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2 Interest Rate Rules in an 
Estimated Sticky Price Model 
Julio J. Rotemberg and Michael Woodford 

This paper seeks to evaluate monetary policy rules that generalize the rule 
proposed by Taylor (1993). In particular, we consider rules in which the Fed 
sets the federal funds rate as a function of the history of inflation, output, and 
the federal funds rate itself. Even though this is not part of Taylor's original 
formulation, we introduce the possibility that the federal funds rate depends 
on the history of the funds rate itself in order to allow for interest rate smooth- 
ing of the kind that appears to be an important feature of current Fed policy. 
We also consider the character of optimal policy, that is, the policy that maxi- 
mizes the utility of the representative agent, assuming unlimited information 
about the exogenous disturbances to the economy. We then compare optimal 
policy in this unrestricted sense with the best rule of the generalized Taylor 
family. 

We evaluate these rules under the assumption that interest rate, inflation, and 
output determination in the U.S. economy can be compactly represented by 
the small structural model whose parameters we estimate in Rotemberg and 
Woodford (1997). This is a rational expectations model derived from explicit 
intertemporal optimization, in which firms are unable to change their prices 
every period, and in which purchases are determined somewhat in advance of 
when they actually take place. In evaluating different monetary rules we use 
two approaches. The first approach is simply to compute the welfare of the 
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representative household according to our model of the U.S. economy. Because 
this places great strain on the assumptions that the model contains accurate 
descriptions of the preferences of American residents, and that we have cor- 
rectly identified the nature of the real disturbances to which monetary stabiliza- 
tion policy must respond, we also study separately the variability of output, 
inflation, and interest rates induced by different policy rules. This latter way of 
characterizing economic performance under alternative rules is less dependent 
on the "deep structural" interpretation of the residuals in our structural equa- 
tions, although it is, of course, still dependent on the specification of those 
structural equations and on the statistical properties of their disturbance terms. 

We proceed as follows. In section 2.1, we describe the structure of the 
model, which is discussed more thoroughly in Rotemberg and Woodford 
(1997, 1998). Section 2.2 is devoted to the analysis of simple policy rules that 
represent variations on the rule proposed by Taylor (1993), while section 2.3 
considers optimal policy. Section 2.4 concludes. 

2.1 A Framework for Analysis 

We begin by reviewing the structure of the estimated sticky price model 
developed in Rotemberg and Woodford (1997). This also allows us to derive 
the utility-based measure of deadweight loss due to price level instability that 
is the basis for our subsequent discussion of optimal policy. 

2.1.1 

We suppose that there is a continuum of households indexed by i, where i 
runs between 0 and 1. Each of these households produces a single good while 
it consumes the composite good. The utility of household i at t is given by 

A Small, Structural Model of the U.S. Economy 

where p is a discount rate, y :  is the household's production of its own good, 
and 6, is a vector of preference (or technological) disturbances. The argument 
C; represents an index of the household's purchases of the continuum of differ- 
entiated goods produced in the economy. Following Dixit and Stiglitz (1977), 
this index is given by 

where c;(z) is the quantity purchased of good z and the constant elasticity of 
substitution 8 is assumed to be greater than one. We assume that all purchasers, 
including the government, care only about an aggregate of the form (2). As 
usual, this implies that the total demand y,(z) for differentiated good z is given 
by a constant-elasticity demand function 
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(3) 

where p,(z) is the period t price of good z ,  PI is the price index defined by 

(4) 

and Y, measures aggregate demand for the composite good defined by equa- 
tion (2). 

One of the delays we assume is that households must choose their index of 
purchases Ci at date t - 2. As we show in Rotemberg and Woodford (1997) 
this, or an assumption like it, seems necessary if one wishes to explain the 
response of U S .  GDP to monetary disturbances, because this response is itself 
delayed by about two quarters. This delay implies that the standard Euler equa- 
tion for optimal intertemporal allocation of consumption spending need not 
hold, except (approximately) conditional on information available two periods 
in advance. Because is chosen in advance, household optimization requires 
only 

where xt is a Lagrange multiplier indicating the marginal utility for household 
i of additional nominal income in period t .  Assuming borrowing limits that 
never bind in equilibrium, these marginal utilities of income must satisfy 

where R, is the gross return on a riskless nominal one-period asset in which 
the household invests at t .  We assume the existence of complete insurance mar- 
kets, so that all households consume the same amount at any time and have the 
same marginal utility of income. Then equations (5) and (6) also hold when 
we drop the i superscripts and interpret them as equations relating aggregate 
consumption C, to the marginal utility of income A, of the representative house- 
hold. However, because of the conditional expectations in equation (5) ,  these 
two equations still do not imply the standard Euler equation relating aggregate 
consumption spending in two consecutive periods to the real rate of return 
between those two periods. Finally, substituting into equation (5) the equilib- 
rium requirement that C, = Y, - GI, where G, represents exogenous variation 
in government purchases of the composite good, we obtain an equilibrium rela- 
tion between the index of aggregate demand Y, and variations in the marginal 
utility of income, which provides the crucial link in our model between interest 
rate variations and aggregate demand. 

For our numerical work, we rely on log-linear approximations to the model's 
structural equations. We assume an equilibrium in which the economy always 
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stays near a steady state path, which represents a stationary, deterministic equi- 
librium in the case of no exogenous disturbances (5, = 0 and GI = 5 at all 
times) and a monetary policy consistent with stable prices. In this steady state, 
output is constant at a level r (defined below), and consumption is constant at 
the level c = r - 3.' It follows that the marginal utility of real income, XIPI, 
is also constant, at the value x = u,(c;O). We log-linearize the structural equa- 
tions of the model around these steady state values. Percentage deviations in 
the marginal utility of consumption u,(C,;~,~ around the - -  steady state value uc 
(c;O) can be written as -e(e, - z,), where C, = log(C,/C), C, is an exogenous 
shift variable (a certain linear combination of the elements of and 6 = 
-uccc/uc, where the partial derivatives are evaluated at the steady state level 
of consumption. With this substitution, the log-linear approximations to equa- 
tions (5) and (6) are given by 

(7) -6E1-2(e t  - C,) = Et-2Xt,  

(8) A, = R, - Tl+ l  4- E A + I ,  

A 

where R, = log(R,/R*) = log(PR,) is the percentage deviation of the short-run 
nominal interest rate from its steady state value, T, = log(P,/P,-,) is the infla- 
tion rate, and i, = log(X,P,/x) measures the percentage deviation of the mar- 
ginal utility of real income from its steady state value. (Eq. [8] refers to actual 
rather than expected inflation because inflation  IT,,^ is known with certainty at 
date t in our model.) 

A similar log-linear approximation - to the market-clearing condition allows 
us to replace el - E,-,C, with s;l(ft - GJ, where s, = c/?, f, = log(Y,/y), 
and GI collects the exogenous disturbance terms that shift the relation between 
aggregate demand and the marginal utility of consumption. Substituting this 
into equation (7) yields 

(9) Er-2ir = - U E , - ~ ( ~  - b,), 
where u = s;'B. Then taking the conditional expectation of equation (8) two 
periods earlier and substituting equation (9), we obtain 

A 

(10) Et-2(x - G,) = - u-~E,- , (R,  - ~ , + 1 )  + Et-z(X+l - GI+'). 

(Thus, in our log-linear approximation, the standard Euler equation does hold, 
but only conditional on lagged information.) Solving forward, we may equiva- 
lently write 

1. Throughout these derivations, we assume an economy with zero growth for simplicity. More 
properly, we assume a deterministic trend for real activity, and variables such as Y, refer to de- 
trended values, yhich take constant values in the steady state. In our estimation of the model, we 
use a series for Y, obtained by removing a linear trend from the log of real GDP. 

2. Details of this and other aspects of our Taylor series expansions are presented more fully in 
the appendix. 
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Equation (1 1) plays a role analogous to the “IS equation” of traditional Keyne- 
sian models but is consistent with intertemporal optimization? It relates output 
to the long-run real interest rate (with a negative sign) and to autonomous 
spending disturbances. The latter include disturbances both to private impa- 
tience to consume resources and to government spending, summarized in the 
composite disturbance term G,. We assume that is determined at t - 1, so 
that it is determined after C, has already been chosen, but in time for the central 
bank to adjust the period t interest rate R, in response to it. Letting 6, be deter- 
mined after t, ensures that output is not predetermined as of t - 2 (i.e., it 
allows us an interpretation for the output innovations in our vector autoregres- 
sion-VAR-model of the U S .  data), even though output responds with a 
two-period delay to exogenous disturbances to monetary policy. 

The source of the real effects of monetary policy in our model is that prices 
do not adjust immediately to shocks. Following Calvo (1983), we assume that 
prices are changed at exogenous random  interval^.^ Specifically, a fraction 
1 - a of sellers get to choose new prices at the end of any given period, 
whereas the others must continue using their old prices. Of those who get to 
choose new prices, a fraction y start charging the new price at the beginning 
of the next period. The remaining fraction 1 - y must wait until the following 
period to charge the new price, or put differently, they must post their prices 
one quarter in advance. These assumed delays explain why no prices respond 
in the quarter of the monetary disturbance and why the largest response of 
inflation to a monetary shock takes place only two quarters after the shock. 

