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5 Productivity and R&D at the 
Firm Level 

5.1 Motivation and Framework 

5.1.1 Introduction 

Because of worries about domestic inflation and declining international 
competitiveness, concern has been growing about the recent slowdowns in the 
growth of productivity and R&D, both on their own merit and because of their 
presumed relationship. This paper tries to assess the contribution of private 
R&D spending by firms to their own productivity performance, using observed 
differences in both levels and growth rates of such firms. 

A number of studies have been done on this topic at the industry level using 
aggregated data, but ours is almost the first to use time-series data for a cross 
section of individual firms, that is, panel data.' The only similar study at the 
firm level is Griliches's (1980a) use of pooled NSF and Census data for 883 
R&D performing companies over the 1957-65 period. This study had to rely 
on various proxies (and on corresponding ad hoc assumptions) for the mea- 
surement of both physical (C) and R&D ( K )  capital. Furthermore, because of 
confidentiality requirements, the data were provided only in moment-matrices 

This chapter is coauthored with Jacques Mairesse and is reprinted from R&D, Patents, and 
Productivity, edited by Zvi Griliches, pp. 339-74 (Chicago: University of Chicago Press, 1984). 
0 1984 by the National Bureau of Economic Research. All rights reserved. 

A first draft of this paper was presented at the Fifth World Congress of the Econometric Society 
at Aix-en-Provence, August 1980. This work is part of the National Bureau of Economic Research 
Program of Productivity and Technical Change Studies. The authors are indebted to the National 
Science Foundation (PRA79-1370 and SOC78-04279) and to the Centre National de la Recherche 
Scientifique (ATP 070199) for financial support. The authors are also thankful to John Bound, 
Bronwyn Hall, and Alan Siu for very able research assistance. 

1. M. Ishaq Nadiri and his associates have done important related investigations. In their work 
at the firm level they have estimated factor demand equations (including demand for R&D) but did 
not pursue the direct estimation of production functions (see, for example, Nadiri and Bitros 1980). 
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101 Productivity and R&D at the Firm Level 

form, which made it both impossible to control for outliers and errors and 
difficult to deal with the special econometric problems of panel data. In spite 
of these limitations, the results were very (and somewhat surprisingly) encour- 
aging, yielding an elasticity of output with respect to R&D capital of about .06 
in both the time-series and cross-section dimensions of the data. 

A major goal of our work described in this paper was to confirm these find- 
ings using a longer and more recent sample of firms, while paying more atten- 
tion to the definition and measurement of the particular variables and to the 
difficulties of estimation and specification in panel data. In spite of these ef- 
forts, under close scrutiny our results are somewhat disappointing. This paper 
includes, therefore, two very different parts: section 5.2 documents the various 
estimates in detail, while section 5.3 attempts to rationalize and circumvent the 
problems that are evident in these estimates. First, however, we shall set the 
stage in this first section by explaining our data and our model. A more detailed 
description of the variables used and a summary of results using alternative 
versions of some of these variables can be found in the appendix. 

5.1.2 The Data and Major Variables 

We started with the information provided in Standard and Poor’s Compustat 
Industrial Tape for 157 large companies which have been reporting their R&D 
expenditures regularly since 1963 and were not missing more than three years 
of data. Because of missing observations on employment and of questionable 
data on other variables, we first had to limit the sample to 133 firms (complete 
sample), and then, in response to merger problems, to restrict it further to 103 
firms (restricted sample). The treatment of mergers has an impact on our esti- 
mates. These two overlapping samples are fully balanced over the twelve-year 
period, 1966-77.* 

Our sample is quite heterogeneous, covering most R&D performing manu- 
facturing industries and also including a few nonmanufacturing firms (mainly 
in petroleum and nonferrous mining). Since the number of firms is too small 
to work with separate industries, we have dealt with the heterogeneity problem 
by dividing our sample into two groups: scientzj5cjrms (firms in the chemical, 
drug, computer, electronics, and instrument industries) and orherjrms. 

The measurement of the variables raises many conceptual issues as well as 
practical difficulties. These problems have been discussed at some length in 
Griliches (1979, 1980a), and we shall only allude to the most important ones 
in our context. We think of the unobservable research capital stock ( K )  as a 
measure of the distributed lag effect of past R&D investments on productivity: 

2. We also considered two corresponding subsamples (96 firms and 71 firms) with no data 
missing for the entire eighteen-year (1960-77) period. We focus in this paper on the larger, shorter 
samples because of potential errors in our R&D measures in the earlier years. Most of the interpo- 
lation and doctoring of R&D expenditures (for missing observations or changes in definition) 
occurred in the years before 1966. Also, we had to estimate an initial R&D capital stock level in 
1958 by making various and somewhat arbitrary assumptions whose impact vanishes by 1966. 
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Ki, = C7~7Ri( f - -7) ,  where R is a deflated measure of R&D, and the subscripts t, 
(t - T), and i stand for current year, lagged year, and firm, respectively. Ideally, 
one would like to estimate the lag structure (w,) from the data, or at least an 
average rate of R&D obsolescence and the average time lag between R&D and 
productivity. Unfortunately, the data did not prove to be informative enough. 
Various constructed lag measures and different initial conditions made little 
difference to the final results. We focused, therefore, on one of the better and 
most sensible looking measures based on a constant rate of obsolescence of 15 
percent per year and geometrically declining weights w7 = (1  - S>.. 

We measure output by deflated sales (Q)  and labor ( L )  by the total number 
of employees. There is no information on value added or the number of hours 
worked in our data base. This raises, among other things, questions about the 
role of materials (especially energy in the recent period) and about the impact 
of fluctuations in labor and capacity utilization and the possibility that ignoring 
these issues may bias our results-see section 5.3 where we address these 
questions and the related question of returns to scale. Sales are deflated by the 
relevant (at the two- or three-digit SIC level) National Accounts price indexe~.~  
We assume that intrasectoral differences in price movements reflect mostly 
quality changes in old products or the development of new products. Accord- 
ingly (and to the extent that this assumption holds), we are in principle study- 
ing here the effects of both process- and product-oriented R&D investments. 

Finally, we have used gross plant adjusted for inflation as our measure of the 
physical capital stock (C). This variable (as in some of our previous studies) 
performs reasonably well; however, it tends to be collinear over time with the 
R&D capital stock K ,  especially for some sectors and subperiods. We have 
tried various ways of adjusting gross plant for inflation and have also experi- 
mented with age of capital and net capital stock measures. Since random errors 
of measurement are another issue, we made various attempts to deal with the 
errors in variables problem by going to three-year averages. All these experi- 
ments resulted in only minor perturbations to our estimates. 

Table 5.1 provides general information on our samples and variables, while 
more detail is given in the appendix. Note the much more rapid productivity 
growth and the higher R&D intensiveness in the “scientific firms” subsample. 

5.1.3 

Our model, which is common to most analyses of R&D contributions to 
productivity growth (see Griliches 1979, 1980b), is the simple extended Cobb- 
Douglas production function: 

The Model and Stochastic Assumptions 

3. At least two problems arise in applying these price indexes to our data. First, our firms are 
diversified and a significant fraction of their output does not fall within the industry to which they 
have been assigned. Second, observations are based on the companies’ jscal years which often do 
not coincide with price index calendar years. Experiments performed to investigate these problems 
indicated that our conclusions are not affected by them. We used 1978 Business Segment data to 
produce weighted price indexes for about three-quarters of our sample, with the results changing 
only in the second decimal place. Similarly, a separate smoothing of the price indexes, to put them 
into fiscal year equivalents, has very little impact on the final results. 



Table 5.1 Sample Composition and Size, R&D/Sales Ratio, and Labor Productivity Growth Ratea 

SIC Industry Classification 

Complete Sample Restricted Sample 

R&D Productivity R&D Productivity 
Number of Sales Growth Number of Sales Growth 

Firms (8) Rate (8) Firms (8) Rate (%) 

Scientific firms: 
28( -283)-chemicals 

357-computers 
36-electronic equipment 
38-instruments 

283---drUg~ 

Subtotal 

Other firms: 
29-oil 
35( -357)-machinery 
37-transportation equipment 
Other manufacturing-mostly 20-32-33 
Nonmanufacturing-mostly 10 

Subtotal 

Total 

19 
19 
10 
14 
15 

77 

6 
13 
8 

20 
9 

56 

133 

3.4 
6.5 
5.3 
4.6 
5.5 

5.0 

0.7 
2.8 
2.2 
2.3 
2.0 

2.2 

3.8 

6.7 
3.3 
7.8 
3.3 
3.6 

4.3 

5.1 
0.7 
1.8 
0.2 

-0.6 

0.9 

2.9 

16 
10 
6 

10 
15 

57 

6 
10 
8 

17 
5 

46 

103 

3.6 
7.5 
5.3 
4.7 
5.5 

5.2 

0.7 
2.8 
2.2 
2.3 
2.2 

2.2 

3.8 

5.1 
4.6 
8.0 
3.8 
3.6 

4.7 

5.1 
0.7 
1.8 
0.8 
0.5 

1.5 

3.3 

"The restricted sample excludes firms with large jumps in the data, generally caused by known merger problems. 
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Q,, = AehtcL$K;eeir, 

or in log form: 

q,, = a + At + q, + W,, + yk,, + e,, , 

where (in addition to already defined symbols) e,, is the perturbation or error 
term in the equation; A is the rate of disembodied technical change; a, p, and 
especially y are the parameters (elasticities) of interest-in addition to the 
weights w, or the rate of obsolescence S implicit in the construction of the 
R&D capital stock variable. 

