This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Transport and the State of Trade in Britain

Volume Author/Editor: Thor Hultgren, assisted by William I. Greenwald Volume Publisher: NBER

Volume ISBN: 0-87014-442-1

Volume URL: http://www.nber.org/books/hult53-1
Publication Date: 1953

Chapter Title: The Movement of Goods
Chapter Author: Thor Hultgren, William I. Greenwald

Chapter URL: http://www.nber.org/chapters/c9313

Chapter pages in book: (p. 3-22)

1. The Movement of Goods

Traffic was intimately related to production of coal

Although we have no measure of the grand composite flove of all commodities we do have a measure of the flow, from its origin in the gromed, of the conmodity which, in ratw or simply mannfactured form. is the most inportant single source of traffic. After World War I coal, coke, and the so-called patent fuel (the raw material and the two prodnets are lumped together in the traffic statistics) accounted for considerably more than half of the total tonnage originated by the railways. and for abont half of the total movement of goods (neasured in tonmiles). Doubtless coal and related traffic was comparably important in earlier periods. 'The total flow of coal and its prodncts is roughly measured by the statistics of coal production. Although roal traflic was not separately reported before the war, the great bulk of the "minerals conveyed" must have been coal. The relation between total flow of coal and railway tralfic was close. For every cyelical wave in coal production, as far as we can tell from the prewar data, there was a corresponding cycle in mineral traffic (Chart 1). Whenever the mine operators increased their output from one sear to the next, the railway companies enjoved an increase in their minerals traffic. Whenever output diminished, the traffic diminished. Minor exceptions to these general observations occurred in 1856-58, 1884-85, and 1897-98. The very slight decline in production from 1919 to 1920 was acconıpanied by a slight increase in tonnage originated, but the sharper decline in output from 1920 to 1921 was accompanied by a sharp decline in tonnage (Table 1).

Statistics of ton-miles reflect not only the weight of shipments but the length of movement. They therefore measure ficight traffic more compreherisively than statistics of tons originated or conveyed measure it. Ton-mile data were first collected for 1920. From that year to 1938
every cycle in production was accompanied by a cycle in coal and coal product ton-miles (Chart 2). ${ }^{1}$

Traffic cycles corresponded to trade cycles

In a looser and more general way, cycles in total traffic can be matched with the cycles that occurred, according to Burns-Mitchell, in general business activity. From 1857 to 1913, the railways carried more ton-
table 1
Coal Production
Rail Tonnage Originated, by Kind, 1919-1921
(millions of fons)

1919	coal pronuction	tons orignatrd*			
		Geinera! merchan-	Coal, coke, and patent	Other	
		dise	fuel	minerals	Total
1920	229.5	68.4	180.1	56.4	304.9
1921	163.3	68.7	181.2	68.1	318.1
${ }^{*}$ Sce	able 2.	50.5	128.3	39.1	217.9

nage in each ${ }^{2}$ year of every business expansion than they did in the preceding year (Chart 1, top line). Traffic diminished from year to ear throughout 3 of the 9 contractions. It diminished part of the time in 4 others. In the remaining 2 it increased, but the average annual gain was smaller in each case than in the immediately neighboring cxpansions. Indeed in every general business contraction the annual average change was either a fall or a smaller rise than in the preceding or following phase (Table 2). Total tonnage originated rose in the 1919-20 business expansion and fell in the 1920-21 contraction ('Table 1). There was a cycle in total ton-miles for every business cycle from 1920 to 1938 (Chart 3).
${ }^{1}$ Annual coal production from Richard Meade, Conl and Iron Industries of the United Kingdom (C. Lockwood \& Co., London, 1882), p. 296, through 1872, and Table 7 , note a. As in later charts and tables, the monthly dita are seasonally adjusted. Cf. note on sources.

In this and other charts, asterisks mark peaks and troughs in the economic
tivities charted.
${ }^{2}$ With one exieption: from 1911 to 1912 there was a slight dip, followed by a vigorous rise to 1913, the closing year of the reference expansion. A coal strike from
February 26 to merchandise conveyed.
CHART 1

CHAPT
Coal: Production and Movement by Rail
January 1920-April 1939

Since the cycles in total traffic corresponded so closely to those in minerals or coal traffic, there would be no point in discussing separately the relation of the latter to the trade cycle. For the study of business conditions, moreover, the figures for merchandise, i.e. nonmineral commodities, are of greater interest. In terms of employment, value of product, etc., coal is not as important as it is in terms of railway tonnage. The revenue the railways themselves receive for carrying coal is less than proportionate to the tons carried.
In general, merchandise traffic increased from year to year throughout each business expansion (Chart 1). From 1901 to 1902, however, it fell slightly. ${ }^{3}$ There were declines in traffic corresponding exactly in ${ }^{3}$ There are no figures for 1869 or 1870 ; the figure for 1871 is not comparable with that for other years, and that for 1903 is not comparable with 1902 or parlier years.