Let p: denote the price set by sellers that decide at date t - 1 on a new price 
to take effect at date t, and p: the price set by sellers that decide at date t - 2 
on a new price to take effect only two periods later. These prices are chosen to 
maximize the contributions to expected utility resulting from sales revenues 
on the one hand, and the disutility of output supply on the other, at each of the 
future dates and in each of the future states in which the price commitment 
still applies. This means that p:  is chosen to maximize 

over p .  Here we have substituted the demand function (3) into the household’s 
objective function, written X, for the marginal utility (in units of period T util- 

3.  Except for our introduction of the two-period delay in the determination of interest-sensitive 
purchases, our derivation of this “expectational IS equation” follows the earlier work of authors 
such as Koenig (1987), Kerr and King (1996), McCallum and Nelson (forthcoming), and Wood- 
ford (1996). 
4. This general approach to modeling the dynamics of price adjustment is adopted in a large 

number of recent quantitative equilibrium business cycle studies, beginning with Yun (1996) and 
King and Watson (1996). 
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ity flow) of additional nominal income during period T, and assumed that reve- 
nues each period are taxed at the constant rate T . ~  The factor appears as 
the probability that the price that is charged beginning in period t is still in 
effect in period T 2 t (where we assume that this contingency is independent 
of all aggregate disturbances). Note that our assumption of complete contin- 
gent claims markets (including full opportunities for households to insure one 
another against idiosyncratic risk associated with different timing of their price 
changes) implies that the marginal utility of income process {A,} is the same 
for all households and can be treated as an exogenous stochastic process by an 
individual household (whose pricing decisions will have only a negligible ef- 
fect on aggregate prices, aggregate incomes, and aggregate spending deci- 
sions). Similarly, an individual household treats the processes {P,,YT} as exog- 
enous in choosing its desired price. The optimizing choice of p:  then must 
satisfy the first-order condition 

where the prime denotes the derivative with respect top  in the explicit expres- 
sion given in equation (12). 

As before, we wish to log-linearize this equilibrium condition around a steady 
state in which Y, = r, P,/P,- ,  = 1, p:/P, = 1, and A,P, = x at all times. (The re- 
quirement that these constant values satisfy equation [13] when 5, = 0 at all 
times determines the steady state value r.)6 Percentage - deviations of vy( y$&) 
from its steady state value can be written as ~(9’; - Y J ,  where o = vDF/v, ,-with 
partial derivatives evaluated at the steady state, 3 = log(y@), and Y, is 
a certain linear function of 6,. Using this notation, the log-linear approximation 
to equation (13) takes the form 

where in addition @:,, = log(p:/P,). Introducing the notation’ 

x, A = -log[$), 1 - a  
(Y 

so that 

5. The allowance for nonzero T is primarily so that we can linearize around a steady state in 
which the constant level of output is efficient. The convenience of this for our purposes is discussed 
in the appendix. 
- 6. UndeLthe assumption that T = -(e - 1)-’, this requires that r satisfy the equation u,(Y - 

G;O) = vy(KO), which also defines the efficient level of output. 
7. The factor (1 - a)/a turns out to be convenient in giving a simpler form to equations such 

as eq. (20) below. 
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we can solve equation (14) to obtain 

as the optimizing choice of the relative price in period t of goods with new 
prices chosen just the period before. 

We can use equation (9) to eliminate the Er-,fi, terms in equation (15), for 
all T > t .  Taking the conditional expectation of equation (8) at t - 1 and using 
equation (9), we see that we can also write 

(16) EI-,Xr = - u E l + l ( ~  - GI), 

where 

Note that the final equality in expression (17) follows from substitution of (1 1). 
Then, substituting equations (9) and (16) into (15), we obtain 

.sr,+,l - $ 1 - 1  , + (1 + 0 0 ) -  
1 - a p  I 

where 

w 
y ;  = ~ EI-,T + ~ 

w +  u w +  u 

is a composite exogenous disturbance. We can think of ?: as representing vari- 
ation in the "natural" or "potential" level of output, since it is expected devia- 
tions P - Ps, rather than deviations in the level of output relative to trend, that 
results in a desire by price setters to increase the relative price of their goods, 
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which in equilibrium requires inflation of the average level of prices. (An equi- 
librium in which no prices are ever changed is consistent with eq. [ 181 as long 
as Y, = Ys at all times and interest rates vary so as to ensure that = 0 at all 
times. Note that the latter condition ensures that eq. [ 101 and hence [ 111 is also 
satisfied at all times.) 

We turn next to the price-setting decision of sellers that choose a new price 
p:  at t - 2 to apply beginning in period t. Because such a price is expected to 
apply in periods t + j with exactly the same probabilities as for the price p,l, 
the objective of these sellers is simply El-z@,-l(p), and the first-order condition 
that determines p:  is given by El-z@r-l(p;) = 0. Comparison with equation 
(1 3) implies that, in our log-linear approximation, 

A 1  

(19) 10gp: = El-2 10gp:. 

Finally, our definition of the price index (4) implies that this index evolves 
according to 

= [aP;I; + (1 - a)y(p:)’-e + (1 - a)(l - y)(p:)l-ell’(l-e). 

Dividing both sides by P,, log-linearizing, and substituting equation (19), we 
obtain 

IT, = ?XI + (1 - y) El-2Xt - [ 1 -  a 
(T/ - 

a 

Taking the conditional expectation of both sides at t - 2, one observes that 
E , - 2 ~ ,  = El-$r. Substitution of this then allows the equation to be written in 
the form 

(20) 

where I) = ya/[l - y(1 - a)]. This indicates how aggregate inflation results 
from the incentives of individual price setters to choose a higher relative price. 

These results may be collected in the form of an implied aggregate supply 
relation between inflation variation and deviations of output from potential. 
Equation (1 8) may be expressed in quasi-differenced form as 

IT, = *il + (1 - * ) E r - 2 i , >  

K 

a +  w 
i, = K($ - f f )  + (1 - a)PEl+IITr+l + apEt-12z+l - ~ + 1-1 

(21) 

where K = (1 - a)(l  - ap)(w + u)/a(l + we), and the second line follows 
from the fact that equation (20) implies that E 1 - 2 ~ ,  = El-$l. Solving this for- 
ward, we obtain 
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where we have used the fact that equation (17) implies that E f - l ~ f  = 0. Substi- 
tution of this into equation (20) then yields 

This is our aggregate supply (AS) equation, relating inflation variation to 
deviations of output from potential. Because prices are set in advance, expecta- 
tions of future increases in output relative to Ys also raise prices. In addition, 
inflation declines when the long-term real interest rate at t is higher than had 
been expected at t - 1. The reason for this is that such upward revisions raise 
the returns households can expect to earn from their revenues at t .  As a result, 
they are inclined to raise these revenues by cutting their prices. Only surprise 
variations in the long rate contribute to this term because only those variations 
result in changes in the current marginal utility of income that are not reflected 
in the current level of aggregate consumption demand, and hence in the out- 

put gap. 
To complete our model specification, we posit that interest rates are set ac- 

cording to a feedback rule of the form 

Here r, is the continuously compounded nominal interest rate (identified with 
log R, in terms of our theoretical model, and with the federal funds rate in our 
empirical implementation of the model), r* is the steady state value of r im- 
plied by the policy rule, and r* is the steady state inflation rate implied by the 
rule. In equilibrium, the steady state nominal interest rate r* must equal the 
sum of the equilibrium steady state real interest rate p and the steady state 
inflation rate IT*. Thus, if p is independent of the monetary policy rule (as our 
model implies),8 the monetary authority's choice of IT* implies a value for r*. 
Thus the pair of values n* and r* represent only a single free parameter in the 
specification of the policy rule, which we shall treat in the subsequent discus- 
sion as the choice of  IT*.^ 

The aim of our paper is to discuss the effects of alternative rules of the form 

8. Up to the log-linear approximation used in all of our computations of the equilibria associated 
with alternative policy rules, the steady state real interest rate is given by p = -log p, as a conse- 
quence of eq. (6).  

9. We need not assume that the monetary authority actually knows the true value of p. The rule 
(23)  involves a single constant term K = (1 - Z,c,)r* - Z,U,T*, and it is this that the authority 
must know in order to implement the rule. However, according to our model, a given value of K 
implies (generically) a unique value of T* (which may or may not be correctly estimated by the 
authority). We choose to parameterize alternative policy rules in terms of T* rather than in terms 
of K because of the simpler interpretation of the latter parameter. 
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(23). In our discussion, we will generally treat separately the effects of the 
parameters u,, b,, and c,, which indicate how the interest rate reacts to the his- 
tory of the economy, and the effects of the choice of IT*. This is because, in 
our log-linear approximation to the model's equilibrium conditions, the param- 
eter IT* has no effect on the implied responses to shocks (and hence on the 
equilibrium variability of the various state variables), while the parameters uj, 
bj, and c, have no effect on the implied steady state (and hence on the average 
equilibrium values of the state variables). We may thus study separately the 
determination of the steady state and the determination of fluctuations around 
the steady state, and different parameters of the policy rule matter for each of 
these investigations. Our overall welfare criterion (discussed in the next sub- 
section) depends, however, on both aspects of equilibrium, and so on both sets 
of policy parameters. 

Our complete model of the economy consists of the IS and AS equations 
(1 1) and (22) together with the monetary policy rule (23). To evaluate the effect 
of changing the monetary rule we need to know both the parameters of the 
model as well as the stochastic process for the two structural disturbances C?, 
and p, the first of which affects only our IS equation while the second affects 
only our AS equation. In Rotemberg and Woodford (1997, 1998) we describe 
both our method for estimating and calibrating the behavioral parameters and 
our approach to reconstructing the structural disturbances and their stochastic 
process. Here we give an outline of this approach. 

We start with a recursive VAR model of the state vectorlo 

where ?, = r, - r* and .ir, = T, - T*." We estimate a system of the form 

(25) = BZ,-, + UZ,,  

where the vector 2, is the transpose of [Z:, Z:-l, Z:-,] and U is a lower triangular 
matrix with ones on the diagonal and nonzero off-diagonal elements only in 
the first three rows, the off-diagonal elements of which are estimated so as to 
make the residuals in 2, orthogonal to one another. The first three rows of the 
vectors 2, contain the VAR residuals el,,, e2.,, and e3,,, while the other elements 
are zero. The number of lags included in our VAR is sufficient to eliminate 
nearly all evidence of serial correlation in the disturbances. 

