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5 The Pricing of U.S. 
Catastrophe Reinsurance 
Kenneth A. Froot and Paul G. J. O’Connell 

The price of catastrophe reinsurance in the United States has fluctuated mark- 
edly in recent years. These fluctuations are commonly associated with the pat- 
tern of catastrophe occurrences. For example, catastrophe losses during the 
period 1992-94 totaled $38.6 billion in 1994 dollars, exceeding the cumulative 
total of losses during 1949-91 of $34.6 billion. During this three-year period, 
prices on catastrophe-reinsurance cover more than doubled and then began to 
decline thereafter. What drives such changes in price? Does the demand for 
reinsurance shift, does the supply of reinsurance capital change, or do both 
occur?‘ 

If catastrophe losses lead to a decrease (leftward shift) in supply, then we 
would expect to see increases in price coupled with declines in quantity after 
an event. Of course, a decline in supply is possible only in the presence of 
some form of capital market imperfection. If capital markets were perfect, the 
supply curve for reinsurance would be perfectly elastic. In this case, regardless 
of losses, the price of reinsurance would be fixed, where the “price” of a con- 
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1. A number of papers have investigated these cycles, attempting to identify supply and demand 
shocks in insurance markets. Cummins and Outreville (1987) show that lags in data collection or 
price regulation can generate cycles in property-casualty underwriting margins. Gron (1994) pre- 
sents evidence that, assuming that there are no marketwide demand shocks, the cycles in property- 
casualty margins are due to variation in the supply of insurance capacity rather than institutional 
lags or reporting practices. Gron and Lucas (1995) investigate why these cycles appear to be so 
persistent. They find that, when the net worth of insurers declines, the total amount of capital 
raised through security issues is small. See also Winter (1988) and Cummins and Danzon (1991). 
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tract is best thought of as the ratio of premiums to actuarially expected losses 
covered under that contract. Capital market imperfections would imply that the 
marginal cost of producing reinsurance is increasing in the quantity supplied. 
Thus, these imperfections lead to an upward-sloping supply curve, which (all 
else equal) can shift back as a result of reinsurer losses. Such a supply shift in- 
creases price and reduces quantity. As with price, it is best to think of this 
“quantity” as the actuarially expected loss covered by reinsurance. 

On the other hand, catastrophe losses may lead to increases in demand. 
Rightward demand shifts can be thought of as the result of an actual or per- 
ceived increase in actuarial losses covered by a given contract. We call this 
probability updating. Naturally, it would seem possible to identify such de- 
mand shifts from the fact that they lead to an increase in price and quantity. 
Thus, conditional on a loss, an absolute decline in the quantity of reinsurance 
purchased would be evidence of important leftward shifts in supply even if 
there were also positive increases in demand. 

We look for such absolute declines in quantity, but, in addition, we pursue 
the probability-updating hypothesis further. While it is impossible to distin- 
guish between probability updating and capital market imperfections on the 
basis of the behavior of aggregate price indices over time, it is possible to 
distinguish between them on the basis of the behavior of cross-sectional 
changes in reinsurance prices. Specifically, probability updating ought to vary 
across contracts, with larger price increases associated with contracts for 
which more probability updating occurs. We therefore examine cross-sectional 
price increases in response to an event and determine the extent to which they 
are explained by relative contract exposures. 

To see how this works, consider a catastrophe loss caused by a winter freeze 
in New England. We might expect such a loss to affect strongly (and posi- 
tively) the distribution of prospective losses due to freeze andor the distribu- 
tion of prospective losses due to other perils in New England. After all, the 
event may cause people to recognize how much damage a freeze can do or to 
learn about the replacement costs of certain physical assets in New England. 
However, such updates in knowledge would have little or no import for the 
distribution of catastrophe losses outside New England, where freezes do not 
occur. Specifically, little would be learned about loss exposures in California 
(which faces primarily earthquake risk), the Southeast (which faces primarily 
hurricane risk), or Texas (which faces primarily windstorm risk). Under proba- 
bility updating, it follows that contracts with relatively little exposure to freeze 
and/or to the Northeast region ought to have relatively small price increases. 
In this way, we are able to further distinguish between capital market imperfec- 
tions and probability updating. 

Our identification strategy is made possible through the use of a unique and 
detailed data set from Guy Carpenter and Company, by far the largest catastro- 
phe-reinsurance broker for U.S. catastrophe exposures. These data include all 
U.S. catastrophe-reinsurance contracts brokered by Guy Carpenter between 
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1970 and 1994. They allow us to measure prices and contract losses and to go 
about the complex process of estimating each contract’s exposure to different 
event types and regions. 

To preview our results, we find that supply, rather than demand, shocks are 
more important for understanding the effect of losses on reinsurance prices and 
quantities. Capital market imperfections therefore appear to be the dominant 
explanation. There is limited evidence for probability updating, and what evi- 
dence there is suggests that the effect is of a small magnitude. The magnitudes 
of the supply effects are large: after controlling for relative contract exposure, 
a $10 billion catastrophe loss raises average contract prices by between 19 and 
40 percent and reduces quantity of reinsurance purchased by between 5 and 
16 percent. 

The rest of the paper is organized as follows. Section 5.1 sets out our identi- 
fication strategy and the structure of our empirical tests. Section 5.2 describes 
our data sources. In section 5.3, the calculation of contract exposure and price 
is discussed in detail. We devote considerable attention to the calculation of 
exposure, which requires a number of involved steps. Section 5.4 provides a 
brief graphic analysis. The empirical testing is carried out in section 5.5. Sec- 
tion 5.6 summarizes and offers our conclusions. 

5.1 The Price and Quantity of Reinsurance 

We examine the equilibrium prices and quantities of single-event excess-of- 
loss reinsurance contracts. These contracts help reinsure insurance companies 
against losses resulting from natural catastrophes in the United States, such as 
windstorms or earthquakes. 

To understand how such contracts work, consider an insurer that purchases 
a layer of reinsurance covering $100 million of losses in excess of $200 mil- 
lion. These terms imply that, if the insurer’s losses from a single catastrophic 
event during the contract year exceed $200 million (the “retention”), the layer 
is triggered. The reinsurer pays the insurer the amount of any losses in excess 
of $200 million, with the maximum payment-the “limit”-capped at $100 
million.* By purchasing this contract, the insurer cedes its exposure to single- 
event catastrophe losses in the $200-$300 million range. In return for assum- 
ing this exposure, the reinsurer receives a payment, known as the “premium.” 
If the insurer wishes to cede a broader band of exposure, it could purchase ad- 
ditional layers-$100 million in excess of $300 million, $100 million in excess 
of $400 million, and so on. 

The price of a reinsurance contract is best measured as the premium per unit 
of exposure. In the marketplace, premium is usually expressed relative to limit 
(the ratio is called rate on line). However, limit is a poor proxy for contract 

2. To guard against moral hazard, excess-of-loss reinsurance contracts typically require coinsur- 
ance. In practice, this effectively means that the insurer provides 5-10 percent of the reinsurance. 
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exposure-it ignores the level of the contract’s retention, for example. To rem- 
edy this, we measure price by premium per unit of actuarially expected loss. 
Indeed, we use actuarially expected loss as our measure of the “quantity” of 
reinsurance purchased. 

In section 5.3, we describe how historical data on catastrophe losses and 
company-specific market-share information can be used to measure the actual 
exposure of each reinsurance contract. It is important to emphasize that we 
measure actuarially expected loss from a loss distribution that is time invariant. 
We cannot condition our measures of expected loss on previous losses. To the 
extent that loss distributions shift in response to recent loss history, we measure 
both quantity and price with error. These potential mismeasurements are im- 
portant for the way we specify our tests and hypotheses. 

5.1.1 Identifying Capital Market Imperfections 

As noted above, we investigate two channels by which catastrophe losses 
affect reinsurance prices and quantities. First, “capital market imperfections” 
may impede the flow of capital into the reinsurance sector. There may be sev- 
eral sources of such imperfections. One is that existing reinsurers may find it 
costly or undesirable to raise additional external capital. These costs could 
result from information asymmetries between managers and owners (which 
implies that equity-sale announcements drive down share prices) or from di- 
lution of managerial control (which implies that managers are averse to ex- 
panding the capital base). Another potential source of imperfection is that it is 
costly to carry equity capital. These costs may accrue from forgone tax shields, 
agency problems, or, in the case of reinsurers, frictional collateral costs.3 

If we could accurately measure, at each point in time, the distribution of 
one-year-ahead losses conditional on all information, then it would be rela- 
tively simple to test the capital market imperfections story. In the presence of 
such imperfections, capital depletion associated with event losses constricts 
the supply of reinsurance, driving up the price of all contracts. If, for example, 
the event were a hurricane, the supply of humcane-reinsurance capacity would 
fall. So would the supply of nonhurricane-reinsurance capacity since both ex- 
posures are borne by the same capital base. Figure 5.1 shows the effect on 
equilibrium prices and quantities for contracts that are exposed to humcane 
risk (fig. 5.1A) and those that are not (fig. 5.1B). Note that the exposure supply 
curves are upward sloping. This is due to the capital market imperfections, 
which raise the marginal cost at which reinsurers are able to offer successively 
greater exposure protection to  insurer^.^ 

Figure 5.1 suggests that capital market imperfections generate a negative 
correlation between prices and quantities since loss shocks lead to shifts in the 

3. For a survey of these costs and their effect on financing patterns, see Froot (1995). Froot and 

4. For a model of the reservation price that a financial intermediary such as a reinsurer is willing 
Stein (1998) study the implications for financial intermediaries of costly equity finance. 

to offer marginal units of risk exposure, see Froot and Stein (1998). 
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Fig. 5.2 Real quantity of catastrophe exposure ceded, 19751-1993:4 
Note: In any quarter, the series is the sum of the contract exposure that is ceded by four major 
insurers in that quarter. The four companies represent approximately 10 percent of the market. 

supply curve. If losses lead to demand-curve shifts, on the other hand, a posi- 
tive correlation between price and quantity results. 