Ton-miles, All Commodities and All excep! Coal, Coke, and Patent Fual January 1920 April 1939

time to the reference contractions of 1883-86 and 1907-08. Tonnage also diminished during part of $1860-62,1866-68,1873-79$ (only the last two years) and 1890-94. A decline in 1900-1901 continued beyond the end of the business phase. In the business contractions 1857-58 and 1903-1904, on the other hand, the anount of merchandise conveyed increased, but not as fast, in either case, as in the succeeding business expansion. If allowance is made for the rate as well as the direction of change, merchandise conformed positively to the reference chronology without exception (Table 3). ${ }^{4}$

Similarity of direction, however, is a closer kind of correspondence than rate of change. In this sense, before the war, even the changes in general inerchandise traffic corresponded more closely to the changes in coal production than they did to the reference chronology. In 11 pairs of years for which we liave traffe data, coal production fell while busi-

- For the reference chronolog. in monthly, Burns and Wesley C. Mitchell, Measuring Burterly and annual form, see Arihur F nomic Research, 1946), p. 78. The authors drew up an (National Bureaus of Fcoto supplement their studies of monthly or quarterly an annual chronology in order in annual form; if they had worked from annual dy data with data available only nized fewer and somewhat differently dated cycles (pp. 81, $261-2$)
table 3
Tons of General Merchandise Conveyed
Change per Year between Reference Peaks and Troughs, 1857-1913

				cras	$\begin{aligned} & \text { FROM } \\ & \text { DATE } \end{aligned}$	
						year
						To
		years from			To peak	troush
Reffrfives	n.fyel of	precting	Tovs		from	from
date	business	date	carrifd	Total	trough	pieat:
				1ion	of to	
1857	Prak	\ldots	25.0	\cdots	
1858	Trough	i	25.6	(1.6)		0.6
1860	Peak	2	29.5	3.9	2.0	
186 ?	Trough	2	30.3	0.8	\cdots	0.t
1866	Peak	4	38.6	8.3	2 i	\cdots
1868	Trough	2	39.6	1.0	...	0.5
1873	Peak	5	60.9	21.3	4.3	
1879	Trough	6	62.9	2.0		0.3
1883	Peak	4	76.9	14.0	3.5
1886	Trough	3	72.7	-4.2	\ldots	-1.4
1890	Peak	4	87.3	1.4. 6	3.6	\ldots
189.4	Trough	4	90.1	2.8	\cdots	0.7
1900	Peak	6	118.5	28.4	4.7	
1901	Trough	1	117.9	-0.6	\ldots	-0.6
1903	Peak	2	$100.1)^{2}$	-	*	
1904	Trough	1	100.3	0.3	\cdots	0.3
1907	Peak	3	108.3	8.0	2.7	\ldots
1908	Trough	1	103.2	-5.1	\cdots	-5.1
1913	Peak	5	121.4	18.2	3.6

a 1903 figure not comparable with previous years; rate of change 1901-03 not comparable with 1903-04.
ness expanded, or vice versa. In 8 of these instances, merchandise followed coal rather than general business activity. ${ }^{5}$

Was railway participation inversely related to the state of trade?

Although railway traffic is positively related to the total flow of commodities, the relation is not necessarily constant. Both domestic produc-

[^0]CAART 4
Coal, Coke, and Patent Fuel
Ratio of Tonnage Originated by Railways to Total Supply 1921-1938

tion and imports can be disposed of in ways which do not involve rail mosement. The percentage share of the railroads in total flow may fluctuate with business conditions. We have endeavored to find out whether it has done so in recent years. (The necessary data are not available for earlier times. Since 1920 the alternatives to rail shipment have been greatly expanded by the development of motor transport
facilities.)