The first equation in this VAR is our estimate of the monetary policy rule. 

10. In fact, we estimate a VAR model of r, and T, that includes constant terms in the equations 
and use these constant terms to obtain ow econometric estimates of r* and m*. The latter estimates 
then imply our estimated value for the model parameter p (and hence p). In the exposition here, 
we drop the constant terms for simplicity. 

11. Note that, with these definitions, ?, = R, - T*. The difference in the definitions follows 
from the difference in the rate of inflation in the steady state with respect to which deviationsare 
calculated under the two definitions. It is also worth noting that ?,bears the same relation to R, as 
+,bears to T,. 
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This estimated rule has the same structure as rule (23), except that it also in- 
cludes a white noise residual el,,. Note that while the interest rate comes first 
in the casual ordering, the timing of the variables ensures that the interest rate 
in period t responds to inflation and output in period t ,  while these variables 
only react to lagged interest rates. We suppose that el,, is independent of the 
two “real” disturbances p: and G, so that it is exclusively a monetary policy 
disturbance. (Note that these identifying assumptions are ones that are implied 
by the decision lags assumed in our theoretical model.) Under these assump- 
tions, we can estimate not only the coefficients of the historical monetary pol- 
icy rule but also the impulse responses of output, inflation, and the interest rate 
to a monetary policy disturbance. We can then recover most of the structural 
parameters of our model by minimizing the discrepancy between the estimated 
responses of these variables to the monetary disturbance el,f and the responses 
predicted by our theoretical model when the systematic part of the monetary 
policy rule is given by the estimated coefficients in equation (23).’* By calibrat- 
ing the remaining parameters on the basis of other evidence, we obtain numeri- 
cal values for the model parameters a, p, y, u, 8, and w. These are, respectively, 
0.66,0.99,0.63,0.16, 7.88, and 0.47, so that K equals 0.024 and IJJ equals 0.53. 

Armed with our parameter values and the VAR, we can reconstruct the sto- 
chastic processes for the structural disturbances as follows.13 Equation (1 1) 
gives Gf as the sum of ?, and u times the expected long-term real rate. Given 
that the VAR allows us to forecast both inflation and interest rates, this ex- 
pected long-term real rate is a function of 2,. Similarly, solving equation (20) 
for gr as a function of inflation and expected inflation, and substituting this 
into (21), we find that ff must be given by 

Furthermore, using equation (17), the last term in this equation can be written 
as a function of expectations of future interest rates and inflation rates, as of 
periods t - 1 and t - 2. Using the VAR to forecast future - variables, the right- 
hand side of the equation then depends just on zf-,, on Zt-2, and on the model 
parameters. It is thus straightforward to use the structural parameters as well 
as the matrices B and U to compute matrices C and D such that 

s, = [G,+, , p:+,]‘ = CZ,, + DE,. 

The resulting historical time series for the two disturbances s, could then be 
identified with the residuals of the model’s structural equations. 

If the model fit the properties of the U.S. time series perfectly, the vector s, 

12. Our estimation strategy is discussed in more detail in appendix 1 of Rotemberg and Wood- 

13. Rotemberg and Woodford (1998) provides more details about both this method of construc- 
ford (1998). 

tion and the properties of the constructed series. 
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constructed in this way would be orthogonal to the identified monetary policy 
disturbance e,,t.  In practice, the right-hand side of equation (26) does depend 
on the first element of the vector of VAR residuals F,, which we identify as the 
monetary policy disturbance. Perhaps more troubling is the observation that if 
the real disturbances s, are generated by a law of motion of the kind implied 
by conjoining equation (26) with equation (25) for the evolution of z,, then we 
should not expect all three of the independent structural disturbances 2, that 
matter for the evolution of s, to be revealed by data on the three variables in Z, 
alone. (This is because one of the VAR innovations corresponds to the mone- 
tary policy shock, so that only the other two orthogonal innovations can reveal 
information about the real disturbances.) But this would mean that forecasts of 
the future values of the variables in Z, using the VAR should not correspond, 
in principle, to the expectations of these variables conditional on the public’s 
information set (assuming that the public has complete information about the 
structural disturbances); and thus our method for identifying the historical se- 
ries for our structural equation residuals would not be internally consistent. 

We prefer instead to work with a theoretical model not subject to this last 
problem, that is, one in which the evolution of the real disturbances s, depends 
only on two orthogonal disturbances each period, which then should in prin- 
ciple correspond to the two VAR residuals Z2, and Z3c. The structural distur- 
bances s, of our theoretical model then have moments that do not correspond 
precisely to those of the residuals of our model equations; but this discrepancy 
will exist only insofar as our model (quite apart from the law of motion chosen 
for the structural disturbances) is in fact inconsistent with the estimated VAR 
(and in particular, with the estimated impulse responses to a monetary policy 
shock). We accordingly consider a law of motion 

s, = CZl ,  + Dte: 

for the structural disturbances, where the matrix C is the one referred to in 
equation (26), D t  corresponds to D with the first column deleted, and e: is a 
vector of two orthogonal white noise disturbances (which correspond to Z2, 
and Z3J. Here Z;i is a vector of exogenous state variables that evolve accord- 
ing to 

where B is the same as in equation (25) and U+ corresponds to U with the first 
column deleted. 

refer to exogenous states (underlying 
states for the dynamics of the real disturbances S,), unlike the elements of 2, 
(which correspond to endogenous variables of our model), this specification 
does not imply the existence of any feedback from the evolution of the endoge- 
nous variables to the exogenous disturbance processes s,. What this construc- 

Note that because the elements of 
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tion does guarantee is that the empirical impulse response functions of infla- 
tion, output, and interest rates to the two VAR disturbances orthogonal to the 
monetary policy shock are identical to the impulse responses predicted by our 
theoretical model. This property of the predicted impulse responses is inde- 
pendent of the structural parameters assumed in the model. Thus, given this 
method for constructing the laws of motion for the real disturbances, only the 
estimated responses to the monetary policy shock contain any information that 
can be used to help identify the structural parameters. This is our justification 
for the strategy that we use for parameter estimation, mentioned above. 

It is worth noting that the stochastic processes for the real disturbances that 
we obtain with this method imply a great deal of variability for both 6, and 
p. For example, the standard deviations of these two series are 29.5 and 13.7 
percent, re~pective1y.l~ This extreme volatility is consistent with the fact that 
the literature reports many “failures” in fitting equations very similar to our IS 
and AS curves by either ordinary least squares or by using lags as instruments. 
Our interpretation of these “failures” is that they say simply that these equa- 
tions are subject to disturbances whose variance is large and whose serial cor- 
relation pattern is rich (so that they are correlated with the lags that are used 
as instruments). 

In this paper, we evaluate monetary rules by evaluating how well they per- 
form when the economy is buffeted by these shocks to G and Fs. In other 
words, we are asking how the U.S. economy would perform if it were subject 
to structural disturbances whose properties are the same as those that have 
affected it in the past while, at the same time, the way interest rates are set by 
the central bank is different. Because the structural equations (11) and (22) 
follow simply from the Euler equations for optimal intertemporal behavior on 
the part of households, and so can be derived without reference to any particu- 
lar specification of the monetary policy rule, they should remain invariant un- 
der contemplated changes in that rule. Thus our stochastic simulation method- 
ology responds to the Lucas (1976) critique of more traditional methods of 
econometric policy evaluation.I5 

14. Tt is  compares, e.g., with a standard devia9on of only 2.1 percent for our detrended output 
process Y,. The high volatility of the constructed G, process is mainly due to its high serial correla- 
tion (serial correlation coefficient of .92), rather than to extraordinary volatility of the G, innova- 
tions, which correspond in fact to the Y, innovations& our VAR model. It is possible that the data 
would be better described by a model in which C,, C,, F d  G, are not required to have a common 
deterministic trend. The volatility of the constructed Yf process, instead, is largely due to the 
presence of a very volatile transitory component. E.g., the standard deviation of E,-,Yf is only 
4.3 percent. 

15. It should go without saying that this does not imply that the model is necessarily correct. If 
our model is incorrectly specified, changes in the monetary policy rule will have effects other than 
those implied by our analysis. What makes the model preferable to purely backward-looking mod- 
els is that, as stressed by Lucas (1976). it is highly implausible that purely backward-looking 
specifications of IS and AS curves will remain invariant with respect to changes in the monetary rule. 
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2.1.2 The Welfare Loss from Price Level Instability 

One of the primary advantages of our derivation of our structural equations 
from explicit optimizing foundations is that we are able to evaluate alternative 
monetary policy rules in terms of their welfare effects. Specifically, we con- 
sider the effects on the average level of welfare 

(29) 

in the stationary equilibrium associated with one or another policy rule within 
the class that we consider. 

