
This PDF is a selection from an out-of-print volume from the National 
Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 1, number 1

Volume Author/Editor: NBER

Volume Publisher: NBER

Volume URL: http://www.nber.org/books/aesm72-1

Publication Date: 1972

Chapter Title: Regen-Computer Program to General Multivariate 
Observations for Linear Regression Equations

Chapter Author: Yoel Haitovsky, Sidney Jacobs

Chapter URL: http://www.nber.org/chapters/c9183

Chapter pages in book: (p. 43 - 57)



REGEN-COMPUTER PROGRAM TO GENERATE MULTIVARIATE 

OBSERVATIONS FOR LINEAR REGRESSION EQUATIONS* 

BY YOEL HAITOVSKY AND SIDNEY JACOBS 

In the past few years the National Bureau has been giving increasing emphasis to research in econometrics 
and methodology. As part of this effort, the REGEN (REgression GENorator) computer program was 
developed. This program offers the statistician a method of investigating the sampling properties of 
estimators when analytical methods fail or when they become more costly than the moderate computer 
time needed for this program. The program uses a Monte Carlo technique which simulates the taking of 
a random sample of multivariate observations which satisfy a linear equation. The user of the program 
may specify the equation, and the mean, standard errors, distributions, and autocorrelations of the 
independent variables and of the error term, as well as the correlation between successive variables. The 
commonly used distributions are included in the program; moreover provision is made for the user to 
add his own distributions to the program. Features included in the program are: lagged variables, multiple 
time series, multicollinearity, errors of measurement (superimposed on independent variables), sampling 
from previously simulated populations or from a multiple time series, and aggregation of observations. 

All results of the program can be saved either temporarily in the internal computer memory or per- 
manently on cards or magnetic tape. This makes it possible to modify previously generated observations 
by any of the above-mentioned techniques. Another powerful facility thai uses this retrievability of the 
data is the repetition option, which allows previous data to be reused, but in new equations or with new 
error terms. The authors show how this makes it possible to simulate simultaneous equation problems. 

I. INTRODUCTION 

Properties of estimators can be derived not only by analytical methods, but also 

through experimentation with models with known (or prespecified) structure and 

properties. The most commonly used of this class of analyses is the so-called 

Monte Carlo method. Its main use in statistical methodology is to investigate 

sampling properties of estimators when analytical methods fail or are too cumber- 

some.' When the statistician has this objective in mind he may simulate a “universe” 

by specifying its structure and parameters, and the distributions of the random 

variables appearing in the “‘universe.”’ Then, the “universe”’ is sampled and the 

statistical technique under investigation is applied to the sample. By repeating the 

last step enough times, he can generate the distribution of the estimators under 

investigation, from which their sampling properties can be derived. 

It is the belief of the authors that the potentials of the Monte Carlo analysis 

are not fully recognized by most statisticians. Many cGtaer statisticians are reluctant 

* The authors would like to thank the reatiing committee: V. K. Chetty, Gregory Chow, Thomas 
Sargent, and especially its chairman Franklin Fisher for comments and suggestions that improved 
both the program and the paper. We are indebted to Mr. Barry Geller for his patience and care in 
checking the accuracy of test runs of the program and for preparing Section IV of this paper; and to 
Mrs. Virginia Meltzer for editorial assistance. Finally, we are grateful to John R. Meyer for his steady 
encouragement and support for the project 

' An economic justification for the use of Monte Carlo analysis is given by R. Sommers (1965): 
“A capital intensive approach to the small sample properties of various simultaneous equation esti- 
mators,”” Econometrica 33, 1-41. His argument is that high power analytical ability is becoming a 
scarce resource as compared to th? availability of computer time. Thus, rational economic behavior 
would involve shifting towards more capital intensive methods. 
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to use it because it lacks the elegance and generality of analytical methods. The 

authors indeed recognize these limitations and the danger of making erroneous 

inferences by investigating only a narrow range of possible structures and param- 

eters. Thus there is an additional burden on the user of the Monte Carlo methods: 

the need to investigate a wide range of parameters and many possible combinations 

when several parameters are involved. However, the authors believe that if 

appropriate computer programs are made readily available to the statistician, the 

relative ease of applying this “experimental” approach will more than compensate 

for the extra work involved in checking a wide range of possibilities. 

The specific purpose of REGEN, the computer program described in this 

paper, is to generate multivariate observations which satisfy a linear equation. 

These observations may serve as either a sample or a universe for analyzing 

estimators of linear regressions. A dependent variable will be constructed as a 

linear combination of several independent variables plus an error term with 

specified distribution and parameters. (It will be shown in Section II that this 

procedure may be used also to construct systems of structural equations.) The gen- 

erated data will be printed and punched on cards or saved on magnetic tapes, and 

will be ready for the application of the estimation technique under investigation. 

The program was made flexible enough so that a great variety of structures and a 

wide choice of parameters and distributions may be postulated. 

The plan of the paper is as follows: a detailed description of the main program 

and the available options is presented in Section II, the methods used in generating 

the variables and the random number generators used ior this purpose are de- 

scribed in Section III. Section IV contains a listing of the input used in a specific 

example and the output generated by it, and finally Section V contains the listing 

of the computer algorithm, which also includes the input instructions. 

II. DESCRIPTION OF THE EFFECT OF THE ALGORITHM 

Basic Regression Generation 

The program generates random variables X',..., X”, e by sampling, in effect, 

from infinite populations. X',...,X” represent the independent variables in a 

regression, while ¢ is an error variable whose mean is forced to zero. The user 

specifies the number of independent variables p, the number of observations n, 

and, for each random variable, the distribution, its mean and standard error,” as 

well as the correlation r; between the populations corresponding to variables X' 

and X'~', for i= ,p. The uniform, Gaussian-normal, exponential, and 

Cauchy distributions are available in the program. Other distributions can easily 

be added to the program by the user. (For details, see the comments in the program 

listing.) 