Since negative correlation would seem to be evidence in favor of supply 
shifts (and, therefore, capital market imperfections), it seems useful to ask 
whether prices and quantities are in fact negatively correlated. Figures 5.2 and 
5.3 show our measures of quantity and price, respectively, for the sample pe- 
riod for which we have contract data.s More specifically, figure 5.2 shows an 

5 .  For a description of our data and the computation of prices and quantities, see sec. 5.2 below. 
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Fig. 5.3 Industry price per unit of ceded exposure, 19791-1993:4 

index of the total quantity of catastrophe exposure that was ceded in the U.S. 
reinsurance market from 1975:l to 1993:4. The series is calculated by sum- 
ming all the exposure embodied in the excess-of-loss contracts in each quarter 
and dividing it by the total market share represented by the contracts. Figure 
5.3 plots the industry price series quarterly from 1975: 1 to 1993:4. Each obser- 
vation is the exposure-weighted average of the price of all contracts that are in 
force in that quarter.6 

A number of features of these figures are noteworthy. First, it appears that 
quantities rose and prices fell for much of the late 1970s and 1980s. Second, a 
startling rise in prices and decline in quantities took place beginning in the 
mid-1980s through the end of the sample period. Indeed, in 1993, price was 
between five and seven times its historical average. This will come as no sur- 
prise to industry observers. It is common to relate this price rise to the occur- 
rence of a number of large events during this period, notably Hurricane An- 
drew ($20 billion in losses) in August 1992, Hurricane Hugo in 1989, and 
several windstorms in 1985-86. Figure 5.4, which plots total catastrophe 
losses by quarter from 1970:l to 1994:4 as measured by Property Claims Ser- 

6. These industry series are based on the contract prices and exposures for four insurers that 
purchased reinsurance through Guy Carpenter in every year from 1975 to 1993. The series are 
representative of the behavior of prices and quantities for the other insurers in our database. 
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Fig. 5.4 Total adjusted PCS losses by quarter, 197O:l-1994:4 

vices, lends support to this view.7 In the period since 1994 (for which we have 
no data), the price of reinsurance has declined and quantity increased some- 
what, notwithstanding the occurrence of the Northridge Earthquake in January 
1994. From these observations, it is clear that there is considerable negative 
correlation between prices and quantities at frequencies of several years. 

Figures 5.5 and 5.6 provide further evidence of the apparent negative corre- 
lation between equilibrium prices and quantities. Figure 5.5 plots industry 
price-quantity pairs. It is interesting because it suggests the existence of two 
regimes in catastrophe-reinsurance pricing. The 1970s and early 1980s saw 
strong expansion in the quantity of risk ceded coupled with a moderate decline 
in per unit prices. The late 1980s and early 1990s were characterized by bal- 
looning prices coupled with quantity declines. One interpretation of these pat- 
terns is that the 1970s and 1980s were a period of expanding reinsurance de- 
mand while the 1990s exhibit a contraction of reinsurance supply. Figure 5.6 
plots each contract’s price against its exposure. Both variables have been 
demeaned by insurer. As indicated by the linear fit to the plot (slope -0.32, 
standard error 0.04), when a contract embodies less-than-average exposure, it 
tends to be priced above average. Taken at face value, the points appear to lie 
on firm-specific reinsurance-demand schedules. Or, put another way, strong 

7. For a description of this loss series, see sec. 5.2 below. 
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Fig. 5.7 Probability updating: A, Hurricane-exposed contracts; B, Non- 
hurricane-exposed contracts 

evidence of negative correlation between price and quantity suggests that shifts 
in the reinsurance supply curve have been important. 

Taken by itself, this evidence would seem to support the hypothesis of capi- 
tal market imperfections. However, it is important to see the implications of 
demand shocks, or what we call probabizity updating. Probability updating 
holds that the occurrence of a catastrophe may raise the real or perceived distri- 
bution of losses above what we measure with our time-invariant loss distribu- 
tion. For example, after Humcane Andrew in 1992, some insurers were sur- 
prised that the construction methods used for houses in Homestead, Florida, 
performed so poorly in high winds. Andrew might also have led to upward 
shifts in agents’ subjective distributions. 

To see the effects of probability updating, suppose that, after a particular 
event, say, a hurricane, agents update positively about the likelihood of hurri- 
cane losses. Then, even if the premium per unit of actual exposure stays con- 
stant, the ratio of premium to observed exposure rises. This is because we 
measure exposure from a time-invariant loss distribution. Figure 5.7 traces this 
effect on supply and demand. Suppose that capital markets are perfect-the 
supply of capital to the reinsurance sector is infinitely elastic at a given price. 
In the aftermath of the hurricane, the observed supply curve shifts upward, as 
shown in figure 5.7A. To understand what happens to the demand schedule, 
consider an insurer that, at a given price, wants to cede the same amount of 
exposure before and after the hurricane. Since the perceived risk of hurricanes 
increases, the terms of this insurer’s contract must be rewritten to keep expo- 
sure constant. For example, the retention on the contract could be raised. Any 
such change that keeps actual ceded exposure constant causes measured expo- 
sure to fall and, concomitantly, measured price to rise. Thus, the entire ob- 
served demand schedule shifts upward and to the left. All this assumes that 
there is no actual change in demand. However, the demand curve may exhibit 
further changes as agents alter the amount of reinsurance they are willing to 
demand at a given price. For example, the demand schedule may shift out if 
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Fig. 5.8 Capital market imperfections and probability updating: A, Hurricane- 
exposed contracts; B, Non-hurricane-exposed contracts 

homeowners learn from the hurricane that they are underinsured. Alternatively, 
the schedule may shift in if coastal homeowners who sustain severe damage 
from the hurricane elect to move to a less-exposed inland region rather than to 
rebuild in the same place. 

Consequently, the overall effect on the observed demand curve is ambigu- 
ous. If the observed DD curve experiences no net shift at all, the equilibrium 
moves from point A to point C, which results in an increase in price and a 
decrease in demand. Thus, demand shifts combined with probability updating 
can duplicate the finding that prices increase while quantities decrease. We 
therefore cannot conclude that such negative correlation is evidence of capital 
market imperfections. On the other hand, if the observed DD curve shifts out 
on net, as shown in the figure, the equilibrium shifts from point A to point B.  

Probability updating, then, complicates the process of identifying capital 
market effects. To overcome this problem, consider the following identification 
strategy. Assume that hurricane losses may lead to probability updating for 
hurricanes but not for other types of events in other regions. The idea here is 
simple: if a hurricane occurs, it may not alter the perceived frequency or sever- 
ity of nonhurricane events. Accordingly, probability updating from a hurricane 
should produce no change in prices or quantities of contracts that have little or 
no hurricane exposure. However, if there are capital market imperfections, then 
prices tend to increase and quantities decrease on nonhumcane-exposed con- 
tracts. 

Figure 5.8 illustrates. A hurricane loss that raises the perceived likelihood 
of future hurricane losses will simultaneously shift the observed demand and 
supply curves upward and to the left. These effects are shown as movements 
in the schedules from DD to DD‘ and from SS to SS’ in figure 5.8A, which 
together produce an increase in price. There are no such probability-updating 
effects for the contracts that are not exposed to hurricane risk in figure 5.8B. 
However, if the catastrophe loss depletes the pool of capital that is available to 
the industry for all types of reinsurance, then the supply schedule for both 
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types of contracts shifts back to SS". In these circumstances, we can expect the 
price of both to increase. 

A natural way to implement this identification scheme is to regress changes 
in price and quantity on lagged losses by type and lagged losses by type inter- 
acted with contract exposure by type. If there are K types of catastrophe, the 
conditional expectation functions takes the form 

where p,,, and q,,, are the price and quantity, respectively, of insurer j 's  contract 
at time t, 8,(1,) is a distributed lag of losses of event type k,  w ~ , ~ , ,  is the exposure 
of insurerj to catastrophes of type k at time t, and E ~ , ~  is a disturbance term. 
The relative exposure term, w,,~,,, is defined as 

where qj,k.r is the absolute exposure (the actuarially expected loss) of insurer j 
to catastrophes of type k at time t .  p,(Sl) measures the response of contract 
prices (quantities) to losses of type k independent of contract exposure. The 
parameter yk (4;) detects the exposure sensitivity of the price (quantity) re- 
sponses. In estimating (1) and ( 2 ) ,  we restrict attention to simple lag structures, 
such as8 

(4) ' r ( ' k )  = ' , I - ,  + 'k.1-3 + '!G-4 + ' k . r -5  ' 

To the extent that capital market imperfections are responsible for price and 
quantity changes, we expect p, > 0 in (1) and 6, < 0 in (2) ,  with the null 
hypothesis of perfect capital markets being pk = 0 and 6, = 0. Conditional on 
a loss from a particular event type, prices tend to rise and quantities to fall 
equally across all contracts if there are capital market imperfections. The com- 
position of contract exposure matters for price changes only if probability up- 
dating is present. Thus, with no probability updating, yk = 0 for all k,  and, 
with probability updating, yk > 0 for all k. Of course, if both capital market 
imperfections and probability updating are important, we expect p, > 0 and 

It is of interest to consider several modifications of the basic specifications 
(1) and ( 2 ) .  For instance, if the average effect of a dollar of losses is the same 
across catastrophe types, as the capital market imperfections view would sug- 
gest, then we expect p, = p, = . . . = p,. This restriction can readily be im- 

Y k  > 0. 