Here the expectation is over alternative possible histories of the preference 
shocks 5, (which include the effects of technology shocks, since technological 
possibilities are implicit in our assumed disutility of supplying output). We 
only consider the welfare associated with alternative stationary rational expec- 
tations equilibria, in which all relative quantities are stationary and all quanti- 
ties are trend stationary. Thus we can evaluate an unconditional expectation in 
expression (29) for each of the equilibria that we consider. We also restrict 
our attention to monetary policy rules that result in unique stationary rational 
expectations equilibria (in terms of inflation, all relative prices, detrended out- 
put, and all relative quantities); we thus obtain a unique welfare measure for 
each policy rule in the admissible set. Given that we evaluate the unconditional 
expectation, rather than conditioning on the current state of the economy at 
some particular date at which the policy choice is to be made, the criterion 
(29) is equivalent to comparing equilibria on the basis of the average level of 
expected utility of the households in our model (for the unconditional expecta- 
tion of the latter quantity is simply ( I  - p)-’W). We evaluate the unconditional 
expectation in order to obtain a policy evaluation criterion that is not subject 
to any problem of time consistency.’6 

Following Rotemberg and Woodford (1998), we take a second-order Taylor 
series approximation of this welfare measure around the steady state values of 
the stationary variables that affect utility. The “steady state values” represent 
the constant equilibrium values of these variables in the absence of real distur- 
bances, and in the case of a deterministic monetary policy consistent with zero 
inflation.” The steady state considered for this purpose also involves a tax rate 
T that is set so that the steady state level of output is efficient. (This involves a 
small output subsidy, in order to counteract the distortion caused by monopoly 
power.) Consideration of a Taylor series expansion around these values means 
that our approximate welfare measure will accurately rank alternative policy 
rules insofar as they result in only a small degree of variability of the relevant 

16. For an alternative approach, cf. King and Wolman (1998). 
17. The rate of inflation matters for the evaluation of eq. (29) in such a steady state because it 

determines the dispersion of relative prices and hence the dispersion of the relative quantities 
produced of the various goods z. 
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state variables and they result in average values of the state variables that are 
close to the assumed steady state values. Thus our analysis should be most 
reliable in the case of rules that imply an average rate of inflation not too differ- 
- ent from zero and an average level of output near the optimal steady state level 
Y, and in which the fluctuations in both inflation and output are small. In fact, 
the policies that we characterize as optimal within various families of possible 
policy rules all imply low inflation rates, and also low variability of inflation 
and output, in the case that the variability of the real disturbances (represented 
by 5,) is small enough. 

Linearization around this particular (optimal) steady state is extremely con- 
venient since our approximate measure of W takes an especially simple form 
in that case. In particular, in this case our second-order approximation for W 
depends only on a first-order approximation to the equilibrium responses of 
inflation and output to the exogenous shocks. This means that we can solve a 
log-linear approximation to the model's equilibrium conditions using standard 
linear methods, as sketched in the previous subsection, and obtain an approxi- 
mation to W that neglects only terms of third order and higher in the deviations 
from the steady state. This result depends on the absence of any first-order 
contribution to our welfare measure from changes in the average level of out- 
put under alternative rules (as a result of the optimality of the level ? relative 
to which we consider deviations); for if W contained a term of first order in the 
average level of output, then second-order terms in the equations determining 
output would matter for a second-order approximation to u! 

In fact, in the calculations reported here, we furthermore assume that the tax 
rate T actually varies depending on the monetary policy rule, so as to ensure 
that E log Y, = log r in any event. This allows us to obtain a measure of the 
deadweight loss associated with price level instability that abstracts from any 
effects of alternative monetary policies on the long-run average level of output. 
While many analyses of the welfare effects of monetary policy have empha- 
sized exactly such effects,'* we think there is good reason to abstract from 
them. Our primary reason is that there exist other policy instruments, such as 
the general level of and structure of taxation, which allow the government to 
influence the average level of output while, at the same time, being much less 
well suited for the achievement of stabilization objectives since they cannot be 
adjusted quickly and precisely in response to shocks. It thus makes sense to 
assume that, in an optimal policy regime, the other instruments are chosen to 
achieve the desired average level of output for a given monetary policy, while 
the monetary policy rule is chosen to minimize those contributions to dead- 
weight loss that are independent of the economy's average level of output. We 
do this by choosing the monetary policy rule that maximizes W under the as- 
sumption that the other instruments are adjusted in the manner stated in re- 
sponse to any change in the monetary policy rule. 

18. See, e.g., Btnabou and Koniezcny (1994), King and Wolman (1996), and Feldstein (1997). 
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Abstracting from these effects also has the advantage of making our results 
independent of a feature of our model about which we are especially uncom- 
fortable, namely, its predictions about the effects of sustained inflation on the 
long-run level of o~ tpu t . ’~  One might think that sustained inflation should re- 
sult in adaptations that eliminate any effects of the average inflation rate on 
average output. One such adaptation would be price commitments that specify 
a constant rate of price increase of T* between the occasions on which the 
commitments are modified, as assumed in Yun (1996). With this modification, 
our model would come to satisfy the “natural rate hypothesis.” In the modified 
model, the correct second-order approximation to W would be exactly the one 
that we report here, but then it would apply to small fluctuations in the rate of 
inflation around any average value T * . ~ O  

We show in the appendix that, under these assumptions, a second-order ap- 
proximation for W is given by 

+ terms independent of policy + O( ll(Il3), 

where the suppressed final terms are either independent of the evolution of the 
endogenous variables or of third order or smaller in the size of the exogenous 
disturbances. Note that this welfare measure depends solely on the allocation 
of real resources, summarized by the pattern of levels of production {y,(z)> at 
each point in time. However, equation (30) indicates that welfare depends not 
only on the degree to which aggregate output deviates from the natural level 
of output Ys but also on the degree of (inefficient) dispersion of output levels 
across the different varieties of goods being produced at each point in time. 

The dispersion of output levels directly corresponds, in equilibrium, to the 
degree of dispersion of output prices. Prices differ across goods, in turn, only 
because of variation in the overall price level (together with the fact that differ- 
ent suppliers adjust their prices at different times). The E var,{log y,(z)} term 
in equation (30) can accordingly be expressed as a function of the aggregate 
inflation process, as shown in the appendix. With this substitution, we obtain 

19. E.g., McCallum and Nelson (chap. 1 of this volume) criticize the Calvo model of price 
setting on the ground that its failure to conform to the natural rate hypothesis is unrealistic. Our 
closely related model has exactly the feature that they criticize. 

20. King and Wolman (1998) also argue, on alternative grounds, that optimal policy should 
involve a steady state inflation rate of T* = 0, despite the fact that a small positive inflation rate 
can raise steady state output by lowering average markups, and that (if one assumes T = 0, as they 
do) this would raise the steady state value of the period utility flow u(C) - v (y ) .  Their argument 
involves calculation of the optimal time-dependent policy (under commitment) to maximize the 
average level of discounted utility over the infinite horizon. They show that this optimal time- 
dependent (and time-inconsistent) policy involves a commitment to an inflation rate that converges 
to zero asymptotically, even though the optimal stationary rate of inflation would be positive. 
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+ ava r{E ,+ ,~ ,}  + an*, 
(1 - a)* 

Here n* again denotes the steady state rate of inflation associated with a given 
policy rule (the rate of inflation when the shocks 5, = 0 for all time); it cor- 
responds, neglecting terms of second order or higher, to the average rate of 
inflation (or to the unconditional mean of T) in the stationary equilibrium. The 
notation “t.i.p.” refers to the terms that are independent of policy. 

(32) W = -LR(L + n**) + t.i.p. + O(II@13), 

where 

Expression (31) can be written more compactly as 

A , .  

(33 )  L = var{~~T, )  + (++’ - 1) var (n ,  - E , - z ~ , }  + A var{E,_,(y - Y : ) )  

and 0, A > 0. The quantity L + T * ~  represents the measure of deadweight loss 
due to price level instability that we shall use to evaluate alternative monetary 
policies. Here the loss measure L collects the terms that depend solely on the 
degree of variability of inflation and the output gap, while n*2 is proportional 
to the deadweight loss due to nonzero inflation, even when it is perfectly 
steady.21 

Note that our loss measure L is similar in form to a type of ad hoc loss 
function, 

v a r ~ n , }  + A varlf - F ~ I ,  
for some A > 0, assumed in many analyses of optimal monetary policy (e.g., 
Taylor 1979; Bean 1983). Our utility-based derivation, however, allows us to 
assign a specific numerical weight to the relative importance of stabilization 
of output around Ys, as opposed to inflation stabilization. It also clarifies the 
kinds of stabilization that are important. Because of the lags involved in pric- 

21. Note that the latter measure considers only the welfare costs of steady inflation that result 
from the relative price distortions that follow from the lack of continuous price adjustment. As 
noted earlier, we abstract from any effects of steady inflation on the steady state level of aggregate 
output. We also abstract from other welfare costs of inflation, such as the costs of economizing on 
real money balances, that are emphasized in many discussions of this issue. It seems likely that 
the effects that we neglect should, if anything, make it even more desirable that average inflation 
be low. Since many of our results consider the trade-off between stabilization objectives and the 
objective of a low average rate of inflation, and since our results, when we consider the overall 
minimization of L + T**, recommend a low average rate of inflation in any event, we do not feel 
that an attempt to quantify such additional considerations is likely to change our conclusions dra- 
matically. 
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ing, it turns out to be desirable to reduce the variability of both expected infla- 
tion and unexpected inflation. Moreover, the variability of unexpected inflation 
deserves somewhat greater weight, unlike what the ad hoc loss function above 
would imply. The analysis also makes it clear that it is the variability of quarter- 
to-quarter inflation, rather than some longer horizon average rate of inflation, 
or the deviation of the price level from some deterministic or stochastic trend 
path, that is most closely related to the welfare losses due to price level insta- 
bility. Finally, it makes it clear that it is the variability of P - Ps, rather than 
the variability of deviations of output from trend or the variability of output 
growth, that matters for welfare. Specifically, it is the variability of the part of 
- 9 that is forecastable two quarters earlier that policy should seek to min- 

imize. 
It is worth noting that all three of the terms in equation (33)  are directly 

related, in different ways, to inflation variability. For the analysis of optimal 
policy below, it is helpful to rewrite L so that it depends only on the stochastic 
process for the relative price variable 2. We show in the appendix that the 
model’s structural equations imply that equation (33)  may be rewritten in the 
form 

This shows that the deadweight losses measured by L are zero if variations in 
X are eliminated (as we show below to be possible in principle). Thus a con- 
stant rate of inflation is both necessary and sufficient for achievement of the 
minimum value of L = 0. This means that, even though our proposed welfare 
criterion (30) assigns ultimate importance only to the efficiency of the level of 
real activity in each sector of the economy, it in fact justifies giving complete 
priority to inflation stabilization as opposed to output stabilization. 

