9	1522	11.1
$560-1000$	419.5	13.4	551.8	1.1	S2. 8	53.8	9.8
Over 1000	433.4	131.3	564.7	0.3	54.3	54.7	$9 . *$

(continued)

TABIE A-1 (concluded)

ACl Class (thousand dollars)	$\begin{aligned} & \text { Total } \\ & \text { A(i) } \end{aligned}$	Capital ialins (50\%)	Fotal Incone	Personal Fxemptions	Desiuc- fions	Exemp- tions: Plus Deduc- tions	Fxemp. tions and Deduc- lions (a) 'r of Totid Income
$195310 \ldots$							
25-50	6.355 .7	191.2	6.546 .9	546.5	651.8	1.198 .3	18.3
$50-100$	5.682 .1	212.7	5.894 .8	$\xrightarrow{2} 10.7$	612.8	923.5	15.7
100-150	3.994 .0	239.3	4.233 .9	120.2	484.2	604.5	14.3
150-200	1.638 .7	184.0	1.822 .6	23.6	243.3	266.9	14.6
$200-500$	753.1	148.1	901.2	4.9	138.7	143.7	16.0
$500-1000$	252.4	69.5	321.9	0.6	46.2	46.8	14.5
Over 100)	275.3	70.8	346.1	0.2	52.0	52.2	15.1
1956 Dalte							
25-50	11.638 .4	673.0	12.311 .4	753.3	1.262.5	2.0159	16.4
50-100	5.900 .3	582.2	6.482 .5	189.4	721.	911.2	1.1 .1
100-150	1.679 .3	291.8	1.971 .1	28.9	26.2 .1	291.0	14.8
150-200	6.59 .1	138.2	747.3	7.9	114.3	122.2	15.3
200-500	1.138 .0	320.0	1.458 .1	8.1	216.5	224.6	15.4
500-1000	396.6	154.2	550.8	1.2	76.3	77.5	14.1
Over 1000	549.6	241.1	790.8	0.5	106.0	106.5	13.5
1959 Data							
25-50	14.148 .9	919.6	15.068 .5	956.3	1.766 .7	2.7330	18.1
50-100	7.549 .5	799.6	8.349 .1	255.5	1.060 .4	1.315 .9	15.8
100-150	2.080 .6	394.2	2.474.8	37.0	348.0	3850	15.6
150-200	764.3	192.0	956.2	9.5	145.2	154.7	16.2
$200-500$	1.361 .9	4.57 .4	1.819 .4	9.9	281.3	291.1	16.0
500-1000	478.2	220.9	699.0	1.4	100.1	101.6	14.5
Over 1000)	545.6	258.0	803.6	1.5	120.1	120.6	15.0

flat rate for all individuals. Moreover, there is a rather clear-cut differconce between the experience of the years 1944, 1947, and 1950 and that observed thereafter. Almost all the figures in the earlier years fall between 9.5 and 11.5 per cent and i! the later ones, between 14.5 and 16.0 per cent. Accordingly, the convention adopted in the study, that deductions and exemptions together amounted to 10 per cent of income through 1950 and 15 per cent from then on, seems not only a convenient but a fairly accurate characterization of the actual historical patterm. As long as corporate executives' behavior did not differ markedly from that suggested by the aggregate figures for all individuals with similar incomes, this convention should be a suitable approximation of their experience.

The supporting data from the Statistics of Income tabulations for the six years indicated consist of: (1) total adjusted gross income on all returns in each AGI class (2) the amount of net long-term capital gains included in the AGI figures; (3) total personal exemptions claimed by the taxpayers in each class; (4) total deductions chained in each class.

Since just one-half of aggregate net long-term capital gains are counted in the reported AGI figures, the sum of items (1) and (2) represents the total income enjoyed by each AGI category.

APPENDIX B

MORTALITY EXPERIENCE TABULATIONS

Insurance companies compile, from their policy underwriting experience, a record of the rate at which their policyholders of various ages die. This information is organized and presented in the form of a "mortality table." Since the classes of people who purchase different kinds of insurance policies typically exhibit different longevity characteristics, there exist not one but several such tables, each of which is relevant to a particular type of insurance contract. All are revised periodically to reflect new information on longevity as it becones available.
The tabulations are most commonly organized in the following manner: An arbitrary group of individual policyholders all of a particularand equally arbitrary-age initially is hypothesized. The number out of this group who will, on the basis of current experience, attain successively higher ages is then recorded. For example, if the tabic is begun at age 5 with 10,000 persons, it might look like:

Age x	l_{x}
5	10000.00
6	9994.41
7	9989.22
8	9984.29
9	9979.49
10	9974.74

(Continued)
293

Age x	l.
50	9371.75
\cdot	\cdot
\cdot	\cdot
\cdot	5173.47
75	\cdot
\cdot	\cdot
\cdot	\cdot
\cdot	0.01
110	0.00
111	

where l_{r} denotes the number of individuals who are expected to live to at least age x. According to this table, of every 10,000 policyholders who are now age $5,9994.41$ are expected to attain age $6,9989.22$ to attain age $7,5173.47$ age $75,0.01$ age 110 , but none age 111 .

From these figures, the probability that an individual of any given age at the present time will live to any other given age can readily be computed. Thus the probability that a child now age 5 will live at least one more year is

$$
\frac{9994.41}{10000.00}=0.999441
$$

Similarly, the chances of his attaining age 50 are

$$
\frac{9371.75}{10000.00}=0.937175
$$

And, of course, age 5 need not be the reference point in every case. The probability that a man age 50 will live to see his seventy-fifth birthday is

$$
\frac{5173.47}{9371.75}=0.552028
$$

In general, therefore, if we let ${ }_{n} p_{r}$ denote the probability that an individual of age x now will attain age $x+n$, we have

$$
{ }_{n} p_{x}=\frac{l_{x+n}}{l_{x}}
$$

which permits us to utilize the raw data of the mortality table to analyze
in any situation an execotive's prospects for actually receiving the paynents promised him under his companys pencion plan

For certain calculations--in particular, those concerned with the value of whatever death benefits may be associated with the compensation arrangement in question-it is useful to derive a second set of mortality tabulations from the information listed above: the momber of individuals out of the original 10,000 who are, on average. expected to die after having attained various ages. Thus we may define the quantity d_{x} where

$$
d_{x}=l_{x}-l_{x+1}
$$

and construct an additional colunn in the mortality table:

Age x	l	d_{r}
5	100000.00	5.59
6	9994.41	5.19
7	9989.22	4.93
8	9984.29	4.80
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	9371.75	60.68
50	9311.07	66.92
51	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	4173.47	322.97
75	\cdot	331.52
76	\cdot	\cdot
\cdot	0.01	\cdot
\cdot	0.00	\cdot
\cdot	\cdot	-
110		\cdot
111		

The probability that an individual now age 5 will die after attaining age 7 but before attaining age 8 therefore is

$$
\frac{4.93}{10000.00}=0.000493
$$

If he reaches age 8 , the likelihood that he will die between his fiftieth
and fitty-first birthday is

$$
\begin{gathered}
60.68 \\
9984.29
\end{gathered}=0.006078
$$

In general, then,

$$
n q_{x}=\frac{d x+n}{d_{x}}
$$

 within a ycar after attaining age $x-+n$.

> APPENDIX C

1951 GROUP ANNUITY
 Mortality table for males

Age x	l_{x}	d_{s}	Age x	l	d_{r}
5	9999.9999	5.5900	31	9837.6874	10.3689
6	9994.4099	5.1871	32	9827.318 .5	11.0263
7	9989.2228	4.9347	33	9816.2922	11.7599
8	9984.2881	4.8024	34	9804.5323	12.5596
9	9979.4857	4.7502	35	9791.9727	13.4542
10	9974.7355	4.7579	36	9778.5185	14.4233
11	9969.9776	4.8454	37	9764.0952	15.4956
12	9965.1322	4.9427	38	9748.5996	16.6799
13	9960.1895	5.0399	39	9731.9197	17.9943
14	9955.1496	5.1468	40	9713.9254	19.4279
15	9950.0028	5.2735	41	9694.4975	21.2503
16	9944.7293	5.4099	42	9673.2472	23.6995
17	9939.3194	5.5660	43	9649.5477	26.7196
18	9933.7534	5.7318	44	9622.8281	30.2830
19	9928.0216	5.9072	45	9592.5451	34.3413
20	9922.1144	6.1120	46	9558.2038	38.8541
21	9916.0024	6.3462	47	9519.3497	43.7795
22	9909.6562	6.5998	48	9475.5702	49.0835
23	9903.0564	6.8623	49	9426.4867	54.7396
24	9896.1936	7.1648	50	9371.7471	60.6821
25	9889.0288	7.4959	51	9311.0650	66.9186
26	9881.5329	7.8657	52	9244.1464	73.3800
27	9873.6672	8.2741	53	9170.7664	80.0700
28	9865.3931	8.7309	54	9090.6964	86.9343
29	9856.6622	9.2160	55	9003.7621	93.9633
30	9847.4462	9.7588	56	8909.7988	101.0906
		$(C o n t i n u e d)$			
			297		

$\operatorname{Age} x$	l_{r}	d_{r}	Age .	$1 r$	$d x$
5%	8808.7082	108.3295	8.4	2152.3957	295.6353
58	8700.3787	115.7324	85	1857.3604	272.7571
59	8584.6463	123.4386	86	$158+6033$	248.5228
60	8461.2077	131.6141	87	1336.0805	223.2858
61	8329.5936	140.4869	88	$1112.79+7$	197.8404
62	8189.1067	150.2947	89	$091+9543$	172.8523
63	8038.8120	161.3229	90	0742.1020	148.861 ?
64	7877.4891	173.8326	91	0593.2408	126.0963
65	7703.6565	188.1079	92	0467.1445	105.1827
66	7515.5486	$20+.370 .3$	93	0361.9618	086.3366
67	$73 \mathrm{i1.1783}$	220.1542	9.4	0275.6252	069.6684
68	7091.0241	233.9045	95	0205.9568	055.2016
69	6857.1196	246.46 .54	96	$0150.755 ?$	042.8831
70	6610.6542	259.8185	97	0107.8721	032.6014
71	6.350 .8357	274.2481	98	0075.2707	024.2007
72	6076.5876	288.4291	99	0051.0700	017.4928
73	5788.0955	301.4672	100	0033.5772	012.2712
74	5486.6283	313.1603	$10!$	0021.3060	008.3908
75	5173.4680	322.9641	102	(0)12.9852	005.4275
76	48.50 .5039	331.5174	103	0007.5577	003.4017
77	4518.9865	339.5205	104	0004.1560	002.0331
78	4179.4660	345.5875	105	0002.1229	001.1413
79	3833.8785	348.6759	106	0000.9816	000.5866
80	3485.2026	347.4015	107	0000.3950	000.2653
81	3137.8011	341.0978	108	0000.1297	000.0988
82	2796.7033	329.9523	109	0000.0309	000.0269
83	2466.7510	314.3553	110	0000.0040	000.0040

APPENDIX D

present value computations

Illustrative Case

Consider the case of an cxecutive who is now age 50 and who is promised under his corporation's pension pian a retirement benefit of $\$ 20,000$ per year to begin at age 65 and continue for life. Let us assume that our best estimate of the tax bracket he will be in upon retirement suggests that, after personal taxes, this benefit will amount to $\$ 10,000$ each year. If the annual discount rate which expresses the time value of money to the execative-his relevant "opportunity cost"-is r, the present value to him as of age 50 of the payment he expects to receive during the first year of his retirement is

$$
P V(65)=(\$ 10,000)\left(15 p p_{0}\right)(1+r)^{-15}
$$

where ${ }_{15} p_{\text {in }}$ deriotes the probability that he will in fact attain age 65 and is equal to the ratio $l_{6 \pi} / l_{\text {in }}$ from the appropriate mortality table. ${ }^{1}$ Thus this present value is really a present expected value. It represents the (discounted) mean payoff associated with a discrete probability distribution, which, as it applies to each potential retirement beneffit, has but two possible outcomes: the man in question attains the age at whiclu the benefit is to be paid; or he dies beforehand. The complete expression for $P V(65)$ in this case therefore is

$$
P V(65)=(\$ 10,000)\left(15 p_{50}\right)(1+r)^{-15}+(0)\left(1-1.5 p_{50}\right)(1+r)^{-15} .
$$

But since the value of the second term is-and, clearly, always will be -zero, it may be neglected.

Similarly, the present value of the benefit due at age 66 is

$$
P V(66)=(\$ 10,000)\left(16 p_{50}\right)(1+r)^{-16} .
$$

[^0]And. for the entite serice of benctits:

$$
P V=\sum_{n=6}^{n} P V(n)
$$

where w refers to the higiest age which, according to the relesant mortality table the excentive can possibly attain. In the instance of the mortality table depicted in Appendix B. for example. wis equal to 110 .

The Noncontributory Pension

Since the only benefits diue ant employec under a noncontributory corporate pension plan are a series of equal ammal payments beginning at retirement and contiming matil he dies. the present value expression for such an arrangement is quite simple. It will be assumed here and in each of the subsequent appendixes dealing with the value of these plans that retirement is expected to occur at age 6.5. The actuarial symbols defined in Appendix B will be used throughout.

If the ammal before-tax retirement bencfit promised is $\$ 1$ and the applicable effective tax on it is denoted by t, the present yahte to a man now age x of the payment he expects to receive in the first year of his retirement (at age 65) is

$$
P V R B(65)=(1-t)\binom{l_{65}}{l_{x}}\binom{1}{1-r}^{65-x} ;
$$

that of the payment anticipated in the following year is

$$
\operatorname{PVRB}(66)=(1-t)\binom{l_{66}}{I_{x}}\left(\begin{array}{cc}
1 \\
1 & +r
\end{array}\right)^{6(t-x} ;
$$

and, in general,

$$
\operatorname{PVRB}(65+n)=(1-t)\binom{1,5+n}{1 x}\left(\begin{array}{c}
1 \\
1 \\
1-r
\end{array}\right)^{65-x+n}
$$

for $0 \leq n \leq 35$, since age 110 is the ultimate age tabulated in this mortality table employed here. If we then define

$$
\begin{aligned}
y & =\begin{array}{c}
1 \\
1+r
\end{array} \\
D_{x} & =v^{*} x_{x}
\end{aligned}
$$

and maltiply both numerator and denominator of the expressions above by v^{r}, they can be rewritten as:

$$
\begin{aligned}
P V R B(65) & =(1-t)\binom{y^{x}}{y^{x}}\binom{l_{65}}{l_{x}}\left(v^{65-x}\right)=(1-t)\binom{D_{65}}{D_{x}} \\
P V R B(66) & =(1-t)\binom{D_{06}}{D_{x}} \\
P V R B(65+n) & =(1-t)\binom{D_{65+n}}{-D_{x}} .
\end{aligned}
$$

This is a rather less cumbersome form with which to work.
The present value of the entire pension promise, comprised as it is of only the indicated paynents, is, therefore,

$$
\begin{aligned}
P V & =\sum_{n=1}^{35} \operatorname{PVRB}(65+n) \\
& =(1-t)\binom{D_{65}+D_{66}+\cdots+D_{110}}{D_{x}} .
\end{aligned}
$$

And, finally, defining the symbol

$$
N_{x}=\sum_{n=x}^{110} D_{n}=D_{x}+D_{x+1}+\cdots+D_{110}
$$

we can write, as the relevant after-tax present value formula per dollar of before-tax prospective retirement benefit,

$$
P V=(1-t)\left(\frac{N_{65}}{D_{x}}\right)
$$

A tabulation of the values for N_{r} and D_{x} over the appropriate range of ages then permits a rapid and convenient computation of the worth of any noncontributory pension considered.