8. Losses in the quarter immediately preceding contract inception appear to have no influence 
on prices. The most likely reason for this is that there can be a delay in assessing the extent of 
catastrophe losses. Accordingly, losses lag prices by two or more quarters in all our analyses. 
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posed in the estimation. A second worthwhile modification is to allow the aver- 
age and marginal effects of losses to differ. If the supply schedule is nonlinear, 
for example, then it may be true that large losses have proportionately bigger 
effects than small losses. Indeed, this is true in most models of capital market 
imperfections, as discussed in Froot and O’Connell(l997). A convenient way 
to allow for this possibility is to include higher-order terms in the distributed 
lag of losses. 

5.1.2 Differentiating among Catastrophe Types 

We differentiate exposure along two dimensions: by geographic region and 
by catastrophe type. Distinguishing events across regions is appealing because 
regional market-share data are available for many reinsurance contracts. These 
market-share data provide a ready measure of relative contract exposure. Thus, 
w ~ , ~ , ,  can be defined as 

( 5 )  

where m,,k,, is the market share of insurerj in region k .  We estimate (1) and (2) 
using this measure of exposure in the empirical analysis in section 5.5 below. 

There are two drawbacks to this approach, however. First, market shares are 
typically built up from the share of total catastrophe premiums in a region that 
go to insurerj. To the extent that premiums are a poor proxy for true exposure, 
wIa,, will be subject to measurement error. Second, it is clear that the catastro- 
phe occurrences in one region may reveal important information about the dis- 
tribution of losses in other regions. For example, hurricane losses in the South- 
east are likely to lead to probability updates in the distribution of hurricane 
losses in both the Northeast and the Southeast. As a result, price increases (and 
quantity decreases) in the Northeast in the aftermath of a Florida hurricane 
could be due to either probability updating or inelastic capital supply to the 
industry, and identification may be tenuous. 

These two shortcomings motivate us to differentiate catastrophes by type as 
well. Here, the exposure of each contract to distinct classes of events, such as 
earthquakes, hurricanes, and winter storms, is calculated. This strategy avoids 
the second shortcoming noted above. Losses from a particular type of event 
(e.g., a windstorm) are likely to generate little updating in the distributions of 
other event losses (e.g., an earthquake). Thus, separate identification of proba- 
bility updating and capital market imperfections is more dependable. The cost 
is that calculating exposures’ catastrophe type und region entails considerable 
computational effort. First, the frequency and severity of each type of catastro- 
phe must be estimated by region. Then these distributions must be used to 
derive the distribution of losses on each contract by simulation. The calculation 
of contract exposure by catastrophe type is taken up in section 5.3 below, after 
a discussion of the data and the construction of our main variables. 
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5.2 Data 

Our data are built up from four sources. The basic information on catastro- 
phe-reinsurance pricing is provided by Guy Carpenter. Information on the re- 
gional market share of insurers is developed from A. M. Best data on insurance 
premiums written by company. Our estimates of catastrophe frequency and 
seventy are based on Property Claims Services (PCS) data on U.S. catastrophe 
losses since 1949. Finally, interest rate and CPI data are collected from Ibbot- 
son and Associates and the IMF, respectively. 

5.2.1 

Our basic data come from Guy Carpenter's proprietary database of catas- 
trophe-reinsurance contracts. Guy Carpenter is by far the largest U.S. catas- 
trophe-reinsurance broker, with a market share of between 30 and 80 percent 
during our sample period. The contracts brokered by Guy Carpenter cover a 
variety of natural perils, including earthquake, fire, hurricane, winter storm, 
and windstorm. 

We examine a total of 489 contracts brokered for eighteen national and nine- 
teen regional insurers over the period 1970-94.9 The duration of coverage is 
typically one year. Most contracts have a single mandatory-reinstatement pro- 
vision.'O Data on contract inception date, retention (i.e., the retention of the 
lowermost layer in the contract), limit (i.e., the sum of the limits of all the 
layers in the contract), and premium (i.e., the sum of the premiums paid for 
the layers in the contract) are employed. All the contract inception dates are at 
the start of a quarter. 

5.2.2 A. M. Best Market Share Data 

To determine the catastrophe exposure of each contract, we must calculate 
the distribution of contract losses, a random variable for each contract. To do 
this, we assume that, within each region, each company's exposure is propor- 
tional to insurance-industry exposure within the region. We therefore first de- 
termine a distribution for insurance-industry losses for each region (by event 
type) and then multiply this aggregate distribution by an individual insurer's 
market share to determine the distribution of insurer-specific exposure faced 
by that company. Using this information, we can calculate the company- 
specific distribution of losses under each contract. 

Guy Carpenter Catastrophe Treaty Data 

9. Seven very small regional insurers were dropped from the original Guy Carpenter data. In 
some of the computations presented below, we focus on a smaller number of national reinsurers, 
for whom data are available in every year. 

10. The reinstatement provision stipulates that, conditional on an event that triggers losses on 
the contract, the limit is to be mandatorily reinstated (one time only) by the reinsurer after payment 
of a reinstatement premium by the cedent. It appears that this provision has had only a modest 
effect on prices, and we ignore its effects. Conversations with brokers suggest that observed prices 
are approximately 10 percent lower than they would have been without the reinstatement premium. 
This seems surprising (forward contracts are usually priced at zero) but, if anything, leads us to 
underestimate what premiums would be in the absence of a reinstatement provision. 
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Our estimates of insurer market shares are developed using data from A. M. 
Best on insurance premiums written by company, by line of business, by state, 
and by year. We reduce these multiline market shares to regional catastrophe 
market shares by applying a modified Kiln formula, which assigns regional 
weights to premiums in each line of business on the basis of exposure to catas- 
trophes of that line in that region.” For example, depending on the region, 
anywhere between 50 and 95 percent of homeowner’s premiums are consid- 
ered as funding catastrophe exposure. The five U.S. regions used for insurer 
market shares are the Northeast, the Southeast, Texas, the Midwest, and Cali- 
fornia.I2 We apply this market-share data to all 489 reinsurance contracts se- 
lected from the Guy Carpenter treaty database. 

5.2.3 Historic Catastrophe-Loss Data from Property Claims Services 

As mentioned above, we must determine the distribution of industrywide 
losses to calculate the catastrophe exposure of each contract. To do this, we 
estimate the distributions of catastrophe frequency and severity using data 
from Property Claims Services (PCS). PCS has cataloged all catastrophe losses 
on an industrywide basis since 1949 by type and U.S. region. The PCS data 
are widely used as an industry standard. 

Prior to estimating the parameters of the frequency and severity distribu- 
tions, two adjustments are made to the PCS data. First, the losses are converted 
to 1994 dollars using the CPI. Second, they are modified to take into account 
shifts in the portfolios of property exposed to loss over the period. A key com- 
ponent of the latter adjustment is the demographic shift toward California, 
Florida, and Texas that has characterized recent decades. These two adjust- 
ments are carried out by Guy Carpenter. Both adjustments are important. 
Indeed, the second adjustment implies that the same-size event in real dol- 
lars causes damages that have grown on average by 5 percent per year over the 
sample period. 

5.2.4 Interest Rate and CPI Data 

For the purposes of calculating the net present value of payment flows, we 
use Ibbotson Associates’ index of the return on thirty-day U.S. Treasuries. This 
is collected monthly from 1970:l to 1995:4. The U.S. CPI is taken from the 
IMF’s Zntemational Financial Statistics. The frequency is monthly, from 
1970:l to 1995:3. 

11. This is a common industry practice. The specific weights used in our Kiln formula are from 
Guy Carpenter. 

12. The regions are constituted as follows: The Northeast comprises Connecticut, Delaware, 
Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode 
Island, and Vermont. The Southeast comprises Florida, Georgia, Mississippi, North Carolina, 
South Carolina, Virginia, and West Virginia. Texas comprises Texas. The Midwest comprises Illi- 
nois, Indiana, Kentucky, Missouri, and Tennessee. California comprises California. 
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5.3 Calculation of Exposure and Price 

5.3.1 Exposure 

In this section, we describe our method of estimating the catastrophe expo- 
sure embodied in each excess-of-loss contract. The estimation is carried out in 
three stages. First, the frequency and severity of each type of event and region 
are estimated by maximum likelihood for particular families of distributions. 
Second, a simulated event history is generated by repeatedly drawing from 
the fitted frequency and severity distributions. Finally, the payouts under each 
contract in each year of event history are calculated. The mean of the distribu- 
tion of these payouts is our estimate of the “quantity” of reinsurance, q,,k,,, em- 
bedded in that particular contract. 