The user can also specify autocorrelation coefficients for each independent 

variable, that is, correlations between X! and X!_, fori = 1,..., p. By doing this, 

the user generates values which simulate the observations of a time series. The 

? The user is not, however, limited to distributions whose first and second moments are defined. 
Thus for the Cauchy distribution, the program interprets the two input moments as the center of 
symmetry and the interquartrile range (the distance between the 25th and 75th percentile), respectively, 
of the specified population. (Samuel S. Wilks, Mathematical Statistics, 1962, pp. 255-256.) 
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number of observations of this time series is an integer /, which is provided by the 

user. This number is used to subdivide the n observations on each independent 

variable X‘ and on « into m autocorrelated series with | observations per series, 

where mxl = n. Altogether there are mx(p + 1) series composed of m sets of 

(p + 1)-tuples. Thus the program simulates m observational units (e.g. individuals 

or families) by providing m multiple time series, each consisting of | multiple obser- 

vations of (p + 1) tuples. Each observational unit is linked through time by the 

autocorrelations, which are common to all! units, but may be different for each 

variable. Applications are discussed in Sections 3.2 and 4 below. Notice that when 

both the correlation and autocorrelation options are jointly used, i.e., when auto- 

correlated series are to be intercorrelated, the user must choose compatible 

specifications (for conditions that must be satisfied cf. Section 3, Step 3). 

In addition the user may request that variable X' be lagged by k; observations, 

fg Aaee p. These lagged variables will appear (in addition to X',..., 2 X? and ¢) 

a X”*4 where q is the number of k; that are greater than zero. (In the 

following discussion gq if present has been absorbed into p for brevity.) 

Once these p variables have been generated, the program then calculates the 

dependent variable Y using the formula 
P 

(1) ‘=Bot+ Y BX' +e 
i=) 

where regression coefficients $,,...,, and an intercept fy are supplied by the 

user, and each variable X' as wéll as ¢ is a column vector with n entries. 

However, the user may request the program to include among the independent 

variables a dependent variable Y lagged by s (>0) observations. We write Y, for 

observation t of Y and X! for observation t of X‘,t = 1,...,n. Then, the user must 

also supply initial values Y_,, Y_3,..., Y_, for the dependent variable, and 

coefficients C,,C,,...,C, for the autoregressive part. Then for t > 0, equation (1) 

becomes , 

(2) Y¥, = Bo + 
k 

C.Y,-. + 
1 a ! 

B;X} + &. 
ny Ms = tP4« 

By the above procedures the program generates a set of observations satisfying 

the user’s specifications. This much of the procedure will be referred to as a basic 

regression generation. After a basic regression generation, the user can (a) request 

modifications of it, and/or (b) request another basic regression generation, and so 

on. The ouput from a basic regression generation, and from each modification 

requested, consists of the dependent variable Y, the independent variables X° and 

the error variable ¢, for each observation. The output can be printed, punched, and, 

or saved on binary tape at the user’s option. 

Modifications : 

1. Multicollinearity 

Adjoin one additional variable which is a specified linear combination of the 

independent variables X’,..., X?: 
P 

xe*! = } ao, X". 
i=1 
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Then recalculate the dependent variable Y, using specified regression coefficients 

which may be different from those that were used in the basic regression generation. 

This step may be repeated several times in succession to generate several additional 

variables that are linear combinations of the preceding variables. This modification, 

in conjunction with Modification 2 below, generates regressions that are useful in 

studying multicollinearity. 

2. Errors of Measurement 

For each variable X‘,i = 1,..., p obtained in the basic regression generation 

(or in the multicollinearity option), generate an error variable E' whose distribution 

and standard error is specified by the user. Then superimpose this error on the 

variable: X‘ = X‘ + E‘. The user has the choice, in this modification, of recalculat- 

ing or not recalculating the dependent variable Y. If Y is not recalculated, E' can 

be regarded as the error of measurement in the variable X‘, whereas the « variable 

mentioned earlier can be regarded as the error of measurement in the variable Y. 

(The user can also specify the mean and autocorrelation of each E', and the 

correlation between E' and E'~', i = 2,..., p, but all these are normally zero.) 

3. Sampling 

3.1. Sampling form a single population. The output discussed so far may be 

regarded as a random sample from an infinite population, or it may be itself 

regarded as the total population. In the latter case, the user can use the sampling 

option to request a random sample, of specified sample size, from this total popula- 

tion. (This is a special case of 3.2 below.) This can be done repeatedly to simulate 

repeated sampling from a fixed population. 

3.2. Sampling from arepeated population over time. This modification considers 

the observations obtained by a basic regression generation, or by a previously 

executed modification, to be a succession of m observational units, each unit being 

traced over / time intervals (i.e., a time series of / observations). For each of the / 

time intervals, the program selects a random sample of the m observational units 

and outputs the observations for these units only. The user can request either a 

new sample for each time period or the same sample for all the time periods, i.e., 

a panel. The user specifies |, m, and the sample size. 

4. Aggregation 

This modification aggregates observations by summing for each time interval 

over the observations obtained from a basic regression generation or from a 

previous modification. This is most likely to be of interest when the observations 

were obtained from a basic regression generation using the time series option. 

Modifications 3 and 4 can be usefully combined, and applied to a Monte Carlo 

study of regression parameters estimated by pooling time series and cross-section 

data.* This is done by generating time series for each individual in a population. 

3 Cf. J. Durbin, ““A Note on Regression when there is Extraneous Information about one of the 
Coefficients,”’ Journal of the American Statistical Association. 48 (1958), 799-808 ; V. K. Chetty, ““Pooling 
of Time Series and Cross-Section Data,” Econometrica, Voi. 36, No. 2 (1968), 279-290. 
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Aggregation across the population in a given “time interval” results in aggregative 

time series data. Sampling within a “time interval” results in cross sectional 

samples. 