Given the model, one can compute the value of L as well as that of its com- 
ponents for any rule that sets the interest rate as a function of the history of 
inflation and output in such a way that there is a unique stationary equilibrium. 
But this still leaves open the question of whether there is a trade-off between 
stabilizing the economy by reducing L and keeping a low steady state level of 
inflation. As suggested by Summers (1991), the requirement that nominal in- 
terest rates must always be positive implies that a low average rate of inflation 
is inconsistent with a great deal of stabilization. The reason is that a low aver- 
age rate of inflation implies that the average interest rate is low, and this means 
that the interest rate cannot be too variable. At the same time, keeping the 
variability of interest rates low weakens the government’s ability to reduce L 
by having the interest rate respond to shocks. To see this, it is worth displaying 
the relation between interest rates and 2 implied by our model. 

This relationship can easily be derived from the equilibrium conditions (1 7), 
(20), and (21), together with the requirement that 
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(35 )  Er(K+2 - Gi+2) = K z  - ' ,+I 

which is implied by the fact that interest-sensitive purchases in period t + 2 
are determined at t .  We first take the difference between equation (21) and the 
expectation of this equation at t - 2, and use equations (17) and (35) to obtain 

<it - PE,-$!+J - El-2(2, - Pri,,,) 
K + 1-1 

o +  u 

Using this expression to substitute for 

(36) 

in equation (21), we obtain 

4 = f f +  K - ' E , - ~ ( ~ ,  - pX,+l) + [(GI - f f )  - E,-2(Gr - f f ) ] .  

We now rewrite equation (17) using (36) to substitute for PI and the expres- 
sion just above to substitute for This yields 

where we have used the fact that equation (20) implies that E , - z ~ l  = El-,kI, 
and where 

Note that r j ,  is an exogenous stochastic process that can be expressed as a func- 
tion of the history of the shocks Z,l. 

Equation (37) represents the only restriction implied by our model on the 
behavior of Rr given the evolution of 2,. For any given process for k,, the vari- 
ance of R, is obviously minimized by setting R,+, equal to the right-hand side 
of equation (37). In the case where one wishes to stabilize prices completely, 
this means that Rr+l is given by 6 ,  as discussed in Rotemberg and Woodford 
(1997). This means that the interest rate at t + 1 must rise whenever GI+, - 
?+, increases unexpectedly at t .  If, instead, upward revisions in - p+, 
are matched by upward revisions in k,+,, need not rise as much. In other 
words, if inflation is allowed to respond to these shocks, the interest rate does 
not have to respond as much to them. 

We propose a simple representation of the quantitative connection between 
average inflation and the variability of interest rates as in Rotemberg and 
Woodford (1997). In particular, we suppose that, along any equilibrium path, 
the lowest possible value of r* (and T * )  consistent with a given degree of in- 
terest rate variability is given by 
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(39) r* = p + -rr* = k v ( R ) ,  

where ~ ( k )  refers to the standard deviation of the unconditional distribution 
for R, in the stationary equilibrium associated with a given policy rule. We let 
the factor k equal 2.26, which is the ratio of the mean funds rate to its standard 
deviation under the historical regime, so that, in effect, we are assuming that 
this is the minimum possible value for this ratio.22 For any monetary policy 
rule we consider, we thus compute the variance of the nominal funds rate, and 
then use equation (39) to determine the associated value of IT*. We then com- 
pare policy rules according to how low a value they imply for the overall dead- 
weight loss measure L +  IT**.^^ 

While minimizing the welfare losses of the agents in the economy is a rather 
obvious objective for policy, it is worth looking more generally at the effect of 
different monetary policy rules on the variances of output, inflation, and inter- 
est rates. This analysis has several benefits. First, it provides intuition for our 
results concerning the effects of different rules on L +  IT*^. Second, because 
this analysis is not as dependent on the subset of parameters that we calibrate, 
it remains valid even if some our calibrations are inappropriate. 

Finally, the model may be incorrect in ways that maintain the validity of our 
estimates of the structural parameters but vitiate our welfare analysis. We do 
not know the precise range of variations on the model for which this would be 
true. One simple example would be if there are changes over time in the elastic- 
ity of substitution of different goods for each other. This would imply that the 
Dixit-Stiglitz aggregator varies over time. The resulting changes in the elastic- 
ity of demand faced by each firm would lead firms to desire changes in the 
ratio of price to marginal cost. As far as the algebra of the model is concerned, 
such changes in the desired markup have the same effect as changes in Yf. The 
difference is that, under this alternative interpretation, it is no longer socially 
desirable for output to track the time variation in Yf. In particular, variation in 
desired markups would justify an objective of reducing the variance of output 
relative to trend more than is implied by our minimization of L + T * ~  below. 
For this reason, as well as for comparability of our results with those of other 
studies, we look at a relatively wide range of consequences of the monetary 
rules we study. 

22. Note that our definitions imply that 8, = r, - p. so that a(& = a(r) .  We refer to cr(R) in eq. 
(39) because the structural equations of our model are written in terms of the variable R,, and so 
we solve for the equilibrium fluctuations in that variable. 

23. The advantage of this substitute for the more rigorous approach of imposing the requirement 
that R, 2 0 at all times, given estimated shock distributions with bounded supports, is a consider- 
able saving in computational effort. First, imposing a constraint of the form (39). our optimization 
problem continues to be a linear-quadratic one (if we use approximation [32] to the objective and 
a log-linear approximation to the model structural equations), and as a result the optimal policy is 
described by a linear rule, which we can obtain using linear methods. Second, under this form of 
constraint, the optimal policy does not depend on any more detailed description of the distribution 
of the exogenous shocks e: than their means and variances. This means that we do not need to 
estimate more detailed properties of these distributions and that our conclusions do not depend on 
properties of such distributions that are likely to be very poorly estimated in a sample of our size. 



77 Interest Rate Rules in an Estimated Sticky Price Model 

2.2 Consequences of Simple Policy Rules 

As noted earlier, we wish to compare a variety of types of monetary policy 
rules that make the interest rate r, depend on the history of output, inflation, 
and the interest rate itself. In this section, we explore the effects of varying the 
parameter in some very simple rules of this kind. These simple rules, which 
are variants of the rule proposed by Taylor (1993), have some practical advan- 
tages. Their simplicity makes them easy to understand so that a central bank 
that adopted them ought to find it easy to explain what it is doing. As a result, 
the public ought to find it easy to monitor the central bank's compliance with 
its rule. Finally, the use of similar rules in the other papers in this volume 
makes our results concerning the desirability of these rules directly compar- 
able to theirs. 

When we study rules that can be described by only a small number of param- 
eters, we study the consequences of parameter variation for two sorts of issues. 
First we analyze the range of parameter values that ensures that a determinate 
rational expectations equilibrium exists; as an extensive prior literature has 
stressed, determinacy of equilibrium cannot be taken for granted in rational 
expectations models, especially in the case of a monetary policy defined by an 
interest rate rule. (See, e.g., Bernanke and Woodford 1997 for general discus- 
sion of this issue, and illustrations in the context of a model similar to the one 
that we use here.) Next we study the effect of parameter variation within the 
range of parameter values for which equilibrium is determinate. 

2.2.1 

For each of the rules we consider, we compute a number of statistics relating 
to the variability of inflation, output, and interest rates in the unique stationary 
rational expectations equilibrium associated with that rule. These statistics are 
reported in table 2.1 for a number of rules of particular interest. The signifi- 
cance of the parameters a, 6, and c that define these rules is explained 

Among the specific rules included in the table are several that are also con- 
sidered in other papers in this volume. These are labeled Ai through Di, with i 
equal to 0 in the case of rules where the interest rate responds to contemporane- 
ous output and inflation, and i equal to 1 in the case where it responds with a 
lag. The table also reports the effects of setting the parameters at the values 
that represent the best rule (in the sense of minimization of our utility-based 
loss measure L + T * ~ )  within each of several families of simple rules discussed 
below (these are labeled En, F,, and Go, and E, and G,). Finally, we also report 
the statistics associated with our estimate of actual US. policy during the pe- 
riod 1979-95 (rule H), and for the unconstrained optimal policy according to 
our model, discussed in section 2.3 (rule I). 

Performance Measures for Alternative Rules 

24. Briefly, in each case, a measures the extent to which the funds rate responds to deviations 
of inflation or the price level from its target value, b measures the extent to which the funds rate 
responds to deviations of output from trend, and c measures the extent to which the funds rate 
responds to deviations in its own lagged value. 