The Frequency and Severity of Catastrophes 

The first step toward calculating contract exposure is to estimate the fre- 
quency and severity of catastrophes using the adjusted PCS loss data. Alto- 
gether, there are over eleven hundred catastrophes recorded by PCS. These 
events are classified into ten categories: earthquake, fire, flood, freeze, hail, 
hurricane, snowstorm, tornado, thunderstorm, and windstorm.13 Many of these 
events are relatively minor: only 557 have adjusted losses in excess of $15 
million, and only 107 have losses in excess of $100 million. Four categories of 
losses are well represented in the set of large losses: earthquake, fire, hurricane, 
and windstorm.14 As our primary interest is in exposure to large losses, we 
confine our attention to these types. Examination of the data reveals that there 
is some heterogeneity in the losses that arise from windstorms. In particular, a 
number of the windstorms refer to winter storms (“Nor’easters”) in New En- 
gland. Accordingly, we split the windstorm category into two subcategories: 
winter storm, defined to be a windstorm in New England in either the first 
or the fourth quarter, and windstorm, defined to be all other occurrences of 
a windstorm.15 

Having defined these five categories of events, we need to make some as- 
sumption about regional effects before we can estimate frequency and severity 
distributions. The simplest assumption would be that, for each catastrophe 

13. PCS classifies many events into more than one category. For instance, winter storms in New 
England, which have on occasion caused substantial damage, are classified first as windstorm and 
then as hail, freeze, or snowstorm. 

14. During the 1949-94 sample period, there were no floods, snowstorms, or thunderstorms 
with losses in excess of $100 million. Only one freeze had losses in excess of $100 million, a $307 
million freeze in Texas in 1989. Three hailstorms and three tornadoes did produce losses in excess 
of $100 million, but these are all dated prior to 1970 and so do not appear in our regression 
analysis below. 

15. The assumption that winter storms do not afflict the Midwest may seem strange. The reason 
is that our regional market-share data are calculated for the Midwest using only five states: Illinois, 
Indiana, Kentucky, Missouri, Tennessee. The Dakotas, Michigan, Minnesota, Wisconsin, and other 
characteristically midwestern states are excluded. 
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Table 5.1 Frequency and Severity Assumptions by Catastrophe Type 

Assumptions 

Description of PCS data Regions Frequency” Severity’ 
b p e  (1) (2) (3) (4) 

Earthquake 

Fire 

Hurricane 

Winter storm 

Windstorm 

10 events, all in CA. 
Frequency appears 
throughout year. 

19 events: 12 in CA, 2 in 
MW, 3 in NE, 2 in SE. 
Frequency higher in 
quarter 4 and different 
for CA. Severity 
comparable across 
events. 

48 events: 26 in SE, 22 in 
NE and TX. Most in 
third quarter. More 
severe in Southeast. 

35 events: in NE in 
quarters 1 or 4. 

352 events: all regions. 
Frequency differs 
across regions, but 
severity is comparable. 

CA 

NE, MW, CA 

NE, SE, TX 

NE 

NE, SE, TX, 
MW, CA 

I : uniform across 
quarters 

2: CA and NEISEI 
MWITX. Both 
uniform across 
quarters 

8: SE (4 quarterly) 
and NWTX (4 
quarterly) 

1 : uniform across 
quarters 1 and 4 

2 0  one for each 
region and 
quarter 

2: SE, NEITX 

Note; Assumptions for catastrophe frequency and severity distributions are based on catastrophe experi- 
ence 1949-94. A catastrophe is defined as an event that gives rise to $15 million or more in insured losses. 
Column 1 gives a description of catastrophe occurrence by type, 1949-94. NE denotes Northeast, SE 
Southeast, TX Texas, MW Midwest, and CA California. Columns 2-4 give the assumptions concerning 
the frequency and severity distributions. The number in the frequency and severity columns represents 
the number of separately estimated distributions for that type. For example, the number “1” implies that 
all regions are pooled and that a single, nationwide distribution is estimated. 
aNumber of regional distributions. 

type, event occurrences are drawn from a single nationwide frequency distribu- 
tion while loss sizes are drawn from a single nationwide severity distribution. 
Given the relative paucity of loss information, this approach helps by pooling 
the available data. However, the assumption of equal regional distributions is 
likely to be incorrect. For instance, hurricanes are much less likely to occur in 
California than in Florida, and the majority of earthquakes occur in California. 

As a result, we make specific assumptions regarding frequency and severity 
on the basis of a careful examination of the 1949-94 catastrophe data. These 
assumptions are summarized in table 5.1. A catastrophe is defined as an event 
that gives rise to $15 million or more in insured losses. Column 1 summarizes 
the event history for each type. Column 2 reports the regions in which each 
event type is assumed to occur. Columns 3 and 4 indicate the number of re- 
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gional frequency and severity distributions estimated for each type. Some of 
the constraints, such as the assumption that winter storms do not strike Califor- 
nia, seem entirely reasonable. Others, such as the assumption that earthquakes 
do not strike outside California or that winter storms do not hit the Midwest, 
are less tenable (although see n. 15) and are dictated largely by data availability. 

With the assumptions described in table 5.1, there are thirty-three frequency 
distributions to estimate. We assume that the frequencies are Poisson distrib- 
uted and estimate the Poisson parameters by maximum likelihood (the esti- 
mates are equal to the mean number of events that occur per quarter). Table 
5.2 presents the frequency results in four quarterly arrays, by type and region. 
The estimated frequencies accord with what one might expect. For example, 
hurricanes are most likely to occur in the third quarter. 

We next consider severity. There are six severity distributions, one for each 
of the catastrophe types identified in table 5.1. We fit two alternative density 
functions to the empirical severity distribution of each type. The first is a log- 
normal distribution, with density function for losses 1 given by f(l) = 

exp{ -[ln(Z) - ~]Y2uZ)/[Za$~2~)],  E > 0. The second is a Pareto distribution, 
with density functionf(Z) = ( ~ p ~ / l ( ~ + ~ ) ,  Z > p. Once again, the estimation is 
carried out by maximum likelihood. The fitted distributions are reported in 
table 5.3. For earthquake, winter storm, and windstorm events, the likelihood 
ratio test selects the Pareto distribution as the better fit, while, for fire and 
hurricane events, the lognormal distribution is preferred. However, because the 
Pareto distribution tends to place a large amount of probability in the righthand 
tail of the distribution, it does not perform well in attaching reasonable proba- 
bilities to large losses. For example, using the estimated Pareto density, the 
probability that a hurricane in the Southeast generates $15 billion in losses 
(given that a hurricane occurs) is almost 10 percent, which appears somewhat 
high.I6 It might be preferable, therefore, to use the lognormal fit as the baseline 
severity distribution for all event types. This is the strategy that we adopt. The 
fitted lognormal distributions are shown in figure 5.9 for losses in the $0-$3 
billion range. 

Simulated Event History 

Using these frequency and severity distributions, we are able to simulate 
an “event history” of catastrophes. From this event history, the distribution of 
payments under each excess-of-loss contract can be obtained. 

Of course, it is not necessary to simulate the distribution of contract pay- 
ments. In principle, it is possible to determine contract payments analytically. 
However, analytic solutions are complicated because a contract’s payment is 
triggered by only a single event, even though that event could be one of five 

16. Using PCS data, Cummins, Lewis, and Phillips (chap. 3 in this volume) argue that the Pareto 
distribution tends to overestimate the probability in the tail of catastrophe seventy distributions 
and that the lognormal fit is to be prefened on these grounds. 



Table 5.2 Frequency of Catastrophes, Measured by Their Poisson Parameters, by Quarter, Type, and Region, 1949-94 

NE SE TX MW CA NE SE TX MW CA 

January-March April-June 

Earthquake 
Fire 
Hurricane (SE) 
Hurricane (NEmX) 
Winter storm 
Windstorm 

,054 
.03 1 .03 1 .03 1 .03 1 .125 

.Ooo 
,000 ,000 
,380 

,652 ,326 ,500 ,304 

,054 
.03 1 .03 1 .03 1 .03 1 .i25 

,043 
,033 .033 

,196 .457 1.109 ,935 .000 

July-September October-December 

Earthquake 
Fire 
Hurricane (SE) 
Hurricane (NERX) 
Winter storm 
Windstorm 

.054 
.03 1 .03 1 .03 1 .03 1 ,125 

.370 
.283 .283 

,174 .065 ,152 .326 ,000 

.054 
.03 1 .03 I .03 1 .03 I ,125 

,130 
,033 ,033 
,380 

,283 ,326 ,370 .130 

Note; Poisson parameter is equivalent to the mean number of catastrophe occurrences per quarter by type and region. If the frequency of each catastrophe type in 
each region is Poisson distributed-f(n) = e”hn/n!, where n is the number of events that occur-then the numbers in the table are the maximum likelihood estimates 
of A. NE denotes Northeast, SE Southeast, TX Texas, MW Midwest, and CA California. Blank elements of the arrays are 0 by assumption (see table 5.1). 