5. Repetition of Data 

5.1. In this modification the program generates an error vector only, and then 

recalculates the dependent variable in accordance with equation (1), using pre- 

viously generated values of the independent variables. (These repeated values of 

the independent variables may be already in core or may be read into core from a 

binary tape that was either created by this program or obtained from another 

source.) If the regression coefficients and the specifications of the error variable are 

left the same for each repetition, the process can be interpreted as simulating 

repeated samples drawn from the same distribution. However, one can also change 

the error specification and regression coefficients. 

5.2. Simultaneous equations. Another application of this option, in which the 

regression coefficients are different for each repetition, is to the so-called simuita- 

neous equation problem in which one has a system of equations 

(3) YT = XB+U 

in which [ isa nonsingular p x p matrix, Yand U areeacht x p matrices, while X 

ist x gand Bisg x p. Here each column of the matrix U represents an error term. 

If we multiply both sides of (3) by [~', we obtain an equivalent system of equations 

called the reduced form: 

(4) Y= Xn+UA 

where x = BI ' and A = [~' are respectively g x p and p x p matrices. 

To generate this problem with our p:°zram, we regard (4) as p distinct 

problems, where each problem has the form: 

Column i of lefthand side of (4) = column i of righthand side of (4) for 

or formally, problem number i is 

Y' = X'n +... + X4ni + U'A, +... + UPA, 

where Y', X’, U* are the ith, jth,and kth x 1 column vectors of matrices Y, X, and 

U respectively ¢@= 1... P3j = 1,...,q3k = 1,...5P) and x and Aj are the 

entries in column i, row j of matrices 2, A respectively. Thus problem number i is 

just an ordinary regression (see equation (1)) with dependent variable Y = Y’, 

constant f, = 0, g + p independent variables X', X?,..., PP AK 

and error term ¢ = 0, and vegression coefficients 

(5) B, = x, B, = %o,--+5 By = Re, Buss = Nj,--+> Bary = A,- 

If one is interested in including an intercept in (3), one should interpret X' as a 

t x 1 vector of ones. In this case 2, should be input as the (possibly nonzero) 

intercept f, for the i-th problem. To generate all the data for the reduced form of the 

simultaneous equation problem, one runs problem number 1 with its beta 
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coefficients (equation (5) with i = 1), obtaining Y', X',..., X4,U',..., U®. Then 

one runs successively problems 2, 3,..., p using the repetition option in each case, 

obtaining Y?,..., Y?. For each of the p problems one sets the error vector ¢ equal 

to zero, by specifying its standard error to be zero. 

Any of these p problems can also include a lagged dependent variable (see 

equation (2)). In particular, if one wants the same lagged variable to be used in 

several of the p problems, one can arrange for the lagged variable to be Y', generate 

Y',, Y‘,, etc. in problem 1, and repeat this lagged variable in any of problems 2, 

is ong p. 

Finally, we illustrate how the repetition of data option can be used to generate 

a system of equations in which Y? lagged occurs in the Ist equation and Y' lagged 

occurs in the 2nd equation. For simplicity, assume that there are only two equations 

in all, and that they are already in reduced form: 

P 3 : ; 

(6) Y' = Bo + Y BX! + Bya:¥24 + Ay,U! + A,2U? 
i=1 

P . 
(7) ¥? = yo + DY yiX' + ype V1, + AQ,U' + A22U?. 

If we lag equation (7) by one observation we obtain an expression for Y2., which 

can be substituted into equation (6), giving 

P . a a P . 
(6) Y' = Bo + (Bp41¥0) + DY ByX' + A,,U' + A,2U? + Yo Bpasy:X41 

i=1 i=1 

+ By+142,U*, + By+1422U2, + Bos 1Yp+1 ¥~2- 

The pair of simultaneous equations (6’), (7) is equivalent to the given pair (6), 

(7), and moreover can be generated by REGEN, because Y? has been eliminated in 

(6’). One generates equation (6’) as problem 1, in which one also generates Y' , 

(even though it does not occur explicitly in the equation) along with the other 

lagged variables. Then, using the repetition of data option, one passes Y' , on to 

equation (7), which is generated as problem 2. 

III. METHOD OF GENERATING VARIABLES 

Once the p independent variables have been generated, the remaining 

variables (namely the dependent variable, lagged dependent and independent 

variables), samples, and aggregates are generated in accordance with the formulae 

and methods described in Section II. It remains to describe, in the present section, 

the method of generating the p independent variables. The following discussion 

also applies to the generation of the error variables E’ used in Modification 2 

(see Section II). 

For each distribution included in the program, there is a generator, i.e., a 

subroutine that generates random numbers from that distribution. The mean and 

standard error of the population from which the generator draws its random 

numbers is dependent on the subroutine ; when referring to the generator specified 

for the j-th variable w2 will call them y; and o; respectively. For each variable 
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X/,j = 1,..., p (and for ¢, which the program considers as X’*') the program 

invokes the generator for its distribution n times, obtaining random numbers 

X;;,i = 1,...,m. We denote the observed mean of these n numbers by M;. (M, 

will be statistically “near”’ to ;.) 

As is well known all the statistics computed from the sample will differ from 

the corresponding population specifications. The deviation will depend on the 

sample size and on the population specifications. The deviation will be particularly 

pronounced when small correlation coefficients are specified (see R. A. Fisher, 

Statistical Methods for Research Workers, 1925, pp. 81-84) and when large 

variances (relative to the same size) are requested. The program is designed to 

reflect this situation, so that the observed statistics will be close, but not necessarily 

equal to the user’s specifications. 

These quantities X;; undergo several operations whose effect is to transform 

the column vector X;; so that it meets the user’s specifications for the variable X/. 