The Contributory Pension

The bencfit format and tax treatment of a contributory corporate pension plan are considerably more complex than those of its noncontributory counterpart. There are three different sets of prospective payments under such a plan:

1. The ammal retirement benclit itself. due to begin at age 65 and continue thereafter for the life of the employee;
2. A death benefit payment consisting of a return of the interestaccumblated value of the employees contributions if he dies prior to retirement;
3. A death benefit payment equal to the difference between the interest-accumulated value of the employee's contributions as of age 65 and the aggregate retirement benefits he has received if he should die after retiring.

The three will be considered separately here. The analysis again will be cast in terms of a $\$ 1$ anmal before-tax retirement benefit promise to the employec.

THE ANNUAL KETIREMFNT BENEFTT

Depending on the amoant the employee contributes to the pension plan over the years, either of two tax rules applies to his retirement benefits. If the aggregate amount of his contributions is less than the total benefits he expects to receive during the first three years of retirement, the full amount of each receipt is tax-free until those contributions have been recouped. All subsequent pilyments are taxable in their entirety at regular personal income rates.

If the aggregate contributions exceed three years' worth of retirement benefits, the "life-expectancy" tax rule applies. Under that alternative, a portion of each benefit receipt is considered tax-free regardless of how long the employec lives to collect his pension. The relevant portion is determined as follows: : The maximum postretirement death benefit payable under the plan is divided by the amount of the annual retirenent benefit due. The result denotes the number of years it takes to "earn out" that benefit-to reduce it to zero-given that every dollar of pension received automaticaily diminishes the prospective death benefit by $\$ 1$. This figure is then rounded off to the nearest integer and an adjustment percentage obtained by entering Table III of IRS regulation $1.72-9$ under the indicated number of years. This adjustment percentage is applied to the aggregate amount of the employec's lifetime contributions to the pension plan in order to reduce that total as the basis

[^1]for calculating the tax-free percentage according to the "life-expectancy" rule.

To illustrate: assume that all executive, now age 50 , is required to contribute $\$ 5,000$ per year to his firm's pension plan and is pronised thereunder aut annual retirement benefit of $\$ 20,000$. By age 65 , he will have contributed $\$ 75,000$ to the plati. Since he stands to receive oniy $\$ 60,000$ in benefits during the first three years of his retirement, the life-expectancy tax rule applies.* Suppose, further, that the $\$ 75,000$ in contributions will accumulate, at the rate of interest specified in the pension agreentent, to $\$ 90,000$ by age 65 if all fifteen payments are made. This amount then is the naximum postretirement death benefit payable under the plan and is the pertinent figure for our computations. Thas, the length of tince it will take to recoup that sum in pension benefits is

$$
\frac{\$ 90,000}{\$ 20,000 / \mathrm{yr} .}=4.5 \text { years. }
$$

Rounding this off to five years and entering the designated IRS table for retirement at age 65 and a five-year recoupment period, the "adjustment factor" turns out to be 7 per cent. This means that the remainder, i.e., 93 per cent, of the executive's aggregate (unaccumulated) contributions of $\$ 75,000$ are the basis for determining the tax-free portion of his annual pension benefit. Because the IRS also specifies that fifteen years is the average life expectancy for a man age 65 , the assumption for tax purposes is that our executive stands to receive a total of $\$ 300,000$ in pension bencfits before he dies. Therefore, $\frac{(.93)(75.000)}{300,000}$, or .232 , of each annual payment will be considered tax-free.

By way of general notation, then, we may express the after-tax present value to a man age x of a $\$ 1$ per year before-tax retirement benefit promise under a coutributery pension plan as

[^2]\[

$$
\begin{aligned}
& P V^{\prime} R B=\left(1-t_{1}\right)\binom{l_{15}}{l_{x}}\left(v^{6-1}\right) \cdots\left(1-t_{2}\right)\binom{l_{1}}{l_{x}}\left(r^{\prime \cdots \cdots}\right) \\
& +\left(1-t_{3}\right)\binom{l_{67}}{l_{x}}\left(5^{67-x}\right)+\left(1-t_{4}\right) \sum_{n=65}^{110}\binom{l_{n}}{l_{x}}\left(r^{n-x}\right)
\end{aligned}
$$
\]

where $t_{1}=$ effective tax rate on first year's benefit.
$t_{2}=$ effective tax rate on second year's benefit,
$t_{3}=$ effective tax rate on third year's benefit,
$t_{4}=$ effective tax rate on fourth and subsequent years' benefts.
These are determined by obtaining the appropriate tax-free portions from the procedures described above and cateulating the regular personal income tax levies on the remainder. In the case of the lifeexpectancy rule, of course, $t_{1} \quad t_{2} \cdots t_{3}=t_{4}$.

If both numerator and denominator of each term on the right-hand side of the equation are multiplied by $v^{w^{x}}$, and the symbols D_{s} and $N_{\text {: }}$ are introduced as above this standard formula reduces to

$$
\begin{aligned}
P V R B=\left(1-t_{1}\right)\binom{D_{65}}{D_{x}}+\left(1-t_{2}\right) & \binom{D_{66}}{D_{x}} \\
& +\left(\mathrm{i}-t_{3}\right)\binom{D_{67}}{D_{x}}+\left(\mathrm{i}-t_{4}\right)\left(\frac{N_{68}}{D_{x}}\right)
\end{aligned}
$$

or, for a life-expectancy rule situation,

$$
P V R B=(1-t)\left(\frac{N_{65}}{D_{x}}\right)
$$

which, eacept for the vaiue for t which will pertain, is the same result as for a noncontributory pension.

POSTRETIREMENT DEATH BENEFITS

If the annual contributions to the pension plan by the employee per dollar of beforetax retirement benefit are K, and they accumulate interest at a rate i under the terms of the plan, a man now age x will have amassed, at age 65 , a sum equal to

$$
\begin{aligned}
& K(1+i)^{65-x}+K(1+i)^{65-(x+1)}+K(1+i)^{65-(x+2)} \\
&+\cdots+K(1+i)=M D B
\end{aligned}
$$

As indicated in the preceding section. this figure represents the maximum death benefit payable to the employee's estate if he should dic after retiring.

Using

$$
S_{n}=\sum_{a=1}^{n}(1+i)^{a}
$$

to denete the accumulated value of a series of n payments as of the end of the nth period, we have: $M D B=K S_{E \cdot \ldots} .{ }^{\text {. }}$ Every dollar of pension benefit received in retirement then reduces the amount of the prospective payment to the estate matil the entire sum is recouped. at which time the death settlement provision ceases. Thus. if the employec shonld die after attaining age 65 and receiving the first annual installment of his pension ($\$ 1$ in the situation chosen as standard here) but before attaining age 66 , his estate will be paid the amount: $\left(K S_{6:-},\right)-1$. If he dies the following year, the payment will be ($K S_{6 ;-}$) - 2 . and so on. A portion of any such payments--that amount deemed by the IRS to consist simply of a return of the employee's contributions--is taxed at whatever estate tax rates apply and the remainder-the interest earnings imputed to those contributions-is taxed as a long-term capital gain. On the assumption suggested in Chapter 2, that 25 per cent is a reasonable approximation of over-all effective estate tax rates for executives, the division of these death benefits into the two components is a matter of indifference to the present calculations. A 25 per cent rate is taken to apply to both portions and therefore to the total. whatever its breakdown.

Since the probability that an employee, now age x, will die during the first year of his retirement is denoted by the ratio $d_{\text {is }} / l_{r ;}$; the aftertax present value of that first possible postretirement death benefit is;

$$
\operatorname{PVDB}(65)=\left(K S_{65-x}-1\right)(.75)\left(\frac{d_{65}}{l_{x}}\right) v^{66-x}
$$

This benefit is discounted back $66-x$ years on the conventional actuarial assumption that such payments are made at the end of the year in which death occurs. The present value of the following year's benefit is

$$
\operatorname{PVDB}(65)=\left(K S_{65-x}-2\right)(.75)\binom{d_{66}}{l_{x}} v^{67-x} .
$$

[^3]
APPENDIY D

The aggregate present value of the entire series of these potential receipts may therefore be represented as

$$
P V D B=\sum_{n=65}^{n} P V D B(n)
$$

where m refers to the age at which the sum $\left(K S_{6, \ldots}\right)$ is finally drawn down to zero.

PRERETIREMENT DEATH BFNEFITS

If the executive should die before reaching age 65 . his estate stands to receive the interest-accomblated value of the contributions he has made up to that time. Thus. if our man. age x. should die within the coming year, he will have contributed an amonnt K and his estate will receive $K(1+i)$ in return-again assuming payment at the end of the year. Of this amount, K is taxed at estate tax rates and $i K$ at capital gains rates. Continting the assumption that the two percentages are equal, a flat rate of 2.5 per cent applies to the entire benefit in the calculations here. After taxes, then. the benefit payable upon death at age x is

$$
D B(x)=(.75)(K)(1+i)
$$

and its present value is

$$
D B P V(x)=(.75)\left(K^{\prime}\right)(1+i)(v)\binom{d_{x}}{l_{x}}
$$

If the employee dies the following year. he will have made two contributions to the plan, and the resulting after-tax death benefit will be

$$
\left.D B(x+1)=(.75)(K)[1 \div i)+(1+i)^{2}\right]=(.75 K)\left(S_{2}\right)
$$

This has a present value equal to

$$
\operatorname{DBPV}(x+1)=(.75 K)\left(S_{2}\right)\left(x^{2}\right)\binom{d_{x+1}}{d_{x}}
$$

In general, therefore,

$$
\operatorname{DBPV}(x+n)=(.75 K)\left(S_{n+1}\right)\left(v^{n+1}\right)\binom{d_{x+n}}{d_{x}}
$$

and, for the complete set of such payments,

$$
D B P V=\sum_{n=0}^{64-x} \operatorname{DBPV}(x+n) .
$$

This last is the total present value of the preretirement death benefit feature.

THE CONTRIBUTIONS

The employec's obligation to contribute to the financing of the pension plan, of course, represents to him a negative present value that must be subtracted from the aggregate value of the indicated benefits in order to obtain the appropriate net figure for the whole package. For a man now age x, that negative present value can be expressed as

$$
N K P V:=K\binom{l_{x}}{l_{x}}+K v\binom{l_{x+1}}{l_{x}}+K v^{2}\left(\frac{l_{x}+2}{l_{x}}\right)+\cdots+K v^{64-x}\binom{l_{64}}{l_{x}} .
$$

Each term is the product of the probability that he will live to make the required contribution and the discounted amount of that contribution. This expression ultimately reduces to

$$
N K P V=\binom{N_{x}-N_{65}}{D_{x}}(K)
$$

following the notation introduced above.

THE TOTAL

The combined present value of the various benefit provisions of the contributory pension. therefore, is simply: $P V=P V R B+P V D B+$ $D B P V-N K P V$. The necessary computations can be programmed with little difficulty, given the appropriate mortality data and discount rates.

The Individual Retirement Annuity

The form of individual annuity chosen as the executive's market alternative to both types of pension arrangements has two component benefit provisions: the retirement benefit itself; and a preretirement death benefit. Their tax treatment generally resembles that of the contributory pension.

The ReTtriment binffit
The amatal retirement benciti is to bezin at age 6.5 amd continte for the life of the cmployec. According to the IRS. that portion of each receipt represented by the ratio of total premiums paid to total bencfits anticipated is excmpt from the persoablincome tan. Thus. if the annal premiun quoted to a man. age x, for the purchase of a $\$ 1$ per year retirement anmuity is denoted by P. he will have to pay a total of $\left(P_{x}\right)(65-x)$ dollars in premiums through age 64. Given a fifteen-year life expectancy at age $65-$-the $1 R S$ figure-he is assumed to have fifteen $\$ 1$ annuity benefits in store. Therefore, the tax-free portion of each such benefit will be

$$
f=\frac{\left(P_{x}\right)(65-x)}{15}
$$

and the after-tax present value of that benefit streant will be

$$
\begin{aligned}
& P V B=(1-t)\binom{l_{6}, 5}{l_{x}}\left(1^{65-x}\right) \therefore(\mathrm{i}-t)\binom{l_{66}}{l_{x}}\left(r^{66-x}\right) \\
&+\cdots+(1-t)\binom{l_{110}}{l_{x}}\left(r^{110-x}\right)
\end{aligned}
$$

or, ultimately,

$$
P V B=(1-t)\binom{N_{65}}{D_{x}}
$$

where the effective tax rate: t, depenals on the value of f.

THE PRERETIREMENT DEATH BENEFIT

If the prospective annuitant should die before reaching age 65 . his estate receives as a settlement the "cash surrender value" of the contract as of the time of death. The applicable schedule of these cash values is specificd in the annuity agreenent, and it is neeessary to have that schedule in order to perform the present value computations: When and if payment is made. the entire amount is taxed to the mans estate at the normal rates- 25 per cent by assumption here-and, in addition, any excess over the aggregate premiums paid up to that time is

[^4]taxed as a long-term capital gain. In detemining the latter assessment, however. the estate tax on the relevant portion is deducted in defining the tax base.

To illustrate: If a man who has paid ten $\$ 500$ annual premiums toward the purchase of a retirement ammity dies, and his estate receives a $\$ 6,000$ death benefit, the tax thereon is: (a) 25 per cent of $\$ 6,000$. or $\$ 1,500$ in estate taxes and (b) 25 per cent of ($\$ 6,000-\ldots 55,000$) (.75), or $\$ 187.50$ in capital gains taxes. This comes to $\$ 1.687 .50$ in all. The $\$ 250$ in estate tax payable on the $\$ 1.000$ difference is excluded from additional taxation.