Table 5.3 Fitted Severity Distributions by Catastrophe Type, 1949-94 

Distribution and Parameter Earthquake 
Winter 
Storm Windstorm 

n 10 
Lognormal: 

P -2.100 
U 1.964 
Mean log-likelihood ,006 
Pr(f > $5 billion)% 2.915 
F’r(l > $15 billion)% ,684 

19 26 22 35 352 

-2.350 - 1.233 - 1.454 
1.196 1.610 1.454 
,752 - ,662 - ,340 
,046 3.870 1.760 
.00 1 ,718 ,211 

-2.440 -3.039 
1.166 ,859 
,867 1.772 
,025 .Ooo 
.Ooo .Ooo 

Pareto: 
a ,476 ,541 ,337 .364 ,568 ,862 
P .015 ,015 ,015 ,015 ,015 ,015 
Mean log-likelihood ,358 .I35 -.854 - ,556 ,875 1.891 
Pr(1 > $5 billion)% 6.288 4.327 14.1 10 12.057 3.684 .670 
Pr(l > $15 billion)% 3.727 2.389 9.743 8.082 1.973 ,260 

Note; Results from fitting of lognormal and Pareto distributions to PCS event losses. PCS losses have been adjusted for inflation and population movements by Guy 
Carpenter. A catastrophe event is defined as one giving rise to insured losses in excess of $15 million. The density function for the lognormal isf(1) = exp( -[ln(f) 
- ~ ] ’ / 2 u ’ ] / [ l u ~ ] ,  1 > 0, while the density function for the Pareto isf(l) = ap/l(’+QJ, 1 > p. The parameters k, u, and a (not p, which is a fixed scale parameter 
set equal to $15,Ooo,Ooo) are estimaetd by maximum likelihood. For a given catastrophe type, estimated mean log likelihoods for the two distributions are comparable 
and provide a means for choosing between them. The table also shows the probability that an event produces insured losses in excess of $5 billion and $15 billion, re- 
spectively. 
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Fig. 5.9 Fitted severity distributions by catastrophe type, 1949-94 
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different peril types. The single-event clause is in effect a knockout provision, 
allowing the contract to mature following the first event that generates losses 
in excess of the retention. For example, it may be that earthquakes are the ma- 
jor large risk for a contract to trigger, but a large freeze in the Northeast in 
early January could trigger the contract, thereby knocking out the earthquake 
risk for the remainder of the year. 

This knockout provision gives the contract a payment distribution that is 
very different from that which would apply if the contracts were instead writ- 
ten to cover aggregate losses (i.e., the sum of losses across events). It can also 
give rise to some paradoxical effects. For example, an increase in the fre- 
quency of winter storms may actually reduce the total exposure embodied in a 
single-event contract since it may increase the probability that it matures fol- 
lowing a winter storm rather than a devastating hurricane. We look briefly at 
the value of the knockout provision in the appendix. 

We simulate a 1,250-year event history. For each quarter, the following steps 
are performed: (1) The number of events of each type that occur in each region 
is randomly drawn from the relevant Poisson frequency distribution (table 5.2). 
(2) For each event that occurs, a loss amount is randomly drawn from the 
relevant severity distribution (table 5.3). (3) Finally, all the events that occur 
in the quarter are randomly sequenced in time. The random sequencing of the 
events throughout the quarter is an approximation, at best. It is likely, for ex- 
ample, that winter storms occur more frequently in January than March. While 
it would be preferable to sequence the events on a time scale finer than quar- 
terly, too few events have occurred since 1949 to allow the estimation of this. 

Contract Exposure 

The exposure of each excess-of-loss contract in our data can be calculated 
by examining its loss experience in each year of the simulated event history. 
To take an example, suppose that we are considering a contract brokered by a 
national insurer with an inception date of 1 April. Let L and R be the contract’s 
limit and retention, and let ml,k, k E {NE SE TX MW CA} be thejth insurer’s 
market share in each of the five regions. The contract’s exposure is measured 
as follows: 

1. Split the event history into 1,249 year-long periods measured from 
1 April to 31 March. 

2. Consider each period in turn. If no event occurs in a period, move to the 
next period. Otherwise, consider each event in sequence. 
a) Let the first event be in region k, and let insured losses from this event 

be 1. 
b) If m,,J > R, the contract is triggered. Measure the reinsurance pay- 

ment for this period as min(L, rnlJ - R), and move on to the next 
period. The contract is no longer in force. 
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c)  If mJ$ < R ,  no payment takes place, and the contract remains in force. 
Move on to the next event or to the next period if there are no more 
events. 

This algorithm generates 1,249 observations on the distribution of payments 
under the contract. The first moment of this distribution is the expected expo- 
sure to catastrophe losses. It is easy to derive various conditional loss distribu- 
tions from the unconditional distribution, such as the distribution of hurricane 
losses or the distribution of losses from events in the Northeast. 

5.3.2 Contract Quantity and Price 

We label the expectation of the unconditional distribution qj,r, the exposure 
embodied in company j’s contract at time f .  This is interpreted as the quantity 
of reinsurance purchased. By considering only those reinsurance payments that 
occur following particular types of catastrophes, it is possible to use the same 
algorithm to calculate the contract’s exposure to each of the catastrophe types 
listed in table 5.1 above. These exposures by type form the inputs to the calcu- 
lation of loss weightings in equation (3). 

To calculate contract price, we begin with the premium paid for each con- 
tract. This is measured simply as the sum of the premiums paid for each layer. 
Typically, the premiums are paid on a quarterly basis over the duration of the 
contract. We discount these premium flows back to the contract inception date 
using the three-month Treasury bill rate. By using the riskless rate, we are 
equating actuarial present values with true value. Strictly speaking, this as- 
sumption holds only under risk-neutral pricing and in the absence of insurer 
credit risk. However, given that catastrophe losses are uncorrelated with total 
wealth, risk-neutral pricing is not easily rejected. Furthermore, the use of a 
risk-adjusted discount rate would, in practical terms, have little import for our 
results. 

Once the net present value (NPV) of the premiums is calculated, it is con- 
verted to 1994 dollars using the CPI deflator. Our measure of price is the net 
present value of premiums divided by contract exposure. Thus, the price of 
company j ’ s  contract at time t is 

NPV( premiums) 
(6)  PJ.I = 

4j.r 

5.4 Graphic Analysis 

We are now in a better position to understand the data and computations 
behind figures 5.2 and 5.3 above. They plot, respectively, the industry quantity 
and price series quarterly from 1975:l to 1993:4. The quantity series is the 
simple sum of exposure across companies. The price series is the exposure- 
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weighted average of the prices of all contracts in force in that quarter.I7 Note 
that figure 5.3 shows that risk was sometimes ceded at less than actuarial value 
(i.e., pj., < 1) during the 1970s and early 1980s. 

Hurricane Andrew is responsible for the largest catastrophe loss during our 
sample period. In the light of this, it is of interest to look at the time series of 
prices around the time of this event. In particular, we can differentiate between 
the price-quantity reactions of those contracts heavily exposed to hurricane 
risWSoutheast risk and those with relatively less exposure. Table 5.4 contrasts 
the price and quantity responses. From panel A, we see that even those con- 
tracts with zero market share in the Southeast show large increases in price in 
the wake of Andrew. This is supportive of the capital market imperfections 
view. However, as already discussed, even if there are no other losses occurring 
at this time, these price responses may be the result of probability updating if 
the Andrew loss experience revealed new information about hurricane expo- 
sure in other regions. Panel B investigates this by sorting contracts according 
to their hurricane exposure. It turns out that it is those contracts least exposed 
to hurricane losses that exhibit the largest increase in price. Taken at face value, 
this suggests that capital market imperfections, and not probability updating, 
are the most important determinant of the price responses. In order to shed 
more light on this question, we need to estimate the conditional expectation 
functions (1) and ( 2 ) .  

5.5 Estimation 

5.5.1 Exposure Measured by Regional Market Share 

In this subsection, we differentiate events by region and estimate (1) and ( 2 )  
using regional market shares as proxies for regional exposure. Eight variants 
of the base specification are estimated, corresponding to different assumptions 
about the functional form through which losses affect prices. The results are 
shown in tables 5.5 and 5.6. 

Turning to the price regressions first, the p, are positive and statistically 
significant in all specifications. The yk are positive but generally not very sig- 
nificant. This is prima facie evidence that both capital market imperfections 
and probability updating play some role in determining the response of price 
to catastrophe losses. However, in all cases, the coefficient on unweighted 
losses is larger and more statistically precise than that on exposure-weighted 
losses. This suggests that the supply-side capital market channel is the more 
dominant of the two. 

17. This industry series is based on the contract prices for four insurers that purchased reinsur- 
ance through Guy Carpenter in every year from 1975 to 1993. It is representative of the behavior 
of prices for the other insurers in our database. 