The ratio of railway tonnage of coa!, coke, and patent fuel to the total supply of these commodities has ranged from 68 to 74 per cent since 1921 (Chart 4). ${ }^{6}$ In 1921-24 and 1929-32 there was considerable fluctuation within the phase. No consistent contrast between expansions and contractions in direction of mevement strikes the ere. Thus there was a net rise in 1921-24, a net fall in 1924-26. Nthough the ratio - Supply $=$ production of coal, coke (at coke plants and at gas works) and manutured fuel. Data from Secretary of coke ("gas" and "other sorts"), and manufacGas house coke in 1921 estimated by ofs: Annual Report and Statisitical Abstract. aserage ratio of coke produced to coal usplyins to the 1921 roal used the 1922-26
declined in 1932-37, it did so less rapidty than in 1937-38. On the other hand the rate of rise in 1927-28 is slightly greater than in 1926-27. The: ratio conformed inversely in the peak-to-peak cecte 1929-37, showing a slight net rise in the contraction and a marked fall in the expansion. All in all, we can hardly say that the railway share in the disposal of these important commodities was consistently related to business conditions.

For other commodities in the aggregate, we do not lave enough data for similar comparisons. We have, however, been able to construct at least crude measures of the total flow of thirteen commodities from 1928 to 1938 (Table 4; for details, sec the appended note on sources of data: supply of commodities. Production data for earlier years are so limited that we have not ventured to construct similar measures for them). These accounted for between 46 and 51 per cent of railway tonnage other than coal and coal products. From the 1928 traffic data and the supply estimates, we computed the tomnage of each commodity the railroads would have originated if their traffic lad varied in proportion to supply since 1928 (Table 5). Finally we added these thirteen hypothetical figures and computed the ratio of the aggregate actual to the aggregate hypothetical tomnages originated. It declined steadily throughout the period (Chart 5). But in 1928-29 the fall was less rapid than in 1929-32 and in 1932-37 it was decidedly less steep than in either 1929-32 or 1937-38. The data suggest that the railroads tend to lose part of their share in the disposal of commodities other than coal, etc. to other outlets in business contraction and to regain it in expansion. Progressive improvement of highways and motor trucks, and growing familiarity of traders with the possibilities of this comparatively new means of transport, prevented the railway companies from regaining their share in 1928-29 or 1932-37. But general business expansion did slow up the process of diversion. ${ }^{7}$

Fluctuations of traffic varied in length and amplitude

Judging from annual figures, some of the disturbances in rail traffic itself (i.e. those measured between high and low points in tomage

[^1]table 4
(thousands of tons)
croup
vumber
commodity
 2 Grain, flour, and

miliine offals $\begin{array}{ll}3 & \text { Gravel and sand } \\ 4 & \text { Iron ore } \\ 5 & \text { Iron and steel blooms, }\end{array}$
ron and stecl blooms,
billets, and ingots: 6 Iron and stecl, other 7 Limestone and 8 Limestone and chalk 9 Pig iron 10) Road-making and road1 repairing matcrial 11 Timber

[^2]CHART 5
Ratio of Annual Tonnage Originated by Railways to 1928 Tonnage
Adjusted for Changes in Supply
Thirteen Groups of Commodities, 1928-1938

Shaded periods ore reference contractions.
rather than between reference dates) have lasted much longer or attained greater proportions than others (Table 6). Some phases endured about a year; one expansion continued for seven years and several contractions for three. From 1928 to 1929 , tonnage increased 8 per cent, from 1868 to 1873 , 51 per cent. Declines ranged from 1 per cent in 1861-62 to 24 per cent in 1929-32. If we add the slight 1908-11 rise (which some observers might prefer to regard as merely a part of a 1908-13 expansion of 16 per cent) at one end of the scale, and phases which owe part of their amplitude to the great strikes at the other, the range becomes even greater. ${ }^{8}$
*The percentages for expansions are not comparable with those for contractions, of course, since. e.g., a change from 100 to 200 million tons is a 100 per cent rise, but a change from 200 to 100 million is a 50 per cent fall.

Monthly figures would yield larger amplitudes between approximately the same dates. On the other hand, if sach data could be sumstituted, the six-year expansion 1901-1907 might break up into three smaller phases.
table 5
Hypothetical and Actual Tons Originated, Thirteen Commodity Groups, 1928.1938
(thousands of tons)
Mne