In general. then, if P_{s} is the annual premium required and $C V_{r: n}$ the cash value 'death benefit payable at age $x+n$, the after-tax amount of that benefit is

$$
D B(x+n)=(.75)\left(C V_{x+n}\right)-(.25)(.75)\left[\left(C V_{x+n}\right)-(n+1)\left(P_{x}\right)\right] .
$$

Its present value is:

$$
\operatorname{DBPV}(x+n)=\left[D B(x+n)\left[\begin{array}{c}
d_{x}+n \\
l_{x}
\end{array}\right]\left(x^{7+1}\right)\right.
$$

And the present value of the complete set of such payments is:

$$
D B P V=\sum_{n=0}^{64-x} D B P V(x+n)
$$

the annuity as a whole
The total present value of a $\$ 1$ per year individual retirement annuity arrangement to a man, age x, is therefore: $P V^{\prime}=P V B+D B P V$, since no postretirement death benefits are included in the package specified here.

APPENDIXE

ELIGIBILITY REQUIREMENTS
 FOR "QUALIFIED" CORPORATE RETIREMENT PLANS

The ammal payments a corporation makes cither to its own trust fund or to an insurance company in order to meet the anticipated cost of its employee pension plan are tax deductible if that plan satisfies the following requirements:

1. The plan is permanent.
2. The plan is for the exclusive benefit of enployees and their benefieiaries.
3. The distribution of benefits under the plan is on the basis of an explicit and predetermined formula.
4. Contributions by the corporation and benefit payments do not discriminate in favor of the firm's officers, shareholders. supervisory employees, or highly paid cmployees.
5. The plan benefits either (a) 70 per cent of all employees, (b) 80 per cent of all eligible employees, provided at least 70 per eent of all employees are eligible, or (c) all employes within a classification which does not discriminate in favor of highly paid employees.

Deductions for such plans are limited to 15 per cent of the direct annual payroll cost of the employees covered by the plan. except where a larger amount is required to provide for the funding of past service credits.

If the plan does not meet the indicated requirements, the employer company may deduct contributions to it only if the covered enoployees' rights to the benefits promised are nontorfeitable. Otherwise, no tas
deduction at all is allowed, either at the time contributions to the fund are made or when retirement bencfits to the employees are ultimately paid. See Internal Revenue Code, Sections 401 and 404 as summarized in Joint Economic Committe, Congress of the United States, The Federal T'ax System: Facts and Problems (Washington: 1964), pp. 120-121.

APPENDIX F

present value and current EQUIVALENT OF A DEFERRED COMPENSATION CONTRACT

As was indicated in the text, the type of contract adopted here as a standard for computational purposes is probably the most common deferred compensation instrument in use today. It consists, as does a contributory pension, of three benefit provisions: postretirement deferred payments to the execontive, a preretirement death benefit, and a postretirement death benefit. It was possible to fit just about every arrangement actually confronted into the analytical mold developed for this bencfit package, even if the deferred payments were to be made in shares of the corporation's stock rather than in cash. The methodology for doing so is discussed in Chapter 5 and in Appendix H below. Both discussions build on the basic framework to be outlined here.

The Deferred Payments to the Executive

The central feature of deferred compensation contracts is. of course, the promise by the corporation to pay a specified sum to the executive each year for a given number of years following his retirement. Unlike the benefits under a pension plan, these payments are to cease after that given period, even though the executive may contimue to live. Since the executive himself is not required to contribute any of his own funds to the arrangement, the full amounts of any parments he eventually receives are taxable to him at regular personal income tax rates.

The after-tax present value to a man. now age x. of the deferred payments he stands to receive may therefore be expressed as

PVDP $=(.4)(1-i)\binom{l_{65}}{l_{x}}\left(v^{65-x}\right)+(A)(1-t)\binom{i_{66}}{l_{x}}\left(v^{66-x}\right)$

$$
+\cdots+(A)(1-t)\left(\frac{65+R-1}{l_{x}}\right)\left(v^{65+R-1}\right)
$$

or:

$$
P V D P=(A)(1-t)\left(\frac{N_{65}-N_{6 S+R}}{D_{x}}\right)
$$

where A denotes the annual before-tax payment in prospect, t the effective personal tax rate thereon. and R the number of years for which payments are to be made.

The Preretirement Death Benefit

If the executive dies before age 65 , a lump-sum setticment with his estate in the amount of the aggregate payments due if he had lived is typically made. Thus his heirs would receive $(A)(R)$ dollars in the situation just depicted, all of which is taxable at whatever estate tax rates apply. By assumption here, 25 per cent is taken to be a reasonable estimate of the latter. Thus the after-tax present value of the preretirement death benefits under the contract for a man now age x comes to

$$
\text { PVDB1 }=(.75 A R)\left[\left(\frac{d_{x}}{l_{x}}\right)(v)+\left(\frac{d_{x+t}}{l_{x}}\right)\left(v^{2}\right)+\cdots+\left(\frac{d_{64}}{l_{x}}\right)\left(v^{65-x}\right)\right] .
$$

The Postretirement Death Benefit

A similar settlement is made after retirement as well, if the executive does not survive to claim all R payments promised him. The only difference is that the amount of those installments already received is deducters from the total contracted for in determining the size of the death benefit-which again is taxed in full at estate tax rates. If he should die after attaining age 65 and receiving the first annual payment, but before reaching age 66 , for example, his estate would be awarded (A) $(R-1)$ dollars and would net, in the view here, 75 per cent of that amount after taxes. If he died in the following year, the payment
would be $(A)(R-2)$ dollars, and so ont. The after-tiax present value of all such receipts as of age x is. then,

$$
\begin{aligned}
& P V D B 2=(A)(R-1)(.75)\binom{d_{65}}{l_{x}}\left(v^{66 x}\right)+(A)(R-2)(.75)\binom{d_{66}}{l_{x}}\left(v^{67-x}\right) \\
&+\cdots+(A)(.75)\binom{d 65+R-2}{l_{x}}\left(v^{65+R-1}\right)
\end{aligned}
$$

By convention, the executive if he lives receives his deferred pay at the beginning of each year but any death bencfits are renitted at the end of the year.

The present value of the whole deferred compensation package is. of course, simply the total of the three expressions developed above: $D C P V=P V D P+P V D B 1+P V D B 2$.

The Current Income Equivalent

Given this present value, the stream of salary payments which are defined here as the "after-tax current income equivalent" of the arrange. ment in question can be coniputed. Those payments are specified to begin at age x and continue through age 64 , being payable only to the executive and therefore of sufficient size that they commote the requisite present value when discounted for mortality as well as for time deferral. In the case at hand, therefore the relevant condition is that

$$
(A T C E Q)\left[\binom{l_{x}}{l_{x}}+\binom{l_{x+1}}{i_{x}}(v)+\cdots+\binom{l_{6+}}{l_{x}}\left(x^{64-x}\right)\right]=D C P V
$$

where $A T C E Q$ denotes the necessary annual salary payment. Rearranging and substituting the shorthand actuarial symbols, used previonsly. we find that

$$
A T C E Q=\frac{\left(D_{x}\right)(D C P V)}{\left(N_{x}-N_{64}\right)}
$$

Were the executive's annual after-tax salary raised by this amount, he would be as well off, looking ahead at agc x, as he is in faet with the deferred compensation arrangement deseribed.

APPENDIX G

EXECUTIVE STOCK OPTIONS

Section 218 of the Revenue Act of 1950 added "Section 130A: Employee Stock Options" to the Internal Revenue Code. It established rules for the favorable tax treatment of what were termed "Restricted Stock Options" granted to employees of corporations. In order to qualify for that designation, the option was required to satisfy the following conditions:

1. It must have been granted after February 26, 1945, to an individual for a reason connected with his employment.
2. It must have been granted by the employer corporation or its parent or subsidiary to purchase stock of such corporations.
3. The option price must have been at least 85 per cent of the fair market value of the optioned stoch at the time the option was granted.
4. The option must be nontransferable except by will or by the laws of descent and distribution.
5. It could be exercisable, during the lifetime of the optionee, only by him.
6. The optionec, at the time the option was granted, could not have owned stock possessing more than 10 per cent of the combined voting power of all classes of stock of the employer corporation.

If the option met those requirements, and if the optionee: (1) was an employce of the corporation granting the option or of its parent or subsidiary at the time he exercised the option-or had been one within three months beforehand-and (2) did not dispose of the stock acquired under the option until at least two years after the date the option was granted or until at least six months after the date the option was exercised, he was eligible for the following special tax treatment:

1. If the option price was 95 per cent or more of the market value of the stock at the time the option was granted, any gain from the subsequent sale
of the optioned stoch was considered at capial gain and tixed accordingly
2. If instead the option price was between 85 and 95 per cent of the market value of the stock at the time the option was granted, any profit realized upon subsequent restale was taxed as follows: (a) if, at the time of the sate, the marke price of the stock was less than the market price when the option was granted, the difference befween the option price and the sale price was treated as ordinary income at the time of the sale; (b) if, at the time of the sale, the market price of the stock was greater than the market price when the option was granted, the difference between the option price and the market price at the date of granting was treated as ordinary income: the excess of sale price over that market price was considered a capital gain.

The law also provided that. in the event of a stock split or a stock dividend payable to the employer corporation's sharcholders, the number of shares under option to the exceutive and the option pries, could be adjusted to reflect that change. No deduction from taxable income pursuant to cither the granting or the eventual cxereise of the option was allowed the corporation itself.

The revision of the Internal Revenue Code undertaken by Congress in 1954 made several modifieations in these rules. Chief among them were:

1. The restriction as to those individuals who owned more than 10 per eent of the employer corporation's stock was removed. It was specified, however. that any options granted to such persons had to be issued at a price not less than 110 per eent of the market price on the date of granting if they were to qualify as "Restricted" stock options.
2. Variable-price options were sanctioncd. According to this provision. it became possible to reduce the priec of an option previously granted under certain eonditions if it turned out that the market price of the optioned stock deelincd subsequent to the grinting of the option and the new, lower price persisted for a significant period of time.
?. A limit of ten years was phaced on the term of a single option.
The rest of the 1950 legislation was retained substantialiy intact. and the entire set of regulations became Section 421 rather than Section 130A of the Revenue Code.

In 1964, however, a major change in the relevant statetes occurred.

A much less favorable view of the privileges that should be associated with the option was adopted by Congress, and the attractiveness of that device diminished noticeably. The revised legishation (aow Sections $421-425$ of the Revenue Code) specified that, in order for an option to be awarded special tax treatment under the new designation "Qualified Stock Option'

1. The option price must equal or exceed the market value of the stock involved at the time the option is granted.
2. The option nusi be exereised within five years of the date of its granting.
3. The stares of stock acquired under the option must not be resold within three years of the date it is exercised.
4. The option must be granted pursuant to a plan which specifies, the number of shares of stock to be issued and the employees or class of entployees who are to receive the options. This plan must be approved by the sharcholders of the corporation within twelve months of its adoption and cannot extend for more than ten years.
5. The option price cannot be reduced in the face of dectining stock marke conditions nor can the option, by its terms, be exercisable while there is outstanding an option which was granted to the same employee at an earlier time.
6. The optionce, immediately before the option is granted, must not own stoek representing more than 5 per cent of the voting power or value of all elasses of stock of the issuing corporation (up to 10 per cent in the case of certain specified small businesses).

If these conditions are met, the difference between the narket price of the stock acquired under option at the time it is eventually resold and the original option price is considered to be a long-term capital gain and is taxed accordingly.

If instead the optionee disposes of the stock less than three years but more than six months after exercise, the spread between the option price and the market price on the date of exercise is taxed as ordinary income at the time the stock is sold. The difference between the narket price at the time of the sale and that at the time of exercise is taxed as a capital gain.

Finally, if the stock acquired is resold within six months of exercise, any profits are taxable in full as ordinary income.

Valuation Imder the New Tex Lan

Despite these rather sabstantial changes in the tax tratment of options. the procedures described in Chapter 4 of the text for measuring the compensatory value of-and constructing "current inconce copuivalents" foroptions granted before 1964 can be applied directly to those issued under the new legistation as well. It is true that. as a result of that legistation. exccutives are likely to cnjoy somewhat more modest option profits in the future than they have in the past. but the basic character of the instrument has not been altered. and our approach to its valuation should require no important adjustments.

For example. the fact that the naximum term of the option has been shortened to five ycars and the minimum option price raised to 100 per cent of market on the date of granting merely implics that these parameters will now determine the daration and magnitude of the executive's stock option current equivalent instead of the ten-year. 95 per cent combination most frequently encountered prior to 1964. Similarly, the restriction that employees who own stock representing more than 5 per cent of the voting power or value of all classes of stock of the employer corporation cannot now qualify for favorable tax treatment on any options they are granted simply means that a slightly smalter number of exccutives may end up receiving such options in the years to come than might otherwise have been the casc. There is however, no reason to view those who do still qualify and differently than we have in the past.

The one provision of the new tax law which might suggest a revision of our valuation procedures is that which specifics a holding period of three years from the date of exercise of an option as a requirement for capital gains tax treatment of any profits realized upon resale of the shares thus acquired. It was argued in Chapter 4 that under the original stock option legistation the compensation implicit in the optionee's opportunity to purchase shares of stock at a discount from the prevailing market price could be measured very preciscly by the size of that discount at the time it was clamed, i.e., on the date of the option sexercise. From that point on the optionce stood in the same position as any investor who might have purchased a like number of shares on the open
market; the only difference between his opportunitics and everyone else's was the initial purchase discount itself. Under those conditions. the gap between option price and market price at exercise completely defined the optionee's net market advantage and supplied us with an acccurate index of the compensation he obtained from his option.

According to the rules currently in effect. however. the executive who exercises an option is subject to a constraint which is not imposed on other investors: he must wait a full three years before reselling the shares he has purchased in order to avoid having his profits taxed as ordinary income. The question therefore arises as to whether there should be some downward adjustment in our appraisal of the value of that option to reflect this requirement. The position taken here is that the indicated constraint is more apparent than real and that no such adjustment is necessary, since the optionee's market activities are not in practice limited by the additional holding period per se and he is not put at any meaningful disadvantage by it.

For one thing, most executives retain the shares acquired pursuant to the exercise of stock options in their portfolios for a substantial period of time, even in the absence of formal sanctions for not doing so. ${ }^{1}$ They seem to consider an option a convenient vehicle for obtaining on favorable terms a long-run ownership interest in their firms rather than a speculative opportunity to realize quick profits. Few of them are therefore likely in practice to feel themselves differentially "locked in" to the shares thus purchased even in the face of a three-year waiting period. It maly well be. of course. that those shares simply take the place of some the optionee would otherwise have acquired in the nonmal course of affairs, and that on balince his aggregate holdings of the stock of his employer are not increased over time. 'That is quite a different issue. however, and one which deserves to be treated on its own merits. The fact remains that executives have not in the past typically resold optioned stock for several years, even thongh they could have done so without a tax penalty.:

[^5]There is also evidence that in general. top corporate executives maintain a farly seable ownership interes in the if icspective firms apart from any shares acquired through the exercise of stock options. Thus, if an optiones should decide to liquidate a portion of his holdings in order to free funds for consumption or other investments. he can almost certainly do so by selling off shares which were purchased in the nomal manner and which have been he!d long enough to qualify for capital gains tax treatment. In this manner, optioned stock is effectively insulated from the tax penalties of short-term trading.

