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1 Introduction

Economists analyzing urban economics questions commonly use geographic units as they

come from the Census Bureau, e.g. Metropolitan Statistical Areas (MSAs). The Census Bu-

reau, in turn, typically uses arbitrarily-defined political boundaries to construct its reporting

units. The Census Bureau has numerous constituents it must satisfy with its reporting. It

is unlikely that in its determination of reporting unit boundaries, it would place high priority

on what would be best for research in urban economics. Put in another way, there is likely

to be measurement error between the economic units that researchers want and the reporting

units such as MSAs that the Census Bureau provides.

A question in urban economics that has attracted much attention is the extent to which

the size distribution of cities obeys Zipf’s Law.1 If this holds perfectly, then when we rank

cities and plot the log of the rank against the log of the city population, we get a straight

line with a slope of one. Equivalently, the largest city is twice as big as the second largest,

three times as big as the third largest, and so on (the rank-size rule). Researchers such as

Gabaix (1999) using MSAs to define cities have found that Zipf’s Law holds to a striking

degree. But what does it mean to say that Zipf’s Law holds when the boundaries are made

up by bureaucrats and politicians?

We are worried about how to interpret Zipf’s Law results with this data for three reasons.

First, MSAs are aggregations of counties and the county is a crude geographic unit for

such a building block. In some parts of the country, counties cover an extremely large

land area and locations get wrapped together as an MSA that clearly do not comprise a

coherent metropolitan area.2 We note that even if measurement error is unsystematic it

potentially causes problems for a study of the size distribution because the distribution

with measurement error is in general different from the one without it. Second, we are

particularly concerned about how boundaries are drawn for the largest cities. These cities

can often be found in densely populated parts of the country where MSAs form continguous

blocks, such as the Northeast Corridor extending from Washington D.C. to Boston. It is

1See Gabaix and Ioannides (2004) for a literature survey.
2This point about MSAs is well appreciated in the literature. See for example, Bryan, Minton, and Sarte

(2007) for a recent discussion.
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often a tough call determining whether a given area should be classified as one or two MSAs

and if the latter, where to delineate the boundary. If bureaucrats for whatever reason tend

to use broad definitions of MSAs that subsume contiguous areas into single large MSAs, this

process may itself contribute to findings of Zipf’s Law. Third, with MSA data we leave out

approximately 20 percent of the population not living in MSAs. So we don’t see what is

going on with small cities, the left tail of the size distribution.3 Eeckhout (2004) has recently

advocated looking at the left tail by using data on Census places which include very small

towns. But as argued below, Census places are heavily dependent on arbitrary political

decisions of where to draw boundaries.

Our paper considers a new approach to looking at population distributions that sweeps

out any decisions made by bureaucrats or politicians. When comparing populations of

geographic units we can think of differences as coming along two margins. First, one unit

can have larger population than another because it encompasses more land area, holding

population density fixed. Second, a unit can have larger population on a fixed amount of

land; i.e., higher population density. In our analysis of the size distribution, we completely

eliminate the first margin and allow only the second. We cut the map of the continental

United States into a uniform grid of six-by-six mile squares (and some other size grids as

well) and examine the distribution of population across the squares. We document several

regularities that are robust to various ways of cutting the data. We examine the extent to

which Zipf’s Law holds for squares.

Our first result is that at the extreme left tail of the distribution things look roughly like

the log normal; there is roughly a bell curve. With the Zipf distribution, there are always

more smaller cities than bigger cities; there is never a bell curve with a modal point below

which the density of log population decreases as size decreases. This works well on the right

tail of the distribution (e.g. there are more squares with 50,000 people then 100,000) but

does not work well around the left tail. This point can be highlighted by a discussion of the

extreme cases of squares with population one and two. There are 713 squares with exactly

one person (a bachelor farmer, a forest ranger) living in them. A much larger number of

3The Census as recently released data on what are called Micropolitan Areas. These are essentially
moderate-sized counties that do not qualify as MSAs. So our concern that the county is a crude geographic
unit applies here.
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squares (1,285) have exactly two people living in them. (Perhaps a forest ranger couple?)

Given priors about scale economies and basic agglomeration benefits, it not very surprising

that squares with one lonely person in them are rarer than squares with two. The recent

literature has not focused on scale economies and agglomeration benefits to try understand

the size distribution, focusing instead on the impacts of cumulative random productivity

shocks (e.g. Gabaix (1999) and Eeckhout (2004)). We suspect that to understand the

shape of the extreme left tail of the distribution of squares, issues of scale economies and

agglomeration are of first order importance.

Our second result throws out the extreme left tail and looks at the distribution of pop-

ulation across squares with population 1,000 or more. Approximately 24,000 squares meet

this population threshold and these squares account for 28 percent of the surface area of

the continental United States. We construct a Zipf plot and find a striking pattern. To a

remarkable degree, the plot is linear until it hits a kink at square population around 50,000.

Below the kink the slope is approximately .75, above the kink the slope is approximately

2. This piecewise linear function fits the data extremely well. Moreover, when we split the

data by region and make a Zipf’s plot in each individual region, the same piecewise linear

relationship shows up with the kinks in approximately the same place. Our results are not

like the standard Zipf’s Law findings and the objects we are looking at–with no variation

on the land area margin–are different from the standard objects people look at. But we

find our results intriguing in the same way that the usual Zipf’s Law findings are intriguing.

The third result concerns the extent that Gibrat’s Law for growth rates holds with

squares. Under a typical statement of Gibrat’s Law, the mean and variance of growth

is independent of initial size. Gibrat’s Law does not hold for squares. The relationship

between growth and size is an inverted U, the smallest and the largest population squares

having the lowest growth rates. It is not surprising that the highest population squares have

a low growth rate since these typically are fully-developed and there is little vacant land for

further growth.