We use the following notation for the user’s specifications. 

XM; mean of j-th variable 

S; standard error of j-th variable 

A, autocorrelation of j-th variable 

R; correlation between X/~* and X/ 

The steps to obtain the variable X/ are as follows: 

Step. 1. Calculate the observed mean X; of X’: 

2 S; 

Jj 

Step 2. Replace X;; by a normalized variable whose observed mean is 0, and 

whose expected standard error is 1.0: 

ij 

Step 3. If the time series option is used, an autocorrelation equal to A, is 

specified for X/. The interdependence between autocorrelations and intercorrela- 

tions is expressed by the restriction 

—[1.0 — R2(1.0 + Aj~,)] < A; < 1.0 — RF(1.0 — A;_;) 

for j = 2,..., p. Ifthe specified A; does not meet this restriction, it is equated to the 

nearer of the two bounds. 

Moreover, because of this interdependence, one finds that one must impose an 

autocorrelation equal to Aj instead of A;, where 

A\ =A,, 

Aj, = (A; — R7A;-,)(1 — Rj), j =2,.--5P. 

The variable X/ with expected autocorrelation Aj, but with expected mean and 

standard error unchanged from Step 2, is produced by the replacement: 

X ,; unchanged 

Xjj = Xi-1,jAj + X jj/1.0 _ (A')’, SS en Nn. ~i rs 
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Step 4. Impose an expected correlation R ; between X/ and X/~ ' by the replace- 

ment 

Xj; = X; 

successively for j = 2,...,p. This also has the effect of changing the expected 

autocorrelation of X/ from the value Aj of Step 3, back to A; as specified, but with- 

out disturbing the mean and standard error of Step 3. 

Step 5. Change the expected mean and standard error of X/ to the specified 

values by the replacement 

j-1R; + Xi/1 — Rj 

J 

The simplest illustration of the above operations is for the case where all the 

A;’s and R,’s are zero. Then the net effect of Steps 1—5 is the transformation 

S. 

J 

Remarks on the Random Number Generators 

In the following paragraphs, the particular random number generators 

implemented in the program are identified. We emphasize, however, that the user 

can incorporate his own generators into the program either in place of or in 

addition to those presently in the pregram. For each generator, one supplies to 

the main program the mean and standard error of the distribution, one call state- 

ment to the subroutine, and, if appropriate, statements to supply a starting random 

number or retrieve the final random number. 

The uniform random number generator used by the program is RANNO 

(Harvard Computing Center), which employs the power residue method to 

generate random numbers between 0 and 1. It allows the program to supply the 

starting random number, which is to be specified by the user. In addition to its use 

in producing random variables, RANNO is also used to select sample observations 

in Modification 3, Section II. 

The normal random number generator is GAUS, which applies the central 

limit theorem to 12 uniform random numbers obtained from RANNO to generate 

one normal number. Subroutine GAUS thus indirectly uses the same starting 

random number as RANNO. 

The random numbers from the exponential and Cauchy distributions are 

obtained from entry points EXPRN and CAUCHY respectively of a subroutine 

ORMC, which calls a subroutine FLOAT. The subroutines for these two distribu- 

tions were originally coded for the IBM 704 by R. E. Coveyou and J. G. Sullivan 

(SHARE distribution No. 743) and have been slightly modified for use on the 

IBM 7094. A version for System 360, with different random number routines will 

be available shortly. 

IV. SAMPLE INPUT AND OUTPUT 

A sample of the input options and variable parameters (not in input format) 

as well as the resulting output generated from REGEN are shown in Tables Aand B, 
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TABLE A 

INPUT OPTIONS FOR THE REGRESSION GENERATION PROGRAM 

No. of Observations = 20 
No. of Variables = 4 

NEW SAVE PUN COV LC EM SAMP FIXS 
0 0 0 i 0 0 0 0 
CS REX TS DB TAPE NOP -NOREP LTS 

| 0 0 1 1 0 5 0 5 
Starting Random No. = 13578 
Distribution for Variable 1 2 3 4 5 6 7 8 9 1 

TO OS hp A ee A al 
Dependent Variable Lagged by 0 Observations 

' independent Variable No. 1 2 3 + 5 6 7 8 9 Lagged by 
0 0 0 0 0 0 0 0 0 Observations 

Maximum Lag of Indep. Variables is 0 
No. of Lagged Indep. Variables is 0 

Specified Means of Independent Variables 
100.000 50.000 1.000 — 20.000 

Specified Standard Errors of Independent Variables (Error Term Last) 
10.000 1.000 5.000 10.000 100.000 

Specified Auto-correlations of Independent Variables 
0.500 0.595 0.741 0.900 0.000 

Specified Correlations Between Successive Variables 
i 0.000 0.900 0.800 0.600 

Regression Coefficients (Intercept Last) 
2.000 1.000 20.000 5.000 45.000 

respectively. Appendix I consists of a listing of the first part of the program, while 

Appendix II shows the input for the sample problem. The user specifies the following 

(see Table A): 

(a) 20 observations on four independent variables are to be generated 

(NEW = 0); 

(b) The observations shall be neither saved on binary tape (SAVE = 0) nor 

punched on cards (PUN = 0); 

(c) Both the covariance and the correlation matrices of the independent 

variables are to be printed (COV = 1); 

(d) No variable which is a linear combination of independent variables is 

created (LC = 0) and no errors of measurement are superimposed on 

any of the independent variables (EM = 0); 

(e) No previously generated time series data in core are to be used (SAMP = 

FIXS = 0) and thus, no aggregation of previously generated time series 

(CS = 0); 

(f) No generation of the error for repeated use of the data (REX = 0); 

| (g) Autocorrelated variables are generated (TS = 1); 

(h) The unadjusted random numbers as generated by the random number 

t generator are printed (DB = 1), for the first five observations (of the total 

20) that are to be printed (NOP = 5); 

(i) No printing is suppressed (NOREP = 0) except for the last 15 observa- 

tions, and no variabies (independent, error, or dependent) are obtained 

from binary tape (TAPE = 0); and 

(j) Five time intervals of time series data are requested (LTS = 5). 
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The program also prints the number from which the random number generator 

begins generating random numbers (13579) after which the distribution for each 

variable is shown. As can be seen from Table A, variable 1 has a normal distribution 

(code 1), variable 2 has a uniform distribution (2), variable 3 has an exponential 

distribution (3), variable 4 has a Cauchy distribution (4) and the error variable 

(variable 5) has a uniform distribution (2). There are no lagged variables in the 

sample. 