Both of these arguments are. of coursc. empirical. ${ }^{3}$ The contention is that a long holding period requirement is not a real constraint for the great majority of executives who are granted options because they can and will ordinarily hold for several years anyway. Nonctheless. for certain individuals this will not-or would not by preference-be true. and in their case the worth of the option will be sonewhat overstated by utilizing the pre-1964 valuation procedures and current income equivaient format for options granted thereafter. Even for some of these individuals, however. there is a way out which still preserves the validity of the position taken here. If the optionee's problem is only one of liquidity, he need not accept a tax penalty in order to raise funds. He can simply borrow against the value of his stock and repay the loan later by liquidating his holdings after the three-year period expires. It is only in situations where the optionee would. bit for tax considerations. dispose of the shares he has acquired within threc years because he anticipates a decline in price or perceives a more favorable alternative investment opportunity that he does in fact find himself at a disadvantage vis-ì-vis the market. ${ }^{\text {* }}$ As was suggested above. this problem should not
this phenomenon. Thus, the executive Inight hesitate to dispose of shares he has acquired under option for faar of having that action interpreted by his superiors or by the firm's shareholders as an expression of his lack of confidence in its future prospects.
: And. as such. clearly require more documentation than they have been given here. if they are actually to be used as a basis for valuation.
${ }^{*}$ It is worth noting that. were it possible for top corporate executives to rell short shares oî their firms stock, the adverse tax consequences associated even with these situations could be circumvented. Thus the optionce would, instead of selling off stock acquired under option. go short in an equal number of shares at what seemed to him the opportune time. He would then cover that short sale with the proceeds of the sale of the optioned shares as soon as they were cligible for capital gains tax treatment. Unfortunately-for us. that is-
arise frequently. When applied to executive stock options issued under the new tax law, therefore, the techniques developed in Chapter 4 will no more than slightly oversiate their "rre" value.
the senior officers and directors of large publicly held corporations are prohibited by the SEC from engaging in such activities (Securities and Exchange Act, Section ©).

APPENDIX H

PRESENTVALUEAND CURRENT
 EQUIVALENTS OF OTHER
 COMPENSATION ARRANGEMENTS

Deforred Stock Bomuses

The analytical framework for measuring the compensatory value of a postretirenout deferred stock bomis arrangenemt is essentially the same as that developed for cash deferred pay contracts. The benefit structures and tax treatment of the two instruments are virtually identical. the only difference being the form in which benclits are ultimately transnitted. Thus a deferred stock bomus provides for: (i) a series of annual payments to the employce in retirement. cach consisting of a specified number of shares of the employer corporation's common stock; (2) The immediate transferral of all the shares set aside under that arrangement to the cmployee's estate if he dies prior to retirement; and (3) an immediate settlement with the estate in the amount of the remaining installments due if the employee dies after retiring but before enjoying the full series of amual payments designated.

The shares received are taxed to the employee at regular personal income tax rates or to his estate at the applicable estate tax rates--in both cases according to the market value of those shares at the time of receipt. The one peculiarity of the valuation procedure required for such an arrangement is the necessity to make a new appraisal of the worth of the benefit package periodically as stock prices change. even if no additional shares are allotted to it.

THE ANNUAL RETIRENENT PAYMENTS

If an executive. age x. is promised a deferred stock bomus consisting of a series of R annual payments of K shares carh. to begin upon his retirement at age 65 , and if the current market price of those shares is
P_{F} dollars each, the after-tax present value of the prospective payments may be written as

$$
\begin{aligned}
\operatorname{PVRP}(x)=(K)\left(P_{x}\right)(1-t)\left[\binom{l_{65}}{l_{x}}\left(v^{65-x}\right)\right. & +\binom{l_{66}}{l_{x}}\left(v^{66 \cdots x}\right) \\
& \left.+\cdots+\binom{l_{65+R-1}}{l_{x}}\left(v^{65+R-1}\right)\right]
\end{aligned}
$$

or, more conveniently,

$$
P V R P(x)=(K)\left(P_{x}\right)(1-t)\binom{N_{65}-N_{65+R}}{D_{x}}
$$

where t denotes the over-all effective personal tax rate associated with an annual income of size $(K)\left(P_{x}\right)$. ${ }^{1}$

If, by the time the executive reaches age $x+1$, the market price of the shares involved has changed, it is necessary to adjust our estimate of the value of his deferred bonus to reflect this change in his circumstances. Thus we have

$$
\Delta P V R P(x+1)=(K)\left(P_{x+1}-P_{x}\right)(1-\Delta t)\binom{N_{65}-N_{65+R}}{D_{x+1}} .
$$

This represents the after-tax present value as of age $x+1$ of the increase (or decrease) in the worth of the bonus agreement occasioned by the stock price rise (or fall) experienced during the preceding year. The notation Δt refers to the effective personal tax rate on the increment. This procedure is then repeated every year until the man retires, the result being a series of present value computations for each deferred bonus observed. ${ }^{2}$

PRERETIREMENT DEATH BENEFITS

Assiming 25 per cent to be a fair approximation of the relevant estate tax levy for executives, the present value as of age x of the pre-
${ }^{1}$ As indicated in the discussion of these instruments in Chapter 5, footnote 11. 5 per cent per annum is deemed the appropriate discount rate for purposes of calculating present values. Therefore, the symbol i in the equations above is defined as $(1 / 1.05)$ rather than the $(1 / 1.025)$ figure used for pension and cash deferred compensation arrangements.
${ }^{2}$ As noted in the text in connection with stock option valuation, the change in stock price could be recorded every month or every quarter if a more frequent appraisal and revision of the worth of the particular arrangement were considered desirable. Since the analysis throughout the present study has been in terms of annual data, however, that orientation will be maintained here.
retirement death benefits payable under the arrangement described above is

$$
\begin{aligned}
P^{\prime} D B 1(x)=(.75)(K)\left(P_{x}\right)(R) & {\left[\binom{d_{x}}{l_{x}}(v)\right.} \\
& \left.+\binom{d_{x}+1}{l_{x}}\left(v^{2}\right)+\cdots+\binom{d_{64}}{l_{x}}\left(v^{65-x}\right)\right]
\end{aligned}
$$

Except for the substitution of the product $(K)\left(P_{s}\right)$ for the annual cash payment A. this is a dupicate of the expression derived in Appendix F for a regular deferred compensation contract.

Every year in which the market price of the stock changes, then, the incremental death benefit present value as of that year is computed. Thus,

$$
\begin{aligned}
& \triangle P V D B 1(x+1)=(.75)(K)\left(P_{x+1}-P_{x}\right)(R) {\left[\binom{d_{x+1}}{l_{x+1}}(1)\right.} \\
&\left.+\binom{d_{x+2}}{l_{x+1}}\left(v^{2}\right)+\cdots+\binom{d_{64}}{l_{x+1}}\left(v^{55-x-1}\right)\right]
\end{aligned}
$$

and, in general,

$$
\Delta P V D B 1(x+n)=(.75)(K)\left(P_{x+n}-P_{x+n-1}\right)(R) \sum_{m=n}^{64-x}\binom{d_{x+m}}{l_{x+n}}\left(v^{m+n+1}\right)
$$

for $1 \leq n \leq(64-x)$.

POSTRETIREMENT DEATH BENEFITS

A similar analysis applies to the postretirement death benefits. If the execuive. now age x, should die during the first year of his retirement, his estate stands to receive the $(K)(R-1)$ shares of stock that will not yet have been distributed to him by the corporation in annual deferred bonus payments. Given a current per-share stock price of P_{s}. that death benefit is estimated to have a before-iax value equal to $\left(P_{s}\right)(K)(R-1)$ dollars and therefore implies an after-tax present value as of age x of

$$
(.75)\left(P_{x}\right)(K)(R-1)\binom{d_{65}}{l_{x}}\left(v^{66-x}\right)
$$

If he dies the following year, the resulting death settlement will consist of $(K)(R-2)$ shares having a present value now of

$$
(.75)\left(P_{x}\right)(K)(R-2)\binom{d_{66}}{l_{x}}\left(v^{67-x}\right) .
$$

And, for the whole series of such prospective payments, we have

$$
\operatorname{PVDB2}(x)=(.75)\left(P_{x}\right)(K) \sum_{n=1}^{R-1}(R-n)\left(\frac{d_{64+n}}{l_{x}}\right)\left(v^{63-x+n}\right) .
$$

Each time stock prices rise or fall, the change in this present value is determined as before. Thus,
$\Delta P V D B 2(x+1)=(.75)\left(P_{x+1}-P_{x}\right)(K) \sum_{n=1}^{R-1}(R-n)\binom{d_{64+n}}{l_{x+1}}\left(v^{65-x+n-1}\right)$
and
$\Delta \operatorname{PVDB2}(x+m)=(.75)\left(P_{x+m}-P_{x+m-1}\right)(K)$ multiplied by

$$
\sum_{n=1}^{R-1}(R-n)\binom{d_{64+n}}{l_{x+m}}\left(v^{65-x+n-m}\right)
$$

for each $1 \leq m \leq(64-x)$. The increment is evaluated in every instance as of the year it occurs.
the total package
The aggregate after-tax present value of the deferred stock bonus at the time it is established is, then,

$$
\operatorname{PVDSB}(x)=P V R P(x)+P V D B 1(x)+\operatorname{PVDB2}(x) .
$$

The total change therein in each subsequent year is
$\triangle P V D S B(x+n)=\triangle P V R P(x+n)+\triangle P V D B 1(x+n)+\triangle P V D B 2(x+n)$, which must be computed through age 64 for the executive in question.

The current equivalent

The stream of annual after-tax salary payments beginning at age x, continuing up to and including age 64 , and having a present value as of age x equal to $\operatorname{PVDSE}(x)$ is the first element in the "current income
equivalent" of the deferred bomus. Thus, where $A T C R Q(x)$ is the neeessary anmual payment.

$$
\operatorname{PVDSB}(x)=[\operatorname{ATCEQ}(x)]\left[\binom{l_{x}}{l_{x}}+\binom{l_{x+1}}{l_{x}}(y)+\cdots \cdots\binom{l_{64}}{l_{x}}\left(y^{64-x}\right)\right]
$$

defines the relevant equality. Rearranging:

$$
\operatorname{ATCEQ}(x)=\begin{gathered}
{[P V D S B(x)]\left(D_{x}\right)} \\
\left(N_{x}-N_{65}\right)
\end{gathered}
$$

And, in each subsequent year, the appropriate increment to that stream of payments is

$$
\triangle A T C E Q(x+n)=\frac{\left[\triangle P V D S B(x+n) \mid\left(D_{x+n}\right)\right.}{\left(N_{x+n}-N_{65}\right)}
$$

As a result, the total in any given year for the deferred stock bonus which was initially established at age x comes to

$$
\operatorname{ATCE} Q(x+n)=A T C E Q(x)+\sum_{m=1}^{n}[\Delta A T C E Q(x+m)]
$$

The current equivalents for additional bonuses of this type can then simply be added to this figure to arrive at an aggregate which reflects not only the initial value of each but any later changes in that value.

Profit-Sharing Plans

A corporate profit-sharing plan which provides that the funds allocated to it be invested in shares of the firm's common stock and those shares distributed to the employee immediately upon his retirement is simply a special case of a deferred stock bonus and may be analyzed in a similar manner. The only benefits payable under such an arrangement are the indicated retirement distribution and a preretirement death benefit which specifies that the shares credited to the employees account be awarded to his estate if he should die before attaining age 65. Both are taxable on the basis of the market value of the shares involved on the date they are distributed, the retirement payment at the capital gains tax rate and the death benefit at estate tax rates. As with a deferred stock bonus, it is necessary to keep track of changes over time in stock
prices in order to update the value of the arrangement and ensure that its current income equivalent adequately reflects that value.

THE RETIREMENT BENEFIT
An employee now age x who has credited to his profit-sharing aceount in the current year M shares of the employer corporation's common stock having a market price equal to P_{z} dollars per share has in prospect a lump-sum retirement benefit of $(M)\left(P_{x}\right)$ dollars. The after-tax present value of that benefit is therefore

$$
\operatorname{PVRB}(x)=(.75)(M)\left(P_{x}\right)\binom{l_{65}}{l_{x}}\left(v^{65-x}\right)
$$

where again in this case, $v=(1 / 05)$. If, over the following year, the market price of the shares changes, the employee will have experienced a change in the prospective value of his remuneration amounting to

$$
\Delta P V R B(x+1)=(.75)(M)\left(P_{x+1}-P_{x}\right)\left(\frac{l_{65}}{I_{x+1}}\right)\left(v^{65-x-1}\right)
$$

and, in general

$$
\triangle P V R B(x+n)=(.75)(M)\left(P_{x+n}-P_{x+n-1}\right)\binom{I_{65}}{I_{x+n}}\left(v^{65-x-n}\right)
$$

for all $1 \leq n \leq(64-x)$.

PRERETIREMENT DEATH BENEFITS

The benefit format and present value of these payments are simply duplicates of those applicable to deferred stock bonuses. Thus

$$
\begin{aligned}
\operatorname{PVDB}(x)=(.75)(M)\left(P_{x}\right)\left[\binom{d_{x}}{l_{x}}(v)+\binom{d_{x+1}}{l_{x}}\left(v^{2}\right)\right. & \\
& \left.+\cdots+\left(\frac{d_{64}}{l_{x}}\right)\left(v^{65-x}\right)\right]
\end{aligned}
$$

and

$$
\Delta P V D B(x+n)=(.75)(M)\left(P_{x+n}-P_{x+n-1}\right) \sum_{m=n}^{64-x}\binom{d_{x+m}}{l_{x+n}}\left(y^{m-n+1}\right)
$$

for the yearly present value increments.

TIE PACKAGE AND ITS CURRENT I:QUIVAIENT
The combined present valuc of the two bencits is $P^{\prime}(x)=$ $P V R B(x)+P V D B(x)$ and the amual change in that value $\triangle P V(x+n)$ $\therefore \triangle P V R B(x+n)+\triangle P^{\prime} V D B(x+n)$. Following our previous notation, the after-tax current income equivalent of the arrangement is

$$
\begin{gathered}
\operatorname{ATCEQ}(x)=\begin{array}{l}
|P V(x)|\left(D_{x}\right) \\
\left(N_{x}-N_{n s}\right)
\end{array} \\
\operatorname{ATCEQ}(x+n)=A T C E Q(x)+\sum_{i=1}^{n} \mid \perp A T(E Q(x \div j)]
\end{gathered}
$$

where

$$
\triangle A T C E Q(x+j)=\frac{|\triangle P V(x+j)|\left(D_{x+i}\right)}{\left(N_{x+i}-N_{65}\right)} .
$$

A profit-sharing plan under which bencfits were payable in cash instead woukd be amalyzed in the same way. the only difference being that adjustments for changes in stock prices weuld. of course, be unnecessary.