Our fourth result links our findings to results in the previous literature about Zipf’s Law

for MSAs. As mentioned, the main finding in the literature is that when we look at the upper

tail of the MSAs size distribution, the regression coefficient of log rank on log population
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equals one. Now if we were to replace MSA population with MSA average density in the

regression we don’t necessarily expect to get a coefficient of one because it depends upon the

elasticity of MSA surface area to MSA population. If this elasticity equals a half (which

is approximately what we find it to be) then the expected slope coefficient on density is

actually two rather than one. This is in fact what we get (approximately) when we replace

MSA population with MSA density. This is also what we get when we use the maximum

density square in the MSA rather than the average density in the MSA. We find it very

interesting that the slope we are getting in the right-tail of these MSA-level regressions is

similar to the slope we get in the right tail of the square-level regressions (i.e., the slope

to the right of the above-mentioned kink). We interpret this as evidence of some kind of

fractal structure, where the distribution of average density of the right tail of MSAs is similar

to the distribution of the right tail of squares within MSAs which in turn is similar to the

distribution of the right-tail of squares across all of the continental United States.

Given our wariness about using theMSA surface area measure, we are somewhat surprised

that when we use it to construct average MSA density, we get numerical results that we can

connect to our results with squares. Perhaps the bureaucrats are doing a reasonably good

job of things, after all. Even if they are, our analysis of squares rather than MSAs is

still interesting because we are looking at something different from the previous literature

with new insights. The fractal pattern of the right tails–cross MSAs similar to squares

within MSAs similar to squares across the continent–suggests a common explanation might

underlie all of this. The dominant explanation in the recent literature of the size distribution

of MSAs is the random growth explanation of Gabaix (1999).4 But certainly this will not

be an explanation that will work in explaining the size distribution of squares within MSAs

and squares across the continent. For one thing, Gibrat’s Law does not hold for squares

as noted above and Gibrat’s Law is needed to get the random growth theory to work. For

another, it is clear that the size distribution of squares within MSAs is better understood by

economic theories like the Alonzo-Muth-Mills monocentric model of the city than a random

growth theory. We believe that a unified theory of the size distribution of squares within

MSAs and across MSAs will have to incorporate economic factors like scale economies and

4For related work on firms see Luttmer (2007).
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include an explicit spatial structure. See Hsu (2008) for an attempt to do exactly this.

We need to discuss the closely related work of Eeckhout (2004) in some detail. He made

a compelling case that the use of MSAs truncates out low population areas and he suggested

the use of the Census place as a way to see what is happening at the bottom tail of the

distribution. Eeckhout found that the distribution of places is log normal rather than Zipf.

This is interesting. However, we are even more worried about the use of Census Places to

define geographic boundaries than we are about the use of MSAs. The first thing to be said

is that only 74 percent of the 2000 population actually lives in what the Census calls a place;

the rest are in unincorporated areas. Next consider Table 1. To construct it, we take a list

of all Census places from the 2000 Census (Eeckhout’s data) and tabulate all those places

with population five or below. We see two places made it in the Census file with exactly one

resident (including Lost Springs, Wyoming), and two places with population equal to two,

including Hove Mobile Park City, North Dakota. Of course it is arbitrary that Lost Springs

with its one resident is considered a place, while some farmhouse in an unincorporated area

with a family of five living in it is not a place of five people. Whether or not a location is

counted as a place depends upon legal particulars that are not likely to be of interest in our

analysis of city size distributions. These concerns arise at the top of the size distribution

as well. St. Paul and Minneapolis in the Twin Cities are adjacent to each other and are

different Census places since they have never merged; Manhattan and Brooklyn are part

of the same Census place (New York City) because they merged in the nineteenth century.

Our six-by-six square analysis pulls in all of the land in the continental United States and

treats it in a uniform way: the one resident of Hove Mobile Park City is on equal footing

with a bachelor farmer in an unincorporated area, New York City is treated the same way

as the Twin Cities.

Many others have noted the inadequacies of MSA definitions for various research questions

and have used geographical techniques to improve upon these boundaries. For example,

Duranton and Turner (2007) use buffers around 1976 settlements within MSA boundaries to

get more meaningful MSA definitions for their analysis of urban growth and transportation.

Others have used rich geographic data to determine the location of employment subcenters.

(See Anas, Arnott, and Small (1998) and McMillen and McDonald (1998).) In principal,
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rather than fix squares like we do, it might be possible to draw some kind of optimal city

boundaries, to let the land margin back in. We view this as a fruitful, complementary

approach. But once the economists take the job of drawing the metropolitan boundaries

away from the bureaucrats, we need to worry about the mistakes the economists might

make. For this reason, we think it is useful to nail down what happens when we completely

eliminate the land margin across locations, as we do here.

While the focus of our work is the size distribution and Zipf’s Law, our work also makes

a broader point that research in urban economics should not be constrained by standard

geographic units handed to us by statistical agencies. The Census releases population data

at an extremely high level of geographic precision–the block level (which in urban areas is

a city block or an apartment building)–so there is great flexibility in choosing boundaries.

Moreover, such analysis is facilitated by advances in GIS software. We therefore have great

flexibility in defining the boundaries to be whatever we want them to be. There are many

applications in urban economics where researchers might be well served by defining their own

boundaries rather than using the off-the-shelf boundaries. The construction of segregation

indices is one example. Other papers highlighting the flexibility of continuous geographic

data include Duranton and Overman (2005) and Burchfield et al (2006).

2 Data

We draw a grid of six-by-six mile squares across the map of the continental United States. A

map is a two dimension projection of the three dimension globe and the square grid may look

different on maps using different projection methods. We use the USA Contiguous Albers

Equal Area Conic projection method which preserves area size: the size of an area on a map

is equal to the real size of the area on the globe.5

We use six miles for our baseline because in the first version of this paper, we used the

original township grid of six-by-six mile squares. This was laid down in the early 1800s

by the Public Land Survey System (PLSS) for the purpose of selling federal lands. (See

Linklater (2003).) That was a good place to start but we eventually realized it would be
5This may not be true in maps using other projections. For example, maps using Mercator projections

present Greenland as being roughly as large as Africa while Africa is about 14 times as big as Greenland.
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much cleaner to draw our own grid. That way we could cover states that were otherwise left

out (e.g. the original thirteen states were not surveyed because there were no federal lands

to sell). Plus the original survey done with chains and landmarks was sloppy compared to

what we can do now on a computer. Of course, we have to anchor the grid at some place.

We show later that shifting the grid up or down or left or right is irrelevant. If we make a

large enough change in the grid size that can make a difference, but not if we make a small

change. We talk about this in Section 7.