One could, of course, also consider more complicated functional forms, 
such as the CES or Translog functions. We felt, based on past experience and 
also on some exploratory computations, that this will not matter as far as our 
main purpose of estimating the output elasticities of R&D and physical capital 
(a and y), or at least their relative importance (a/y), is concerned. However, 
two related points are worth making. 

First, an important implication of our model in the context of panel data is 
that in the cross-sectional dimension differences in levels explain differences 
in levels, while in the time dimension differences in growth rates explain dif- 
ferences in growth rates. An alternative model would allow y to vary across 
firms and impose the equality of marginal products or rates of return across 
firms, aQ/aK = p, implying that the rate of growth in productivity depends on 
the intensity of R&D investment (rewriting yk = (aQ/aK)(K/Q)(k/K) = 
pK/Q = p(R - SK)/Q = pR/Q for small 6 ) .  We have not pursued such an 
alternative here, but we may consider it again in future work.4 

Second, we also have the choice of assuming constant returns to scale (CRS) 
in the Cobb-Douglas production function: a + p + y + IJ. = 1, or not-which 
amounts to estimating the regression 

(q*, - e,,) = Q + At + ak, - e,,) + YW,, - 4,) + (IJ. - Ue,, + e,, 9 

with (IJ. - 1) left free or set equal to zero. In our data the constant returns to 
scale assumption is accepted in the cross-sectional dimension, but is rejected 
in the time dimension in favor of significantly decreasing returns to scale. Be- 
cause of the large effects of this restriction on our estimates of y, we shall 
report the estimates obtained both with and without imposing constant returns 
to scale. 

A distinct issue, which may explain why not assuming constant returns to 
scale and freeing the coefficient of labor in the regressions causes a problem, is 
that of simultaneity. Actually, it seems to provide a better explanation of our re- 
sults than left-out variables or errors of measurement. We have, therefore, esti- 
mated a two, semireduced form, equations model in which output and employ- 

4. An important practical advantage of this alternative approach is that by assuming 6 = 0 a 
priori it does not require the construction of an R&D capital stock. See Griliches (1973), Terleckyj 
(1974), and Griliches and Lichtenberg (1984) for estimates based on this approach. 
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ment are determined simultaneously as functions of R&D and physical stocks, 
based on the assumption of short-run profit maximization and predetermined 
capital inputs. These estimates yield plausible estimates of the relative influ- 
ence of R&D and physical capital on productivity in both the cross-sectional 
and time dimensions. We elaborate on this line of research in section 5.3. 

These different specification issues are, of course, related to the assumptions 
made about the error term, e,,, in the production function. When working with 
panel data, it is usual to decompose the error term into two independent terms: 
e,, = u, + w,,, where u, is a permanent effect specific to the firm and w,, is a 
transitory effect. In our context u, may correspond to permanent differences 
in managerial ability and economic environment, while w ~ ,  reflects short-run 
changes in capacity utilization rates, in addition to other sources of perturba- 
tion. The habitual and convenient way to abstract from the u,’s is to compute 
the withimJim regression using the deviations of the observations from their 
specific firm means: (ytr - y , ) ,  which is equivalent to including firm dummy 
variables in the total regression using the original observation ( yJ.  The way to 
eliminate the w,,’s (in a long enough sample) is to compute the between-Jim 
regression using the firm means (y, ). The least-squares estimates of the total 
regression are in fact matrix-weighted averages of the least-squares estimates 
of the within and between regressions. If most of the variability of the data is 
between firms rather than within, as is the case here, the total and between 
estimates will be very c10se.~ 

Another manner of viewing the decomposition of the overall error into per- 
manent and transitory components, and of interpreting the between and the 
within estimates, is to consider them as providing cross-sectional and time- 
series estimates, respectively. Both estimates will be consistent and similar if 
the u,’s and the w,,’s are uncorrelated with the explanatory variables. Very often, 
however, the two are rather different, implying some sort of specification error. 
This is, unfortunately, our case. Following the early work of Mundlak (1961) 
and Hoch (1962), the general tendency is to hold the u,’s responsible for the 
correlations with the explanatory variables and to assume that the within esti- 
mates are the better, less biased ones.6 This leads to the discarding of the infor- 
mation contained in the variability between firms, which is predominant (at 
least in our samples), relying thereby only on the variability within firms over 
time, which is much smaller and more sensitive to errors of measurement. In 
fact, there are also good reasons for correlations of the w,,’s with the explana- 
tory variables and, therefore, putting somewhat more faith in the between esti- 
mates. These reasons have been sketched in Mairesse (1978); they will be con- 
sidered further in section 5.3 when we discuss the potential influence of 
misspecifications on our results. 

5. An independent year effect v,(e,, = I(, + v, + w,,) can also be taken into account by adding 

6. The model is then equivalent to the so-called fixed effects model. 
year dummies instead of a time trend to the regression. 
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5.2 Overall and Detailed Estimates 

5.2.1 First Look at Results 

Our first results were based on the complete sample of 133 firms for the 
1966-77 period and various variants of our variables, especially R&D capital. 
Although the use of different measures had little effect, disappointing our hope 
of learning much about the lag structure from these data, the actual estimates 
looked reasonably good even if far apart in the cross-section and time dimen- 
sions. Table 5.2 gives the total, between, and within estimates (and also the 
within estimates with year dummies instead of a time trend), using our main 
variants for output, labor, and physical and research capital, both with and 
without the assumption of constant returns to scale. The total estimates of the 
elasticities of physical and R&D capital (a and y) are about .30 and .06, re- 
spectively, similar to Griliches’s (1980a) previous estimates. The more purely 
cross-sectional between estimates are nearly identical to the total estimates, 
.32 and .07, respectively. This follows from the fact that most of the relevant 
variability in our sample is between firms (about 90 percent, see table 5A. 1 in 
the appendix). The time-series within estimates are, however, rather different: 
a being about. 15 and y about .15 or .08 depending on whether constant returns 
to scale are imposed or not. It is also clear that using separate year dummy 
variables instead of a linear trend makes little difference. 

Unfortunately, these first results did not improve with further analysis; on 
the contrary. While the measurement of variables (within the range of our ex- 
perimentation) does not really matter, trying to allow for sectoral and period 
differences and cleaning the sample of observations contaminated by mergers 
sharply degraded our within estimates of the R&D capital elasticity y. The 
pattern of results already evident in table 5.2 is much amplified, especially in 
the time dimension: a tendency of the estimated y’s to be substantial, whenever 
the estimated a’s seem too low; and a tendency for them to diminish or even 
to collapse when constant returns to scale are not imposed. We shall now docu- 
ment these different problems in detail before considering their possible causes 
and solutions. 

5.2.2 Alternative Variable Definitions and Sectoral Differences 

One of the original aims of this study was to experiment with various ways 
of defining and measuring physical and R&D capital. Using all the information 
available to us, we tried a number of different ways of measuring these vari- 
ables but to little effect. The resulting differences in our estimates, even when 
they were “statistically significant,” were nonetheless quite small and not very 
meaningful. In particular, they did not alter the order of magnitude of our two 
parameters of interest, a and y. The various measures we tried turned out to 
be very good substitutes for each other and the choice between them had little 
practical import. Our final choices were based, therefore, primarily on a priori 



Table 5.2 Production Function Estimates (complete sample, 133 firms, 1966-77) 

Total Regressions Within Regressions 

Q Y (CL  - 1 )  x R2 MSE 

0.012 0.499 0.099 0.319 
(0.009) (0.002) 
0.310 0.073 0.01 1 0.514 0.097 
(0.008) (0.011) (0.002) 
0.332 0.054 -0.032 0.01 1 0.524 0.094 
(0.009) (0.01 1) (0.005) (0.002) 

- - 

- 

0.017 0.402 0.0211 0.232 
(0.0 17) (0.001) 
0.160 0.150 0.018 0.422 0.0204 
(0.020) (0.020) (0.001) 
0.150 0.080 -0.126 0.025 0.437 0.0199 
(0.019) (0.022) (0.019) (0.002) 

- - 

- 

Between Regressions Within Regressions with Year Dummies 

a Y (CL - 1 )  R2 MSE Q Y (CL  - 1) R* MSE 

- - 0.324 
(0.027) 
0.317 0.072 
(0.027) (0.034) 
0.341 0.053 -0.033 
(0.029) (0.035) (0.017) 

- 

- 0.522 0.079 0.250 
(0.017) 

- 0.538 0.077 0.176 0.158 

0.551 0.075 0.163 0.091 -0.121 
(0.019) (0.020) 

(0.019) (0.022) (0.020) 

0.420 0.0206 

0.442 0.0198 

0.455 0.0194 
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considerations, external evidence, and convenience. The appendix describes 
these choices and some of our experiments. 