Notes to Tarle 5

Line

(1-13) Fach computed as follows: supply fugures on corresponding line, Table 4, dixded ty 1028 fiente same line, that table. Actual railway tonase, 1928 , multiplied by resulting ratio for each later sear.
(14) Total, lines 1-13.
(15) Actual reverue tons originated, 13 commodity groups.
(16) Ratio of actual to hypothetical, line $15 \div$ line 14 .
(17) Actual revenue tons originated, all commodities except coal, coke, and patent fuel.
(18) Ratio of actual, 13 commodity groups, to aetual, all commodities except coal, etc. line $15 \div$ line 17.
table 6
Expansions and Contractions in Tons of Merchandise and Minerals
Conveyed, 1861-1913; Originated, 1920-1938 ${ }^{\circ}$
Duration and Percentage Change (Annual Data)

deration (years)				perchemage chavge			
expansions		contractions		Extansions		ontpacthos	
					Per		Per
Dates	uration	Dates	Duration	Dates	Cert	Dates	Cint
1893-1900	7	1883-86	3	$1921-23$	¢8	1923-26	-37
1901-07	6	1923-26	3	$1862-67^{\text {b }}$	55	1920.21	-31
1862-67	5	1929-32	3	1868-73	51	1929.32	-24
1868-73 ${ }^{3}$	5	1891-93	2	1926-27	49	$1877.68^{\text {b }}$	-13
1878-83	5	1851-62	1	1833-1900	45	1937-38	-11
1886-91	5	1867-68 ${ }^{\text {b }}$	1	1878-83	29	1091-93	-5
1932.37	5	1873-7t	1	1901-07	24	1907-08	-
1874-77	3	1877.78	1	1886.91	22	1927-28	-5
1908-11	3	1900-01	1	1932-37	19	1883-86	-1
1921-23	2	1907.08	1	1874-77	12	1877.78	-
1912 -13 ${ }^{\text {b }}$	1	1911-12	1	$1912-13^{6}$	9	1900-0]	-
$1926-27$	1	1920-21	1	1928.29	8	1861-6?	
1928-29	i	1927-28	1	$1908-11$	7	1873-74	
		1937-39	i			1911-12	

${ }^{4}$ Livestock excluded, 1861-1921 : included, 1921-38.

- 1858 assumed to be a trough and 1913 a prak because of level of coal production.

Greater growth from cycle to cycle in earlier times

Before World War I traffic contractions were merely rather mild interruptions in a history of persistent growth. Traffic lost in such a phase was regained or more than regained in a year or so. and substantially more than regained by the end of the following expansion (Chart 1).

After the war, on the other hand, each cycle attained about the same high level as, or one somewhat lower than, its predecessor (Chart 3). The cessation of growth in rail traffic from cycle to cycle is cxplained, at least in part, by the increasing comparative attractiveness of a new means of transport, the motor truck. At the begimning of registration statistics in 1922, there were only 133,000 commercial goods vehicles in Britain; the number (seasonally adjusted, as usual in this paper) rose steadily to 488,000 at the outbreak of World War II (cf. Chart 6).

Proporfion of durables rose and fell with business

Production of durable goods and of commodities used in making them gencrally fluctuates more over the course of a cycle than that of other goods. If it did so in Britain from 1920 to 1938, we should expect similar changes in the composition of freight traffic. We cannot make a complete count of durables tonnage, since the statistics classify only about two-thirds of the freight other than coal. But the ratio of such CHARt 6

Molor Cars, Motor Cycles, and Commercial Goods Vehicles with Licenses Current, 1922-1952
lAt end of February, May, (Af end of February, May, August, and November)

durables as there are figures for did tend to rise in expansion and fall in contraction (Chart 7, lower group of curves). Between 1923 and 1938, however, the relation is obscured. The ratio increased in 1924-26, diminished in 1926-27, apparently increased a little in 1927-28, declined in 1928-29. But the rise in 1924-26 was less rapid than in 1921-24, the fall in 1928-29 less precipitous than in 1929-32. It may be that the range of articles included in durables broadened from 1927 to 1928; we are therefore uncertain how to interpret the seeming rise in that contraction. ${ }^{9}$
In the foregoing comparisons, coal, etc. is included in total traffic. After 1927, changes in coal tomnage originated reflected primarily cyclical variations in the demand for that commodity. In the phases between 1921 and 1927, the dominant cause of the decline in coal traffic was the cutting off of supplies by the strike. To be sure, the shortage of fuel severely curtailed the production and shipment of other commodities, including those important durables, iron and steel. But the disturbance in iron and stecl was not as severe as in coal (Table 7). The strikes tended to raise the ratio of durables to all freight, including coal. The ratio of durables to all traffic except coal was more consistently related to business fluctuations. It rose and fell in accordance with business in all phases except, perhaps, 1927-28 (Chart 7, upper curve). The first trough also coincided with that in business instead of conning a year later as in the case of the ratio to all traffic including coal.