The grid has 85,527 squares, each exactly 36 square miles, summing up to 3.1 million

square miles of the continental United States. Figure 1 illustrates the grid in the vicinity

of New York City. Note the six-by-six squares along the coast project out into the water.

We treat these as full six-by-six mile squares and make no distinction for any square as to

whether the surface area within the square is dry land or water. People can live on the

water, e.g. on houseboats, in some cases easier than on the dry land remote desert areas.

We return to the water issue in Section 7.

We use the population data from the 2000 and 1990 Decennial Census reported at the

level of the Census Block. In urban areas, a Census Block is a city block or apartment

building. For 2000, there are 7 million Census Blocks in the continental United States. Of

those reporting any population, the area of the median Census Block for 2000 equaled .014

square miles, a tiny unit of land compared to a six-by-six square. The 95th percentile of

block area equals 1.43 miles, still a small amount. The Census Bureau reports the longitude

and latitude of a point within the boundaries of each Census Block and we use this point to

map each block into a six-by-six square. Figure 2 illustrates the location of Census blocks

in the vicinity of New York City. In this area, there can be a thousand or more blocks

assigned to a particular square.

There is a possibility of measurement error in the allocation of population to squares that

we need to address. A block boundary might cross the boundaries of a six-by-six square

and when this happens, someone living in the block on one side of the boundary can be

mistakenly allocated to the six-by-six square on the other side. Because blocks are typically

very small, this issue is negligible, except in a few extreme cases. To get some sense of

this issue, we determine for each of the 280 million people in the population what six-by-six
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square they are assigned to and the number of block groups assigned to the same six-by-six

square. The first percentile of this statistic is 35 blocks. This means that all but 1 percent

of the population live in six-by-six squares with at least 35 blocks assigned to them. Now 35

blocks will trace out a fairly clean square. The 5th percentile is 74 blocks, the 50th is 719,

the 75th is 1609. We are confident that for 99 percent of the population our assignment is

very good. We note that even in very rural areas, the Census typically defines blocks at a

fine level of granularity.6

To compare our results with what comes out of the traditional approach with MSA level

data, it is useful to aggregate our squares to MSAs. We allocate squares to the MSAs as

defined for the 2000 Census. In certain metropolitan areas, the Census offers a choice of

consolidated areas (e.g. the New York CMSA) versus a breakdown into component areas.

We use the consolidated definitions. There are 274 different such MSAs in the continental

United States. We allocate squares to MSAs according to the following rule. A square gets

assigned to a MSA if any block in the square is part of the MSA. In the event a square is at

a boundary where MSAs overlap in the square, we assign the square to the MSA with the

largest surface area based on blocks.

Table 2 presents summary statistics of how population from the 2000 Census varies across

squares. Mean population across the 85,527 squares is 3,269. Population is highly skewed

with two squares in the New York MSA having 1.3 million in population. The area unit

used in the analysis to calculate density is the six-by-six mile square. So each square has

one unit of area and the population density equals the population.

Table 2 also presents summary statistics for the 274 MSAs. Mean density is 7,881 per

square which is twice the density of squares overall. The mean number of squares across

MSAs is 87, with the minimum being 14 and the maximum being 981 squares. So clearly

the square is a much smaller geographic unit than the MSA. The maximum land area is

attained by the Las Vegas MSA and this is a good example of the limitations of Census MSA

definitions. Counties in Nevada are huge in terms of surface area. Since the Census uses

6There are a relatively small number of cases where a square has only one block group assigned to it.
There are 592 such blocks accounting for 20,000 people (out of 280 million). These look like unusual and
exceptional cases rather than just simply rural cases. Of this 20,000 people, 5,677 are in the 29 Palms
military base in California. The base is in a Census block covering 272 square miles. Another block is in
the Mohave desert. Others are in National Parks and National Forests.
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the county as a building block unit for MSAs, much area that is not actually part of the Las

Vegas metropolitan area is folded into the MSA bearing its name.7

3 Background Equations

It is useful to discuss some background equations on the size distribution. Following the

notation of Gabaix and Ioannides (2004), let Si denote the population size of city i and

suppose the distribution of populations across cities is Pareto,

Ranki = P (Size>Si) =
a

Sζ
i

. (1)

Taking logs, we get

lnRanki = ln a− ζ lnSi. (2)

The slope ζ is called the tail coefficient. Zipf’s Law is said to hold if ζ = 1.

Let Li be the land area of city i and the population density Di be

Di =
Si
Li
.

The analysis remains in a log-linear form if there is a constant elasticity η relationship

between land and population,

Li = γSη
i .

Taking logs yields

lnLi = ln γ + η lnSi. (3)

7Another example of this problem with huge counties is the case of the Flagstaff MSA in Arizona. The
city of Flagstaff is located in the geograhically huge Coconino County (over 18,000 square miles) and the
Census classifies the whole county as the Flagstaff MSA. Flagstaff is the third largest MSA by land area.
Cities quite distant from Flagstaff including Tuba City (78 miles) and Page (119 miles) are folded into the
FlagstaffMSA because they happen to be in this county. A large percentage of the FlagstaffMSA population
reported by the Census comes from distant places like these that clearly are not part of the economic unit
of Flagstaff city. Researchers might be tempted to use the city boundaries of Flagstaff rather than the MSA
boundaries. But this raises the issue of the often arbtitrary political decisions that determine municipal
boundaries.
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Solving the above for lnSi and substituting into (2) yields

lnRanki =

∙
ln a+

ζ

η
ln γ

¸
− ζ

η
lnLi. (4)

This is a Zipf’s relationship using land instead of population. Note the slope is ζ/η, not ζ.

In the special case where population density is constant across cities (e.g. each individual

inelastically demands one unit of land) then η = 1 and the slope coefficient for the land

regression (4) is identical to the slope coefficient for the population regression (2). But

otherwise in the empirically relevant case where η < 1, the slope is higher for the land

regression than the population regression.

Analogously, using lnDi = lnSi − lnLi and (3), we can solve for lnSi in (2) in terms of

lnDi to get

lnRanki =

∙
ln a− ζ ln γ

(1− η)

¸
− ζ

1− η
lnDi. (5)

This is a Zipf’s plot for population density. The tail coefficient is ζ/ (1− η). If Zipf’s Law

holds so that ζ = 1 and if η < 1, then this slope will be greater than one.