Since our sample consisted of R&D performing firms in rather diverse in- 
dustries, it was also of interest to investigate the influence of sectoral (indus- 
trial) differences. Table 5.3 gives our main estimates separately for firms in 
research-intensive industries (so-called scientific firms) and the rest of our 
sample. 

Dividing the sample into two allows for much of the heterogeneity, bringing 
down the sum of square of errors (SSE) by about 20 percent for the total regres- 
sions and 10 percent for the within regressions (with the division correspond- 
ing to very high F ratios of about 100 and 70, respectively). The two groups 
are indeed a priori very distinct: as a matter of fact, the average rate of produc- 
tivity growth is about four times higher for the scientific firms, while the aver- 
age R&D to sales ratio is about twice as high (see table 5.1). 

In spite of this sharp contrast, the differences in our estimates are not that 
large, except for the estimated time-trend coefficients (rates of technical prog- 
ress X). The within estimates of a and y (and also p) are, in fact, quite compa- 
rable, although the fit is much lower in the “other firms” equation. Yet the total 
estimates of y are very large in the scientific firms and insignificant for the 
other firms. Part of this discrepancy can be accounted for by the higher esti- 
mates of a in the other firms group. 

Disaggregating to the industrial level decreases the total and within sums of 
square of errors by another 20 percent or so. The main effect is, however, to 
worsen the collinearity between R&D and physical capital in the within dimen- 
sion. Some of the within estimates actually fall apart: two extreme cases being 
the computer industry with an estimated a of -.06 and an estimated y of .50, 
and the instruments industry with an estimated a of .49 and an estimated y of 
-.32. Without a larger sample, we do not really have the option of working at 
the detailed industrial level.’ 

5.2.3 Differences between Subperiods 

Current discussions of “the productivity slowdown” suggest that some of it 
may be due not only to “the slowdown in R&D,” but also to a significant de- 
crease in the efficiency of recent R&D investments (Griliches 1980b); hence, 
our interest in whether we could find any evidence of a decrease in the R&D 
capital elasticity y over time. Table 5.4 shows what happens (for the scientific 
firms group) when we divide our data into two six-year subperiods, 1966-71 
and 1972-77.* Table 5.5 explores the resulting differences further by pres- 

7. An intermediate step, without going fully to the sectoral level, is to allow for separate sectoral 
time trends and intercepts. While the total and within estimates change only slightly for the scien- 
tific firms, the total estimates of y and a for the other group move up and down respectively, 
making them less different from those of the scientific group. 

8. We also looked at the preceding six-year subperiod (1960-65) for our longer but smaller 
subsample of firms. The estimates are very similar to those for 1966-71. 



Table 5.3 Production Function Estimates Separately for the Scientific and Other Firms (complete sample, 77 and 56 firms, respectively, 1966-77) 

Total Regressions Within Regressions 

Q Y (P - 1) A RZ MSE a Y (I.1. - 1) A R2 MSE 

Scientific firms 0.243 
(0.012) 
0.203 
(0.011) 
0.250 
(0.011) 

Other firms 0.364 
(0.011) 
0.365 
(0.0 12) 
0.351 
(0.013) 

0.223 
(0.013) 
0.185 

(0.013) 

-0.007 
(0.018) 
0.010 
(0.019) 

0.025 
(0.009) 

0.030 
(0.003) 
0.025 

(0.003) 
0.026 

(0.002) 

-0.008 
(0.003) 

-0.008 
(0.04 

-0.008 
(0.003) 

0.423 0.088 0.194 
(0.020) 

0.570 0.066 0.150 
(0.022) 

0.604 0.061 0.140 
(0.021) 

(0.028) 

(0.032) 

(0.032) 

0.609 0.093 0.243 

0.609 0.093 0.169 

0.614 0.092 0.133 

0.111 
(0.026) 
0.02 1 
(0.026) 

0.124 
(0.028) 

-0.015 
(0.039) 

-0.200 
(0.020) 

-0.207 
(0.043) 

0.033 0.607 0.0170 
(0.002) 
0.032 0.615 0.0167 

(0.007) 
0.044 0.653 0.0151 

(0.002) 

-0.001 0.172 0.0202 
(0.002) 
0.001 0.196 0.0196 

(0.002) 
0.011 0.223 0.0190 

(0.003) 



Table 5.4 Production Function Estimates for Two Subperiods: 1966-71 and 1972-77 (scientific firms, complete sample, 77 firms) 

Total Regressions Within Regressions 

Periods Q Y (P  - 1) A R2 MSE Q Y (P - 1) A R2 MSE 

1966-71 0.219 
(0.01 8) 
0.169 
(0.016) 
0.235 
(0.017) 

1972-77 0.273 
(0.016) 
0.242 
(0.014) 
0.269 
(0.015) 

0.241 
(0.019) 
0.189 

(0.019) 

0.207 
(0.017) 
0.183 

(0.017) 

-0.068 
(0.009) 

-0.032 
(0.008) 

0.013 0.264 0.103 
(0.009 
0.007 0.463 0.076 
(0.007) 
0.008 0.528 0.067 

(0.007) 

0.033 0.434 0.071 
(0.007) 
0.029 0.578 0.053 
(0.W) 
0.028 0.594 0.051 

(0.006) 

0.250 
(0.029) 
0.106 

(0.033) 
0.113 

(0.030) 

0.083 
(0.028) 

-0.012 
(0.034) 

-0.023 
(0.034) 

- 0.250 
(0.034) 

(0.036) (0.029) 
0.040 -0.307 

- 0.225 
(0.047) 
0.175 -0.076 
(0.057) (0.050) 

0.011 0.307 0.0115 
(0.004) 
0.013 0.380 0.0103 

(0.004) 
0.041 0.501 0.0083 
(0.004) 

0.043 0.459 0.0080 
(0.003) 
0.041 0.486 0.0076 

(0.003) 
0.044 0.488 0.0076 
(0.004) 



Table 5.5 Analysis of Subperiod Differences (scientific firms, complete sample, 77 firms) 

Rates of Growth, (within standard deviations), 
[% within variability] Within Regressions (p = 1) 

Within Y 
Degrees Y A (a = 0.25) 

Periods of Freedom q - 1 c - 1  k - 1  1 a Y A ((I = 0.25) ((I = 0.25) (A = 0.025) 

4.3 

[100.0] 
3.3 

[19.0] 
5.1 

1972-77 385 (0.13) 
[17.0] 

Between 4.7 

[64.01 

1966-77 847 (0.22) 

1966-7 1 385 (0.14) 

subperiods 77 (0.58) 

6.2 3.0 
(0.33) (0.22) 

[100.01 [100.0] 
9.1 4.5 

(0.25) (0.20) 
[27.6] [38.3] 

4.3 2.4 
(0.19) (0.13) 

[15.1] [15.8] 
6.2 2.9 

(0.81) (0.50) 
[57.3] [45.9] 

4.6 
(0.28) 0.15 0.11 0.032 0.06 0.027 0.08 

[100.0] 
6.3 

[33.4] 
2.4 

(0.13) -0.01 0.23 0.041 0.02 0.034 0.08 
[10.2] 

4.2 
(0.69) 0.25 -0.02 0.032 -0.02 0.032 0.07 

[56.4] 

(0.24) 0.11 0.25 0.013 0.17 0.003 0.09 
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enting the within estimates for the two subperiods (as well as the overall period 
and “between subperiods”) and comparing the estimated y when (Y and A are 
constrained to .25 and .025, respectively. Table 5.5 also lists the rates of growth 
of the main variables, their within standard deviations, and the decomposition 
of their within variability for the subperiods (the overall period and “between 
subperiods”). 

As might be expected, the total estimates differ only slightly, while the 
within estimates change a lot. Yet the striking feature is not a decrease in the 
estimated y but rather in &. The decomposition of variance shows, however, 
that by breaking down our data into two subperiods we keep only about half 
of the within variability in the overall period (the other half being between 
subperiods). Our capital stock variables as well as the time variable itself are 
slowly changing, trendlike variables, and there is not enough variability in 
them to allow us to estimate all of their coefficients separately and precisely. 
What we get are relatively wide gyrations in the estimated coefficients a, y, 
and A, with some of them going down as the others go up. If we impose a 
reasonable a priori value of a = .25, which corresponds to estimating the im- 
pact of R&D capital on total factor productivity (TFP), we do indeed get a 
large decline in y, from .17 in the first period to effectively zero in the second. 
However, this decline is associated with a correspondingly large increase in A, 
from .003 to .034. Since such an acceleration in “disembodied” technological 
change goes against all other pieces of information available to us, we reestim- 
ate again, imposing also an a priori A = .025. With this new restriction every- 
thing falls into place: 9 being estimated at approximately .08 for both subperi- 
ods (as well as between subperiods and for the overall period). 