Table 2.1 Statistics for Several Policy Rules 

a b c var(R) v a r ( Y )  var(a) var(Ap-) 
var Var 

P- ( T - E T )  ( E ( Y -  Y’)))  L a* L+.r r*2  

Contemporaneous-data Taylor rules 
A, 3.00 0.80 1.00 
B, 1.20 1.00 1.00 
C, 1.50 0.50 0.00 
D, 1.50 1.00 0.00 
En 1.22 0.06 1.28 
F, 2.88 0.02 0.00 
Lagged-data Taylor rules 
A, 3.00 0.80 1.00 
B,  1.20 1.00 1.00 
C,  1.50 0.50 0.00 
D, 1.50 1.00 0.00 
E, 1.27 0.08 1.28 
Price level targeting rules 
G,, 0.26 0.07 1.03 
G ,  0.38 0.10 0.85 
Estimated historical U S .  policy 
H - 
Optimal policy 
I 

- - 

- - - 

6.24 7.24 0.66 
6.41 2.73 1.82 

17.14 3.87 7.34 
16.26 1.79 6.76 

1.88 13.47 0.38 
8.65 15.42 1.04 

5.89 10.32 0.66 
5.99 3.30 1.83 

13.83 4.63 5.97 
14.86 3.32 5.85 
1.87 13.92 0.37 

2.00 11.14 0.34 
2.04 11.35 0.34 

7.64 4.79 2.28 

1.93 11.30 0.39 

4.00 
16.05 

121.14 
100.77 

1.47 
16.77 

4.20 
16.30 
94.12 
83.99 

1.12 

0.00 
0.00 

26.19 

1.77 

3.82 0.27 8.77 1.32 2.66 8.38 
5.44 0.48 11.69 2.80 2.74 10.29 

11.14 0.81 13.86 8.72 6.37 49.29 
9.80 0.83 14.63 8.18 6.13 45.73 

-1.86 0.19 11.37 1.09 0.11 1.10 
6.38 0.37 10.35 1.86 3.66 15.26 

3.84 0.28 6.56 1.23 2.50 7.41 
5.43 0.49 9.58 2.71 2.54 9.18 

10.04 0.78 11.17 7.19 5.42 36.55 
9.08 0.81 11.69 7.12 5.73 39.91 

-1.35 0.19 12.18 1.12 0.10 1.13 

0.00 0.23 11.93 1.11 0.21 1.16 
0.00 0.25 12.57 1.15 0.24 1.21 

5.60 0.66 12.14 3.43 3.26 14.06 

-2.19 0.20 7.57 0.93 0.15 0.95 
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The statistics reported in table 2.1 include the variance of output around 
trend, the variance of inflation, and the variance of the federal funds rate. In 
addition to these conventional statistics, we also report the variance of quar- 
terly innovations in the rational forecast of the long-run price level. This is the 
variance of changes in the variable 

p;" = E, lim(1og P, - T.sr*), 
T-00 

which is just the stochastic trend in the price level in the sense of Beveridge 
and Nelson (1981). (Note that it follows from this definition that the first differ- 
ence of pm is also the innovation in this variable.) We include this statistic as 
an alternative index of the degree of price stability associated with different 
equilibria. The advantage of this statistic is that it reflects the extent to which 
agents make capital gains and losses on long-term nominal contracts and some 
analysts have expressed concern over these (e.g., Hall and Mankiw 1994). Fi- 
nally, we also report the coefficient p" of a regression of the innovation at t in 
the forecast of the long-run price level p-  on the quarter t innovation in the 
(log) price level at t + 1. (Recall that, according to our model, the price level 
P,,, is determined at date t .) This coefficient tells us whether inflation innova- 
tions in quarter t eventually lead to a higher price level or whether instanta- 
neous increases in the price level are later offset by subsequent expected reduc- 
tions in prices. In the case of a random walk in the log price level, we should 
find p" = 1, while if temporary price level increases are eventually completely 
offset, we should find fP = 0. 

The first column of table 2.1 serves as a key for figures 2.1, 2.2, and 2.3, 
where the consequences of these rules for the variability of output, inflation, 
interest rates, and long-run price-level forecasts are plotted. Figure 2.1 has a 
certain similarity to the policy frontier shown in Taylor (1979), in that rules that 
have smaller standard deviations of inflation tend to involve larger standard 
deviations of output and vice versa. The only rules that appear to be "domi- 
nated" in this plot are the rules with labels in the series C,  and D,. These are 
simple "Taylor rules" that make the funds rate a function only of current infla- 
tion and output, and they respond much more strongly to output fluctuations 
than does our optimal rule in that family (labeled FJ. The rules in families C, 
and Dl are worse than the B, rules because they induce a higher standard devia- 
tion of inflation without reducing the standard deviation of output. Interest- 
ingly, the rule F,, which is the best rule of this type in terms of minimizing our 
utility-based loss measure, is something of an outlier as well in that it involves 
more variability of both inflation and output relative to other rules in the set. 
From the point of view solely of the criteria plotted in this figure, historical 
policy seems to be slightly worse than the rules described by Bz, but not sig- 
nificantly so. 

Figure 2.2 paints a different picture, one that involves pure dominance rela- 
tions and no trade-offs. Once again, the rules C E  and D, are particularly bad in 
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Fig. 2.1 Selected rules: standard deviations of output and inflation 

that they now also involve a high standard deviation of the funds rate. Among 
the remaining rules, those with a lower standard deviation of inflation tend to 
have a lower standard deviation of the funds rate so they allow average inflation 
to be lower as well. Thus the best rules in this plot are the rules Ei, which, as 
we shall see below, also minimize L + among rules that are as simple as 
these. These involve low standard deviations of both inflation and interest rates, 
while the other rules perform worse on both dimensions. When coupled with 
the results of figure 2.1, we see that-leaving aside Ci and Dt-the rules we 
consider here have the property that those that reduce the standard deviation 
of output tend to raise the standard deviations of inflation and interest rates 
simultaneously. 

Figure 2.3 shows the implications of these rules for the variance of inflation 
and the variance in the innovation of the forecast of the long-run price level. 
We see in this figure that the specific rules we consider rank equally along 
these two dimensions. The price level rules Gi and the Ei rules have both the 
lowest variance of inflation and the smallest innovations in the long-run price 
level. That the price level rules have low variances in the long-run price level 
is not surprising, since they ensure the price level is stationary. What is perhaps 
more surprising is that the best of the rules that respond to deviations of the 
inflation rate from target have this property as well. 
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The regression coefficients p" of the innovation in the long-run price level 
on the current price level innovation reported in table 2.1 help to explain this 
finding. This coefficient is obviously zero for the price level rules, since these 
equilibria involve no change in the forecast of the long-run price level at any 
time. For the Ei rules as well as for the rule marked I, which is the rule that 
minimizes L + among all possible rules, this coefficient is actually smaller 
than - 1. This means that increases in the contemporaneous price level eventu- 
ally lead to a lower price level, and, indeed, to a lower price level by an amount 
that is even greater than the size of the initial price level innovation (but with 
an opposite sign). Thus, while the long-run price level is not being stabilized, 
expected reductions in future inflation more than offset the initial increase in 
the price level. This stands in sharp contrast to the other rules reported in the 
table. For these rules, this coefficient exceeds one so that increases in the cur- 
rent price level lead to even larger increases in the long-run price level. This 
means that, on average, increases in inflation are followed by further inflation. 
This clearly destabilizes the long-run price level. In addition, because expected 
future inflation leads price setters who can change their prices at t to raise their 
prices by more, it also means that inflation at t is increased by policies that 
follow inflation at t with further inflation. For this reason, policies with high 
values of pm have both variable inflation and large variances in the innovation 
of the long-run price level. 

The remaining columns of table 2.1 report statistics that measure various 
components of the utility-based measure of deadweight loss derived in the 
previous section. The columns labeled var{n}, var{v - En}, and var{E(Y - 
Ys)} report the values of the three unconditional variances that receive positive 
weights in expression (33) for the loss measure L. The third column from the 
right then reports the implied value for L. This is our summary measure of the 
deadweight losses due to variability of inflation and output, in units of the 
variance of inflation. We scale inflation so that v = 1 corresponds to a 1 per- 
cent inflation per year. Hence, L = 1 indicates the same degree of deadweight 
loss as results from this inflation rate. The next to last column reports the mini- 
mum value of n* consistent with the degree of funds rate variability required 
by the policy rule, using equation (39) to derive this. Finally, the last column 
reports the implied value of L + T * ~ ,  our total measure of deadweight loss. 

One interesting fact about the table is that the ranking of alternative rules 
according to their implications for the variability of E - fS is quite different 
from their ranking according to their implications for the variability of output 
relative to its deterministic trend path. The rule Do, which minimizes var{ ?} 
among those considered in the table, implies the highest degree of variability 
of output relative to the natural level ps. This indicates that responding to devi- 
ations of output from a deterministic trend, while perhaps successful as a way 
of stabilizing output around that trend, may well be counterproductive if one 
is interested in keeping output close to its natural level. (Cf. figs. 2.6 and 2.8 
below, for further illustration of this point.) 
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Another fact that is apparent from the table is that the ranking of different 
rules according the value achieved for L is essentially the same as their ranking 
in terms of the variability of inflation. Thus our utility-based welfare criterion 
L + T * ~  leads to conclusions that are similar to those that would be reached 
by giving some weight to the reduction of both the variability of inflation and 
the variability of the funds rate. In both these respects, the rules labeled Ei, GI, 
and I are better than the others. We turn now to a more systematic exploration 
of the consequences of parameter variations, in order to clarify why this is so. 

2.2.2 Simple “Taylor Rules” 

rules” of the form 
We first consider the consequences of varying a and b in simple “Taylor 

where once again = r, - r* and el = nTT, - T*. Note that both the rule C, 
proposed by Taylor (1993) and the related rule considered by Henderson and 
McKibbin (1993) belong to this family. Our aim here is to highlight the trade- 
offs involved in the choice between having interest rates respond to output and 
having interest rates respond to inflation. 

In the case of simple Taylor rules of the form (40) with a constrained to be 
positive, our loss criterion L + T * ~  reaches a minimum when a equals 2.88 
and b equals 0.02. The consequences of this rule for our loss measures is dis- 
played in table 2.1, where the rule is designated F,. As one might guess, this 
rule (which places essentially all of the weight on inflation variations rather 
than output variations) allows much greater variations in output relative to 
trend than do rules C, and D,. However, according to our model, it leads to 
less variability of output relative to its natural level, which is what matters for 
our loss measure. It also results in significantly less variability of inflation, and 
noticeably less variability of the funds rate. (It is actually the latter difference 
that is most significant for our loss measure, because of the reduction in the 
average inflation rate T* that it allows.) The ultimate result is a reduction in 
deadweight loss by a factor of three, relative to the other proposals. However, 
our model and our loss measure imply that this rule would not represent an 
improvement on historical U.S. policy in the Volcker-Greenspan period. To do 
better we must not simply vary the weights on inflation and output but must 
consider at least slightly more sophisticated rules. 