Next consider squares. Let the squares be indexed by j and let sj be the population of

square j. Let Ai be the set of squares that are in city i. Then city population, land area

and density equal

Si =
X
j∈Ai

sj.

Li = Number of squares in Ai,

Di =
Si
Li
= mean sj, j ∈ Ai.

In general, the relationship between the size distribution of the squares sj and of the cities

Si is quite complicated, except of course for the special case where each square is a city.

We leave to future research a theoretical analysis of this relationship and focus instead

on a descriptive analysis of the distribution of the squares sj and how it compares to the

distribution of MSA-defined cities.

We are able to make one immediate observation. Let smaxi be the highest population
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square in city i,

smaxi = max
j∈Ai

sj.

If the maximum density square is proportionate to the overall city population density,

smaxi = λDi, (6)

and if we replace Di in (5) with smaxi , then we obtain the same slope coefficient. This is inter-

esting because the maximum population square is more reliably measured than the average

population density of an MSA. The latter heavily depends upon where the boundaries are

drawn. Typically there is rural land at the boundary of an MSA so the wider the boundaries

are drawn, the lower the overall MSA population density. The smaxi variable is determined

in the interior of the MSA, the “central business district,” far from the boundaries of the

MSA. So it it won’t be affected if the MSA boundary is arbitrarily increased 20 miles out

or 20 miles in.8, 9

4 The Size Distribution of MSAs

As a benchmark, this section examines the size distribution of MSAs. Following Gabaix

(1999), we focus on the 135 largest MSAs, treating this as the upper tail of the distribution.

Figure 3 presents three Zipf’s plots. The first is the standard one where we use popula-

tion. The second replaces population with land area as in (4); the third replaces population

with density as in (5).10 Table 3 reports estimated slope coefficients. As is common in the

literature, we estimate the tail index two ways, standard OLS and the Hill method (the max-

imum likelihood procedure under the null hypothesis that the distribution is Pareto). See

the handbook chapter Gabaix and Ioannides (2004) for a discussion of econometric practice

in this literature. As recommended in this handbook chapter, we use simulation methods to

8The MSA boundaries still impact the smaxi measure, of course, if the Census merges two MSAs into one
MSA.

9One issue with smaxi one might raise is that it might depend on where the grid is positioned. We show
below that we can shift around the grid and our results with smaxi do not change.
10Analogous to what we do for population, for land we take the top 135 MSAs ranked by land and for

density we take the top 135 MSAs ranked by density.
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estimate the OLS standard errors as the usual method yields biased estimates. Zipf’s Law

for the population holds in a striking fashion. The OLS estimate of the slope coefficient

for the population regression is 1.01 and the fit is excellent as can be seen visually by the

straight line in Figure 1 and by the R2 of .988 in Table 3.

The Hill estimate of the population coefficient is .94, a little less than one. But the

estimated standard error is .07, so we cannot reject that the slope equals one with a standard

statistical test. Here and elsewhere in the paper, the Hill estimates are a little smaller than

the OLS estimates and have a higher estimated standard error, but are otherwise similar.

Since the OLS and Hill estimates are basically telling the same story, for the rest of the

paper we will discuss just the OLS estimates in the text but report both in the tables.

The OLS slope coefficients on land and density are 1.70 and 1.90. Straight lines fit

reasonably well. To relate this to the equations in the previous section, we look at the

relationship between land area and population in the top 135 MSAs by population. A

regression of the log of MSA area on log MSA population yields a slope coefficient of .52.11

Let us take this as an estimate of η from the previous section. Equations (4) and (5)

from the previous section suggest the slope coefficient on both land and density should be

approximately equal 2 if ζ = 1 and η = .5 approximately hold. Our estimates of 1.70 and

1.90 are in the ballpark of 2.

The next thing we do is to bring in our information about squares into a MSA-level

analysis. For each MSA i, we determine smaxi , the maximum population square of all the

squares in MSA i. We substitute smaxi in for the average density Di as discussed in the

previous section. The results are reported in the bottom row of Table 3. The estimated

slope coefficient equals 1.76. The estimate is close to the 1.90 estimate obtained with

average density and the fit is little better, R2 = .988 instead of R2 = .973. Recall that

the land measure for MSAs is crude, making the derived measure of average MSA density

a relatively crude object. Yet the results are similar with the two alternative measures of

density. Suppose the population of the maximum density square is proportionate to average

density as in (6) and that the average density measure is measured precisely. Then these

two regressions would yield similar slopes. We interpret this finding as encouraging for those

11The standard error is .04, the R2 = .52.
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wishing to use MSA-defined cities.

It is worth noting that even with the smaxi regression we are still dependent upon Census

decisions about whether two nearby metropolitan areas should be grouped into one or two

MSAs. The Census groups San Francisco and Oakland into one MSA, so the observation of

smaxi is downtown San Francisco. If Oakland were separated into a distinct MSA, we would

get another observation of smaxi for downtown Oakland. In what we do in the next section

with squares, we do not depend upon such Census classifications.

So far the focus has been the upper tail of the MSA distribution. Next we look at the

entire distribution of MSAs. It is known in the literature that Zipf plots of MSAs tend to

exhibit a concave shape when the lower tail of the distribution is included. (See for example,

Rossi-Hansberg and Wright (2007)). When a Zipf’s plot is not a straight line, a standard

density plot of the distribution can be more revealing than a Zipf’s plot. As a segue into

looking at the whole distribution, we first illustrate in the top panel of Figure 4 a density

plot (histogram) of log population for just the upper tail, the 135 highest population MSAs.

Also illustrated in the plot is the best fitting normal curve. Clearly the bell curve shape of

the normal does not fit well the distribution within the top 135 MSAs. Rather, a Pareto

distribution is a good fit here. With the Pareto, the density is a straight line that is strictly

decreasing; the smaller the units, the more of them there are.

The middle panel in Figure 4 illustrates the distribution of log population for all 274

MSAs. Now the tendency for monotone decline of the density is not as pronounced as it

is with just the top 135, but still this is the clear pattern. Certainly the bell curve of the

normal does not fit the distribution of MSAs well.

5 The Size Distribution of Six-By-Six Squares

We turn now to the size distribution of six-by-six squares. Table 4 provides cell counts for

population size groupings. Approximately 15,000 of the 86,000 squares are unpopulated.