The program then prints the parameters of the independent variables specified 

by the user. For example, variable 1 has a mean of 100 and a standard error of 10 

while the error term (printed last) has a mean of zero and a standard error of 100. 

The auto-correlations of the independent variables as well as the specified cor- 

relations between successive variables are also printed in Table A. Moreover, the 

user-specified regression coefficients, which are used to derive the dependent 

variable, are printed (with the intercept term last). 

The generated output is shown in Table B. The unaujusted random numbers 

as generated by the respective random number generators for each of the four 

independent variables and for the error term are shown for the first five observa- 

tions with respective means, variances and standard errors. For example, the 

first five observations on variable 1 have mean = —0.32915, variance = 0.72072 

and standard error = 0.84895. These random numbers are then modified by the 

input specifications outlined above and the resu!ting numbers, which conform to 

the input specifications, are shown in the X-matrix of Tabie B. The Y-vector of 

dependent variables (to the left of this X-matrix) is derived by excluding the last 

column vector of error terms from the X-matrix, multiplying the remaining X- 

matrix by the vector of pre-specified regression coefficients (excluding the intercept), 

adding the column vector of error terms to this product and finally adding the pre- 

specified intercept value to each element of the resulting vector. For example, the 

first element in the Y vector is derived by first adding the products of the elements 

of the first row vector of the X-matrix (excluding the last term) and the respective 

elements of the column vector of pre-specified regression coefficients (excluding 

the intercept) and then adding this sum to the sum of the prespecified intercept 

value and the first element of the error vector as follows: 

— 165.23779 = 2(93.64462) + 1(48.83626) + 20( —4.39606) + 5(—38.27237) 

+ 45 — 167.08019 

Thus, the X-matrix consists of the generated independent variables and the error 

terms (printed last) and the Y-vector is the vector of dependent variables generated 

from this X-matrix and the vector of pre-specified regression parameters. 

The program then prints the observed means, variances and standard errors 

of each of the output variables as well as the covariance and correlation matrices of 

each of the four independent variables and the auto-correlation coefficients. For 

example, variable 1 has pre-specified mean equal to 100 and pre-specified standard 

error equal to 10 (see Table A) while the variable 1 produced by the program has 

mean equal to 95.78670, variance equal to 29.96899 and standard error equal to 

5.47439. It should be noted that the diagonal elements of the covariance matrix 

indicate the variance of the output variables, while the off-diagonal elements show 
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variables are shown at the bottom of Table B. 

TABLE B 

their covariances. For example, variable 1 has variance equal to 29.96924 while 

the covariance between output variable 1 and output variable 2 is shown to be 

equal to 2.69739 (see Table B). The auto-correlation coefficients of the output 

OUTPUT OF THE REGEN PROGRAM BASED ON THE .INPUT SPECIFICATIONS OF TABLE A 

Unadjusted Random Numbers 
— 0.63554 
— 0.88170 
0.72417 

— 1.24956 
0.39685 

Mean 
—0.32915 

Variance 
0.72072 

Sigma 
0.84895 

Observational Unit No. 1 
Y 

— 165.23779 
— 207.85787 
—79.44145 

71.60774 
268.26692 

Yy 

Mean 
— 22.53248 

Variance 
37843.89648 

Sigma 
194.53508 

Covariance 
29.96924 
2.69739 
10.79171 
20.81954 

Correlations 
1.00000 
0.99990 
1.00000 
0.69740 

Auto-correlations 
— 0.68523 

0.05784 
0.97590 
0.33483 
0.22587 
0.34075 

0.38724 

0.12143 

0.34853 

X Matrix 
93.64462 
90.39138 
102.67194 
91.71927 
100.50128 

Regression Generation 

0.13741 
0.15926 
4.85599 
0.54992 
0.00791 

1.14210 

4.35134 

2.08599 

—0.81710 
—0.41353 
— 0.41580 
— 9.89915 

5.20690 

0.53226 

6.87883 

2.62275 

Regression Generation 

48.83626 
48.54377 
49.64899 
48.66317 
49.45353 

— 4.39606 
— 5.56651 
— 1.14369 
— 5.08730 
— 1.92645 

Regression Generation 

0.01768 
0.03036 
0.02304 
0.86497 
0.98249 

0.38371 

0.24477 

0.49474 

— 38.27237 
—41.63328 
— 38.26707 
— 46.03539 
—31.15973 

Observed Means, Variances, and Standard Errors 

X Variables 

95.78670 49.02914 

29.96899 0.24283 

5.47439 0.49278 

2.69739 10.79171 
0.24786 0.97127 
0.97127 3.88606 
1.87347 7.49385 

0.99990 1.00000 
1.00000 0.99985 
0.99985 1.00000 
0.69721 0.69713 

— 0.68441 — 0.68482 

— 3.62400 

3.88606 

1.97131 

Regression Generation 

20.81854 
1.87347 
7.49385 

29.73514 

0.69740 
0.69721 
0.69713 
1.00000 

— 0.95826 

— 39.07357 

29.73509 

5.45299 

— 167.08019 
— 162.68775 
— 165.22511 

126.42891 
167.13852 

~40.28513 

29371.88159 

171.38227 
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Copies of the REGEN program (decks or print-outs) and related documenia- 

tion are available at marginal cost from the National Bureau of Economic Research. 