Savings Plans

Since the typical corporate "savings plan" or "thrift plan" closely resembles a profit-sharing arrangement. the framework for its valuation is almost identical. The only new element is the presence of contributions to the plan by the employee, whose value must be deducted in arriving at the relevant net present value.

THE RETIREMENT BENEFIT

A savings plan commonly specifies that the total of the empioyce's and the corporation's contributions. along with the aecomulated investrment income earned on them. be distributed to the employee in a lump sum upon his retirement. The capita! gains tax applics to the excess of such distributions over the aggregate contributions by the empleyee. Therefore, if the firm adds a dollars to the man's savings plan account for every dollar he contributes cach year, the total prospective retircment benefit which results from a contribution of size K out of current
salary by an employce now age x is $(K)(1+a)$. After taxes, this implies a future receipl of

$$
K(1+a)-(.25)(a K)=K(1+.75 a)
$$

having a present value as of age x, equal to

$$
\operatorname{PVRB}(x)=(K)(1+.75 a)\binom{l_{55}}{l_{x}}\left(1^{65-x}\right)
$$

adopting the usual notation.
If, then, each dollar placed in the savings plan in that year is invested so as to have a capital value-ineluding the reinvestment of any dividend or interest income equal to I_{r+1} dollars at the end of the year, the present value of the anticipated retirement benefit must be revised to reflect this change. Accordingly, the employee would. as of age $x+1$, expect to receive upon retirenent $\left(t_{r, 1}\right)(K)(1+a)$ dollars before taxes as a result of his participation in the plan during the previous year. Of this amount. K dollars will be tax-free, and the new prospective after-tax benefit comes to

$$
\begin{aligned}
\left(I_{x+1}\right)(K)(1+a)-(.25)\left[\left(I_{x+1}\right)(K)(1+a)-\right. & K] \\
& =K\left[1+(.75)\left(I_{x+1}\right)(1+a)\right]
\end{aligned}
$$

This represents an increase of

$$
\begin{aligned}
& K\left[1+(.75)\left(I_{x+1}\right)(1+a)\right]-K[1+(.75)(a)] \\
&=(.75)(K)\left[\left(I_{x+1}\right)(K)(1+a)-a\right]
\end{aligned}
$$

pursuant to the years investment experience. The after-tax present value of that increment is

$$
\Delta P V R B(x+1)=(.75)(K)\left[\left(I_{i+1}\right)(1+a)-a_{j}\binom{l_{65}}{l_{x+1}}\left(r^{65-x-1}\right)\right.
$$

If. in the following year. each dollar of capital value at the beginning of the year becomes I_{\ldots}, dollars at the end, the before-tax retirement benefit rises to $\left(I_{s, i}:\right)\left(I_{3+1}\right)(K)(1+a)$. After taxes it is

$$
\begin{aligned}
&\left(I_{x+2}\right)\left(I_{x+1}\right)(K)(1-a)-(.25)\left\{\left(I_{x+2}\right)\left(I_{x+1}\right)(K)(1+a)-K\right] \\
&=K\left[1+(.75)\left(I_{x+2}\right)\left(I_{x+1}\right)(1+a)\right\}
\end{aligned}
$$

and the increment is

$$
\begin{array}{r}
K\left[\mathrm{i}+(.75)\left(I_{x+2}\right)\left(I_{x+1}\right)(1+a)\right]-K\left[1+(.75)\left(I_{x+1}\right)(1+a) \mid\right. \\
=(.75)(K)\left(I_{x+1}\right)(1+a)\left(I_{x+2}-1\right)
\end{array}
$$

with an after-tax present value of

$$
\Delta P V R B(x+2)=(.75)(K)\left(I_{x+1}\right)(1+a)\left(I_{x+2}-1\right)\binom{l_{65}}{I_{x+2}}\left(v^{65-x-2}\right)
$$

In general, then,

$$
\triangle P V R B(x+n)=(.75)\left(K^{\prime}\right)(1+a)\left(I_{x+n}-1\right)\binom{l_{65}}{l_{x+n}}\left(v^{65-x-n}\right) \prod_{i=1}^{n-1}\left(I_{x+n}\right)
$$

for all $2 \leq n \leq(64-x)$.

PreRETIREMENT DEATH bENEFITS

Should the employec die before attaining age 65 , the usual arrangement provides that his estate receives the then-accumulated value of both his and the firm's contributions to the plan. As in the case of a contributory pension, ${ }^{3}$ the portion of that receipt which consists of a return of the man's own contributions is taxed to the estate at the regular estate tax rates and the rest as a long-term capital gain. By convention here, of course, this implies a 25 per cent rate for both portions and therefore for the total.

Thus, the amount of the prospective death benefit, as perceived at age x, is $K(1+a)$ dollars and its after-tax present value is

$$
\begin{aligned}
\operatorname{PVDB}(x)=(.75)(K)(1+a) & {\left[\binom{d_{x}}{l_{x}}(v)+\binom{d_{x+1}}{l_{x}}\left(v^{2}\right)\right.} \\
& \left.+\cdots+\binom{d_{64}}{l_{x}}\left(v^{65-x}\right)\right] .
\end{aligned}
$$

As a result of the investment income credited to the account during the first year, the potential benefit inereases to $\left(I_{-1}\right)(K)(1+a)$ dollars, a gain of $\left(I_{x+1}-1\right)(K)(1+a)$ over the initial figure and an additional after-tax present value of

$$
\triangle P V D B(x+1)=(.75)\left(I_{x+1}-1\right)(K)(1+a) \sum_{j=1}^{64-x}\binom{d_{x+j}}{l_{x+1}}\left(v^{j}\right) .
$$

[^6]In general
$\triangle \operatorname{PVDB}(x \mid n)=(.75)\left(I_{x+n}-1\right)(K)(1+a)$ multiplied by

$$
\left[\prod_{i=1}^{n-1}\left(I_{x+i}\right)\right] \sum_{j=n}^{64-x}\binom{d_{x+j}}{l_{x+n}}\left(y^{j-n+1}\right)
$$

again for $2 \leq n \leq(64-x)$.

the package and the current equivalent

The rest of the story, then, follows exactly the pattern above. Thus, $P V(x)=P V R B(x)+P V D B(x)-K$ and $\triangle P V(x+n)=$ $\triangle P V R B(x+n)+\triangle P V D B(x+n)$ for the present values, the employee's initial contribution, K, being subtracted in order to obtain the appropriate net value to him of the indicated benefits. For their current income equivalent

$$
\begin{gathered}
\operatorname{ATCEQ}(x)=\frac{[P V(x)]\left(D_{x}\right)}{\left(N_{x}-N_{65}\right)} \\
\operatorname{ATCEQ}(x+n)=\operatorname{ATCE} Q(x)+\sum_{j=1}^{n}[\Delta A T C E Q(x+j)]
\end{gathered}
$$

where

$$
\triangle A T C E Q(x+j)=\frac{[\Delta P V(x+j)]\left[D_{x+j}\right]}{\left(N_{x+j}-N_{65}\right)}
$$

The current equivalents of the benefits from the plan resulting from subsequent years' participation by the employee can then simply be added to these figures.

APPENDIXI

COMPANIES IN THE SAMPLE

Allied Chemical Corporation
American Can Company
American Cyanamid Company
American Metal Climax, Incorporated
American Tobacco Company
Anaconda Company
Bendix Corporation
Bethlehem Steel Corporation
Bocing Company
Borden Company
Caterpillar Tractor Company
Cities Service Company
Continental Can Company
Continental Oil Company
Douglas Aireraft Company
Dow Chemical Compariy
E. I. DuPont de Nemours and Company
Eastman Kodak Company
Firestone Tire and Rubber Company
General Electric Company
Gencral Foods Corporation
Gencral Motors Corporation
General Tire and Rubber Company
B. F. Goodrich Company

Goodycar Tire and Rubber Company
Gulf Oil Corporation

Intand Stecl Company
International Business Machines
Corporation
International Harvester Company
International Paper Company
International Telephone and Telegraph Corporation
Jones and Laughlin Steel Corporation
Lockheed Aircraft Corporation
National Dairy Products Corporation
North American Aviation, Incorporated
Phillips Petrolcum Company
Procter and Gamble Company
Radio Corporation of America
Republic Steel Corporation
R. J. Reynolds Tobaceo Company

Shell Oil Company
Sinclair Oil Corporation
Standard Oil Company (Indiana)
Swift and Company
Texaco, Incorporated
Tidewater Oil Company
United Aireraft Corporation
United States Rubber Company
United States Steel Corporation
Westinghouse Electric Corporation

APPENDIX J

SAMPLE SIZE EACH YEAR

Executive Rank, by Total After-Tax Compensation

Year	Highest- Paid	Second Highest- Paid	Third Highest- Paid	Fourth Highest- Paid	Fifth Highest- Paid
1940	49	48	44	45	44
1941	49	48	47	46	45
1942	49	49	47	45	46
1943	49	49	47	47	45
1944	50	50	48	47	46
1945	50	50	48	46	45
1946	50	49	49	47	44
1947	50	49	49	47	46
1948	50	50	50	48	43
1949	50	50	50	48	43
1950	50	50	49	49	46
1951	50	50	49	46	47
1952	50	50	47	47	46
1953	50	50	46	47	40
1954	50	50	47	45	41
1955	50	50	46	43	38
1956	50	48	46	42	31
1957	50	48	45	40	29
1958	50	49	40	38	29
1959	50	48	38	32	29
1960	50	46	33	32	24
1961	49	44	32	27	23
1962	48	40	30	24	19
1963	47	37	30	21	13

Note: A complete sample in each case would be 50 .

APPENDIX K

DERIVATION OF THE INDIVIDUAL
RETIREMENT ANNUITY PREMIUM
RATE SCHEDULE

Historical premium rate quotations were obtained from two leading. insurance companies: Connecticut General I ife Insurance Company and The Travelers Insurance Company. The quotations represented the annual premiums required for the purchase of a nonparticipating straight life anruity to begin at age 65 and providing for a full cash refund (of the interest-accumulated net premiums) in the event of the death of the prospective annuitant prior to that time. This is the individual annuity form specified in Chapter 2 as the exccutive's relevant market aternative to his employer's pension plan.

Even though the compensation data presented throughout the study cover the period 1940 through 1963. it was necessary to secure premium rate information back to 1938 in order to handle properly those cases in which executives came under pension plans as early as that year. Both insurance companies have had several premium schedules in effect since then. indicating that for completeness separate tabulations for each of the various subperiods should be coripiled here. In the interest of efficiency. however. the number of such subperiods was arbitrarily restricted to three: 1938 through 1948. 1949 through 1958. and 1959 through 1963. These intervals roughly coincide with those covered by the sehedules offered by the two firms, which were not entirely congruent, and give expression to the more significant changes in premium rates which have occurred since 1938. They should, therefore provide both a manageable and an acceptable representation of the recent history of individual annuity costs.

Each of the various premium rate quotations was supplied in the form of a schedule of end-of-year "cash values" and an accompanying annuity conversion factor for age 65 . For example, the following schedule applied to anntity contracts sold from 1938 through 1948 by one of the two insurance companies:

Number of Years Cash Value at End of Year Premiums Paid Per $\$ 100$ Annual Premium

1	$\$$
2	52
3	142
4	244
5	352
6	464
7	581
8	704
\cdot	832
\cdot	\cdot
28	\cdot
29	4,723
30	5,009

Annuity payable at age 65 per $\$ 1.000$ of cash value $=$ $\$ 6.68$ per month.
According to these quotations, then, a man who, at age 57 , contracted to purchase a retirement annuity and paid eight annual premiums of $\$ 100$ each would, at age 65 , stand to receive

$$
\binom{832}{1000}(6.68)=\$ 5.558
$$

per month, or a total of $\$ 66.69$ in annuity benefts per year, since he would have accumulated $\$ 832$ in cash value by that ime. Similarly, had he begun to pay premiums when he was 35 years old, his annual benefit at age 65 would have been

$$
\left(\frac{5307}{1000}\right)(6.68)(12)=\$ 425.41
$$

as a result of paying thirty anmual premiums of $\$ 100$.

It is, of course, a simple mater to transform this scheciule of cash values into a schedule of promium rates per dollar of amnuity henefit as a function of age at the time premium payments begin. Thus, if a $\$ 100$ annual premium starting at age 35 and continuing through age 64 will purchase $\$ 425.41$ in annuity bencfits, a $\$ 1$ arnuity benefit would require

$$
\frac{100}{425.41}=\$ 0.235
$$

in premiuns per year. In general, the cash-value-to-premiunn rate conversion formula is

$$
P(x)=\frac{(100)(1000)}{(12)(6.68)[C(65-x)]}
$$

where $P(x)$ denotes the anoual premiun payable begiming at age x for the purchase of a $\$ 1$ per year annuity which is to start at age 65 , and $C(65-x)$ is the cash value tabulated above for $(65-x)$ years' worth of premium payments. In the example just cited, an age of 35 at the time of the initial premiun payment implied a total of (65-35), or thirty years of premiums. Therefore,

$$
P(35)=\frac{(100)(1000)}{(12)(6.68)(5307)}=\$ 0.235 .
$$

Because the computations involved in arriving at the "current income equivalent" of a pension make it convenient to have the premium quotations stated in this form, each of the schedules provided by the insurance companies was transformed accordingly. In the case of the schedule above, the result was:

Age at Time of Purchase	Annual Premium Per Dollar of Annuity at Age 65
64	23.9044
63	8.7852
62	5.1127
61	3.5440
60	2.6885
59	2.1471

(Continued)

Age at Time of Purchase	Annual Premium Per Dollar of Annuity at Age 65
58	1.7720
57	1.4994
\cdot	\cdot
.	-
37	0.2641
36	0.2490
35	0.2350

These are, therefore, the relevant figures for the years 1938 through 1948 for this particular firm. A similar schedule was derived for the other insurance company and the average of the two taken to be the "typical" premium rate per dollar of retirement annuity confronted by execuives during that period.