There are 713 squares where only one person lives and 1,285 where two people live. Clearly

the Pareto in which the density is always decreasing cannot fit this distribution.

Figure 4 (c) is a density plot of log population across all squares with at least one person.
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For the unpopulated squares, the log of population is of course minus infinity, so the figure

leaves out a spike at minus infinity. For squares with one person, log population equals 0,

so the plot begins here. The last column of Table 4 provides a conversion from population

to log population to aid in interpretation of the figure. When log population is less than

4 (when population is less than about 50), the best fit normal curve fits reasonably well,

though things are choppy. Certainly the log normal fits the distribution better than the

Pareto on the right tail.

Our finding that the log normal is a rough approximation to the right tail of the distri-

bution of squares is like Eeckhout’s (2004) finding that the log normal fits the right tail of

the distribution of Census places. But as argued in the Introduction, the Census place is

a problematic geographic unit to use in examining the size distribution. Eeckhout presents

a random growth model with shocks to location productivities that generates a log normal

distribution. We don’t attempt any formal analysis in this paper to try to explain why the

size distribution has the shape that it has. But a look a the raw data makes us skeptical

that random location-specific productivity shocks are the main driving factor, at least at

the extreme left tail. That there are more squares with two people than one person (1,285

instead of 713) to seems to us more likely due to basic agglomeration benefits in the human

condition rather than the variance of location-specific productivity shocks. It seems likely

to us as we move up beyond the one and two person size classes, related agglomeration forces

are also at work.

We now turn our attention away from the extreme left tail and consider what the dis-

tribution looks like with the extreme left tail truncated off. If any part of the distribution

is to look anything like Zipf, it has to be on the downward sloping portion of the density.

Inspection of Figure 4(c) reveals that the mode of the distribution is approximately at a

log population of 7 which corresponds to approximately a population of 1,000. Henceforth,

we truncate all squares with population less than 1,000. From Table 4 we see that there

are 23,974 squares with 1,000 people or more and these account for about 28 percent of the

United States land mass and 96 percent of the population. The coverage of the population

is very significant here. Even with the truncation, we are including areas that are quite

remote.
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Figure 5 is a Zipf’s plot of the population distribution of squares with 1,000 or more

people. It exhibits a clear pattern. The relationship looks piecewise linear with a kink

around log population of 11 (which corresponds to a population of approximately 50,000).

Above the kink, the relationship steepens. We use nonlinear least squares to fit a piecewise

linear function to the plot in Figure 5 and the estimates are reported in Table 5. On account

of the large number of observations the estimated standard errors are quite small so they

are not reported. The estimated kink is at a log population of 10.89. Below the kink the

(absolute value of) the slope is .75; above the kink it is 1.94. The R2=.998 is extremely high

so the piecewise linear function fits very well. For comparison purposes we also fit a linear

function. The slope in the linear case is between the estimates for the piecewise linear case

and the fit is noticeably worse.

The Census groups states into nine different Census Divisions. Our next exercise is to

examine the distribution of population across squares within each Census Division. Figure

6 contains Zipf plots for all nine Divisions and Table 5 lists the estimates. To a remarkable

degree, the pattern we have established for the country as a whole occurs in each Division

individually. Table 5 shows the estimated location of the kink varies little across the divi-

sions, roughly 11 for each. In Figure 6 we see that the slope on the left side of the kink

is approximately the same for each Division. The plots look something like vertical shifts

across the Divisions. In all cases, the slope to the right of the kink is strictly greater than

one and to left of the kink the slope is less than one (with the exception that for the East

South Central the slope actually equals one to the left of the kink.)

The kink at log population of 10.9 suggests we should explore this upper tail. This

corresponds approximately to a population of 50,000. So now truncate all squares with

population less than 50,000. We are left with 1,182 squares accounting for 48 percent of

the population. Table 6 reports the results of a linear Zipf’s regression on this tail of the

distribution. Taking the country as a whole, the slope is 1.889. Looking at each Census

Division individually, the variation in the slope is relatively small, and the mean is 2.

We conclude this section by connecting our results from the square-level analysis to the

previous section’s results for the MSA-level analysis. The bottom of Table 6 reports the

results of Zipf regressions across squares within MSAs. For example, there are 26 squares
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with 50,000 people or more in the Boston MSA and when we estimate the Zipf’s regression

on this sample we get a slope of 1.46. The table reports the results of individual regressions

for the top 10 MSAs (by population) as well as the mean coefficients across these regression

for the top 10 and top 25 MSAs. (We only do this for large MSAs since small MSAs have

few 50,000+ squares with which to run the regression.)

Recall from Table 3 that in a MSA-level regression with the 135 top MSAs when we

use the maximum population square smaxi as the size measure we get a slope of 1.761. It

is notable that when we take the MSA that is ranked 135 according to this measure, its

value of smaxi is 65,000 which approximately equals the 50,000 cutoff we are using here. The

1.761 slope approximately equals the slope of the within MSA, square-level regressions we

are doing here. The average slope across the top 25 MSAs is in fact 1.776.

The results we are getting here are interesting in two ways. First, there is an interesting

fractal-like pattern among squares with 50,000 or more in population. Looking within a

given MSA, the Zipf coefficient across squares is on the order of 1.7. This is approximately

what we get when we take the maximum population square in each MSA and look across

MSAs. It is also approximately what we get when we take all such squares across the

whole country and look at them all together. (The 1.9 estimate in Table 6.) It is also

approximately what we get when we look at squares in individual regions.

The second reason this is interesting is that this coefficient is also approximately what we

get when we don’t use the squares and just use average MSA density. (The 1.896 coefficient

on density in Table 3). We have raised concerns about the arbitrary way MSAs are defined

and certainly there is measurement error. Yet our analysis in which MSAs definitions play

no role whatsoever (1.889 Zipf coefficient in Table 6) is very close to what we get in the

MSA density analysis of Table 3. (Again, the 1.896 coefficient in Table 3.) Now these are

different objects that need not be the same even if with perfect measurement. Yet there is a

suggestive fractal pattern here that hints they might very well be the same or very close if we

had with perfect measurement. And things may not even be that far off with the imperfect

measurement of MSAs we have to work with.
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6 Growth Rates

The theoretical literature has emphasized the link between the size distribution of cities and

the growth rates of cities. In particular, Gabaix has shown a connection between Gibrat’s

Law and Zipf’s Law. One version of Gibrat’s Law is that the mean and variance of the

growth rate of a city be independent of the initial size of a city. Authors such as Ioannides

and Overman (2003) have noted that Gibrat’s Law is a reasonable first-order approximation

to the data. (See also Black and Henderson (2003) for an analysis.)