Table 5.4 Event Study of Hurricane Andrew 

A. Southeast Exposure B. Humcane Exposure 

Mean Mean Mean Mean Mean Mean 
Exposure A ln(p,,,) A In(y,,) Exposure A ln(P,,) A In(q,,) 

5 most-exposed insurers ,707 ,310 ,085 ,654 .270 -.030 
5 least-exposed insurers .ooo ,334 - ,011 ,218 ,551 -.I38 

Note: Comparison of price responses in the year after Hurricane Andrew (20 August 1992-19 August 1993) for different insurers. Panel A contrasts insurers that have 
high and low exposure to the Southeast (as measured by market share). Panel B contrasts insurers that have high and low exposure to hurricanes. The table shows the 
mean exposure and the mean price change of the five most extreme contracts in each case. The mean price change for the insurers with lesser exposure to the Southeast 
is calculated using all fourteen of the insurers that have zero market share in that region. 



Table 5.5 The Response of Price and Quantity to Losses, Exposure Measured by Regional Market Shares 

c:=, 4. , - * -1  c:=, x:=l 'k,z-1-1 XI C-,-I 

A MPj,,) A Wq,, )  A W ] , , )  A In( q,,,) A WJ],,) A M q l J  A ln(f],,) A In( ql,J 

ZkO (4) 1.865 -.518 ,103 - ,028 1.736 - ,284 ,109 -.019 
(449) (.300) (.027) (.018) (.326) (.202) (.020) (.011) 

Z k w k O  ('k) ,372 - ,039 .014 -.001 .519 -.I69 .02 1 - ,006 
(.261) (.160) (.013) (.ow (.249) (.149) (.013) (.OW 

R2 ,140 ,012 ,096 ,008 ,263 ,019 ,230 ,015 
N 435 435 435 435 435 435 435 435 

Note: OLS estimates of price- and quantity-response regressions. The dependent variables are 100 times the change in the natural logarithm of contract price and 100 
times the change in the natural logarithm of quantity. Losses are measured in billions of dollars. Exposure to each type of regional losses (w) is measured by regional 
market shares, as in eq. (5). Each column corresponds to a separate regression. Four different assumptions are made about the functional form of distributed lag of 
losses that affects prices. In cols. 1 and 2, the loss variable is simply the sum of two lagged quarterly losses: in cols. 3 and 4, it is the sum of squared losses from two 
lagged quarters; in cols. 5 and 6, it is the sum of four lagged quarterly losses; and, in cols. 7 and 8, it is the sum of squared losses from four lagged quarters. OLS 
standard errors are given in parentheses. 



Table 5.6 The Response of Price and Quantity Losses, Exposure Measured by Regional Market Shares 

1.759 

6.621 
(1.490) 

,175 
(.215) 
3.830 

(2.606) 
53.052 

(37.846) 
8.982 

(4.599) 
.220 

(.447) 

435 

- ,468 
(.286) 

- 1.272 
(.645) 
,116 

(.140) 
,895 

(1.287) 
-45.808 
(25.460) 
- 12.595 

(4.813) 
,048 

435 

,103 
(.028) 
4.681 

(1.228) 
.009 

(.012) 
2.622 

(2.199) 
95.048 

(110.627) 
3.943 

(2.444) 
,197 

435 

- .029 
(.018) 

-0.835 
(.433) 
.006 

(.008) 
,404 

(.763) 
- 135.190 

(84.527) 
-5.589 
(2.754) 

,035 
435 

1.164 
(.345) 
4.514 
( 1.057) 

.463 
(.221) 
4.595 

(2.105) 
34.090 

(30.153) 
6.589 

(2.571) 
,306 

435 

-.148 
(.212) 
- ,670 
(.624) 
.023 

(.118) 
,241 

(1.101) 

(21.793) 
-8.817 
(2.678) 

,060 

- 14.479 

435 

,054 
(.023) 
3.037 
(.959) 
,024 

(.012) 
3.293 

(1.833) 
72.853 

(66.278) 
2.659 
(.961) 
,283 

435 

- ,005 
(.013) 

-.592 
(.439) 
- ,000 

- ,078 
(.590) 

- 12.393 
(53.1 18) 
-2.978 

( I .  116) 
,047 

435 

Note; OLS estimates of price- and quantity-response regressions. The dependent variables are 100 times the change in the natural logarithm of contract price and 100 
times the change in the natural logarithm of quantity. Losses are measured in billions of dollars. Exposure to each type of regional losses (w) is measured by regional 
market shares, as in eq. ( 5 ) .  Each column corresponds to a separate regression. Four different assumptions are made about the functional form of distributed lag of 
losses that affects prices. In cols. 1 and 2, the loss variable is simply the sum of two lagged quarterly losses; in cols. 3 and 4, it is the sum of squared losses from two 
lagged quarters; in cols. 5 and 6, it is the sum of four lagged quarterly losses; and, in cols. 7 and 8, it is the sum of squared losses from four lagged quarters. NE 
denotes Northeast, SE Southeast, TX Texas, MW Midwest, and CA California. OLS standard errors are given in parentheses. 
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To get a sense of magnitudes, suppose that a $10 billion event occurs in a 
particular region. Using the first price specification (which uses two quarters 
of lagged losses), the $10 billion loss increases all contract prices in the next 
year by an average of about 19 percent. Notice that this price increase is inde- 
pendent of contract exposure to the region. Higher exposure to the affected 
region leads to further, but much smaller, increases in price. A firm that in- 
creases its share of the market in the affected region from 0 to 100 percent sees 
its reinsurance price increase by an average of 4 percent. Thus, much of the 
increase in price appears to be due to a decline in the supply of reinsurance (or 
to increases in expected losses outside the affected region). Probability updat- 
ing and capital market imperfections both help, but the capital market effects 
seem much larger. 

Table 5.5 also reports results from equation (2), where quantity reinsured is 
the dependent variable. The results here are consistent with those presented 
above: the coefficients on unweighted losses provide strong evidence of capital 
market imperfections. The 6, coefficients are negative and statistically less 
than zero at the 10 percent level in all cases. As we expect from figure 5.1 and 
figures 5.7 and 5.8, the +k coefficients on market-share weighted losses are 
ambiguous in sign. 

To calibrate, the first quantity specification suggests that a $10 billion loss 
in a particular region leads to a 5.2 percent decline in quantity on average over 
the next year. Meanwhile, for the same size loss, a company that has 100 per- 
cent market share in the affected region on average purchases 0.4 percent less 
reinsurance than if it had a 0 percent market share. Note, however, that this 
latter effect is neither economically nor statistically significant. In other words, 
we cannot reject the hypothesis that relative-exposure levels have no effect on 
quantity purchased. But we can reject the hypothesis that purchases do not 
decline on average subsequent to an event. The quantity results are therefore 
most consistent with the capital market imperfections story. 

In table 5.6, we relax the restriction that all the yk and +, coefficients are 
equal. This allows the probability-updating effect to differ by region. Indeed, 
there is some evidence for this in the coefficient estimates, which differ sub- 
stantially across regions. Here, there is somewhat stronger evidence of proba- 
bility updating. The cumulative sum of regional losses over the last four quar- 
ters appears to affect price positively in all cases. Nonetheless, unweighted 
losses in each region continue to affect price positively and quantity negatively. 
All but two of these estimates are statistically significant. 

5.5.2 Exposure Measured by Actuarially Expected Loss 

The specifications in tables 5.7 and 5.8 are analogous to those in tables 5.5 
and 5.6. However, here we use actuarial exposures to weight losses. As dis- 
cussed earlier, probability updating may occur across, rather than within, re- 
gions, and this complicates the identification of capital market effects using 
regional market shares. By distinguishing losses by type rather than by region, 



Table 5.7 The Response of Price and Quantity to Losses, Exposure Measured Directly by Catastrophe Type 

Ck0(lk) 4.143 -1.644 ,172 - ,070 3.161 -1.617 .I80 - .08 1 
( 1.097) (1.031) (.056) (.055) ( 1 .ow (358) (.052) (.045) 

E k W k 0 ( l k )  -397 .505 - ,033 .02 1 -.418 .523 -.025 ,024 
( 4 5 )  (.393) (.023) (.021) C.448) (.344) (.021) (.016) 

R2 ,136 ,018 ,101 ,013 ,238 ,023 ,222 .022 
N 435 435 435 435 435 435 435 435 

Note: OLS estimates of price- and quantity-response regressions. The dependent variables are 100 times the change in the natural logarithm of contract price and 100 
times the change in the natural logarithm of quantity. Losses are measured in billions of dollars. Exposure to each type of catastrophe loss ( w )  is calculated directly 
by simulation. Each column corresponds to a separate regression. Four different assumptions are made about the functional form of distributed lag of losses that 
affects prices. In cols. 1 and 2, the loss variable is simply the sum of two lagged quarterly losses; in cols. 3 and 4, it is the sum of squared losses from two lagged 
quarters; in cols. 5 and 6, it is the sum of four lagged quarterly losses; and, in cols. 7 and 8, it is the sum of squared losses from four lagged quarters. OLS standard 
errors are given in parentheses. 