The procedure was then repeated for the intervals 1949-58 and 1959-63. The complete set of averaged premium rates which was obtained is the following:

Age at Time of Purchase	Annual Premium Per Dollar of		Annuity
	$1938-48$	$1949-58$	$1959-63$
64	$\$ 20.9453$	$\$ 18.8166$	$\$ 16.1630$
63	8.0126	7.8305	7.2040
62	4.7947	4.8864	4.6011
61	3.3821	3.5314	3.3708
60	2.5841	2.7526	2.6541
59	2.2784	2.2392	2.1550
58	1.7252	1.8844	1.8113
57	1.4666	1.6183	1.5545
56	1.2687	1.4149	1.3570
55	1.1157	1.2544	1.2006
54	0.9899	1.1206	1.0720
53	0.8856	1.0109	0.9668
52	0.7985	0.9182	0.8779
51	0.7248	0.8399	0.8019
50	0.6614	0.7720	0.7363

Age at Time of Purchase	Annual Premium Per Dollar of Annuity		
49	193848	!9.49-58	$1959-63$
48	0.6063	0.7130	0.6796
47	0.578	0.6614	0.6297
46	0.4777	0.6155	0.5852
45	0.4438	0.5748	0.5460
44	0.4135	0.5380	0.5106
43	0.3861	0.5052	0.4795
42	0.3613	0.4753	0.4515
41	0.3386	0.4481	0.4259
40	0.3180	0.4234	0.4025
39	0.2991	0.3799	0.3811
38	0.2817	0.3606	0.3609
37	0.2657	0.3428	0.3423
36	0.2508	0.3263	0.3250
35	0.2371	0.3109	0.3091

A schedule for ages 35 through 64 was sufficient to encompass all the executives there was occasion to treat empirically, since most of them were already quite high up in their firms' hierarehy by the time pension plans came into common use.'

The second feature of individual annuity contracts which is pertinent to the calculations is their provision for a refund of the potential annuitant's premiums if he should die before attaining the age at which his annuity is to begin. ${ }^{2}$ That provision specifics that his estate shall receive the amount of the gross premiums paid up to the time of his death or the cash value listed for that year, whichever is greater." If an individual who contracted to purchase an annuity under the terms of the first schedule tabulated in this appendix died after making, say, three $\$ 100$ annual premium payments, his estate would have received $\$ 300$. since the cash value indicated for year 3 is only $\$ 244$. If he had died after making cight payments, his estate would have reeeived $\$ 832$, which exceeds the $\$ 800$ in total gross premiums paid to that point. In effect. the listed cash values represent the sum to which the individual's net

[^7]premiums-net of sales commissions and administrative expenses-acclinulate at the rate of interest guaranteed by the contract as of the end of each successive year of premium payments. Thus, the insurance company agrees to refund at least the absolute amount of the policyholder's gross premiums in the event of his premature death, and will pay the accumulated amount of his net premiums if that figure is greater.

This feature, of course, has a significant value to an individual who might contemplate the purchase of an annuity and is, as was outlined in Appendix D , an important element in the determination of that particular contract which is as valuable as his pension. It is desirable to tabulate the present value of the possible death bencfits per dollar of prospective annuity along with the applicable premium rates in order to climinate the need to recompute those present values each time a measurement of the annuity's total present value is required. This can be accomplished by first converting the original schedule of cash values per $\$ 100$ annual premium into one expressed in terms of cash value per dollar of anticipated annuity receipt, and then using those figures as the inputs to the death benefit present value formula developed in Appendix D.

To illustrate: A man, age 57, who contracted to pay eight $\$ 100$ annual premiums to the instrance company whose cash value schedule is listed above would, as part of the bargain. be assured that his estate would receive the following schedule of death benefits depending on the time of his death:

If Death Should Oceur at Age: ${ }^{a}$	The Estate Will Receive: ${ }^{\mathrm{a}}$
57	$\$ 100$
58	200
59	300
60	400
61	500
62	600
63	704
64	832

[^8]If he paid instead the $\$ 1.499+$ anmad premimm reguired for a $\$ 1$ annuity, the asociated schedate of death hemefte would look iate:

Age al Time of Death	Death Benefil
57	$\$ 1.4994$
58	2.9988
59	4.4982
60	5.9976
61	7.4970
62	8.9964
63	10.5559
64	12.4750

Each of these values is simply (1.4994100) of the corresponding figures above. This, then, is the relevant tabulation for age 57 for a schedule of per-dollar anmuity present values for this particular insurance company. As indicated in Appendix D, death benefits are taxfree to the policyholder's estate if they represent merely a return of his gross premiums-as would be the case if he should die at any time prior to attaining age 63 in the example here-but a capital gains tax is assessed on any excess above the gross premiums. Thus, if our $\$ 1$ annuity purchaser should die when he is age 63 , his estate would receive, after taxes, $(10.5559)-(0.25)(10.5559-10.4958)=$ $\$ 10.5409$, since $\$ 10.4958$ represents the total amount of seven $\$ 1.4994$ annual premiums. Similarly, if he should die the following year, his estate would receive $(12.4750)-(0.25)(12.4750-11.9952)=$ $\$ 12.3630$ net of taxes.

When this series of potential after-tax death benefits is discounted for mortality and time deferral back to age 57 (as discussed in Appendix D), the result is the aggregate present value of those payments per dollar of retirement annuity purchased--ithe form in which it is most convenient to express the relationship for purposes of "current equivalent" caleulations. Similar values can be obtained for each of the ages 35 through 64 at which executives might begin the purchase of an annuity, and the outeome for the insurance company whose cash value schedule has been used as an illustration here is:

Age at Time of Initial Premium Payment	Present Value of Death Benefit Per Dollar of Annuity
64	$\$ 0.3873$
63	0.4002
62	0.4392
61	0.4794
60	0.5165
59	0.5476
58	0.5729
57	0.5968
\cdot	\cdot
\cdot	\cdot
\cdot	0.6457
37	0.6360
35	0.6258

When these figures and the corresponding ones for the years 1938-48 for the other insurance company are averaged, a composite schedule of death benefit present values for that period similar to the composite premium rates derived earlier is obtained. When the process is repeated for the other two time periods of interest, the following tabulation results:

Age at Time of Initial Premium Payment	Present Value of Death Benefits Per Dollar of Annuity				
64	$1938-48$	$1949-58$	$1959-63$		
63	0.3381	$\$ 0.3038$	$\$ 0.2609$		
62	0.4650	0.3567	0.3281		
61	0.4575	0.4197	0.3952		
60	0.4964	0.4777	0.4560		
59	0.5310	0.5288	0.5098		
58	0.5571	0.5711	0.5496		
57	0.5808	0.6085	0.5849		
56	0.6020	0.6388	0.6152		
55	0.6218	0.6866	0.6421		
54	0.6376	0.7041	0.6656		
53	0.6503	0.7196	0.6849		
	(Continued)				0.7020

APPENDIX K

Age at Time of Inita!	Present Value of Death Bencfits Per Dollar of Annuity		
	$1938-48$	$1949-58$	$19.95-6.3$
52	0.6608	$0.732!$	0.7158
51	0.6692	0.7728	0.7269
50	0.6753	0.7509	0.7355
49	0.6795	0.7571	0.7422
48	0.6816	0.7614	0.7468
47	0.6825	0.7638	0.7492
46	0.6818	0.7647	0.7502
45	0.6795	0.7637	0.7495
44	0.6762	0.7619	0.7486
43	0.6718	0.7584	0.7464
42	0.6665	0.7538	0.7428
41	0.6601	0.7485	0.7381
40	0.6530	0.7420	0.7324
39	0.6453	0.7349	0.7250
38	0.6369	0.7268	0.7168
37	0.6281	0.7184	0.7081
36	0.6188	0.7093	0.6989
35	0.6092	0.6997	0.6893

This schedule and the one listed above, therefore, summarize the historical data on individual annuities which are relevant to the pension current equivalent computations.

APPENDIX L

Professional Incomes analysis

In Chapter 9. a comparison was made of the rate of growth since 1940 of the total after-tax compensation of top executives and the after-tax earnings of "successful" physicians, lawyers, and dentists. As a means of estimating the likely impact of progressive persona! incone taxes on the last three groups. the assumption was that their carnings in 1962the most recent year for which data are available-were of the same order of magnitude as the before-tax salaries and bonuses received by the executives in the sample studied. An assumption of this sort was necessary because published information on professional incomes exists only in the form of averages for the various occupational categories, and it is therefore impossible to identify the earnings of just that upper end of each which would seem fo be the most logical focus for a comparison with senior executives. The objective here is to test the effects on such a comparison of some alternative income level choices.

The assumption made in Chapter 9 was that the before-tax earnings of the mosi successful men in the highest-paid of the three professions in 1962 , i.e., medicine, were equal to the average before-tax direct current remuneration received during recent years by top executives. This implied a figure of $\$ 143,548$ for physicians. The before-tax earnings of lawyers and dentists were then set equal to $\$ 97,439$ and $\$ 99,984$, respectively, these figures being in the same proportion to $\$ 143,548$ as the reported averages for all lawyers and dentists were in 1962 to the average for all physicians. From the historical record of growth rates in before-tax earnings for the three groups, their incomes were projected back to 1940 and the relevant after-tax figures obtained.

As alternatives, the following assumptions will be tested here:

1. The before-tax earnings of the upper end of all three professions in 1962 equal to $\$ 143, \$ 48$.

APPINDIX I.

2. The before-tax eamings of the lowest-paid of the three-bausers --set equal to $\$ 143.548$ in 1962 and those of physicians and dentists raised proportionately to $\$ 211,450$ and $\$ 147,295$.

Developments back to 1940 may then be reproduced on these assumptions and new after-tax time series created. The results are summarized in the attached table and compared with execotives' after-tax histories.

> TABII: I.-I

After-Tax Earnings Histories

$$
(1940=1.00)
$$

Yeal	Under Assmmption 1		Above: Dentist	Under Anumption 2 Ahove:			
	Physiciam	lavyer		Physicians	Lamyen	Dentists	1 xecotive
1940	1.00	1.00	1.00	1.00	1.06	1.010	1.100
$19+1$	0.94	0.86	0.94	0.91	0.86	0.93	0.95
1942	1.103	0.85	0.97	0.98	0.85	0.97	0.74
1943	1.199	080	1.02	1.90	0.80	1.11	0.65
$19+4$	1.20	0.85	1.12	1.09	0.55	1.11	11.70
$19+5$	1.29	0.88	1.14	1.15	0.88	1.14	11.69
1946	1.38	0.99	1.21	1.28	0.99	1.21	0.80
1947	1.42	1.03	1.24	1.32	1.13	1.23	0.84
1948	1.92	1.42	1.66	1.85	1.42	1.66	1.13
1949	1.97	1.41	1.68	1.90	1.41	1.68	1.19
1950	2.05	1.46	1.73	1.97	1.46	1.73	1.32
1951	2.11	1.48	1.75	2.00	1.48	1.74	1.29
195?	-	1.40	--	-	$1.41)$	-.	133
1953	-	1.44	--	-	1.44	-	1.44
19.54	-	1.64	-	-	1.64	-	1.56
1955	-	-	-	-	-	-	2.15
1956	-	-	-	-	-	-	2.17
1957	-	-	-	-	-	-	2.20
1958	-	-	-	--	-	-	2.10
1959	2.94	2.06	2.60	2.70	2.16	2610	2.16
1960	2.94	2.08	2.68	2.73	2.18	2.67	2.14
1961	3.01	2.21	2.79	2.79	2.21	2.78	2.16
196?	3.13	2.24	2.95	2.88	2.24	2.94	2.18
1963	-	-	-	--	--	-	2.16

As is evident. the conclusion reached in Chapter 9 that top exectitives have not fared as well as the professions in terms of rates of aftertax earnings growth still holds. The gap narows the higher the pretax figures assumed for other occupations, but the range of estimates specified encompasses a fairly broad range of pessibilities and should suffice for our purposes here.

APPENDIX M

COMPENSATION COST ANALYSIS

The question as to the relationship between the cost to the employer corporation of the various rewards in its exceutive pay package and the cost of the "current income equivalents" proposed for those rewards was raised at several points in the study. The answer to that question for each of the major components of the package is. given the appropriate framework by which to view the compensation transaction, quite clear-cut. The objective of this appendix is to spell out such a framework.

Pension Plans

Consider the case of an executive, now age x, who is promised K dollars per year in retirement under his tirm's pension plan.' If we assume initially that there are no corporate or personal ineome taxes -which assumption will very shortly be relaxed-we may express the present value to him of that promise as

$$
P V_{P}=(K)\binom{N_{65}}{D_{x}}
$$

where $N_{6:-}$ and D_{r} are the actuarial symbols defined in Appendix D and employed in developing the present value formulas in most subsequent appendixes. The annual cost to the corporation of providing the indicated pension is simply the annual promium it must pay for this

[^9]executive to the insurance company from which it has purchased its group annuity contract.: If that premium is of size P_{i}. per dollar of pension, the total annual cosi to the firm for the executive in question is
$$
C_{P}=(K)\left(\rho_{P}\right) .
$$
which cost it will incur each year until the man retires.
Now, according to the reasoning suggested in Chapter 2, the "current income equivalent" of an employce's pension is the increment to his annual after-tax salary which would permit him to purchase an individual retirement annuity having the same present value. In the absence of taxes, of course, a straight life annuity of precisely K dollars to begin at age 65 would be as valuable to our hypothetical executive as his pension, since its present value would also be
$$
P V_{A}=(K)\binom{N_{65}}{D_{x}}
$$
as of age $x .{ }^{3}$ If we then let $P_{.1}$ denote the annual premium charged by an insurance company for a $\$ 1$ annuity of this type, the total annual premium that would be required of the executive beginning at age x and continuing through age 64 is
$$
C_{A}=(K)\left(P_{A}\right)
$$
and a salary increase of the same amount would be an appropriate substitute for his pension; he could accuuire the annuity with that increase and be as well off in terms of present value.

The issue for our attention, therefore, is whether, given indifference from the executive's standpoint, the salary increase or the pension
${ }^{2}$ Or, alternatively. the amount the firm must set aside on the executive's behalf in its own pension fund if it has chosen to manage that fund ifseif.
${ }^{3}$ Again, for convenience and ease of comparison, the preretirement death benefits payable under such an arrangement will be ignored. The analysis should be affected very little by this simplification, however. since the present value of those prospective payments is in all cases quite small in relation to that of the retirement benefits themselves. For example, according to the mortality table used in the empirical portion of the current study. and assuming a $2 \frac{1,}{2}$ per cent discount rate the present value to an executive. age 40 . of a $\$ 1$ per year retirement benefit to begin at age 65 is $\$ 5.113$. The present value of the preretirement death benefits associated with an individual annuity contract of that size is only about $\$ 0.732$. For a man, age 50 , the corresponding figures are $\$ 6.784$ and $\$ 0.735$.
promise is: more costly to the company. Since bith coste have been put in the form of an annual outlay extending over the same future period. the relevant comparison is simply

$$
C_{P}=(K)\left(P_{P}\right) \zeta(K)\left(P_{A}\right)=C_{A} .
$$

Clearly, if $P_{!}=P_{A}$, i.c.. if the premiums charged per dollar of prospective retircment berefit are the same for group ammity contracts as for individual annuities. the cost to the corporation of the current income equivalent of each of its employecs pensions will be equal to that of the pension itself.