Before turning to other families of rules, it is worth noting that the welfare 
criterion L + 7 ~ * ~  reaches an even lower value, according to our model, if we 
allow a and b to be negative in equation (40). The optimum then involves a 
equal to - 1 and b equal to - 1.3. The idea that negative values of a and b are 
acceptable may be surprising. For this reason, figure 2.4 displays both the re- 
gion where equilibrium is determinate as well as a contour plot of L + T*’ as 
we vary a and b. The equilibrium is not unstable for any of these parameter 
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Fig. 2.4 Simple Taylor rules: L + n** as a function of a and b 

values (i.e., a stationary equilibrium always exists), but equilibrium is indeter- 
minate in the region labelled “Indet.” Indeterminacy arises, for example, when 
b is zero and a is small and positive. This indeterminacy implies, among other 
things, that inflation can vary simply as a result of changes in expectations. A 
“sunspot” can lead inflation at t to rise, for example. The real interest rate 
would then fall (because the nominal interest rate responds little) and the re- 
sulting increase in output means that expected future inflation is lower than 
current inflation. Thus the change in the expected future path of inflation that 
is required to justify the initial change in inflation is consistent with expected 
future inflation converging back to the target inflation rate IT*. In this case, a 
stationary rational expectations equilibrium is possible in which such fluctua- 
tions occur simply because they are expected to. 

If, instead, a is large and positive, no such equilibrium is possible. Any in- 
crease in inflation above its unique saddle-path value is matched by increases 
in real interest rates that imply that output must fall. This, in turn, implies that 
expected future inflation rates must be higher than current inflation, given the 
nature of our AS curve. Thus inflation must be expected to explode, and since 
this is not consistent with stationarity, inflation must equal its saddle-path value 
in the unique stationary equilibrium. Similarly, as mentioned above, the equi- 
librium is deterniinate when a and 0 are both negative. 
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Fig. 2.5 Simple Taylor rules: var { i?} as a function of a and b 

Figure 2.4 presents contour lines for the value of our loss measure L + T** 
in the regions where equilibrium is determinate. Policy Fa appears as a star on 
this figure, at the point of a local minimum of the loss measure. However, the 
region of determinate equilibria with negative a and b also contains a local 
minimum. This point, which is shown with a star inside a circle, is actually 
the global minimum value. Nonetheless, we have chosen to present the local 
minimum Fa in table 2.1, on the ground that restricting attention to values a > 
0 corresponds to rules that are more similar to the Taylor and Henderson- 
McKibbin proposals. In addition, once we consider more general families of 
rules, we do find that the best rules involve tightening monetary policy (i,e., 
raising the funds rate) in response to inflation increases, as conventional wis- 
dom (at least since the work of Wicksell [ 19071) would indicate. 

Similar contour plots for other statistics reported in table 2.1 provide further 
insight into why our loss measure varies with a and b as it does. Figure 2.5 
shows the contour plots of the variance of inflation, while figure 2.6 shows the 
contour plots for the variance of P - Ps. These figures are essentially identical 
to each other, and they are both similar to the contour plot for L itself. There is 
thus no trade-off between stabilizing inflation and stabilizing P - Ps; the same 
parameters stabilize both. This follows immediately from our AS curve, which 
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Fig. 2.6 Simple Taylor rules: var { P - Ps} as a function of a and b 

relates inflation to departures of P from PS. For the ranges considered in our 
figures, a wheel marks the global optimum for the performance criterion being 
considered. Thus the figures show that these variances become as small as 
possible when a is at its maximum possible value of 20 while b is set to a small 
negative number. Making a big contributes to stabilization because it ensures 
that interest rates rise a lot when either G rises or 9 falls. This ensures that 
inflation does not rise much in either case and that, at least after the demand 
for output adjusts to changes in real rates, output does not rise in the former 
case while it declines substantially in the latter. 

As figure 2.7 indicates, the rule that minimizes L by setting a equal to 20 
leads to very variable interest rates. This is in part due to the delays in the 
response of output to interest rates. These delays imply that changes in Gl that 
become known at t - 1 inevitably change output at t since C, is predetermined. 
This leads firms to raise their prices at t unless long-term real interest rates rise 
unexpectedly. With c equal to zero, this means that prices can only be stabi- 
lized if the nominal interest rate at t rises a great deal. The resulting variability 
of interest rates then requires a high average inflation rate for interest rates 
never to be negative. This high inflation is so costly, at least relative to the 
benefits of the additional stabilization that is possible with a high value of a,  
that the contour plots for the variance of the interest rate are essentially identi- 
cal to the contour plots for L + T**. The point that minimizes the variance of 
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Fig. 2.7 Simple Taylor rules: var(8) as a function of a and b 

interest rates has a sufficiently stable inflation to be quite desirable as far as 
total welfare is concerned. 

It is interesting to note that the stabilization of output requires a quite differ- 
ent set of parameters. This is demonstrated in figure 2.8, which gives the con- 
tour plots for the variance of output. This variance is reduced by keeping a 
small and positive while making b very large. Not surprisingly, output is stabi- 
lized if the real interest rate is raised significantly by the central bank whenever 
output rises, while it is lowered when output declines. What is interesting here 
is that the effects of the policy parameters on the variance of P - fs, which 
are essentially the same as the effects on L, are very different from the effects 
on the variance of Y: The reason is that the VAR of Rotemberg and Woodford 
(1997) identifies large short-run fluctuations in fs. As long as these are treated 
as variations in the welfare-maximizing level of output, setting b large is not 
desirable, and indeed, stabilization of P - Ps requires that b be negative at 
least when a is 20. Even higher values of a reduce the variance of P - @ still 
further. Obviously, the result that the stabilization of f relative to fs requires 
very different policies from those that stabilize output relative to trend is very 
sensitive to the assumption that our estimate of fs is indeed the welfare- 
maximizing level of output. This conclusion would presumably change dra- 
matically if movements in fs were viewed as resulting from changes in distor- 
tions such as changes in desired markups. From an empirical point of view 
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Fig. 2.8 Simple Taylor rules: var{ k} as a function of a and b 

these two interpretations may be difficult to disentangle because we identify 
ps by measuring shifts in the empirically estimated AS equation given by (22). 
Unfortunately, changes in desired markups will shift this equation just as much 
as changes in technology or other changes in the welfare-maximizing level 
of output. 

2.2.3 Rules That Involve a Lagged Interest Rate 

We achieve improvements in household welfare if we generalize the family 
of simple Taylor rules to allow the funds rate to respond also to lagged values 
of itself. We thus consider generalized Taylor rules of the form 

(41) i ,  = a%, + b f  + c;,-,, 

where we now allow c to be greater than zero. This allows for interest rate 
smoothing, so that sustained changes in output and inflation lead to only grad- 
ual changes in interest rates. Actual policy in the United States and elsewhere 
seems to involve some degree of interest rate smoothing, though academic 
commentators have often questioned why this should be so.25 Nor is there any 
reason to restrict attention to the case 0 5 c < 1, though only in that case can 

25. See, e.g., Goodfriend (1991), Rudebusch (1995), Goodhart (1997), and Sack (1998). 
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Fig. 2.Y Generalized Taylor rules: var{ 4?} as a function of a and c 

the policy rule be described as involving partial adjustment toward a “target” 
funds rate that depends on current output and inflation, as assumed in Clarida, 
Gali, and Gertler (1998), for example. An alternative is to follow Fuhrer and 
Moore (1995) and model U.S. interest rates by supposing that c is equal to one, 
so that it is changes in the funds rate, rather than the level of the funds rate, that 
respond to deviations of inflation and output from their typical levels. Policy 
proposals of this kind are considered elsewhere in this volume with rules A, 
and B, in table 2.1 being examples of such rules. We find that policies that 
involve values of c even greater than one often result in determinate rational 
expectations equilibria in our model, and so we consider arbitrary positive val- 
ues of c. In fact, rules with c > 1 turn out to possess an important advantage, 
and this is one of our most important findings. 

To gain some insight into the consequences of varying c, we set b equal to 
zero and discuss contour plots in the {a ,  c}-plane for various measures of eco- 
nomic performance. Our motivation for starting with plots that set b equal to 
zero is that, as we show below, the welfare optimum obtains near this point. 
Moreover, the resulting family of rules has a very simple interpretation as the 
family in which interest rates depend only on inflation and lagged interest 
rates. Figure 2.9 displays the resulting contour plots for var{?r}, which, once 
again, are essentially identical to those for both the variance of P - Ps and for 
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L itself. One interesting aspect of this figure is that it shows that determinacy 
obtains with c greater than one even if a is negative so that the Fed reacts per- 
versely to inflation by cutting rates when inflation rises. The reason is that, as 
in the earlier case with negative values of a, these rules also induce explosions 
in response to deviations of inflation and output from saddle-point paths. 

One surprising aspect of the figure is that it shows that "explosive" monetary 
rules in which c exceeds one do not produce explosive equilibria. In a way, this 
potential explosiveness of interest rates is effective at keeping the economy on 
track in this model. It means that, unless the price level reacts properly, the real 
interest rate falls or increases exponentially. An exponential increase in real 
rates represents a rather substantial reduction in expected future aggregate de- 
mand and thus leads firms to cut prices. The result is that the economy stays on 
a nonexplosive path in which increases in inflation are matched by subsequent 
reductions in inflation that ensure that the interest rate does not explode. In 
fact, higher values of c actually increase the range of values of a for which a 
determinate equilibrium exists, by helping to solve the problem of indetermi- 
nacy discussed above. 