Table 7 shows that Gibrat’s Law is a reasonable first-order approximation for MSA growth

in our data. The measure of growth rate used here is the difference in log population between

2000 and 1990. Mean growth over all MSAs during the period is .124. The mean growth

varies relatively little over the four different MSA groupings in the table. It takes a low of

.114 for cities with less then 250,000 people and has a peak of .141 for cities in the half to

one million range. The standard deviation does not vary all that much across the different

groups either.

Table 7 shows that Gibrat’s Law is not a good approximation for the growth of squares.

The mean and variance of growth depends upon size in a clear pattern. Mean growth in

the smallest size category is .054 and this is the lowest over all categories. Growth increases

with size until it attains a maximum value of .149 for squares in the 10,000 to 50,000 range.

Beyond this, mean growth decreases, falling to .093 in the 50,000 to 100,000 range and to

around .05 beyond that. The standard deviation is not flat either. Rather it decreases

sharply with population.

These results for the growth rates of squares are not surprising given what we know about

the patterns of urban and rural growth. It is well known that very rural areas have been

declining in their share of population so it is not a surprise that mean growth is lowest in

the smallest size category, under 1,000 people in the square. It is also well understood that

in large urban areas, population expansions take place at the edges where new housing is

constructed. For this reason the most dense squares (those with more than 100,000 in 1990

population) have the lowest growth rate besides the under 1,000 category. These dense areas

are already built up and additional housing units are hard to squeeze in. Those squares

tending to be on the edge of metropolitan areas (in the range of 10,000 to 50,000 people)
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have the highest growth rate of .149.

It is also easy to see why the highest population squares have the lowest variance of

growth. The absence of a large stock of vacant buildable land cuts out the possibility of

upside. But the existence of a housing stock cuts down the downside of population outflow

(see Glaeser and Gyourko (2005)). It is easy to see why the smallest locations have the

highest variance of growth. If the forest ranger living by himself (or herself) in a six-by-six

square gets married, population in the square doubles.

7 Robustness

In setting our grid of squares we had to make two decisions: (1) What grid size to use?

(We picked six miles.) (2) Where to start the grid? Let us begin by exploring this second

decision. It is analogous to the decision of where to put the prime meridian for longitude,

which is arbitrary and by international convention passes through Greenwich. It is possible

to see in Figure 1 that with the way we have placed the grid, downtown Manhattan is in the

same six-by-six square with Jersey City and other places across the river in New Jersey. If

we shifted the grid two miles to the east, downtown Manhattan would be in a square with

Queens. One may wonder whether this arbitrary decision on our part impacts our results.

Fortunately, the choice of where to start the grid has virtually no impact on our results.

Table 8 shows what happens when we shift the grid 2 miles and 4 miles to the north. (Note

if we shift it north 6 miles, it stays the same grid). Analogously, it shows what happens

when we shift the grid 2 and 4 miles to the east. The top row contains the original baseline

results. The later rows are the results with the shift. The results are the same up to

two-digit accuracy and for some columns up to three digits.

Next we consider changing the size of the grid. Of course significant changes in the grid

will impact the results. If we make the grid size one thousand miles, there will be only three

squares. If we make the grid one meter by one meter then our first problem is the Census

data is not fine enough for this. Our second problem is populations would typically be one

if a person happens to be standing in the one-by-one meter square at the time of the Census

and zero otherwise so the size distribution would not be interesting.
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We focus then on the robustness of our results to relatively small changes in the grid

size. We consider two smaller grid sizes (2 and 4 miles) and four larger ones (8, 10, 15, 20

miles). To a remarkable degree, our results are robust to these changes in grid size. Recall

that in the original 6 by 6 analysis, we used a 1,000 population cutoff for the piecewise

linear regression and a 50,000 cutoff in the linear regression. When we change the grid size,

we also change the population cutoffs to keep population density at the cutoff the same.

For example, the area of a 2 by 2 square is 1/9 times the area of a 6 by 6 square. So

for the 2 by 2 case, the linear regression cutoff is 5,556 = 50,000/9. The piecewise linear

function fits extremely well throughout all the grid sizes. (R2 = .997 and above.) The

coefficient estimates do not vary much, .7 to .8 below the kink and 1.8 to 2.0 above the kink.

Moreover, the locations of the kink increases by the magnitudes we would expect them too.

For example, going from a 2 by 2 grid to a 4 by 4 grid, area increases by a factor for four.

Now ln(4) = 1.39. If density at the kink stayed they same, then the kink should increase by

1.39 moving from a 2 by 2 grid to a 4 by 4 grid. The actual increase of 1.19 = 10.26− 9.07
is fairly close. We see an analogous pattern for the other grid sizes. We conclude that our

results are not an artifact of an arbitrary choice of a six mile grid length.

One notable pattern in Table 8 is the decline of the MSA-level regression coefficient on

smaxi as the grid size is increased. As grid sizes increase, the squares begin to incorporate the

entirety of the MSA. So the population of the biggest square smaxi begins to approximate

the population of the MSA as a whole. So the coefficient gets close to one (Zipf’s law), as it

is in Table 3.

One last issue concerns what is happening on the coasts with the squares. As can be

seen in Figure 1, some of the squares in the New York metro area are partly in the very dense

island of Manhattan and partly in the water. Since the highest population density locations

(New York, Chicago, etc.) tend to border bodies of water, one might wonder whether some

systematic biases might sneak in here. We think this is an interesting point, but not one

of much quantitative significance because we are working with logs rather than levels. We

make two distinct arguments. First, in these dense cities, the log population of the squares

changes relatively slowly as we move away from the coasts (at least at a 6 by 6 grid size), so

the fact that we might mess things up at the coast is not quantitatively a big problem because
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there are many other squares nearby approximately equal in log population to average things

out. Second, even at the coast, things are not too bad. Suppose, for example, that a square

at the coast is half in the water. Now ln(1
2
) = −.3. At the dense squares near or in

Manhattan, log population is around 14. If we shifted such a square and put it half in the

water, log population would fall to 13.7 = 14− .3. This is a small difference, compared to

the vast differences in log population between squares close to Manhattan (whether in the

water or not) and squares in less dense places like upstate New York. Now if the square

were 99 percent in the water this wouldn’t matter either because such a square at a 6 by 6

resolution would represent a negligible portion of the downtown area.