This, of course, does not mean that we have strong evidence that y is about 
.08, but only that one should not interpret the data as implying a major decline 
in y over time. What the data tell us is that one cannot tell and that there is not 
enough independent variation in the subperiods to estimate the contribution of 
physical capital, R&D capital, and trend separately. If, however, we are willing 
to impose a priori, reasonable values on 01 and A, then the implied is both 
reasonable and stable. Moreover, the imposition of such constraints is not in- 
consistent with the data; while they are not “statistically” accepted given our 
relatively large sample size, the actual absolute deterioration in fit is rather 
small, the standard deviation of residuals changing by less than .01.9 

This may not be all that surprising considering the other major fact that 
emerges from table 5.5: our “scientific firms” did not actually experience a 
productivity slowdown in 1972-77 relative to 1966-71 (as against the experi- 
ence of manufacturing as a whole). There was a slowdown in the growth of 
both physical and R&D capital, but this was associated with an acceleration 

9. Our estimated regression standard errors are about . l  in the within dimension, implying that 
we explain annual fluctuations in productivity up to an error whose standard deviation is about 10 
percent. Imposing the a priori values of a and A increases this error by less than one additional 
percent. 
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in labor productivity growth and, hence, also in total factor productivity 
growth. (The latter rises from about 0.6 percent in the first period to about 3.8 
percent in the second.)’o Given these facts, it is not surprising that correlation 
of productivity growth with capital input growth tends to vanish, leading to a 
collapse of the estimated a and y. These strange events are not limited to the 
firms in our sample, they also actually happened in the science-based indus- 
tries as a whole, as can be seen by examining the aggregate data collected by 
NSF and the BLS.” (Average TFP growth in “scientific” industries increases 
in these data from about 0.8 percent in 1966-71 to 3.2 percent in 1972-77.) If 
anything, the puzzle is why there was so little “exogenous” productivity growth 
in 1966-71. One possible answer would invoke errors of measurement in the 
dating of physical and R&D investments (longer lag structures); another might 
be based on different cyclical positions of the endpoints of these two periods.In 
any case, since there is no evidence that there has been a significant productivity 
slowdown in R&D intensive industries, it is unlikely that whatever slowdown 
did occur could be attributed to the slowdown in R&D growth.’* 

5.2.4 The Problem of Mergers 

Starting from our original sample of 157 firms, we first eliminated 24, pri- 
marily because of missing observations (in the number of employees generally 
and in gross plant occasionally) or obvious large errors in the reported num- 
bers. In the case of one or two missing observations we “interpolated’ them. 
In some instances we managed to go back to the original source and obtain the 
missing figure or correct an error. Fortunately, most firms did not present such 
difficulties, and the construction of our “complete sample” was straightforward 
enough. We were still left with the important issue of mergers. About one firm 
out of five in our “complete” sample (as many as twenty among the seventy- 
seven “scientific” firms) appeared to be affected (at least for one year over 
the 1966-77 period) by considerable and generally simultaneous “jumps” (80 
percent or more year-to-year increases) in gross plant, number of employees, 

10. This is computed from the average yearly rates of growth given in table 5.5 ,  using .65, .25, 
and .I as relative weights for labor, physical capital, and R&D capital, respectively. 

11. The data are taken from sources given in Griliches (1980b). The numbers that correspond 
to those of table 5.5 are: 

Scientific Industries Aggregate: Based on NSF and BLS Statistics (average yearly rates of growth) 

Subperiods q - f  c - e  k - 8  e 
1960-65 
1966-7 1 
1972-11 

4.3 2.0 8.2 2.8 
3.3 7.4 6.3 0.9 
3.8 2.0 0.6 2.3 

Although the definitions and measures are quite different, and although our firms are much faster 
growing than the scientific industries as a whole, the growth patterns are very similar. 

12. For possible contrary evidence, see Scherer (1981) who emphasizes the impact of R&D on 
productivity growth in the R&D using rather than R&D doing industries. 
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and sales. We have been able to check and convince ourselves that most of 
these jumps do, in fact, result from mergers, although some may be the result 
of very rapid growth. Since the problem was of such magnitude (as is bound 
to be the case in a panel of large companies over a number of years), we had 
to be careful about it. 

One way of dealing with this problem is simply to drop the offending firms. 
This results in what we have called the “restricted” sample. An alternative is to 
create an “intermediate” sample in which a firm before and after a major 
merger is considered to be two different “firms.” If mergers were occurring 
precisely in a given year, we would have as many observations in the intermedi- 
ate sample as in the complete one (and more “firms” but some of them over 
shorter periods), and we would eliminate only the “variability” corresponding 
to the “jumps.” In fact, we lost a few observations because some mergers affect 
our data for more than one year (primarily because we chose gross plant at the 
beginning of the year as our measure of capital for the current year) or because 
they occur in the first or last years of the study period (since we decided not to 
have “firms” with less than three years of data in the intermediate sample). 
Estimates for the restricted sample and its complement, the “merger” sample, 
are given in table 5.6 for the scientific firms group. (Estimates for the other 
group behave similarly, although there were fewer mergers there.) Table 5.7 
provides more detail, showing separately the results for the complete, interme- 
diate, and restricted samples and decomposing the merger group into “jump” 
and “no-jump’’ periods. To facilitate interpretation, it also presents estimates 
of y based on constraining (Y to .25 and X to .025, and it lists the rate of growth, 
the standard deviations, and the variance decomposition of the main vari- 
ables. l 3  

The total estimates (reported in table 5.6) manifest their usual stoutness, 
remaining practically unchanged whatever the sample. The within estimates 
are, on the contrary, very sensitive, and the estimated y collapses, declining 
from . l  1 to .05 and - .03 in the complete, intermediate, and restricted samples, 
respectively (even when constant returns to scale are imposed; see table 5.7). 
It is clear from table 5.7 that the merger firms are responsible for the differ- 
ence. They correspond to a major part of the within variability of our variables 

13. The variance decomposition of a variable y for a firm i going through a merger at the end 
of year to is identical to its decomposition into the two subperiods before and after the merger, the 
“jump” component corresponding to the between subperiods component. It can be written 

+ to(Y:.’j - yi.)* + (T - to)(y:,zj - yi.Y. 

where. yi,, y:.!), and yizl are the respective means of yo, over the whole period ( 1, T ) ,  the before merger 
period (1 ,  to), and the after merger period (to + 1, T ) .  The practical way to run the regressions 
corresponding to the jump component is simply to substitute (yf’l - y,,) and (rlf) - yi,) for 
(y, - yi,) in the before and after merger years. 



Table 5.6 Separate Production Function Estimates for the Restricted and the Merger Samples (57 and 20 firms respectively, scientific 
firms, 1966-77) 

Total Regressions Within Regressions 

Samples a Y (IL - 1) A R* MSE a Y (IL - 1) A R2 MSE 

- - 0'032 0.510 0.075 (o.025) - - 0'035 0.737 0.010 
0.221 

(0.002) 
Restricted 0.264 

(0.0 12) (0.003) 
0.035 0.737 0.010 - 0.239 -0.034 

0.211 -0.062 -0.112 
(0.028) (0.002) 

(0.028) (0.025) (0.002) 

0.645 0.054 (o,030) 
0.028 

o'028 0.671 0.050 (o.030) 

- 0.230 0.210 
(0.011) (0.013) (0.003) 
0.278 0.170 -0.048 
(0.012) (0.014) (0.006) (0.003) 

0.745 0.010 

- Merger 0.204 
(0.032) 

- 0.200 - 0'02' 0.235 0.117 (o,036) 
(0.007) 

0'02' 0.379 0.034 
(0.W) 

- 

- 0'020 
0.437 0.031 

0'042 
0.506 0.027 

0.017 0.117 0.270 - 0.462 0.093 (o,038) 

0'020 0.524 0.073 (o,036) 

(0.055) (0.004) 

(0.057) (0.040) (0.005) 

0.146 0.292 
(0.028) (0.029) (0.005) 
0.171 0.265 -0.064 
(0.027) (0.028) (0.01 1) (0.006) 

0.114 0.135 -0.229 



Table 5.7 Analysis of Merger Differences (scientific firms, 196677) 

Rates of Growth, (within standard deviations), 
[% within variables] Within Regressions (II. - 1) 

Within Y 
Degrees Y A (a = 0.25) 

Samples of Freedom q - 1 c - 1  k - 1  1 a Y A (a = 0.25) (a = 0.25) (A = 0.025) 

Complete 
(1) 

Intermediate 
(2) 

Restricted 
(3) 

Merger 
(4) = (1) - (3) 

“Jump” 
( 5 )  = (1) - (2) 

4.3 
847 (0.22) 

[100.0] 
4.7 

783 (0.21) 
[82.5] 

4.7 

[67.3] 
3.3 

[32.7] 
0.0 

[17.5] 
4.7 

[15.2] 

627 (0.21) 

220 (0.24) 

64 (0.33) 

156 (0.20) 

6.2 
(0.33) 

[100.0] 
5.8 

(0.26) 
[58.6] 

6.1 
(0.27) 

[50.4] 
6.5 

(0.45) 
r49.61 
11.5 
(0.76) 

[41.4] 
4.5 

(0.22) 
E8.21 

3.0 
(0.22) 

[100.0] 
3.7 

(0.21) 
[79.6] 

3.4 
(0.22) 

[63.6] 
2.0 

(0.26) 
[36.4] 
-4.8 
(0.36) 

[20.4] 
4.9 

(0.21) 
[16.2] 

4.6 
(0.28) 

[100.0] 
3.2 

(0.20) 
[49.2] 

3.2 
(0.21) 

[42.6] 
8.6 

(0.41) 
[57.4] 
21.9 
(0.72) 

[50.8] 
3.1 

(0.17) 
l6.61 

0.15 0.11 0.032 0.06 0.027 0.08 

0.19 0.05 0.035 0.01 0.033 0.09 

0.24 -0.03 0.035 -0.04 0.045 0.05 

0.12 0.27 0.020 0.18 0.012 0.11 

0.20 0.11 0.011 0.07 0.006 0.02 

-0.18 0.65 0.019 0.30 0.017 0.23 
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(much of it being from the “jumps”). Moreover, they seem to account for the 
significant, positive within estimates of y in our complete sample, especially 
through their “no-jumps’’ component. In other words, R&D seems most effec- 
tive for firms growing rapidly through mergers, and both phenomena (mergers 
and R&D growth) are apparently related. 