Contact Charlotte Boschan, Chief of Data Processing. 

The Hebrew University Jerusalem and 

National Bureau of Economic Research 

National Bureau of Economic Research 

APPENDIX | 

Listing of the First Part of REGEN Program 

INPUT INSTRUCTIONS. 
REFER TO STATEMENTS 125, 180, 181, 195 THRU 215, AND 345. 
PROGRAM READS AN OPTION CARD AND ANY SPECIFICATION CARDS 
REQUIRED. IT THEN GENERATES DATA SPECIFIED BY THES:. CARDS—LE. A 
BASIC REGRESSION GENERATION (0 IN COLUMN 9) OR ON). OF THE MODIFI- 
CATIONS DEFINED IN COLUMNS 13-19 (1 IN COLUMN 9). THEN THE PROGRAM 
RECYCLES TO STATEMENT 125 TO READ ANOTHER OPTION CARD, AND SO ON. 
EXECUTION IS TERMINATED ON READING AN OPTION CARD WITH BLANKS IN 
COLUMNS I-4. 

(I) OPTION CARD 
EF IS THE COLUMN NO. OF THE RIGHT-MOST COLUMN OF THE FIELD. 

EF 

04 
06 

08 

NAME 

NOBS 
NVAR 

INEW 

ISAVE 

IPUN 

ICOV 

ILC 

DEFINITION 

NO. OF OBSERVATIONS. NCBS+MLX MUST NOT EXCEED 1700. 
NO. OF INDEPENDENT VARIABLES X. IT DOES NOT INCLUDE 
LAGGED INDEPENDENT VARIABLES, LAGGED OR UNLAGGED 
DEPENDENT VARIABLES Y, NOR THE ERROR VARIABLE EPSILON. 
NVAR+NLX MUST NOT EXCEED 9 BUT NVAR MUST BE AT LEAST 
ONE. 
=0. REQUEST BASIC REGRESSION GENERATION (BRG). 
SPECIFICATION CARDS FOR XM, V, GAMMA IF ITS=1, W, AND 
BETA ARE REQUIRED. 
=1. REQUESTS MODIFICATION (MOD.) OF PREVIOUS BRG OR OF 
PREVIOUS MOD. SPECIFIC MOD. S ARE DEFINED IN COLUMNS 
13-19. 
=2. SAVE X, LAGGED X, LAGGED Y, EPSILON, AND UNLAGGED Y, 
IN THAT ORDER, ON BINARY TAPE 9. THIS TAPE IS REWOUND 
BEFORE WRITING. 
=1. SAVE THE OBSERVATIONS AS ABOVE, BUT OMIT EPSILON. 
=0. DO NOT SAVE THE OBSERVATIONS ON BINARY TAPE. 
=2. PUNCH SERIAL NO. OF OBSERVATION, X, LAGGED xX, 
LAGGED Y, EPSILON, AND UNLAGGED Y, IN THAT ORDER, ON 
CARDS (USING SYSTEM PUNCH TAPE 7) IN FORMAT (14,8F9.3 
(4X8F9.3)). 
=1. PUNCH THE OBSERVATIONS AS ABOVE, BUT OMIT EPSILON. 
=0. DO NOT PUNCH OBSERVATIONS. 
=1. PRINT COVARIANCE AND CORRELATION MATRICES FOR X 
VARIABLES (UNLAGGED AND LAGGED). 
=0. OMIT THIS PRINTOUT. 
=1. MULTICOLLINEARITY. GIVEN P X-VARIABLES EITHER 
ALREADY IN CORE OR READ INTO CORE FROM BINARY TAPE 9 
(SEE ISAVE=2 AND ITAPE=2 BELOW), GENERATE A (P+1)ST 
X-VARIABLE AS A LINEAR COMBINATION OF THE OTHERS. 
THIS MOD. REQUIRES SPECIFICATION CARDS FOR ALPHA AND 
BETA ONLY. 
NOTE—USE NVAR=P+1 FOR THIS MOD. 
=0. IGNORE. 
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N N 