8 Conclusion

The paper studies the distribution of population across six-by-six mile squares, examining

the extent to which anything like Zipf’s Law and Gibrat’s Law holds. The main results are:

1. At the bottom tail of the distribution, the distribution is roughly log normal, certainly

not Zipf.

2. For squares above 1,000 in population, a Zipf’s plot has a piecewise linear shape with a

kink at around a population of 50,000. Below the kink the slope is .75, above the kink,

the slope is around 2. The finding is robust across different regions in the country.

3. Gibrats’s law does not hold with squares. Mean growth has an inverted-U shaped

relationship with population size. The variance of growth declines with size

4. The slope of 2 in the upper tail matches what we get with MSA-level data if we

substitute population density for population in a Zipf’s plot. This is consistent with

the usual Zipf coefficient of one for the population regression if the land elasticity of

population is one half. The slope of 2 also matches what we get if we use the maximum

population square in the MSA instead of average density. It also matches what we get

in the upper tail when we look at squares within MSAs. All of this suggests some kind

of fractal pattern in the left tail in which: the distribution of squares within MSAs

20



looks like the distribution of MSAs across the country, which in turn, looks like the

distribution of squares across the country and within individual regions .

In our title we put a question mark after “Zipf’s Law.” It is clear that the standard Zipf’s

Law does not apply for squares in the upper tail, as the slope is around 2 not 1. Nevertheless,

if we take the land elasticity to population to be .5 (which roughly fits the data for large

MSAs) then a slope coefficient of 2 for squares (where the land margin is fixed) is consistent

with a slope coefficient of 1 for regularly-defined MSAs (where the land margin varies). So

there is a sense that Zipf’s Law holds for squares in the right tail. What about below the

kink of a square population of 50,000? For relatively less populated squares like these, an

expansion of the population might not put much pressure on the land margin, as vacant

rural land in the square can be converted to housing sites. If the land elasticity were zero,

the coefficient on density in (5) would be the same as the coefficient on population in (2).

In this extreme case, the relevant comparison is between the .75 slope for squares and the

standard slope of one and Zipf’s Law does not hold. If the land elasticity is a little higher

than zero, Zipf’s Law works better. Regardless of this matter, the fact that the Zipf’s plot is

straight as an arrow for population in the range between 1,000 and 50,000 is very intriguing.

Also, the presence of the kink is intriguing as well.

We believe a joint analysis like this of the distribution of population of squares within

metropolitan areas and across metropolitan areas is a fruitful area for further research. We

see opportunities for progress in theories that emphasize economic considerations and spatial

factors like the work of Hsu (2008). In terms of directions for future empirical work, we

believe it would be promising to examine the size distribution of squares in an international

context.
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Figure 1 
Map of Grid Lines for Six-by-Six Squares in the Vicinity of New York City 

 

 
 



Figure 2 
The Location of Census Blocks (2000 Census) in the Vicinity of New York City  

 



Figure 3
MSA-Level Zipf Plots
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Top 135 MSAs by Population Density
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Figure 5
Square-Level Zipf Plot for Continental United States

(All 23,974 Squares with Population at Least 1000)
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Figure 6
Square-Level Zipf Plots for Census Divisions

(Square Population at Least 1000)
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Table 1  
Census Places With Population Five or Less 

(2000 Census) 
 

Place Population
New Amsterdam town, IN 1
Lost Springs town, WY 1
Hove Mobile Park city, ND 2
Monowi village, NE 2
Hobart Bay CDP, AK 3
East Blythe CDP, CA 3
Hillsview town, SD 3
Point of Rocks CDP, WY 3
Flat CDP, AK 4
Blacksville CDP, GA 4
Prudhoe Bay CDP, AK 5
Storrie CDP, CA 5
Baker village, MO 5
Maza city, ND 5
Gross village, NE 5

 



Table 2 
Summary Statistics: Squares and MSAs 

(Population from 2000 Census) 
 

Unit Variable 
Number Mean

Standard 
Deviation Min Max Sum across units

Square pop 85,527 3,269 18,181 0 1,317,207 279,583,434
 
 

 
log(pop) 70,590 5.69 2.48 0 14.09 .

 
 
 

 
area (6*6 sq.) 

85,527 1 0 1 1 85,527
    
MSA pop 274 843,209 1,986,836 60,744 21,343,534 231,039,389
  

popdensity 274 7,881 7,073 215 55,151 .
  

log(popdensity) 274 8.67 .80 5.37 10.92 .
  

area (6*6 sq.) 274 87 103 14 981 23,798
 

 



Table 3 
MSA-Level Zipf Regression Results: Alternative Size Measures 

(Each regression uses top 135 MSAs ranked by given size measure) 
 

 OLS Hill Method 
 

Size Measure Slope 
(absolute value) 

 

R2 Slope 
(absolute value) 

Population 1.013 
(.12) 

.985 .944 
(.078) 

 
Land Area 1.70 

(.12) 
.984 1.569 

(.176) 
 

Density 1.896 
(.12) 

.973 1.616 
(.120) 

 
si

max (maximum 
population 
square in MSA) 

1.761 
(.12) 

.988 1.546 
(.125) 

 



Table 4 
The Distribution of Population Across Six-by-six Squares  
(Census 2000 Population in the Contiguous United States) 

 

 

Number 
of 

Squares 

Percent of 
Population 

log(pop) at 
bottom of 
grouping 

All Squares 85,527  
pop = 0 14,937 0.00 -∞ 
pop > 0 70,590 100.00 0.00 
 
By pop size grouping 

  

 pop = 1 713 .00 0.00 
 pop = 2 1,285 .00 0.69 
 3  ≤ pop ≤ 5 2,564 .00 1.10 
 6 ≤ pop <10 2,532 .01 1.79 
 10 ≤ pop < 100 16,233 .23 2.30 
 100 ≤ pop < 1,000 23,289 3.59 4.61 
 1,000 ≤ pop < 10,000 19,271 21.20 6.91 
 10,000 ≤ pop < 50,000 3,521 27.40 9.21 
 50,000 ≤ pop < 1,000,000 1,179 46.28 10.82 
 1,000,000 ≤ pop 3 1.29 13.82 
   