Merger firms have higher R&D than physical capital growth rates during 
their nonmerger (“no-jumps”) periods, while the opposite is true for nonmerg- 
ing (“restricted”) firms. The labor productivity growth rates are about equal for 
both, but they are much more closely related to R&D growth for the merger 
firms. Actually, not enough variability is left to estimate the separate contribu- 
tions of the two capital terms and the time trend term precisely. If one imposes 
OL = .25 and A = .025 a priori, one gets back from the restricted subsample a 
reasonable though still low estimate of 9 = .05. The intermediate sample, how- 
ever, is the most relevant one from our point of view, yielding a much higher 
3 = .09, which can be interpreted as a weighted average of about .2 for the 
merger firms and .05 for the rest.I4 

Such a finding raises questions that deserve additional analysis: Who are 
these “merger” firms and why would their R&D investment be more success- 
ful? What kind of selectivity is at work here? How does one expand this type 
of analysis to allow for different R&D-related success rates by different firms? 
A random coefficient model does not, at first thought, appear to be the most 
appropriate way to go. Unfortunately, given the small size of our sample, we 
cannot pursue these questions further here. 

Our tentative conclusion is that we should not exclude the merger firms from 
our sample entirely. These are firms whose R&D has apparently been very 
effective. Throwing them out would seriously bias our estimates of the contri- 
bution of R&D to productivity downward. 

5.3 Misspecification Biases or an Exercise in Rationalization 

5.3.1 Three Possible Sources of Bias 

Our within estimates of the production function are unsatisfactory in the 
sense that they attribute unreasonably low coefficients to the physical and re- 
search capital variables and imply that most of our firms are handicapped by 
severely diminishing returns to scale. The simplest explanation is to impute 
these “bad results” to a major misspecification of our model. The trouble is 
that when we start thinking about possible misspecifications, many come to 
mind. The most important appear to be: (1) the omission of labor and capital 
intensity of utilization variables, such as hours of work per employee and hours 
of operation per machine; (2) the use of gross output or sales rather than value 

14. Here also the imposition of the a priori values of a = .25 and X = ,025 does not result in an 
economically meaningful deterioration of fit. 
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added or, alternatively, the omission of materials from the list of included fac- 
tors; (3) overlooking the jointness (simultaneity) in the determination of em- 
ployment and output.’5 

These three misspecifications are similar in the sense that they all imply the 
failure of the ordinary least-squares assumption of no correlation between the 
included factors, c, C, k, and the disturbance e in the production function, re- 
sulting in biases in our estimates of the elasticities of these factors (and in 
our estimate of the elasticity of scale). In all three cases the correlation of the 
disturbance e with the labor variable Cis likely to be relatively high in the time 
dimension, affecting especially our within estimates. 

If we consider the “auxiliary” regression connecting e to c, i?, k 

(where we suppress for simplicity the constant and trend terms by taking devia- 
tions of the variables from the appropriate means, i.e., respectively, [y,, - y,,] 
and [ yi, - y,, - yi, + y ] for the total and within regressions), the specification 
biases in our estimates can be written in the following general form: 

E(& - a) = bias & = , 

A 

E@ - p) = bias p = be,,, , 

E(+ - 7) = bias + = 

If we assume more specifically that the physical and research capital vari- 
ables c and k are predetermined and that only the labor variable is correlated 
with e,  we can go one step further and formulate the biases in a and y as 
proportional to the bias in p (see Griliches and Ringstad 1971, appendix C):  

bias & = -(bias i)beC., , 

bias $ = -(bias i)bek.c . 

There is no good reason why the coefficients be,,, and be , ,  should be both 
small, or one much smaller than the other, or very different for the within and 
total estimates. One will expect them to be positive and less than one, but 
large enough to result in a significant transmission of an upward bias in 6 into 
downward biases in both 6 and 9. One would also expect the absolute biases 
in 6 and 9 to be of the same order of magnitude and, therefore, to have a much 

15. Three other possible misspecifications are the following: (4) ignoring the possibility of ran- 
dom errors in our measures of labor and capital; (5) assuming wrongly that firms operate in com- 
petitive markets; and (6) ignoring the peculiar selectivity of our sample. We shall allude briefly to 
(4) and (5) in what follows, but continue to ignore the selectivity issue, postponing the investigation 
into this topic to a later study based on a much larger post-1972 sample. 
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larger relative effect on 4 than on B (assuming that the true y is small relative 
to the true a). For example, a bias of -.l might reduce B from a true .3 to .2 
but could wipe out 4 if its true value were . 1. 

We can actually estimate such bias transmission coefficients in our sample. 
They are relatively large and of comparable magnitude, on the order of 
.3 to .4.‘6 

To the extent that the correlation between labor and the disturbance in the 
production function is the main problem, we are left with the evaluation of 
the bias in labor elasticity and the question of whether we can ascertain the 
“within” bias to be positive and sizeable in contrast to a small “total” bias. This 
is much more difficult, and we have to consider specifically our three possible 
misspecifications. We shall say a few words about the first two and then con- 
centrate on the simultaneity issue. This issue seems most important, and we 
have been able to progress further toward its solution by considering a simulta- 
neous equations model composed of the production function and a labor de- 
mand function, and by estimating what we call the semireduced form equations 
for this model. 

Consider first the omission of the hours worked per worker variable h (or 
machine hours operated per machine) and let the “true” model be: 

q = ac + p ( t  + h) + yk  + E ,  

where labor is measured by the total number of hours of work. 
The disturbance in the estimated model is then e = E + ph, and we get for 

the labor elasticity bias: bias (6) = = pb,,,,,,. Cross-sectionally, hours per 
worker h should be roughly uncorrelated with any of the included variables c, 
k‘, and .k and, hence, cause no bias in the between regression or in the total 
regression (which is similar since the between variances of the variables domi- 
nate their total variance). In the time dimension, however, short-run fluctua- 
tions in demand (say a business expansion) will be met partly by modifying 
employment (hiring) and partly by changing hours of work (increase in over- 
time). Hence, b,,, should be positive and rather large (perhaps .5 or higher), 
and therefore the within estimate of 6 should be biased upward and substan- 
tially so (perhaps by .6 X .5 = 0.3). Considering then that the within correla- 
tions of h with c and k are likely to be negligible, we have seen that a significant 
downward bias should be transmitted to the within estimates of B and .i, (about 
-.3 X .4or -.3 X .3 = -.1). 

16. The auxiliary regression of e on c and k giving these coefficients is precisely what we shall 
call our semireduced form labor equation; tables 5.8, 5.9, and 5.10 provide their exact values for 
our various samples. Note that since the order of magnitude of the sum of these coefficients is less 
than one, we cannot explain the downwardbiases in 6 and 9 and also in the returns to scale (i solely 
by the transmission of an upward bias in p. Our second misspecification example, the omission of 
materials, does not assume that c and k are predetermined and hence that the biases are only caused 
by the correlation of e and e; it provides, as we shall see below, a rationalization of the decreasing 
returns to scale estimates in the within dimension. 
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The same type of analysis applies to the exclusion of materials as a factor 
in the production function (or to not using value added but gross output or 
sales to measure production). The total estimates of 8, fi, and 9 should all 
move up roughly in proportion to the elasticity of materials 6 [by 1/(1 - a)], 
while the within estimates 8, fi, and 9 will be raised in lesser proportions, with 
the plausible result of a negligible bias in the total and a large downward bias 
in the within estimates of the scale elasticity. 

This time let the “true” model be: 

q = a c + p t  + y k + 6 m + ~  

(i.e., a generalized Cobb-Douglas production function where materials come 
in as another factor). Estimating a gross output equation ignoring rn assumes 
implicitly that materials are used in fixed proportion to output. This may be a 
belief about the technical characteristics of the production processes (the form 
of the production function) or the consequence of assuming that materials are 
purchased optimally and that their price relative to the price of output remains 
roughly constant over firms and over time. In any case, omitting m where it 
should be included means that the error in the estimated model is e = E + 6rn, 
resulting in the following biases for our estimates: 

bias & = 6bmc,9k, bias 6) = 6bme,ck, bias (?) = 6bmk,ce 

Across firms, in the between dimension, it is quite likely that the sum of the 
auxiliary regression coefficients b’s will not depart far from unity, so that the 
sum of estimates 8 + fi + 9 will approach the relevant true scale elasticity 
p, = ci + p + y + 6.  If the proportionality assumption of q and rn holds well 
enough, then the b’s would be more or less proportional to the corresponding 
elasticities and the relative biases roughly the same: 

& = a/(l - S), = p/(1 - a), .i, = y/(l - 6 ) .  