=1. ERRORS OF MEASUREMENT. GIVEN NVAR PREVIOUSLY 
GENERATED VARIABLES, AND EPSILON AND Y, SUPERIMPOSE AN 
ERROR VARIABLE ON EACH OF THE NVAR VARIABLES, BUT 
LEAVE EPSILON AND Y UNCHANGED. THE PREVIOUSLY 
GENERATED DATA MUST BE ON BINARY TAPE 9, AND MAY 
HAVE BEEN CREATED BY A PREVIOUS BRG OR MOD. 
(SEE ISAVE=2 BELOW), OR MAY BE FROM SOME OTHER SOURCE 
SPECIF. CARDS DEFINE THE SPECIFICATIONS OF THE ERROR 
VARIABLES. SPECIF. CARDS FOR XM, V, GAMMA IF ITS=1, 
AND W ARE REQUIRED. 
=0. IGNORE. 
SAMPLING. 
IF GREATER THAN 0, ISAMP IS THE SAMPLE SIZE. FOR EACH 
TIME INTERVAL, RANDOMLY SELECT ISAMP OBSERVATIONAL 
UNITS, AND OUTPUT THE OBSERVATIONS FOR THESE UNITS 
ONLY. 
(THE NO. OF TIME INTERVALS IS LTS, Q.V.) 
USES PREVIOUSLY GENERATED TIME SERIES DATA ALREADY IN 
CORE OR READ INTO CORE FROM BINARY TAPE 9 (SEE ISAVE 
AND ITAPE BELOW). NO SPECIFICATION CARDS REQUIRED. 
=0. IGNORE. 
USED IN CONJUNCTION WITH ISAMP GREATER THAN 0. 
=0. FOR EACH TIME INTERVAL, SAMPLE THE OBSERVATIONAL 
UNITS INDEPENDENTLY. 
=1. FOR EACH TIME INTERVAL, USE THE SAME SAMPLE OF 
OBSERVATIONAL UNITS. 
=1. AGGREGATION. 
AGGREGATE PREVIOUSLY GENERATED TIME SERIES DATA. 
(THE NO. OF TIME INTERVALS IN THE TIME SERIES IS LTS, Q.V.) 
NO SPECIFICATION CARDS REQUIRED. 
=0. IGNORE. 
=1. REPETITION OF DATA. 
GENERATE AN ERROR VARIABLE EPSILON ONLY. -USING 
PREVIOUSLY GENERATED INDEPENDENT VARIABLES, 
RECALCULATE THE DEPENDENT VARIABLE Y. 
SPECIFICATION CARDS FOR V, AND FOR GAMMA IF ITS=1 ARE 
NEEDED, IN WHICH ONLY EPSILON IS DEFINED, IN THE FIRST 
FIELD. THESE CARDS ARE FOLLOWED BY THE SPECIFICATION 
CARD FOR BETA, IN WHICH ALL NVAR +1 VALUES OF BETA ARE 
GIVEN. 
=0. IGNORE. 
=1. GENERATE AUTOCORRELATED VARIABLES FOR TIME SERIES 
DATA. THE NO. OF TIME INTERVALS IS LTS, Q.V. THIS OPTION 
IS AVAILABLE IN CONJUNCTION WITH BRG (INEW=0), ERROR OF 
MEASUREMENT (INEW=1 AND IEM=1), AND REPETITION OF 
DATA (INEW=1! AND IREX =). 
THE PROGRAM GENERATES A COMPLETE SET OF LTS OBSER- 
VATIONS ON THE AUTOCORRELATED VARIABLES FOR EACH 
OBSERVATIONAL UNIT SUCCESSIVELY. THE NO. OF 
OBSERVATIONAL UNITS IS GIVEN BY NOU=NOBS/LTS. THE 
AUTOCORRELATIONS ARE SPECIFIED ON THE CARD FOR 
GAMMA, Q.V. 
=0. IGNORE. 
=1. PRINT UNADJUSTED RANDOM NUMBERS AS GENERATED 
BY THE RANDOM NUMBER GENERATOR SUBROUTINES. FOR 
ERROR OF MEASUREMENT (IEM=1), ALSO PRINT THE MATRIX 
OF ERRORS. 
=0. IGNORE. 
=2. OBTAIN THE INDEPENDENT VARIABLES, THE ERROR 
VARIABLE, AND THE DEPENDENT VARIABLE FROM BINARY TAPE 9 
FOR FURTHER PROCESSING BY A MODIFICATION (INEW =}). 
THIS OPTION IS NOT AVAILABLE FOR A BRG (INEW = 0), AND 

1 
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31-40 

41 

58 

62 

63 

IRN 

50 
NUDIS(1) 
THRU 
NUDIS(10) 

NOBSP 

NOREP 

LTS 

LY 

SHOULD NOT BE USED FOR THE ERROR OF MEASUREMENT 
MOD.. WHICH AUTOMATICALLY OBTAINS DATA (INCLUDING 
THE ERROR AVAILABLE FROM BINARY TAPE 9). 

=1. SAME AS ITAPE=2 ABOVE, BUT IT IS ASSUMED THAT THE 
ERROR VARIABLE IS NOT PRESENT ON THE TAPE. 
=0. IGNORE. 
AN ODD INTEGER OF 10 DIGITS OR LESS TO BE USED AS THE 
STARTING FIXED POINT QUANTITY FOR SUBROUTINES RANNO 
AND GAUS (UNIFORM AND NORMAL RANDOM NUMBER 
GENERATORS RESP.). 
ON THE 2ND AND LATER OPTION CARDS, IRN=0 CAN BE USED 
TO SIGNAI. THE PROGRAM TO CONTINUE WITH THE NEXT 
AVAILABLE STARTING RANDOM NO. AS SAVED FROM THE LAST 
PRECEDING BRG OR MOD. THE PRINTED OUTPUT SHOWS THE 
ACTUAL STARTING NO. USED, SO THAT THE USER CAN 
CONTINUE A SERIES OF EXPERIMENTS FROM WHERE HE LEFT 
OFF. 
THIS FIELD IS IGNORED IN THE MULTICOLLINEARITY AND 
AGGREGATION M®D.S, WHICH DO NOT USE RANDOM NUMBERS 
10 ONE-COLUMN FIELDS, SPECIFYING THE DISTRIBUTIONS OF 
X-1, X-2,..., X-NVAR, AND EPSILON RESPECTIVELY. 
THE CODES FOR THE DISTRIBUTIONS ARE 