Size groupings of later interest   
 1,000 ≤ pop 23,974 96.17 6.91 
 50,000 ≤ pop 1,182 47.57 10.82 

 



Table 5 
Six-by-Six-Square-Level Zipf Regression Results 

Squares with Population 1,000 and Above 
 
 

  Piecewise Linear Linear 
Sample of Squares N Kink Slope1 Slope2 R2 Slope R2 

        
All Squares with 
pop≥1000 23,974 

 
10.89 .747 1.937 .998 .833 .969 

        
By Census Division        
 New England 1,027 9.96 .569 1.521 .996 .763 .930 
 Middle Atlantic 2,184 10.28 .669 1.249 .997 .759 .965 
 East North Central 4,313 10.92 .784 1.982 .999 .861 .975 
 West North Central 2,337 11.04 .886 2.607 .999 .941 .984 
 South Atlantic 4,977 10.72 .756 2.175 .995 .857 .959 
 East South Central 2,898 10.48 1.010 2.357 .997 1.072 .983 
 West South Central 3,078 11.17 .786 2.834 .997 .857 .969 
 Mountain 1,383 11.55 .723 3.662 .997 .791 .964 
 Pacific 1,777 11.21 .521 1.872 .992 .646 .922 

 



Table 6 
Six-by-Six-Square-Level Zipf Regression Results 

Squares with Population 50,000 and Above 
 

  OLS Hill Method 

Sample of Squares N 

Slope 
(absolute 

value) 

R2 

Slope 

    
All Squares with 
pop≥50,000 1,182 1.889 

 
.983 1.569 

     
By Census Division     
 New England 58 1.865 .989 1.892 
 Middle Atlantic 154 1.318 .989 1.302 
 East North Central 193 1.929 .987 1.641 
 West North Central 74 2.389 .969 2.108 
 South Atlantic 218 2.271 .972 1.847 
 East South Central 44 2.763 .923 2.575 
 West South Central 138 2.286 .918 1.778 
 Mountain 85 1.951 .853 1.487 
 Pacific 218 1.597 .931 1.236 
 
Mean across Divisions 131.3 2.041 .948 1.763 
     
By MSA (10 Largest)     
 Boston 26 1.462 .987 1.491 
 Chicago 54 1.412 .974 1.246 
 Dallas 35 2.208 .869 1.401 
 Detroit 35 1.718 .938 1.603 
 Houston 29 1.751 .894 1.469 
 Los Angeles 82 1.265 .870 0.986 
 New York 95 1.139 .981 1.173 
 Philadelphia 32 1.425 .982 1.612 
 San Francisco 43 1.451 .935 1.373 
 Washington 43 1.639 .955 1.336 
 
Mean across top 10 MSAs 47.4 1.547 .939 1.369 
Mean across top 25 MSAs 29.2 1.776 .915 1.556 

 



Table 7 
Growth Rates (Change in Log Population) 1990 to 2000 By Size 

MSAs and Squares 
 
 

 

Number 
with 

Positive 
Population 

in 1990 
and 2000 

Change in Log 
Population 

 Mean Std.Dev 
MSAs 274 .124 .100 
MSAs by 1990 Population  
  
 pop<250,000 135 .114 .098 
 250,000 ≤ pop<500,000 66 .127 .093 
 500,000 ≤ pop<1,000,000 32 .141 .129 
 1,000,000 ≤ pop 41 .139 .094 
    
Squares 65,975 .081 .6186 
Squares by 1990 Population  
 pop<1,000 43,723 .054 .741 
 1,000≤pop<2,000 8,057 .129 .228 
 2,000≤pop<5,000 7,117 .139 .242 
 5,000≤pop<10,000 2,953 .144 .223 
 10,000≤pop<50,000 3,118 .149 .204 
 50,000≤pop<100,000 616 .093 .128 
 100,000≤pop<250,000 341 .056 .095 
 250,000≤pop<500,000 39 .046 .071 
 500,000≤pop 11 .060 .061 

 



Table 8 
Robustness of Results to Alternative Grids 

 
 MSA-Level 

Regression on si
max 

Square-Level  
Piecewise Linear Regression 

 pop≥1,000  
per 6×6 square* 

Square-Level  
Linear Regression 

pop≥50,000  
per  6×6 square* 

 OLS 
Slope 

R2 Kink Slope1 Slope2 R2 OLS Slope R2 

Baseline 6*6 Grid 1.761 .988 10.89 .747 1.937 .998 1.889 .983 
Shift of Baseline 
Grid  

        

 2 Miles North 1.790 .986 10.95 .751 1.984 .998 1.892 .980 
 4 Miles North 1.838 .986 10.90 .750 1.923 .998 1.879 .981 
 2 Miles East 1.715 .988 10.90 .745 1.957 .998 1.919 .987 
 4 Miles East 1.774 .989 10.92 .747 1.979 .998 1.924 .983 
         
Alternative Grid 
Size 

        

2 Miles 1.981 .977 9.072 .680 2.097 .999 1.800 .968 
4 Miles 1.873 .992 10.262 .719 2.037 .999 1.886 .979 
6 Miles 1.761 .988 10.899 .747 1.937 .998 1.889 .983 
8 Miles 1.595 .981 11.433 .773 1.976 .998 1.959 .986 
10 Miles 1.483 .978 11.655 .786 1.819 .998 1.914 .987 
15 Miles 1.325 .979 12.328 .816 1.850 .998 1.959 .994 
20 Miles 1.246 .969 12.482 .822 1.630 .997 1.994 .983 

 
* We adjust the population cut offs for the squares to keep the population density the 
same across cutoffs for the different grid sizes. For example, in the 2 by 2 square linear 
regression we use all the squares whose population sizes are greater than or equal to 
5,556 (=50,000/9).  The 50,000 comes from the base case of the 6 by 6 mile square.  The 
9 takes account that the area of a 6 by 6 square is 9 times as large as a 2 by 2 square. 