Over time, however, it is more likely that material usage may change less than 
proportionally, since it will respond incompletely or with lags to short-run out- 
put fluctuations. Hence, the sum of the b’s might be much less than one in the 
within dimension, causing the misleading appearance of decreasing returns to 
scale. As a plausible example, we can take 

- 
bmc.& - bmk.& = ” and bmP.ck = ‘ 5 ’  

and if the true coefficients are ci = .15, p = .3, y = .05 and 6 = .5 (p, - 1 = 
0), we get the following within estimates when m is omitted: 

& = .15, 6 = .55, $ = .05, and - 1 = - .25.  

Turning to the problem of simultaneity and assuming that firms try to max- 
imize their profits in the short run, given their stocks of physical and R&D 



121 Productivity and R&D at the Firm Level 

capital, the true model will consist of a production function and a labor de- 
mand function: 

q = w + @  + y k + e ,  

= e + + v ,  

where w is the real price of labor, and v is a random optimization error. We can 
assume that the errors in the two equations (e and v) are independent or, more 
generally, that they are of the following form: (e + f )  and (v + f), where e 
and f are respectively the parts of the disturbance in the production function 
transmitted and not transmitted to the labor variable. The OLS bias in fi can 
be written as 

where 

is the ratio of the random transmitted variance in the production function to 
the sum of itself and the independent variance in the labor equation. Thus, to 
get some notion about the value of R and the bias in @, we need to discuss the 
potential sources of variation in e, v, and w. 

Schematically, we can think of the disturbance in the production function as 
consisting of (1) long-term differences in factor productivity between firms; 
(2) short-run shifts in demand which are being met (partly) by changes in (un- 
measured) utilization of labor and capital; and (3) errors of measurement in 
the deflators of output, errors arising from the use of gross rather than net 
output concepts, and errors arising from the use of sales rather than output 
concepts. Only items (1) and (2) matter as far as the formulas are concerned 
since (3) (errors of measurement) is not really transmitted to labor. Moreover, 
only (1) matters in the cross-sectional (between) dimension under the assump- 
tion that (2) cancels out over time, while only (2) matters in the time (within) 
dimension. 

Similarly, the independent variation in the labor equation can be partitioned 
into: (4) the independent variation in real wage and ( 5 )  other short-run devia- 
tions from the profit-maximizing level of employment because of implicit con- 
tracts, shortages, or mistaken expectations. It is probably the case that most of 
the factor price variation to which firms respond is either permanent and cross- 
sectional or is common to all firms in the time dimension and hence is captured 
by the time dummies or trend coefficients. Thus, we anticipate that (4) mani- 
fests itself largely in the between dimension while ( 5 )  is all that is left in the 
within dimension. 

On the basis of the estimated variances and covariances of the residuals for 
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the semireduced form equations to be discussed below, we can give the follow- 
ing illustrative orders of magnitude (for p - .6): 

u;) = u y  = .004, a;) = U2W) = .002, 

a& = a,? + = .04 + .008, 

The R would equal (.004/.044) - .10 in the between dimension and (.002/.004) 
- S O  in the within dimension. With a true p of .6, the OLS between and within 
estimates fi would be respectively biased upward by about .04 and .20. 

5.3.2 The Semireduced Form Estimates 

If one takes the simultaneity story seriously, it is not surprising that the OLS 
within estimates of the production function are unreasonable. We should be 
estimating a complete simultaneous equations system instead. We cannot do 
that, unfortunately, lacking information on factor prices. But we can estimate 
semireduced form equations (i.e., reduced form equations omitting factor price 
variables) which may allow us to infer the relative size of our two parameters 
of interest a and y. 

Let the true production function be (ignoring constants, time trends, or 
year dummies) 

q = ac + pe + yk  + 6m + e ,  

where both c and k are assumed to be predetermined and independent of e, 
while q,  8, and m are endogenous, jointly dependent variables. Short-run profit 
maximization in competitive markets implies: 

q - e = w + v , q - m = p + & ,  

where w and p are the real prices of labor and of materials, respectively, and v 
and E are the associated optimization errors. Solving for q, 8, and m yields: 

[ac + y k  + e - p(w + v)  - 6(p + &)I, 
4 =  1 - p - s  

e =  [ac + yk + e - (1 - 6)(w + v)  - 8(p + E)], 
1 - p - s  

m =  [ac + yk + e - p(w + v)  - (1 - p)(p + E)]. 1 - p - s  

17. The variances of the residual e’ and v’ in our semireduced form production and labor equa- 
tions are respectively: 

[u: + P*(U; + ~:) ] / ( l  - p)’ + u:, and (u: + U: + ~ : ) / ( l  - @)’, 
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Since materials and factor prices are unobserved in our data, we have to drop 
the last equation and lump w and p with the other error components in these 
equations. We are thus left with two semireduced form equations for out- 
put and labor. Coming back for the sake of coherence to our previous nota- 
tions of the production function with m solved out [a = a/( l  - S), . . . , e = 
e - S ( p  + &)/(1 - S)], we can rewrite these two equations more simply: 

where e’ = [e - p(w + v)]/(l - p) and v’ = [e - (w + v)]/(l - p). 
The semireduced form equation should provide unbiased estimates of a/ 

(1 - p) and y/( 1 - p) to the extent that factor prices w and p are more or less 
uncorrelated with the capital variables c and k .  This condition seems quite 
plausible in the within dimension. There is little independent variance left in 
w and p in the within dimension after one takes out their common time-series 
components with time dummies or a trend variable. In the between dimension, 
however, one would expect that w and p might vary across firms and be posi- 
tively correlated with c and k,  leading to downward biases in a/( 1 - p) and y/ 
(1 - p) in both equations (and more so in the labor equation). 

Tables 5.8, 5.9, and 5.10 present estimates of such semireduced form equa- 
tions comparable to the production function estimates reported in the earlier 
tables 5.2-5.7: total and within estimates for all firms and for scientific and 
other firms separately; for the two subperiods 1966-71 and 1972-77 (and be- 
tween these two subperiods); for the restricted and merger samples (and the 
merger-no-jump sample). Since the “theory” of the semireduced form equa- 
tions implies that corresponding coefficients should be the same in the two 
equations, we also present the constrained system (SUR) estimates. 

A first look at the results shows that they are in the right ball park. They are 
not very strikingly different in the two dimensions, and most remarkably, the 
within estimates of the research capital coefficient are quite significant and 
rather large. Also, the corresponding estimates in the two equations are rather 
close. Given the large number of degrees of freedom, all differences are “statis- 
tically” significant, but constraining the coefficients to be equal in the two 
equations results in a negligible loss of fit, changing the systemwide R2 only 
in the third (or second) decimal place. 

A more careful examination confirms, more or less, our previous production 
function findings. The estimates for the two, scientific and other firms, are 

while the covariance is [a: + P(ut + crt)]/(l - p)’. For a given p, we can thus derive estimated 
values of a:, (a: + a:), and a;. However, these values are extremely sensitive to the value of p 
chosen and to small differences in the variances and covariance of the semireduced form equa- 
tions residuals. 



Table 5.8 Semireduced Form Equations Estimates (complete sample, 1966-77) 

Different 
Regressions 

Total Regressions Within Regressions 

d ( 1  - P) Y41 - P) System R2 d ( 1  - P) Y W  - P) System R2 

Scientific firms 
(N = 77) 

Other firms 
(N = 36) 

.559 
.407 .265 
(.022) (.027) 

.873 
(.010) (.014) 
.415 ,416 ,400 .288 
(.013) (.017) (.021) (.026) 

,403 ,278 
(.019) (.024) 

.857 
,554 ,311 
(.010) (.014) 

,321 ,291 
(.025) (.031) 

,910 
,488 ,378 
(.013) (.017) 
,464 ,375 ,283 ,423 
(.019) (.024) (.025) (.030) 

.301 ,395 
(.023) (.028) 

,909 
.490 ,378 
(.013) (.017) 

.510 ,067 
(.037) (.052) 

.860 
.544 .380 
(.018) (.024) 
.290 .558 .559 ,122 

(.029) (.036) (.051) (.021) 
.407 .536 .096 

(.018) (.024) (.033) (.041) 
,506 

All firms ,574 .296 
output 

(N= 133) 

Labor 

Constrained .558 

,711 output 

Labor 

Constrained ,706 

.340 output 

Labor 

Constrained .337 ,802 



Table 5.9 Semireduced Form Equations Estimates for Subperiods: 1966-71 and 1972-77 and between Subperiods 
(scientific firms, complete sample) 