It is worth noting that this assertion is completely independent of not only the executive's but the firmis opportunity costs. Whatever discount rate is chosen for the individual. the present value of the payments due under both his pension and its individual ammuty counterpart are calculated using the same rate. which is built into the actuarial symbols N_{r} and D_{s} in the formulation above and thus is neutral in its impact on the comparisons. Similarly, if the costs to the firm of the two alternatives were expressed more fully as the present values of the indicated series of required amnual outlays, the relationship between those present values would obviously be nothing more than a restatement of that between the annual figures themselves. This conclusion will be seen to apply to subsequent comparisons as well. since the analytical framework will be the same in each case.

Now. because group annuity premium rates are typically lower than those quoted for individual annuitics. it would almost certainly turn out in practice that even if-as in the situation depicted-there were no corporate or personal income taxes. it would be less expensive for the business firm to provide pensions for its cmployecs than to award them salary increases of equivalent value. In other words. we would expect to find that

$$
P_{P}=(1-a)\left(P_{A}\right)
$$

where $0<a<1$. If so, then,

$$
C_{P}<C_{A},
$$

since

$$
(K)\left(P_{P}\right)=(K)(1-a)\left(P_{A}\right)<(K)\left(P_{A}\right) .
$$

Thus, our first move toward a more realistic description of the relevant environment suggests that. for the corporation, the pension is the more "efificient" of the two alternatives proposed.

Introduction of the corporate income tax to the comparison leaves this relationship unchanged. Both the firm's contributions to its pension fund and any salary payments to its execotives are tax-deductible. Hence the annual after-tax cost of the pension becomes

$$
(K)(1-a)\left(P_{A}\right)\left(1-t_{c}\right)
$$

where $t_{\text {r }}$. denotes the corporate tax rate. Similarly, the annual cost of the salary equivalent is now

$$
(K)\left(P_{A}\right)\left(1-t_{c}\right)
$$

Therefore, the conclusion remains that $C_{1}<C_{i}$ as long as group annuity preminn rates--or funding obligations-are less per dollar of prospective benefit than those for individual annuity policies.

Consider next the impact of the personal income tax, assuming for the moment that the effective rate for the employee in question is expected to be the same after retirement as before and that both individual anmity benefits and any pension receipts are taxable in full at that rate. Under those conditions the present vahe to the employee of his pension now falls to

$$
P V_{P}=(K)\binom{N_{65}}{\hdashline D_{x}}\left(1-t_{p}\right)
$$

where t_{j} is the applicable personal tax rate. On the other hand, a matching decline in value is also associated with the K-dollar individual annuity which was. in the absence of taxes, as valuable to him as the indicated pension. Thus,

$$
P V_{A}=(K)\left(\frac{N_{65}}{D_{x}}\right)\left(1-t_{p}\right)=P V_{P} .
$$

Accordingly, an anmal premium of $\left(P_{A}\right)(K)$ dollars will still permit the purchase from an insurance company of an annlity of the proper size, and therefore $(K)\left(P_{.1}\right)$ continues to define the amount of the "after-tiax current income equivalent" at issue. In order to provide the executive with that much additional take-home pay each year, however,
the corporation wonld have to raise his before-taix silary by $(K)\left(P_{A}\right)\left(1-t_{p}\right)$ dollars. thereby incurring a net ambai cost of

$$
C_{A}=\frac{(K)\left(P_{A}\right)\left(1-t_{c}\right)}{\left(1-t_{p}\right)}
$$

This obviously would be rather substantially in excess of the cost of the pension itself, since

$$
C_{P}=(K)(1-a)\left(P_{A}\right)\left(1-t_{c}\right)<\frac{(K)\left(P_{A}\right)\left(1-t_{4}\right)}{\left(1-t_{p}\right)}=C_{A}
$$

The factor $1\left(1-\frac{t_{i}}{i}\right)$ represents. in effect. the tax advantage which results from the fact that employees need not, mader present law. inchude in their taxable income the contributions made on their behalf to qualified corporate retiremunt plans by their employers. If such contributions were taxable- or if it were possible for the employee to opt instend for a salary increase which would be considered tan-free by the IRS as long as it were used for the purchase of an individual retirement annuity to replace his pension-the relationship between the cost to the firm of the two alternatives wond revert to that wherein the only difference was attributable to a difference in group ammity and individual annuity premiunı rates.

The conclusion that the pension is less expensive than its current equivalent holds, therefore, cven muder the assumption that the employee's tax rate in retirement is as high as that which he coiffronts while still working. A more likely circumstance, of course. wonld be a lower over-all effective rate past age 65 . since the man's income is almost certain to diminish when he retires. Nonetheless, if we let t_{r} denote the anticipated postretirement personal tax rate, where $t_{r}<t_{p}$. we simply substitute the term $\left(1-t_{r}\right)$ for $\left(1-t_{p}\right)$ in the expressions above for the present values of both the pension and the individual ammity. and we establish once again that

$$
P V_{P}=P V_{A}
$$

since both are equal to

$$
(K)\binom{N_{65}}{D_{x}}\left(1-t_{r}\right)
$$

Therefore, P_{4} and P_{l}, are still the relevant annual pension and annuity premiums, and the resulting cost comparison from the standpoint of the firm remains

$$
C_{P}=(K)\left(P_{P}\right)\left(1-t_{c}\right)<\frac{(K)\left(P_{A}\right)\left(1-t_{c}\right)}{\left(1-t_{p}\right)}=C_{A}
$$

where, as before, $P_{P}=(1-a)\left(P_{A}\right)$.
Let us then remove the final constraint imposed on the analysis and recognize that in fact the retirement benefits received under an individual annuity policy are taxed less heavily than those received under a corporate pension plan. As indicated in Chapter 2, a portion of the annuity benefits are considered by the IRS to constitute a return of the policyholder's premiums and, as such, are exempt from tax. In particular, the fraction

$$
F=\frac{\left(P_{A}\right)(65-x)}{15}
$$

of each payment received by the arnuitant in retirement will be taxfree. ${ }^{4}$ Accordingly, the present value, as of age x, of a K-dollar individual annuity is in reality

$$
P V_{A}=(K)\left(\frac{N_{6 s}}{D_{x}}\right)[1-t(1-F)]
$$

which is necessarily a somewhat larger present value than that implied by the prospect of a K-dollar pension benefit. As a result, the corporation, in order to permit the employee concerned to obtain an adequate replacement for that pension, need only raise his annuai take-home pay by an amount equal to the premiums on an individual annuity of size $(K)(1-b)$, where

$$
P V_{P}=(K)\left(\frac{N_{65}}{D_{x}}\right)\left(1-t_{r}\right)=(K)\left(\frac{N_{65}}{D_{x}}\right)\left[1-t_{r}(1-F)\right](1-b)=P V_{A}^{\prime}
$$

and, of course, $0<b<1$. In short, a smaller annuity than that sug-
${ }^{4}$ Thus, $\left(P_{A}\right)(65-x)$ represents the aggregate premiums per dollar of prospective annuity which will be paid between age x and age 65 by the policyholder, and fifteen years is specified by the IRS as his life expectancy at age 65, i.e., the aggregate annuity payments he is expected to receive under the contract.
gested by the simpler comparisons above will suffice to detine the pension : curcol cquivalent. Solving for ($1 \quad \mathrm{l})$. we the that

$$
(1-b)=\begin{gathered}
1-t \\
1-t,(1-F)
\end{gathered}
$$

and the annual individual annuity premium the employec would have to be able to meet out of any salary increasi is just $(K)\left(P_{1}\right)(1 \cdots b)$.

The cost to the firm of providing that incrase would be

$$
C_{A}=\frac{(K)\left(P_{A}\right)(\mathrm{i}-b)\left(\mathrm{i}-t_{c} \mathrm{i}\right.}{\left(1-t_{p}\right)}
$$

as compared with a pension cost of

$$
C_{P}=(K)\left(P_{A}\right)(1-a)\left(1-t_{c}\right)
$$

Thercfore. if

$$
(K)\left(P_{A}\right)(1-a)\left(1-t_{c}\right)<\frac{(K)\left(P_{A}\right)(1-b)\left(1-t_{c}\right)}{\left(1-t_{f}\right)}
$$

the pension will. after all. be less expensive than its current equivalent.
Assuming temporarily that $a=0$. i.c.. that there is no difference between group annuity and individual annuity premium rates, we may state the necessary condition as

$$
1<\begin{gathered}
1-b \\
1-t_{p}
\end{gathered}
$$

or

$$
1-t_{p}<1-b
$$

Substituting for $(1-b)$

$$
1-t_{p}<\frac{\left(1-t_{r}\right)}{1-t_{r}(1-F)}
$$

Clearly, even if F were equal to its maximum possible value of unity (the annuity benefits being completely tax-free). the inequality would hold, since we have established that $t_{r}<t_{r}$. Any smaller F would then

[^10]imply a larger value for the quotient on the right-hand side of the inequality and reinforce that relationship.

Finally, if we permit a to take on a positive vatue, the question bocomes whether

$$
(1-a)\left(1-t_{f}\right)<1-b
$$

the answer to which is obvious, given that $\left(1-t_{\mu}\right)<(1-b)$.
Our conclusion, therefore, is that under almost any conceivable set of circumstances, the cost of the pension to the employer corporation will be smaller than the cost of the salary increase which would provide the executive with the same level of after-tax remuneration. Only if the executive were expecting a higher total annual income after retirement than before, or if group annuity premium rates exceeded those quoted for individual annuities, could this conclusion be reversed. Both situations, of course, are extremely unlikely to occur in practice."

Deferred Compensation

A similar story emerges from an examination of the costs of deferred compensation arrangements and their current equivalents. Consider an executive, now age x, who is promised K dollars per year for a total of m years upon his retirement at age 65 . If we start out once again assuming that neither personal nor corporate income taxes are imposed, the present value to him of that promise as of age x may be written as

$$
P V D C=(K)\left(\frac{N_{65}-N_{65+m}}{D_{x}}\right)
$$

and the present value of the cost of those payments to the firm as

$$
C_{d c}=(K)\left(\frac{N_{65}^{\prime}-N_{65+m}^{\prime}}{D_{x}}\right)
$$

"The preretirement vs. postretirement income issue does, however, illustrate why it would be inappropriate for a firm to attempt to minimize its compensation costs by paying only nominal salaries and utilizing pension benefits as the major component of the pay package. Even if its employees would accept such a strategy and the government would sanction it (corporate tax deductions for pension fund contributions are limited by law to 15 per cent of employee wage costs), at some point it would turn out that prospective pension receipts exceeded current salary payments and the tax advantage would disappear (in the formulation above, this would imply $t_{r}>t_{0}$).

The notation N_{i}^{\prime} and D_{i}^{\prime} indicates that the discount rates built into the actuarial symbols may not be the same for the executive and the corporation and therefore that the present value of exactly the seme series of payments may differ depending on which one is doing the evaluating. Thus the relevant definitions are

$$
\begin{gathered}
D_{x}=I_{x} v^{x}=I_{x}\binom{1}{1+r_{e}}^{x} \\
N_{65}-N_{65+m}=D_{65}^{+}+D_{66}+\cdots+D_{65+m-1} \\
D_{x}^{\prime}=I_{x}\left(y^{\prime}\right)^{x}=I_{x}\left(\frac{1}{1+r_{c}}\right)^{x} \\
N_{65}^{\prime}-N_{65+m}^{\prime}
\end{gathered}=D_{65}^{\prime}+D_{66}^{\prime}+\cdots+D_{65+m-1}^{\prime} .
$$

where r_{t} represents the executive's opportunity cost and r_{c} the corporation's. ${ }^{7}$ Clearly, if $r_{6}>r_{6}$, then $D_{x}^{\prime}<D_{x}$ and $\left(N_{65}^{\prime}-N_{65+m}^{\prime}\right)<$ ($N_{65}-N_{65+m}$); i.e, the present value of the cost of the arrangement to the corporation is less than the present value of the reward it implies for the executive.

Now, the "current income equivalent" of such a series of payments is taken to be that increase in the executive's salary which, if maintained from age x through age 64, would have the same present value to him. Denoting this increase by S. we have

$$
(S)\binom{N_{x}-N_{65}}{D_{x}}=P V D C
$$

since, of course, the executive must remain alive up to retirement in order to claim all those additional payments. Substituting and solving for S

$$
\begin{gathered}
S=\frac{(P V D C)\left(D_{x}\right)}{\left(N_{x}-N_{65}\right)} \\
S=(K) \frac{\left(N_{65}-N_{65+m}\right)}{\left(N_{x}-N_{65}\right)} .
\end{gathered}
$$

: As in the case of pension plans, any death benefits payable under the deferred compensation contract will be ignored in order to simplify the analysis. Such a step will not affect our conclusions. however, since the present value of those benefits would appear in both the executive's and the firm's appraisal of the contrac! in question and-except for the same sort of effect of possible differences in discount rates which will be pinpointed in the diseussion that fol-lows-would thereby raise both to the same extent.

The question, then, is whether the cost to the firm of a salary increase of this magnitude differs from the cost of the deferred pay contract itself. That is, whether

$$
C_{s}=(S)\left(\frac{N_{x}^{\prime}-N_{65}^{\prime}}{D_{x}^{\prime}}\right) \leqq(K)\binom{N_{65}^{\prime}-N_{65+m}^{\prime}}{D_{x}^{\prime}}=C_{d c}
$$

Substituting now for S and rearranging, the issue reduces to

$$
\frac{\left(N_{x}^{\cdot}-N_{65}^{\prime}\right)}{\left(N_{x}-N_{65}^{\prime}\right)}>\frac{\left(N_{65}-N_{65+m}\right)}{\left(N_{65}-N_{65+m}\right)} .
$$

If the same discount rate applies to both the executive and the corporation $\left(r_{r}=r_{r}\right)$, it will be true for all i that $N_{i}=N_{i}^{\prime}$. In that case, the quotients on either side of this expression will be equal to one, and we may con :lude that $C_{s}=C_{\text {nc }}$.

If, on the other hand, the corporation's opportunity cost exceeds that of the execurive, it turns out that ${ }^{8}$

$$
\frac{\left(N_{x}-N_{65}\right)}{\left(N_{x}-N_{65}\right)}>\frac{\left(\dot{N_{65}}-\dot{N_{65}+m}\right)}{\left(N_{65}-N_{65+m}\right)}
$$

and therefore:

$$
C_{s}>C_{d c}
$$

which is, of course, what our intuition would lead us to expect. Thus, if a firm has available to it better investment opportunities than do its employees, it is not surprising to discover that, in effect, the advantage to it of being able to defer a portion of their wages is greater than the accompanying disadvantage that deferment entails for them. If, however, the firm can do no better with the funds than can the employees involved, neither party stands to gain through a deferred pay arrangement, and the current equivalent of such a contract would, at least in the absence of taxes, be precisely as expensive as the contract itself. If the firm cannot do as well, the current equivalent is cheaper. The consensus would probably be that, in practice, the first of the three situations is the most likely.?