- The categories are as follows (identity of language does not guarantee identical content as between the two groups of years):

1920-27
1928-38
Bricks
Cement, plaster, and whiting Gravel and sand
Iron and steel

Ironstone and iron ore
Limestone (other than road-making or agricultural)
Pig iron
Stone and other material for roadmaking
Timber

Bricks, blorks, and tiles
Cement and lime
Gravel and sand
Iron and steel blooms, billets, and ingots, etc.
Iron and steel, other descriptions
Iron and steel scrap
Iron ore
Limestone and chalk

Pig iron

Road-making and road-repairing material
Tin:ber

The Ministry of Transport failed to obtain data on cement, plaster, and whiting for 1926; hence comparable figures for 1924.26 and its adjoining phases must exclude these articles.
rable 7
Production Measures and Ton-Miles
1920.193

$\begin{gathered} \infty \\ \hdashline 0 \end{gathered}$	$\begin{gathered} c \\ E \\ = \end{gathered}$	i	$\approx \frac{\infty}{1} \frac{\pi}{1}$
$\underset{\Xi}{\mathscr{O}}$	芯	\bar{s}	
总	导导	3	F
$\underset{\vdots}{\infty}$	各	$\stackrel{ }{\square}$	
$\begin{aligned} & 0 \\ & i=0 \\ & i \\ & i \end{aligned}$	$\underset{\cong}{2}$	$\frac{0}{1}$	$\therefore \frac{9}{1} \div$
$\stackrel{3}{3} \underset{\infty}{\infty}$	宅	2	－\％ro
童	$\frac{5}{3}$	\pm	$\pi \underset{1}{\pi}=\frac{1}{1}=9$
		8	$\bigcirc \underbrace{0}_{0} 0$
$\stackrel{B}{\dot{C}}$	号		$\vdots \vdots \vdots$
$\vdots \vdots$	家	$\frac{0}{1}$	$\overline{\bar{i}}$
	B		

Ton－miles，other
Date
Amount，millions
Ton miles，total
Date
Amount，millions
achange in amount or
index，from preceding
clate
Produrtion of conal
Production of stecl
ingots and castings
Production，industrial
Ton－miles，coal，etc．
Ton－miles，other
Ton－miles，total

[^3]
Fluctuations in traffic normally were moderate

Cychical fluctuations in railway freight traffic are nomally murh ic.

 severe than those in the production of durable goods. We can illustrate the difference by comparing ton-miles with the production of stee] ingots and castings. But first we must note that the business cycles between 1920 and 1926 were peculiar in that the contractions were marked off from the expansion by two great strikes. The first of these, in 1921, centered in the coal industry but affected other industries by cutting off their supply of fuel. The second was more general. We shall begin our discussion with the cycles between 1927 and 1938, which are free of this complication.In that later period, fluctuations in coal production were milder. percentagewise, than those in steel production (Table 7 , last 6 columns). Coal is used not only to produce durable goods, but to produce
chart 7
Percentage Ratio of Tons of Selected Durable Commodities to Tolal Tons Originated, 1920-1938

nondurable goods, to generate electricity, which in turn serves a great varicty of purposes, and to heat buildings; many of these uses are quite stable. Fluctuations in coal ton-miles, although not identical with those in coal production, were likewise milder than those in ingot production. Ton-miles other than coal include the movement of nondurables as well as durables; fluctuations in "other" ton-miles were likewise mild compared with those in steel production.

As to the strike cycles, consideration of Charts 2 and 3 and of a similar chart for ingots suggests that the effects of the first strike were felt from April through June 1921 (with some lag in the case of steel production and "other" ton-miles) and that the effects of the second were felt from May through December 1926. The strikes depressed all six aspects of economic activity, but affected some much more than others (Table 8). The mining of coal practically ceased. Its movement was maintained better than its production - imports and stocks must have moved by rail - but coal ton-miles diminished much more than industrial production or other ton-miles. Ingot production did not fall quite as far as coal production, but the loss of fuel nevertheless closed the steel industry down almost completely.