Different 
Regressions 

Total Regressions Within Regressions 

System R2 d ( 1  - P) Y 4 l  - P) System RZ d ( 1  - P) Y41 - P) 

Subperiod 
1966-7 1 

output 

Labor 

Constrained 

Subperiod 
1972-77 

output 

Labor 

Constrained 

Between 
output 

subperiods 

Labor 

Constrained 

0.480 
(0.019) 
0.482 
(0.027) 
0.480 
(0.0 19) 

0.500 
(0.018) 
0.447 
(0.026) 
0.506 
(0.018) 

0.363 
(0.025) 
0.341 
(0.035) 
0.363 
(0.025) 

0.394 
(0.023) 
0.408 
(0.033) 
0.392 
(0.022) 

0.350 
(0.036) 

0.902 

0.902 

0.9 17 

0.915 

0.437 
(0.043) 
0.371 
(0.035) 

0.060 
(0.046) 
0.107 
(0.040) 
0.093 
(0.039) 

0.413 
(0.022) 
0.259 
(0.020) 
0.320 
(0.019) 

0.582 
0.164 
(0.047) 
0.230 
(0.057) 
0.180 
(0.046) 

0.622 
(0.071) 
0.579 
(0.062) 
0.592 
(0.059) 

0.264 
(0.024) 
0.464 
(0.022) 
0.385 
(0.027) 

0.571 

0.418 

0.417 

0.830 

0.822 



Table 5.10 Semireduced Form Equations Estimates for the Restricted, Merger, and Merger No Jump Samples (scientific firms, 1966-77) 

Different 
Regressions 

Total Regressions Within Regressions 

System R2 w - P) Yl(1 - P) System R2 4 1  - P) Yl(1 - P) 

Restricted 
sample 

Merger 
firms 

Merger: 

output 

Labor 

Constrained 

output 

Labor 

Constrained 

no-jumps 
sample 

output 

Labor 

Constrained 

0.521 
(0.014) 
0.48 1 
(0.022) 
0.527 
(0.0 13) 

0.402 
(0.028) 
0.461 
(0.038) 
0.407 
(0.028) 

0.460 
(0.028) 
0.521 
(0.039) 
0.468 
(0.027) 

0.343 
(0.019) 
0.343 
(0.029) 
0.343 
(0.017) 

0.484 
(0.03 1) 
0.438 
(0.042) 
0.480 
(0.03 1) 

0.414 
(0.032) 
0.355 
(0.045) 
0.405 
(0.03 1) 

.923 
0.500 

(0.038) 
0.392 

(0.035) 
0.433 
(0.033) 

.921 

,896 

.895 

0.208 
(0.042) 
0.179 

(0.045) 
0.196 

(0.038) 

-0.117 
(0.083) 
0.178 

(0.077) 

.925 

.924 
0.049 

(0.066) 

0.146 
(0.037) 
0.281 
(0.034) 
0.230 
(0.032) 

0.434 
(0.059) 
0.572 
(0.063) 
0.492 
(0.053) 

0.652 
(0.106) 
0.372 
(0.098) 
0.495 
(0.085) 

,730 

,725 

,714 

,709 

,519 

,504 
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close, given the collinearity between c and k,  which causes the much lower 
within estimate of y/( 1 - p) for the other firms group to be largely counterbal- 
anced by the higher estimates of a/( 1 - p). The estimates for the two subperi- 
ods are also quite comparable, since the higher within estimates of y(1 - p) 
for 1972-77 can be explained, similarly, by the lower estimate of a/(l - p). 
Also, the merger firms do not seem to behave as differently as it appeared 
earlier. The within estimates of y/( 1 - p) for the nonmerger firms are signifi- 
cant, and the discrepancy between the estimates for the two types of firms may 
also be a result of the collinearity between c and k. 

The remaining difficulty with our semireduced form estimates is their abso- 
lute size. It is different from our a priori expectations. If the true coefficients 
of the production function were a = .15, p = .3, y = .05, and 6 = .5, or in 
value-added terms a = .3, p = .6, and y = . I ,  the semireduced form coeffi- 
cients should be about .75 and .25, respectively. The estimated physical capital 
coefficients should be about .75 and .25, respectively. The estimated physical 
capital coefficient is much smaller, being about .5 at best, while the estimated 
R&D coefficient is of the expected order of magnitude but often higher. Al- 
though the total and within estimates do not differ too strikingly, it should be 
noted that the estimated sum (a + y)/( 1 - p) is about .8 or .9 cross-sectionally 
and about .5 to .7 in the time dimension. This is quite similar to what happened 
to our production function returns to scale estimates. 

We can think of two possible explanations for these shortfalls: (1) errors in 
variables, and (2) failure of the perfect competition assumption. 

To the extent that errors in measurement are random over time (which is a 
difficult position to maintain for stock variables), their effects can be mitigated 
by averaging and by trying to increase the signal-to-noise ratio in the affected 
variables. The between subperiods estimates given in table 5.9 represent an 
attempt to accomplish this by using differences between two six-year subper- 
iod averages. It is clear from this attempt (and from others not reported here) 
that averaging does not solve the problem of the absolute magnitude of our 
estimates. Either our solution for the errors of measurement is not effective 
(because the errors are correlated over time) or the problem is caused by some- 
thing else entirely. 

The perfect competition assumption is especially dubious for our large firms 
and short-run context. To explore the consequences of such a misspecification, 
we have to expand our model by adding a demand equation: 

where ai is a permanent firm demand level variable, z, is a common industry 
demand shifter, -q is the relative price elasticity of demand (where the price of 
the firm’s products pi, is measured relative to the overall price level in the indus- 
try), and + is the direct effect of R&D capital on the demand for the firm’s 
products. 
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Given this model, we reinterpret our output variable as sales (which it really 
is), make price endogenous, and use the demand equation to solve it out of the 
system. This yields comparable semireduced form equations, but the coeffi- 
cients are now 

for physical and research capital, respectively. With q < 0, the research capital 
coefficient is seen to be a combination of both its production and demand func- 
tion shifting effects. 

The introduction of the (1 + l/q) terms into these coefficients provides an 
explanation for the “shortfall” in our estimates. Assuming q = -4 (i.e., if a 
firm lowers the relative price of its product by 25 percent, it would double its 
market share) and cx = .3, p = .6, y = . l ,  and + = .l, implies .4 and .18 as 
the respective coefficients in the semireduced forms. That is not too far off and 
the assumptions are plausible enough, but that is about all that we can say. We 
shall need more data and more evidence from other implications of such a 
model before we can put much faith in this interpretation of our results. 

5.4 Summary and Conclusions 

We have analyzed the relationship between output, employment, and physi- 
cal and R&D capital for a sample of 133 large U.S. firms covering the years 
1966 through 1977. In the cross-sectional dimension, there is a strong relation- 
ship between firm productivity and the level of its R&D investments. In the 
time dimension, using deviations from firm means as observations and uncon- 
strained estimation, this relationship comes close to vanishing. This may be 
due in part to the increase in collinearity between the trend, physical capital, 
and R&D capital in the within dimension. There is little independent variabil- 
ity left there. When the coefficients of the first two variables are constrained to 
reasonable values, the R&D coefficient is both sizeable and significant. An- 
other reason for these difficulties may be the simultaneity of output and em- 
ployment decisions in the short run. Allowing for such a simultaneity yields 
rather high estimates of the importance of R&D capital relative to physical 
capital. Our data do not enable us, however, to answer any detailed questions 
about the lag structure of the effects of R&D on productivity. These effects are 
apparently highly variable, both in timing and magnitude. 
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Appendix 
Variables and Additional Results 

In this appendix we present more information on our sample and summarize 
the results of various additional computational experiments. 

Table 5A. 1 lists means, standard deviations, and growth rates for our major 
variables, and indicates that most of the observed variance in the data (90+ 
percent) is between firms, rather than within firms and across time. It also 
underscores the fact that these firms are rather large, with an average of more 
than 10,000 employees per firm. 

Table 5A.2 compares our main measure of physical capital stock C to four 
alternatives: C', CA, CN, and CD. Cis gross plant adjusted for inflation, which 
we assume to be proportional to a proper capital service flow measure. Since 
our adjustment for inflation is based on a rough first-order approximation, as- 
suming a fixed service life, a linear depreciation pattern, and an estimate of the 
age of capital (AA) from reported depreciation levels, we also tried different 
variants of it.I8 C' is one of them in which we assume the same average service 
life for plant and equipment of sixteen years for all our firms. The fit is some- 
what improved, but the changes in the estimates are only minor. Actually, using 
the reported gross plant figure without any adjustment does not make that 
much difference either. CA is our C measure taken at the end of the year in- 
stead of the beginning of the year. The fit is slightly improved, and the within 
estimates of 01 are increased a little. This could indicate that end of the year 
measures are appropriate but may also reflect a simultaneity bias arising from 
the contemporaneous feedback of changes in production on investment. CN 
and CD are net plant and depreciation adjusted for inflation, respectively. CN 
can be advocated on the grounds that in some sense it allows for obsolescence 
and embodied technical progress, and CD on the grounds that it is nearer in 
principle to a service flow measure. CN results in a small decrease of the within 
estimate of a and a corresponding increase in y, while CD results in an in- 
crease in both total and within estimates of a with no noticeable effect on y. 
We have also run regressions including an age of capital variable, AA. While 
our estimates of 01 and y are not affected by its inclusion, this variable in con- 
junction with our gross capital measure C (but not so in conjunction with the 
net capital measure CN) is clearly significant both in the cross-sectional and 
time dimensions, tending to indicate a rate of embodied technical progress of 
5.5 percent per year (see Mairesse 1978). 