1 NORMAL 
2 UNIFORM 
3 EXPONENTIAL 
4 CAUCHY 

THE MEANS AND STANDARD ERRORS OF THESE DISTRIBUTIONS 
ARE GIVEN IN THE LISTING STARTING AT STATEMENT 120. 
NOTE—IN THE ERROR OF MEAS. MOD., SUPPLY A CODE OF 2 FOR 
EPSILON EVEN THOUGH EPSILON IS NOT AFFECTED BY THIS 
MOD. 
NOTE—IN THE REPETITION MOD., ONLY THE CODE FOR EPSILON, 
NAMELY NUDIS(NVAR + 1), IS USED. 
NUMBER OF OBSERVATIONS TO PRINT (OF EACH OBSERVATIONAL 
UNIT, IF ITS=1), IF 0, PROGRAM PRINTS ALL NOBS OBSERVATIONS 
(OR ALL LTS OBSERVATIONS OF EACH OBS. UNIT OF TIME SERIES 
DATA IF ITS=1). 
IF NEGATIVE, NO OBSERVATIONS ARE PRINTED. 
=+1. SUPPRESS THE PRINTING OF MEANS, VARIANCES AND 
STANDARD ERRORS OF VARIABLES (AND OF AUTOCORRELATIONS 
IF ITS=1). 
=-—1l. IN ADDITION SUPPRESS THE PRINTING OF THE REPORT 
OF INPUT. THIS SWPPRESSES ALL PRINTED OUPUT EXCEPT WHAT 
MIGHT BE REQUESTED BY THE SETTING OF IDB AND NOBSP. 
=0. IGNORE. 
NUMBER OF TIME INTERVALS OF TIME SERIES DATA. 
NOTE—UNDER THE SAMPLING OR AGGREGATION MODS, 
AN INPUT VALUE OF LTS=0 IS RESET BY THE PROGRAM TO 
LTS=1, LE. ONE SAMPLE OR ONE AGGREGATE OBSERVATION 
ONLY, RESP., IS TAKEN FROM THE ENTIRE SET OF 
OBSERVATIONS. 
AN INTEGER BETWEEN 1 AND 8 INCLUSIVE, USED BY THE 
MULTICOLLINEARITY MOD. ONLY THE FIRST IQ OF THE 
P=NVAR-I PREVIOUSLY GENERATED INDEP. VARIABLES WILL BE 
USED IN OBTAINING A LINEAR COMBINATION. 
NUMBER OF TIME INTERVALS BY WHICH THE DEPENDENT 
VARIABLE IS TO BE LAGGED. LY LAGGED DEPENDENT VARIABLES 
WILL BE OUTPUT WITH LAGS OF 1,2,..., LY RESPECTIVELY. 
IF LY IS GREATER THAN 0, SPECIFICATION CARDS FOR BY AND 
YIN ARE REQUIRED. 
=0. NO LAGGED DEPENDENT VARIABLES. 
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FOR EACH i=1,2,..., NVAR, FOR WHICH LX(I) IS NON-0, GENERATE 
LX(1) I-TH INDEP. VARIABLE LAGGED BY LX(I) INTERVALS AS AN 
THRU ADDITIONAL INDEP. VARIABLE. 
LX(8) 

74 MLX MAXIMUM OF LX(I)’S ABOVE. 
75 NLX NO. OF LAGGED INDEP VARIABLES (=NO. OF NON-O LX(I)’S 

ABOVE). 
(II) SPECIFICATION CARDS 

ALL THE CARDS HAVE FORMAT (10F8.3). 
EACH ITEM IN THE NAME COLUMN IS A VECTOR PUNCHLD ON A SEPARATE 
CARD. 
NAME MEANING 
BY COEFFICIENTS OF AUTOREGRESSION. BY(1), BY(2),..., BY(LY) 

REFER TO Y—1, Y—2,..., Y—LY RESPECTIVELY. 
YIN INITIAL VALUES OF DEPENDENT VARIABLE. Y—1, Y—2,...,Y—LY 

IN THAT ORDER. 
BY AND YIN ARE INPUT ONLY WHEN LY IS GREATER THAN 0 

XM SPECIFIED MEANS OF INDEPENDENT VARIABLES. XM(I) IS THE 
SPECIFIED MEAN OF THE I-TH INDEP. VARIABLE. 

Vv SPECIFIED STANDARD ERRORS OF INDEPENDENT VARIABLES. 
V(NVAR +1) IS THE SPECIFIED STD. ERROR OF EPSILON. 

GAMMA SPECIFIED AUTOCORRELATIONS OF INDEPENDENT VARIABLES 
AND OF EPSILON. 
INCLUDE THIS CARD ONLY WHEN ITS=1 

WwW SPECIFIED INTERCORRELATIONS BETWEEN SUCCESSIVE 
INDEPENDENT VARIABLES. W(1) IS IGNORED. FOR I=2,..., NVAR, 
Wil) IS THE SPECIFIED CORRELATION BETWEEN THE (I—1)ST AND 
I-TH INDEPENDENT VARIABLE 

BETA SPECIFIED REGRESSION COEFFICIENTS FOR THE INDEPENDENT 
VARIABLES. IF NLX IS GREATER THAN 0, COEFFICIENTS 
BETA(NVAR + 1),..., BETA((NVAR + NLX) ARE INPUT FOR THE 
LAGGED INDEP. VARIABLES. IN ANY CASE THE INTERCEPT OR 
CONSTANT TERM IS INPUT AS THE LAST BETA, NAMELY 
BETA(NVAR + NLX + 1). 

ALPHA COEFFICIENTS FOR THE LINEAR COMBINATION GENERATED BY 
THE MULTICOLLINEARITY MOD. ONLY seit THRU ALPHA(IQ) 
ARE USED. 

APPENDIX II 

Input For Sample Problem 

20 4000 10000000 1 100000000000000 1 3579 12342000000000000000050000000000000 
100. 50 1. — 20. 
10. i, 5. 10. 100. 

2 6 8 9 0 
9 8 6 

1. 20. 5. 45. 
20 4120100 3000010000000000000099999000000000000000000000500000000000000 
15 4100100000 100 1 200000000000000000000000000000000000000050000000000000 
5 4000 10000000 1 100000000000000 1 3579 123420000000000000000502 13020000033 
S —.5 

50. 40. 
100. 50. 1. — 20. 4. 3 2. I 5 
10. 1. 5. 10. 100. 

a 6 8 9 
a an 2 

Z 1. 20. 5. l. B 2. r —2 - 
5 71001000000 10 100000000000000000000000000 1 000( 100000000000000000000000 

50. 
9 1. 20. 5. 1. 1. 2. 2. 

BLANK 
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