Table 5.8 The Response of Price and Quantity Losses, Exposure Measured Directly by Catastrophe Type 

1.491 
(1.137) 
65.826 

(50.672) 
-26.137 
(28.439) 

-.218 

5 1.084 
(25.298) 

9.273 
( 1.771) 

,249 

(446) 

435 

- .77 1 
(1.097) 

(17.103) 
- 8.489 
(20.256) 

,307 
(.410) 

13.796 
(9.8 16) 

-3.362 
( 1.200) 

,038 

- 30.015 

435 

,091 
(.055) 

44.099 
(37.030) 

6.45 1 
(11.162) 

-.015 
(.022) 

27.597 
(20.651) 

5.912 
(.762) 
,264 

435 

- ,045 
(.053) 

- 17.720 
(10.130) 
- 1 1.843 

(6.311) 
.016 

(.020) 
12.133 
(8.235) 
- 1.883 

(.399) 
,032 

435 

,535 
(1.126) 
24.265 

(16.375) 
-36.406 
(32.047) 

.266 
(.459) 

21.862 
(21 368) 

5.905 
(1.226) 

,301 
435 

,025 
(1.060) 

-35.153 
(16.931) 
13.440 

(21.3 15) 
,010 

(.410) 
10.452 

(12.211) 
-2.918 
( 1.088) 

,056 
435 

p.035 
(.089) 

26.740 
(1 1.852) 
-3.873 
(15.906) 

,028 
(.03 I )  

-5.706 
(2 1.304) 

2.726 
(.622) 
,291 

435 

- .006 
(.073) 

-29.059 
(12.808) 
- 1.220 
(7.531) 
,004 

(.026) 
10.512 

(14.074) 
-.881 
(.415) 
,039 

435 

Nore: OLS estimates of price and quantity response regressions. The dependent variables are 100 times the change in the natural logarithm of contract price and 100 
times the change in the natural logarithm of quantity. Losses are measured in billions of dollars. Exposure to each type of catastrophe loss (w)  is calculated by 
simulation. Each column corresponds to a separate regression. Four different assumptions are made about the functional form of distributed lag of losses that affects 
prices. In cols. 1 and 2, the loss variable is simply the sum of two lagged quarterly losses; in cols. 3 and 4, it is the sum of squared losses from two lagged quarters; 
in cols. 5 and 6, it is the sum of four lagged quarterly losses; and, in cols. 7 and 8, it is the sum of squared losses from four lagged quarters. EQ denotes earthquake, 
Fl fire, HR hurricane, WS winter storm, and WD windstorm. OLS standard errors are given in parentheses. 
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we can separately identify capital market and probability-updating effects on 
prices. 

The results presented in tables 5.7 and 5.8 are in line with what we found in 
the previous two tables. First, the unweighted losses in the price equations 
enter positive and significantly, the coefficients having even larger signs. Spec- 
ification 1, for example, reveals that a $10 billion event tends to increase prices 
by over 40 percent in the following year. Moreover, the aggregated y coeffi- 
cient on event-exposure-weighted losses is not positive in the price equations, 
suggesting that the unweighted losses account for all explainable price in- 
creases subsequent to events. Second, the unweighted losses in the quantity 
regressions enter negatively and statistically significantly in three of the four 
regressions. This is again consistent with capital market imperfections. Indeed, 
the coefficient is large, suggesting that a $10 billion event reduces the quantity 
of reinsurance purchased by between 8 and 16 percent. There is no evidence 
supporting the presence of event-specific probability updating in table 5.6. 

Table 5.7 provides similar results. Unweighted losses influence prices posi- 
tively and quantities negatively (although not significantly). Squared losses do 
not seem to have the expected effects, suggesting that large losses may not 
have proportionately as large effects as smaller losses in the data. 

Taken together, these results provide evidence to support the existence of 
both imperfections in capital supply and probability updating. However, it is 
the former that accounts for the bulk of price movements in the wake of losses. 

5.6 Conclusion 

There are at least two candidate explanations for the sharp rise in catastro- 
phe-reinsurance prices and retentions that occurred in the 1990s, a time of 
unprecedented catastrophe losses. The first holds that capital market imperfec- 
tions impeded the flow of capital into the reinsurance sector. In the presence of 
these imperfections, prices are bid up, and quantities fall, owing to the supply 
contractions that accompany losses. The second explanation is that the changes 
in prices and quantities have largely been the result of an increase in the per- 
ceived frequency or severity of catastrophes. If, after a loss, neither supply nor 
demand shifts but actuarial probabilities of losses tend to increase, then we 
would observe price increases and quantity reductions since our quantity mea- 
sure is derived from time-invariant loss distributions. 

To separate out the effects of capital market imperfections and probability 
updating, we consider two specifications of how loss distributions are updated. 
First, we assume that probability updating occurs on a region-specific basis 
and that event losses in a given region may therefore increase perceived future 
losses within that region but not in other regions. Second, we assume that prob- 
ability updating occurs within (but not across) event types and that event losses 
associated with a particular peril may therefore increase perceived future losses 
from that peril but not losses associated with other perils. 
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We estimate these specifications using detailed reinsurance contract data 
from Guy Carpenter. Our findings suggest that, subsequent to losses, price in- 
creases and quantity declines are more pervasive across contracts than they 
should be on the basis of contract-specific exposures to event types and re- 
gions. Since cross-sectional variation in exposures should explain changes in 
prices and quantities but does not, it appears that price shocks are highly corre- 
lated across all forms of catastrophe exposure. This lends support to the view 
that aggregate price and quantity shocks stem from shifts in the supply of capi- 
tal to the industry. Since reinsurers are financial intermediaries with relatively 
few fixed factors besides financial capital, the existence of such shifts in supply 
is evidence of capital market imperfections. 

Appendix 
The Value of the Knockout Provision 
in Single-Event Contracts 

Using the simulated event history, it is possible to measure the value of the 
knockout provision that is implicit in single-event contracts. This knockout 
feature stems from the fact that it is the first event occurrence that triggers the 
contract.I8 Table 5A. 1 illustrates how the knockout feature affects expected 
payouts under various contract provisions. Columns 1-6 of the top panel con- 
sider contracts whose payouts are contingent on the occurrence of particular 
types of catastrophes. For example, in column 1, the contract can be triggered 
only by earthquake losses in excess of the retention. Column 8 gives the ex- 
pected payout on a contract that is structured in the same way as the Guy Car- 
penter treaties-that is, it pays out on the first event of any type that generates 
losses in excess of retention. The table shows that the sum of the expected 
payouts on event-specific contracts (col. 7) exceeds the expected payout on the 
all-type contract. This is the familiar result that, with imperfectly correlated 
risks, it is cheaper to buy insurance on a portfolio than it is to buy a portfolio 
of insurance policies. The bottom panel of the table is structured in the same 
way, except that it distinguishes events by region rather than by type. Once 
again, the sum of the expected payouts on the region-specific contracts exceeds 
that on the all-region contract. 

It is noteworthy that, in both cases, the inception date of the contract has 
only a minor influence on the distribution of payouts. 

18. The complexities introduced by the knockout provision form part of the reason why the 
catastrophe options that trade on the Chicago Board of Trade are written as aggregate rather than 
single-event contracts. 



Table 5A.1 Value of Knockout Provision in Single-Event Excess-of-Loss Contracts 

Hurricane Hurricane Winter Wind- All 

Quake Fire (SE) (NEITX) Storm storm Sum Type 

1 January 1.9 2.7 6.5 7.8 1.7 9.8 30.4 22.3 
I July 1.9 2.7 6.5 7.8 1.7 9.9 30.4 22.9 

NE SE TX MW CA 
All 

Sum Region 

1 January 6.1 8.9 7.8 3.7 3.9 
I July 6.3 8.9 7.7 3.8 3.9 

30.4 22.3 
30.5 22.9 

Note: Expected reinsurance payments (in millions of dollars) for a $100 million excess-of-$500-million contract under various contract payment provisions. In the 
top panel, the contract is single event, but payment is contingent on the type of catastrophe. Thus, in col. 1, the contract matures on the occurrence of the first 
earthquake event that produces $500 million in insured losses. Column 7 gives the sum of the expected payments from the contracts in cols. 1-6. Column 8 is the 
value of expected payments under an all-event contract that matures on the occurrence of any event producing $500 million in insured losses. The difference between 
col. 7 and col. 8 is the value of the event knockout provision implicit in single-event, all-event contracts. The bottom panel is structured in exactly the same fashion, 
except that it distinguishes events by region rather than type. The five regions are Northeast (NE), Southeast (SE), Texas (TX), Midwest ( M W ) ,  and California (CA). 
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COm~ent  Jeremy C. Stein 

“The Pricing of U S .  Catastrophe Reinsurance,” by Kenneth A. Froot and Paul 
G .  J. O’Connell, is an excellent paper. It poses a clear-cut and very interesting 
question, comes up with an extremely clever empirical approach to tackle the 
question, and delivers quite compelling results. The question is, To what extent 
do the dramatic variations in the price of catastrophe reinsurance reflect shifts 
in reinsurers’ supply curves? In a world of imperfect capital markets, one 
would naturally expect supply shifts to be associated with large disasters- 
for example, Hurricane Andrew or the Northridge Earthquake-which badly 
deplete reinsurers’ existing capital bases. 