Table 5A.2 also gives the estimates obtained with an alternative measure of 

18. To be precise C, is computed as reported gross plant X P(72)/P(t - AA,), where P is the 
GNP price deflator for fixed investment and AA, (the average age of gross plant) is computed as 
reported gross plant minus reported net plant (i.e., accumulated depreciation) divided by an esti- 
mate of the average service life LL,. LL, itself is computed as the five-year moving average of 
reported gross plantheported depreciation. 



Table 5A.1 Characteristics of Variables, Complete Sample (133 firmsp 

Scientific Firms (77) Other Firms (56) 

Percent Percent 
Variability Rate of Variability Rate of 

Geometric Standard Growth Geometric Standard Growth 
Main Variablesb Mean Deviation Between Within (%) Mean Deviation Between Within (%) 

Q Deflated sales 297.0 1.66 95.1 4.9 8.9 442.8 1.74 97.9 2.1 3.9 

employees 10.4 1.63 97.4 2.6 4.6 12.5 1.52 97.6 2.4 2.9 

for inflation 188.4 2.12 95.3 4.7 10.8 295.7 2.11 97.3 2.7 8.4 

computed using a 
0.15 rate of 
obsolescence 58.1 1.64 95.7 4.3 7.6 39.6 1.53 82.3 17.7 4.4 

employee 28.7 0.39 71.6 28.4 4.3 35.3 0.49 89.8 10.2 0.9 

adjusted per 

L Numberof 

C Gross plant adjusted 

K R&D capital stock 

QL Deflated sales per 

C L  Gross plant 

employee 18.1 0.85 86.6 13.4 6.2 23.6 1.05 93.2 6.8 5.4 
K/L R&D capital stock 

measure per 
employee 5.6 0.70 90.6 9.4 3.0 3.2 0.67 87.5 12.5 1.5 

5tandard deviations and the decomposition of the variance are given for the logarithms of the variables. 
bDeflated sales, gross plant adjusted, and R&D capital stock are in $lo6 and constant 1972 prices. Number of employees is in lo3 persons. 
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Table 5A.2 Production Function Estimates for Different Measures of Physical 
Capital Stock and Output, All Sectors, Complete Sample (133 firms), 
1966-77 (annual and three-year averages) 

Total Regressions Within Regressions 

Different Regressions” Q Y MSE Q Y MSE 

C 

C‘ 

CA 

CN 

CD 

QC 

0.310 
0.332 
0.323 
0.350 
0.322 
0.344 
0.304 
0.325 
0.361 
0.383 
0.305 
0.325 
0.313 
0.336 

Three-year averages 

0.073 
0.054 
0.070 
0.048 
0.074 
0.054 
0.076 
0.050 
0.062 
0.044 
0.073 
0.055 
0.074 
0.055 

0.097 
0.095 
0.095 
0.092 
0.095 
0.092 
0.096 
0.094 
0.099 
0.097 
0.100 
0.098 
0.091 
0.090 

0.160 
0.150 
0.180 
0.173 
0.201 
0.186 
0.124 
0.114 
0.194 
0.189 
0.102 
0.093 
0.195 
0.187 

0.150 
0.080 
0.142 
0.069 
0.156 
0.101 
0.184 
0.115 
0.163 
0.086 
0.127 
0.060 
0.154 
0.092 

0.0204 
0.0199 
0.0202 
0.0197 
0.0201 
0.0197 
0.0204 
0.0199 
0.0202 
0.0196 
0.0229 
0.0224 
0.0153 
0.0149 

‘Constant returns to scale are imposed for estimates reported in the first line of each cell but not 
in the second. 

deflated sales, QC, tentatively corrected for inventory change. The correction, 
however, is problematic since it is based on all inventories and not just finished 
products. In any case, QC performs much worse both in terms of fit and in 
terms of the order of magnitude of the within estimates. Finally, we also list 
estimates based on three-year averages of the observations. While errors of 
measurement appear to be a priori an important issue (if they were random and 
uncorrelated, going to averages should reduce the resulting biases), the 
changes are not striking and the discrepancy between total and within esti- 
mates remains. Yet there is a sizeable increase (about 20 percent) in the within 
estimate of a, which might reflect an error in the capital-labor ratio accounting 
for about 30 percent of the observed “within” variance in this ratio. 

Because we did not want to give up hope of gaining some evidence on the 
lag structure of R&D effects, we experimented with a large number of R&D 
capital stock measures, but mostly in vain. Table 5A.3 compares K, the mea- 
sure we finally settled on based on a 15 percent depreciation rate, to six rather 
different alternatives. KO0 and K30 are computed similarly to K but assuming 
0 and 30 percent per year obsolescence rates instead. K‘ and K’OO differ from 
K and KO0 respectively in assuming that R&D vintages older than eight years 
are completely obsolete. Since information on R&D is available only from 
1958 (i.e., for eight years before 1966), this is also a way to test our initial 
condition assumption. In the K and KO0 measures, the 1958 R&D capital levels 
are based on extrapolating R&D expenditures back to 1948, using the 1958-63 
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Table 5A.3 Production Function Estimates Based on Different Measures of R&D 
Capital, Complete Sample (133 firms), 1966-77 

Total Regressions Within Regressions 
Alternative R&D 
Capital Measuresa ci Y MSE a Y MSE 

0.310 0.073 
0.332 0.054 

K 

0.311 0.075 
0.333 0.057 

K’ 

0.309 0.059 
0.334 0.040 

KO0 

0.311 0.070 
0.333 0.051 

K’OO 

0.311 0.079 
0.332 0.061 

K30 

0.311 0.065 
0.334 0.046 

KP 

K and 0.318 0.070 
P-%, P-,,, P-,,, F9+ 0.340 0.051 

0.097 
0.095 
0.096 
0.094 
0.098 
0.095 
0.097 
0.095 
0.096 
0.094 
0.097 
0.095 
0.094 
0.092 

0.160 0.150 
0.150 0.080 
0.173 0.119 
0.153 0.064 
0.152 0.172 
0.154 0.081 
0.178 0.106 
0.158 0.050 
0.167 0.137 
0.147 0.084 
0.195 0.070 
0.165 0.027 
0.149 0.205 
0.152 0.120 

0.0204 
0.0199 
0.0206 
0.0199 
0.0202 
0.0199 
0.0207 
0.0200 
0.0204 
0.0198 
0.0209 
0.0200 
0.0197 
0.0196 

“First line regressions assume constant returns to scale, second line regressions do not. 

individual firm R&D growth rate shrunk toward the overall industry rate. KP 
is also a summation of past R&D expenditures over eight years but with a very 
different peaked lag structure: w-, = w - ~  = 0.05, w - ~  = w-, = 0.10, w-, = 

w-, = 0.15, and P-9+ is one of 
the free-lag version experiments we have attempted. The P variables are the 
following proportion of past R&D expenditures (over two years plus the tail) 
to total cumulated expenditures (with a .15 rate of obsolescence): (R- ,  + R-4)/ 
K, (R-5 + R-,YK, (R-, + R-JK,  (R+ + R-,o + . . .)/K. Hence, the co- 
efficients of the P’s should give an indication of how far the respective 
true weights are from the assumed declining weights in K: 1, 35,  .72, .61, 
.52, . . . , etc. 

As was the case for the different physical capital measures, the total esti- 
mates are almost unaffected by all this experimentation, while the within esti- 
mates are more sensitive. The initial conditions seem to matter very slightly, 
showing some influence of a truncation remainder or tail effect. The within 
regressions with the K and KO0 measures perform a little better in terms of fit 
than those with the corresponding K’ and K’OO measures (which assume no 
effective R&D before 1958), and the estimated y is a bit higher. The assump- 
tion about the order of magnitude of the rate of obsolescence 6 is even less 
important. Still, there is some tenuous evidence here for a rather rapidly declin- 
ing lag structure. The KP measure (which assumes a peaked lag structure) 
has the lowest fit and the lowest within y, while the “free lag” version in the 
neighborhood of the K measure performs best on both grounds. The estimated 
P coefficients (within) are: 

= w - ~  = 0.20. Finally, K, P-,,, P-,,, P 
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P34: -0.35, P 5 6 :  -0.17, P78: -0.10, P 9 , :  0.05,  

(0.09) (0.07) (0.07) (0.02) 

implying that around lag 3 and 4 the weight of past R&D is about .22 rather 
than .57, around lag 5 and 6 it is .24 rather than .41, around lag 7 and 8 it is 
.20 rather than .30, and around lag 11 it is .22 rather than .17. That is, there is 
a reasonably strong immediate effect in the first two years which then drops 
sharply and stays constant through most of the rest of the observable range. 
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