If we were to compare the percentage decline in, say, the movement of coal from its 1920 peak to its absolute trough in 1921 with the percentage decline in some other economic activity, the outcome of our comparison would be influenced by the peculiar effects of the strike on amplitudes of fluctuation. But the dectine from 1920 to the jerge of the strike period, and the rise from the first few months after the strike. period to the peak in 1923 (or 1924), is free from this distortion. We may take the last three months before the strike period as a quasi-trough for comparison with 1920, and the first three months after it as a quasitrough for comparison with 1923 (or 1924).
A similar procedure would inot work: in the vicinity of the 1926 strike. The economic activities considered did not dectine steadily from their 1923 or 1924 peaks to the verge of the strike. On the contrary, all of them showed an upturn after August 1925. Their level in the three months just before the strike differed little from their level at their respective 1923 or 1924 peaks, and their level immediately after the strike differed even less from their level at their 1927 peaks. We therefore take the third quarter of 1925 as a quasi-trough. We measure the percentage drop in each activity from its 1923 (or 1924) peak to this

TAbLE
Production Measures and Ton-Miles before, during, and after Periods of Strike Disturbance, 1921 and 1926

1921	MERGGIStor			$\begin{gathered} 1!R(1 N 1 \\ \hdashline 1! \\ 1! \end{gathered}$	$\begin{gathered} \text { अ!! ! : } \\ \because! \\ ! \\ ! \end{gathered}$
	$\begin{gathered} \text { Thet } \\ \text { fuctidins } \\ \text { momth; } \\ 1 \end{gathered}$	$\begin{gathered} \text { Whree } \\ \text { lowest } \\ \text { months } \\ 2 \end{gathered}$	$\begin{gathered} \text { Whie: } \\ \text { follac: :u' } \\ \text { mom:hs } \\ \vdots ; \end{gathered}$		
Mombes included	$\begin{aligned} & \text { Jan.. } \\ & \text { Feb. } \\ & \text { Manch } \end{aligned}$	April, Mar, Jи! ハ*	$\begin{aligned} & \text { Jul!, } \\ & \text { Aus. } \\ & \text { Sept." } \end{aligned}$		
Production of coal Production of sted	4.6	0.06	+.2.	1	1
mingots and castings	4.36	27	113	()	ii
Production, industrial	33.3	54. 1	90;	0	(i)
Ten-miles. cual	(3)	?	涼;	15	11
Ton-miles, other	595	$4!$	(i) 2	it	\cdots
Tom-miles total	1.291	559	1,245	4.3	45
1926					
Months included	Fcb. March, April	May, Junc, July	$\begin{gathered} \text { Jan., } \\ \text { Feb., } \\ \text { Mis } \mathrm{ch} . \end{gathered}$		
Pewhemetion of coal Production of sted magots and castings			1927		
		0.06	+.90	1	1
Tim-miles coal Gum-miles other Trmmiles, unal	689 895	36 129	802	5	!
	789	12.	826	15	15
	1.61\%	642	r82	69	6.4
		(06)	1,608	il	11

"For "other" ton-miles, May, Iunc, July.
"For steel ingots and "other" ton-miles, August, September, October.
For sources and units of measurement, see Table 7. The quarterly dat? of the industrial production index do not fit the time pattern of the strike in 1926; the index is therefore not shown for 1926.
quasi-trough, and its net percentage rise from the quasi-troush to its 1927 peak.

The data for peaks and quasi-troughs, 1920-27 Table 7 . first six columns) yield conclusions like those derived from the data for peaks and troughs, 1927-38. Again the downswings and upswings in total traffic are less severe, percentagewise, than those in steel production; they are closer, in amplitude, to those in general industrial production.

[^0]: ${ }^{5}$ The eight instances are 1860-61, 1866-67, 1874-75, 1875-76, 1876-77, 1890-91, 1893-94, 1903-04. The other three are 1856-57, 1878-79, 1911-12. In 1897-98 business was expanding but coal production was 202.1 million tons in both years.

[^1]: ${ }^{2}$ Not all of the loss in relative position should be attributed to highway developments. Reorganization of the iron and stecl industry, for example, may have eliminated some interplant transport entirely. See Import Duties Advisory Committee, Report on the Present Position and Futule Development of the Iron and Stee! Industry' (1937), pp. 42-3.

[^2]: 13 Vegetaliles, other than

[^3]: ＂Computed from data in Board of Trade Journal，various issues，and Secretary of Mines，Annual Report，1926，p． 82. Each of the undcrlying monthly figures is an acrage or third or fice weekiy figures．Weeks ending on first，second or third d：y of a month are assiened to the previous month． ＂From various issucs of The Iron and Coal Trade Review． －Peak not detrminable：cf．Chart 3 ．
 ${ }^{\text {d }}$ Fron London and Cambridge Economic Scrvice，Monthly