* The difference in discount rates makes itself felt more strongly the farther in the future are the payments being considered. Thus, the ratio of any N_{i} to the corresponding N_{i} or D_{i} to D_{i} becomes smaller as i increases.
${ }^{9}$ It is important to recognize in this connection that, in speaking of potential investment returns, care must be taken to compare alternatives in which the

The presence of a corporate income tax does not alter these conclusions, since both immeriate salary payments and any crentual outlays for deferred compensation awards are tax-deductible at the time they are made. Thus the present value as of age x. of the net cost to the firm of the deferred payments described above is

$$
C_{d i}=(K)\left(1-t_{c}\right)\binom{N_{65}^{\prime}-N_{65+m}^{\prime}}{D_{x}^{\prime}}
$$

where t_{e} denotes the corporate tax rate. The cost of the current equivalent thereof is

$$
C_{:}=(S)\left(1-t_{x}\right)\binom{N_{x}^{\prime}-N_{65}^{\prime}}{D_{x}^{\prime}}
$$

and a comparison of the two produces exactly the same result as in the no tax casc: i.c.. if

$$
\begin{aligned}
& \left(N_{x}^{\prime}-N_{65}\right) \\
& \left(N_{x}-N_{65}\right)
\end{aligned}>\begin{aligned}
& \left(N_{65}-N_{55}+m\right) \\
& \left(N_{65}-N_{65+m}\right.
\end{aligned}
$$

then $C_{s}>C_{d}$, the particular corporate tax rate levied being quite irrelevant.

The personal income tax is similarly neutral in its impact on the analysis as long as the executive in question is subject to the same overall effective rate after retirement as before. Under those conditions the present value to him. as of age x. of a series of m payments of K dollars cach beginning at age 65 is

$$
P V D C=(K)\left(1-t_{p}\right)\left(\frac{N_{6}-N_{65+m}}{D_{6}}\right)
$$

Where t_{i}, represents the applicable personai tax rate. It would therefore require an increase in his annual after-tax salary of only

$$
\begin{gathered}
S^{\prime}=\frac{(P V D C)\left(D_{s}\right)}{\left(N_{1}-N_{6 s}\right)} \\
S=\left(K_{0}\right)\left(1-t_{r}\right)\binom{N_{6 s}-N_{6 s+m}}{\left(N_{1}-N_{6 s}\right.}
\end{gathered}
$$

risks incurred are similar. Thus a corporation: may inded hate avaiable opportunities for employing its funds which hold out the promise of a rather higher rate of return than thone effectively oper to its exceutives as individuals. tut such opportunities may ato whect the firm to the posibility of more substantial loses if the do not work out as phaned. Only if the corporation has differntally better ine entment prospects within given "risk thases" an we legitimately credit it with an adrantage over its emploves.
dollars in order to provide him with an equivalent reward. Before taxes, of course, this would mean a salary increase of $S^{\prime} /\left(\begin{array}{ll}1 & t_{p}\end{array}\right)$ dollars, having a net cost to the eniployer corporation of

$$
C_{s}=\left(S^{\prime}\right) \stackrel{\left(1-t_{c}\right)}{\left(1-t_{p}\right)}\left[\frac{\left(N_{x}^{\prime}-N_{s s}\right.}{D_{x}^{\prime}}\right] .
$$

This, conveniently, simplifies to

$$
C_{s}=(S)\left(1-t_{c}\right)\left(\frac{N_{x}^{\prime}-N_{65}^{\prime}}{D_{x}^{\prime}}\right)
$$

as in the situation where there were no personal income taxes. In effect, the reduction in the size of the computed equivalent salary inerease which results from taking into account the taxes inevitably due on postretirement ineome is precisely offset by the requirement that suffieient before-tax salary be paid to enable the executive to meet the taxes thereon while still an aetive employec. The cost to the firm of the deferred payments remains

$$
C_{d c}=(K)\left(1-i_{c}\right)\binom{N_{65}^{\prime}-N_{65+m}^{\prime}}{D_{x}^{\prime}}
$$

and the relationship between the two costs continues to be as expressed above.

If, however--as seems more likely-the executive's income falls when he retires and therefore his personal tax rate in retirement is expected to be lower than that applicable to his present salary, there is a clear cost advantage to deferred compensation arrangements. Letting t_{r} again denote the relevant postretirement tax rate, we have

$$
P V D C=(K)\left(1-t_{r}\right)\left(\frac{N_{65}-N_{65}+m}{D_{x}}\right)
$$

for the after-tax present value to the exceutive of the deferred payments. An after-tax salary increase of size

$$
S^{\prime \prime}=\frac{\left(P V D C^{\prime}\right)\left(D_{x}\right)}{\left(N_{x}-N_{65}\right)}
$$

extending from age x through age 64 would be as valuable. The necessary before-tax inerease then is $S^{\prime \prime}\left(1-t_{p}\right)$, and the present value of its cost to the eorporation becomes

$$
\begin{gathered}
C_{1}=\begin{array}{c}
\left(S^{\prime \prime}\right)\left(1-t_{c}\right)\left(N_{x}^{\prime}-N_{65}^{\prime}\right) \\
\left(1-t_{p}\right)\left(D_{x}^{\prime}\right)
\end{array} \\
C_{s}=\begin{array}{c}
(K)\left(1-t_{r}\right)\left(1-t_{c}\right)\left(N_{x}^{\prime}-N_{65}^{\prime}\right)\left(N_{65}-N_{65}+m_{1}\right) \\
\left(N_{x}-N_{65}\right)\left(1-t_{p}\right)\left(D_{x}^{\prime}\right)
\end{array} .
\end{gathered}
$$

This compares with a cost of

$$
C_{d c}=\frac{(K)\left(1-t_{c}\right)\left(N_{65}^{\prime}-N_{65+m}^{\prime}\right)}{D_{x}^{\prime}}
$$

for the deferred payments, and leads to the conclusion that if

$$
\begin{aligned}
& \left(1-t_{r}\right)\left(N_{x}^{\prime}-N_{65}^{\prime}\right)> \\
& \left.\left(1-t_{r}\right)\left(N_{x}-N_{65}\right)>N_{65+m}^{\prime}\right), \\
& \left(N_{65}-N_{65}+m\right)
\end{aligned}
$$

the cosi of the current equivalent of those payments is greater than that of the payments themselves. Accordingly, even in the situation where the corporation's and the executive's discount rates are identical. it will be true in the reduced expression that

$$
\frac{1-t_{r}}{1-t_{p}}>1
$$

as long as $t_{r}<t_{p}$, and the current equivalent will be the more expensive reward. The existence of either of two conditions therefore is sufficient to, establish a preference for deferred compensation over an immediate salary inerease of comparable value: the firm has better investment opportunities than do its employees, or the income of the latter is expected to fall upon retirement. The probabilities certainly seem to point in the direction of at least one of the two being fulfilled in virtually every instance. ${ }^{10}$

Stock Options

The conclusion in the case of stock options is no less precise, but the analysis suggests there is rather more room for the adjustment of com-

[^11]pensation strategy to the circumstances of the individual employec. Consider an executive who excrcises a stock option for m shares at a time when the market price of those shares is equal to P_{m}. Given an option price of P_{0}, his before-tax profit is $K=(m)\left(P_{m}-P_{6}\right)$. With a capital gains tax rate equal to t_{g}, his after-tax reward comes to $(K)\left(1-t_{g}\right)$ dollars. The cost of that transaction to the employer corporation is measured simply by the dilution in the shareholders' equity occasioned by the sale of a portion of the ownership of the firm to the executive at a price less than its actual value-in short. by the same total price differential, K, which defines his before-tax reward. Since no deductions from taxable income are allowed the firm in connection with the granting or subsequent exercise of stock options, K also represents the after-tax cost to it of that instrument.

Now, in order to have provided the executive with the same level of remuneration, it would have been necessary to award him a bonus of $(K)\left(1-t_{g}\right) /\left(1-t_{p}\right)$ dollars in the year of exercise, where t_{p} is the personal tax rate he would be subject to on that increment. ${ }^{11}$ The cost of this alternative scheme would have been

$$
C_{s}=\frac{(K)\left(1-t_{c}\right)\left(1-t_{g}\right)}{\left(1-t_{p}\right)}
$$

given a corporate income tax rate of t_{c}. The question then is which of the two costs is the larger,

$$
C_{s}=\frac{(K)\left(1-t_{c}\right)\left(1-t_{g}\right)}{\left(1-t_{\rho}\right)} \lesseqgtr K=C_{0}
$$

or, simply

$$
\frac{\left(1-t_{c}\right)\left(1-t_{g}\right)}{\left(1-t_{p}\right)}>1 .
$$

As it turns out, the inequality may run either way, depending on the tax rates applicable to the particular situation. If we assume a 50 percent corporate tax rate and adopt the 15 per cent figure for the "ad-
${ }^{11}$ More accurately; the proposal offered in the text was for a current equivalent in which the required payments would be spread over a period of years and have an after-tax present value equal to $(K)\left(1-t_{a}\right)$. It is more convenient to deal here with only a single payment. however, and the conclusions reached are not affected by doing so.
justed" capital gains rate which was rationalized in Chapter 4, ${ }^{12}$ we can solve for the marginal personal income tax bracket in which the cost of the option is just equal to the cost of its curent equivalent:

$$
\begin{aligned}
(1-.50)(1-.15) & =\left(1-t_{p}^{*}\right) \\
t_{p}^{*} & =0.575 .
\end{aligned}
$$

Therefore, only if the exceutive under consideration must pay taxes on any additions to his current inconce at a rate greater than 57.5 per cent will the corporation find it less expensive to grant hime stock options than to provide a salary increase of equivalent value.

According to the tax rates in effect during the last decade of the period studied here-1954 through 1963-this "breakeven" point was located at a salary level of approximately $\$ 77.700$, a figure which is derived as follows: If we assume that deductions and exemptions from taxable income amount to about 15 per cent of gross income for the typical execative, ${ }^{13}$ the critical marginal tax rate on faxable income is $57.5 .85=67.6$ per cent. Thus, an extra dollar of salary or bous received by the executive will normally give rise to just 85 cents of additional taxable income, and it is not until he attains a level of reward such that taxes are assessed on the taxable portion thereof at a 67.6 per cent marginal rate that he in fact incurs a tax liability of 57.5 cents on the extrà doliar. Until 1964 the taxable income bracket in which that rate was excceded for a married taxpayer was $\$ 76,000-$ to $-\$ 88.000$, implying in the view here a gross income of at least $\$ 76,000$. 85 , or $\$ 89,400$. before the indicated pereentage took effect. Now, if we further assumeas was suggested in Chapter 2--that the executive is likely to have income from sources other than salary and bonus equal to 15 per cent of the latter, an annual direct current remuneration figure of $\$ 89.4001 .15$, or $\$ 77,700$, would have been suffieient to gencrate a total taxible income of $\$ 76.000$ and therefore represents the point beyoud which stock options were less costly to the employer corporation than matching inereases in its executives' salaries and bonuses. A simalar analysis

[^12]using the lower personal tax rates introduced in $1964^{\prime \prime}$ reveals that nowadays only those executives with salaries and bonmes in excess of fully $\$ 163,700$ should be granted options. For the rest-and that category obviously includes all but a very few individuals even in the largest firms-salary increases tied to the price of the corporation's stock are a less expensive form of reward.
$1+$ That is, the rates applicable to the years 1965 and thereafter, these being the end product of a two-step reduction begun in 1964.

[^0]: ${ }^{1}$ See Appendix B.

[^1]: 2 This is the procedure referred to in footnote 30 of Chapter 2.

[^2]: ${ }^{3}$ If his contributions amounied to $\$ 2,000$ per year instead, the total would come to $\$ 30,000$ by age 65 . Thus the alternative tax treatment would take effeet, all $\$ 20.000$ of the first pension receipt and $\$ 10,000$ of the second being tax.free.
 ${ }^{4}$ This rate will be assumed here to be equal to $21 \frac{1}{2}$ per cent. The rates for most pension plans are in fact wery close to this figure.

[^3]: ${ }^{5}$ Which was equal to $\$ 90,000$ in the illustation cited above.
 ${ }^{6}$ See Appendix B.

[^4]: © See Appendix K for the schedule used in the empirical portion of the current study.

[^5]: ${ }^{\text {I }}$ For evidence on this point. sec: George E. Lent and John A. Menge. "The Importance of Restricted Stock Opions in Exccutive Compersation." Management Record, June 1962.

 - Clearly. other types of implicit or informal saretions threatened by the organizations to which such executives belong may, in part at least, account for

[^6]: ${ }^{3}$ See Appendix D.

[^7]: ${ }^{1}$ See Chapter 7.
 2No death benefits are payable after the anouty begins according to the form of that instrument chosen here as a standard of comparison far the pension. See Chapter 2.
 ${ }^{3}$ See also Appendix D.

[^8]: a Assumes premiums are paid at the beginning of each year and that, if death occurs, it is at some point subsequent to that payment.

[^9]: ${ }^{1}$ Fer convenience, the discussion will be cast in terms of a noncontribatory pension and its current income equivalent. Nothing essential to the analysis is sacrificed by doing so. and the present value expressions necessary for the cost comparisons are much less complicated than would be the case for a contributory arrangement. The arguments developed and the conclusions rached will, however, apply equally to the latter.

[^10]: ${ }^{5}$ This result may be interpreted as follows: The tax saving in retirement occasioned by the employee's not having to pay taxes on his annuity benefits is necessarily less than the 10 x disadvantage involved in raising his salary during his active working life by enough to enable him to pay the taxes thereon and still end iup with sufficient funds to purchase that annuity.

[^11]: 10 The preceding discussion applies as well to deferted compensation plans under which payments are to be made in the form of shares of the corporat tion's common stock. Thus, it makes no difference to the arguments nade whether the value for K in the various formulas is actually specified by the contract being considered or is estimated from stock price data. However the figure is obtained, the current equivalent format is the same: any increments in the value of the arrangement in subsequent years are treated separately as they occur; and the comparisons indicated hold without qualification. See Chapter 5 .

[^12]: 1: Adjusted to reflect the impact of the additional deductions and exemptions from ordinary income likely to he generate by stock option profits and abo the possibility that the optionee might not reself the shares involved hefore his death, therely avoiding the capital gains tax entirely.

 13 See Chapter 2 and Appendix A.