The question is interesting, not only from the narrow perspective of the 
catastrophe-insurance market, but to anyone concerned with the economics of 
financial intermediation. For example, in the context of commercial banking, 
there has recently been a great deal of interest in the analogous question, Can 
shocks to banks’ capital influence their willingness to make loans? Although 
there is by now a large literature that seeks to address this “bank capital 

Jeremy C. Stein is the J. C. Penney Professor of Management at the Sloan School of Manage- 
ment, Massachusetts Institute of Technology, and a research associate of the National Bureau of 
Economic Research. 
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crunch” issue, it is in many cases plagued by the fundamental identification 
problem of separating out movements in supply and demand. It is clear that 
banks lend less when their capital is reduced. It is less clear that this is because 
of a loan-supply effect-it might instead be that reduced capital is indicative 
of a deterioration in the lending environment and hence a decline in the de- 
mand for new loans. Froot and O’Connell are able to use the unique nature of 
the catastrophe-reinsurance market to largely get around this type of identifi- 
cation problem and thereby say something more definitive about the role of 
capital in the supply of intermediation services. 

My comments are organized as follows. I will first review the intuition be- 
hind the Froot-O’Connell identification scheme. Since I am ultimately quite 
convinced by their approach, I will only briefly quibble with the details of its 
implementation. Instead, I will save a little bit of space to discuss some further 
implications of their results. 

The Froot-O’Connell Approach to Identifying Supply Shocks 

The Basic Idea 

How would one know whether disasters lead to an inward shift in the supply 
of reinsurance? One obvious thing to do is to look at whether the price of 
reinsurance rises in the wake of a large disaster. In fact, it typically does, but 
this is not decisive. There are two potentially confounding factors. First, it may 
be that the demand for reinsurance also rises after a disaster, as insurers seek 
more cover. Second, there is the “probability-updating” effect that Froot and 
O’Connell stress: “price” is measured relative to a static estimate of actuarial 
value, with the result that, if a big humcane causes market participants to up- 
date their estimates of the actuarial exposure of a given contract, this will in- 
correctly be interpreted as an increase in “price.” 

As a next simple step, one might jointly consider information on both prices 
and quantities. For example, if prices rise and quantities fall after a disaster, 
this looks more like an inward shift in the supply of reinsurance than an in- 
crease in demand. Indeed, this approach is probably all that would be needed 
if the only confounding factor were demand shifts. But it does not by itself get 
around the probability-updating problem, as Froot and 0’ Connell are careful 
to point out. Because of the way their price and quantity measures are con- 
structed, there can be a “hardwiring” effect where an increase in the perceived 
probability of a hurricane simultaneously raises the measured price and lowers 
the measured quantity of reinsurance. Thus, to get convincing identification, 
one must tackle the probability-updating problem head-on. 

This is where the key insight of the paper comes in: while a bad hurricane 
like Andrew might be expected to change market participants’ expectations 
about the likelihood and costs of future hurricanes, it should not cause similar 
updating about earthquakes. Thus, if one could somehow document that a bad 
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hurricane leads to an increase in the price and a decrease in the quantity of 
earthquake policies, and vice versa, this would be convincing evidence of a 
supply effect driven by capital constraints. Quite literally, we would have an 
ideal natural experiment. 

Implementation 

Unfortunately, the data are not quite as cooperative as one might like. The 
main problem is that one never actually observes separate prices for earthquake 
and hurricane policies. Rather, all we know about a given contract is the layer 
of protection and the regional market shares of the insurer involved. Thus, the 
exposure of a contract to a given type of peril must be imputed. Froot and 
O’Connell do this imputation in two ways. The first, simplest method uses 
only information on insurers’ regional market shares. Thus, for example, two 
insurers who both have 50 percent of their market share in California would 
be deemed to be equally exposed to earthquakes (since earthquakes are as- 
sumed to happen only in California). Obviously, this entails some measure- 
ment error since it may be that, in reality, one of the two insurers is more 
heavily exposed to properties that lie near a fault line. The second method of 
imputing exposure is substantially more complicated, but it is fair to say that, 
while it may attenuate this sort of measurement error, it cannot hope to elimi- 
nate it. 

The measurement error is significant because of the kind of regression speci- 
fications that Froot and O’Connell use. For example, in their contract-price 
equation ( l ) ,  if the contract exposures (the w’s) are only noisy proxies, this will 
lead to a downwardly biased estimate of their y coefficient and most likely an 
upwardly biased estimate of p. In other words, the method will be biased to- 
ward overrejecting the null hypothesis of perfect capital markets. I should say 
that, as a practical matter, I would be very surprised if measurement error can 
completely explain away the very strong rejections of the null that show up in 
their tables 5.5-5.8. Nonetheless, it would be nice if there were some way to 
demonstrate this point more convincingly. 

It should be possible to take some steps in this direction. The idea would be 
to examine a subset of the data where we know a priori that measurement error 
is less likely to be an issue. Let me give a concrete example. Suppose we can 
find some insurers who have literally zero market share in California. In this 
case, we can say fairly confidently that they are completely free of earthquake 
exposure. (In contrast, once there is some nonzero market share in California, 
it becomes much harder to say just how large the earthquake exposure is.) One 
could focus in on just these earthquake-free insurers and see how the prices 
of their contracts respond to an earthquake. If they go up a lot, I would be 
totally convinced. 

It should be noted that this approach is very much in the spirit of what is 
done in the Hurricane Andrew “event study” in table 5.4, where Froot and 
O’Connell look at the five insurers with the smallest (albeit still nonzero) expo- 
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sure to humcanes and find that their contract prices rose markedly after An- 
drew. I found this event study to be perhaps the most compelling piece of 
evidence in the paper, and I would have liked to have seen more in a similar 
vein. 

Implications: What Are the Underlying Capital Market Frictions? 

If one accepts Froot and O’Connell’s conclusion that the large swings in 
reinsurance prices seen in recent years are indeed a capital related phenome- 
non, the natural next question to ask is, What exactly are the underlying primi- 
tive frictions that cause reinsurers to become so capital constrained? Without 
a coherent answer to this question, it would be difficult to evaluate either policy 
proposals or potential financial innovations that hold the promise of “fixing” 
the capital scarcity problem. 

A simple but important point-one that strikes me as underappreciated in 
this context-is that capital constraints can have an important effect in steady 
state only if two necessary conditions are both met. First, there must be jow 
costs of adding new external capital. These flow costs might come, for ex- 
ample, from information asymmetries between managers and shareholders that 
create adverse-selection problems and discourage seasoned equity offerings. 
In addition, however, there must be stock costs of simply holding a large capital 
buffer on the balance sheet. Were it not for the stock costs of holding a capital 
buffer, the flow costs of raising new external finance could be rendered irrele- 
vant. In the extreme, a reinsurer could set itself up ex ante with a huge capital 
buffer, so large that, no matter the disaster, it could be assured of never having 
to seek new external finance under adverse-selection conditions.’ Thus, the 
fact that there appear to be persistently binding capital constraints in the re- 
insurance industry strikes me as indirect evidence that, in addition to any 
adverse-selection frictions, there must also be important stock costs of hold- 
ing capital. 

Where do the stock costs come from? The two obvious candidates are taxes 
and agency. On the tax side, with a U.S.-style code, it is obviously inefficient 
to set up an equity-financed entity that raises billions of dollars from investors 
and then parks the proceeds in Treasury bills until there is a major disaster- 
the interest income will be subject to double taxation. Of course, if one takes 
the view that taxes are the dominant friction, then the ultimate financial innova- 
tion is the offshore reinsurance corporation, exemplified by the number of re- 
insurers that, by setting up in Bermuda, have been able to realize substantial 
tax advantages. 

1. By ex anfe I mean that it should be possible to raise a large amount of funding to start (and 
overcapitalize) a new reinsurance company at some initial date before any policies have been 
written and, hence, before managers have any informational edge over investors. Thus, at this ex 
ante date, there should be no adverse-selection problem in raising the money. Alternatively, a large 
capital buffer could be accumulated by retaining earnings over a long period of time. 
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My own guess is that agency considerations are at least as important as 
taxes in discouraging large buffer stocks of capital.2 Put simply, in the standard 
corporate form, where managers have wide discretion over how to spend inter- 
nal resources, it can be scary to think about setting them up with a multi- 
billion-dollar cushion that is not needed for day-to-day operations. The obvi- 
ous worry is that the money will find a way to get spent, perhaps on writing 
negative-net-present-value policies in a misguided effort to grow the business. 

If agency is indeed the key problem, this suggests thinking about contractual 
measures that restrict the discretionary uses to which the excess capital can be 
put. In the extreme, one might think of setting up a “lockbox” arrangement: 
the money can be used only to pay off the losses on reinsurance contracts that 
have already been written. But, of course, this extreme lockboxing solution 
is tantamount to securitization-that is, it completely eliminates managerial 
discretion and effectively takes the reinsurance out of the corporate form. 

While securitization may be helpful in some regards, one should not jump 
to the conclusion that it can easily “solve” the capital problem. Taking discre- 
tion out of the hands of reinsurer management undoubtedly has costs as well 
as benefits since management presumably is better able to evaluate and price 
complex risks than would be diffuse capital market investors. Thus, the right 
question is, How much of what is currently done via intermediaries can be 
usefully taken out of the corporate form? The presence of significant agency 
problems implies that the corporate form for reinsurance should be used spar- 
ingly, only for those particular risks where the ability to exercise managerial 
discretion is on net beneficial. 

2. I do not have any direct evidence to back up this guess. One way to gain some insight might 
be to study the relative behavior and performance of US.-domiciled and Bermuda-based re- 
insurers over time, as more data become available. 
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