The figure also shows that, within the range being considered, the goal of 
inflation stabilization is furthered by setting a as large as possible. The variance 
of inflation reaches its minimum value (over the range of rules shown in the 
figure) when a equals 20 and c takes a positive value less than one. If the range 
of the figure were extended, the optimum would involve even higher values of 
a. Thus the key to inflation stabilization remains making sure that the interest 
rate reacts vigorously to inflation. 

Interestingly, a higher value of c turns out to be better if one seeks to stabi- 
lize the long-run price level. This can be seen in figure 2.10, which shows that, 
for any given value of a, the variance of Ap" reaches a minimum of zero for c 
equal to one. Further insight into this behavior of the variance of Ap" can be 
obtained from figure 2.11, which shows p" as a function of a and c. This figure 
shows that, when c is zero, p- is greater than one so that initial increases in 
inflation are followed by further inflation. The reason for this is that an increase 
in Gr raises the price level at t somewhat in spite of the increase in interest 
rates that takes place at t .  But unless the price level continues rising, interest 
rates would immediately return to their steady state level. The result is that, in 
equilibrium, prices do keep rising because the initial increase in prices means 
that marginal cost has gone up for the firms that did not raise their prices at t .  
Consequently, increases in the price level at t are followed by further increases 
in prices, which, admittedly, are kept somewhat in check by the fact that the 
interest rate remains somewhat above the steady state for some time. 

If, instead, c is made higher, the interest rate tends to stay high after an 
increase in G even if the price level ceases to rise. This means that firms can 
be induced not to change their prices in the aftermath of an increase in G. The 
result is that initial increases in prices are followed by smaller increases so that 
p" is smaller and the variance of Ap- falls. Setting c equal to one as suggested 



4 

3 

2 

c 1  

0 

-1 

-2 
- 0 2 4 6 8 10 12 14 16 18 20 

a 

Fig. 2.10 Generalized Taylor rules: var{ Ap-}  as a function of a and c 

1 

2 

c 1  

C 

-1 

-2 
0 2 4 6  8 10 12 14 16 18 20 

a 

Fig. 2.11 Generalized Taylor rules: f? as a function of a and c 



92 Julio J. Rotemberg and Michael Woodford 

4 

3 

2 

c 1  

0 

-1 

-2 - 
a 

Fig. 2.12 Generalized Taylor rules: var{R> as a function of a and c 

by Fuhrer and Moore (1 995) makes f3- equal to zero so that the shocks have 
no effect on the long-run price level. Even higher values of c imply that initial 
increases in inflation are followed by such high real rates that the expected 
long-run price level is lower than the initial price level so that p- is negative. 

For a given initial increase in inflation and interest rates, higher values of c 
imply that the long-run real rate rises more both because future short rates are 
expected to be higher and because future inflation is expected to be lower. 
Since unexpected increases in the long-term real rate prevent prices from rising 
this means that, for given a, increases in & (and reductions in 9) lead to 
smaller immediate price and interest rate increases the higher is c. This is re- 
flected in figure 2.12, which shows that, for each a, the interest rate is less 
variable the higher is c. It also shows that, not surprisingly, the variance of 
interest rates increases with a. 

While we have focused on stabilizing the variability of interest rates because 
of their implication for average inflation, the Fed also seems to be concerned 
with stabilizing the change in the funds rate from one week or month to the 
next. This would explain Rudebusch’s (1995) finding that changes in the target 
rate are followed by further changes in the same direction. Figure 2.13 thus 
displays the variance of the change in interest rates in the {a ,  c}-plane. Interest- 
ingly, this figure is nearly identical to the figure for the variance of the interest 
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rate itself. Thus, in our model, stabilization of the short-term nominal rate is 
achieved in the same way as stabilization of the quarterly change in this rate. 

As we saw in figure 2.9, setting c to a very high value destabilizes the infla- 
tion rate. In part this is because sufficiently high values of c imply that in- 
creases in inflation at t must be matched by reductions in inflation in the future. 
These predictable movements in infiation both raise the variance of .ir and in- 
crease the loss L. For that reason, figure 2.14 shows that L +  IT*^ reaches its 
lowest value for a low value of a and a moderate value of c. This minimum is 
very close to the point that minimizes L + T T * ~  within the family (41) since 
this minimum obtains when a, b, and c equal 1.22,0.06, and 1.28, respectively. 
This is the rule labeled E, in table 2.1. 

2.2.4 Rules Using Only Lagged Data 

One criticism sometimes leveled (see, e.g., McCallum 1997) against all 
rules of the kind considered thus far is that they require the Fed to make use 
of data about current output and inflation that it does not actually have when it 
sets the current interest rate. There are two reasons why such variables may 
simply be unobservable by the central bank. These are that some important 
economic data are collected retrospectively and that even the data that are col- 
lected concurrently need to be processed before their message about the econ- 
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Fig. 2.14 Generalized Taylor rules: L + n** as a function of a and c 

omy as a whole can be distilled. A further difficulty with responding to con- 
temporaneous variables may be that, even if these are observable immediately, 
the political process of responding to them takes time. 

None of this denies that the central bank continually updates its estimate of 
the current state of the economy. And it should be recalled that our model of 
the delays in the response of output and inflation implies that the relevant data 
exist in principle in the quarter prior to the one in which the data must be used 
under rules (40) and (41). However, it is reasonable to suppose that the central 
bank’s estimate of the state of the economy generally differs from the econo- 
my’s actual state. In this case, responding to the current estimate of the current 
state differs from rules (40) and (41). If rules of the form (40) and (41) are 
applied to the error-ridden current estimates, the interest rate is affected by the 
measurement error, and a thorough evaluation of these rules would require an 
analysis of these effects. 

Thus we now suppose instead that the Federal Reserve does not respond 
to output and inflation variations except with a one-quarter lag. In this class 
of rules, 

(42) F/ = a&/-, + b q l  + cf-, . 
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Fig. 2.15 Lagged response rules: var{fr) as a function of a and b 

Considering the effect of such a lag also allows us to compare our results with 
other papers in this volume since some of these also include the rules we label 
A, through D, in table 2.1. 

Even if the Fed had a reasonably accurate estimate of the current state of the 
economy, there would be good reasons to be interested in lagged-data rules of 
this form. In particular, the use of such rules would make Fed operations more 
transparent to the public at large if the public only had this lagged information. 
By avoiding the use of information that the public does not have, it becomes 
both easier to describe Fed operations and easier for people to detect when the 
Fed has departed from the rule. An alternative, of course, might be to respond 
to internal estimates and publish these estimates of the state of the economy as 
they become available. The study of this alternative, and its effects on transpar- 
ency given that this estimate will at least sometimes be wrong, is clearly be- 
yond the scope of this paper. 

We start in figure 2.15 by displaying how the variance of inflation varies 
with a and b when c is set equal to zero. This figure is quite different from 
figure 2.5, which involves the same parameters and performance criterion in 
the case of contemporaneous Taylor rules. Unlike what occurs with rules where 
the interest rate responds contemporaneously, large values of a and b lead to 
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Fig. 2.16 Lagged response rules: var{k} as a function of a and c 

unstable equilibria in the case where the interest rate responds only to lagged 
output and inflation. Ignoring 6,  this can be understood as follows. Inflationary 
shocks now lead to delayed increases in interest rates, which imply delayed 
reductions in inflation. The rule then requires that subsequent interest rates fall 
so that inflation rises once again. For a sufficiently strong reaction of interest 
rates to lagged inflation, that is, a high value of a, the resulting oscillations are 
explosive. Thus the parameters that minimize the variance of .iT in the case of 
a contemporaneous rule no longer do so when the government can only react 
with a delay. In particular, this minimization now requires that a be equal to 
about 15. 

Figure 2.16, which gives the contour plot for the variance of 6 when b is set 
to zero while a and c are allowed to vary, tells a similar story. Again, high 
values of a lead to explosive equilibria. By contrast, high values of c with low 
values of a do not. Note that high values of c coupled with moderate values of 
a mean that the eventual reaction of interest rates to increased inflation is ex- 
tremely large. Nonetheless, these rules are less destabilizing than having the 
interest rate respond strongly to inflation after a delay of one quarter. 

Even in the case of rules that react with a lag, the stabilization of interest 
rates continues to require high values of c together with small values of a. The 
result is that figure 2.17 shows that L + T * ~  achieves a minimum for a combi- 
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Fig. 2.17 Lagged response rules: L + r F  as a function of a and c 

nation of a and c that is quite similar to the combination that was optimal 
in the case where the interest rate reacted contemporaneously. Moreover, the 
minimum value of L + T * ~  within the family (42) is obtained for very similar 
parameters. In particular, it requires that a,  b, and c be equal to 1.27, 0.08, and 
1.28, respectively. 

This is the rule called E, in table 2.1. Clearly, these parameters are very 
similar to those (the rule E,) that minimize L +  IT*^ when contemporaneous 
data are used. What is more surprising, however, is that table 2.1 indicates that 
the minimized value of L + T** is very similar in the two cases. In other words, 
this welfare criterion equals 1.10 when the best contemporaneous rule is used, 
while it equals 1.13 when the best of the rules that respond to lagged values 
is used. Recall that the units of this welfare criterion are squares of percent- 
age yearly inflation rates. Thus the difference in loss is equivalent to the differ- 
ence between having a completely stable annual inflation rate of 1.06 percent 
per year and having a completely stable annual inflation rate of 1.05 percent 
per year. The difference is trivial. 

This similarity is not surprising once one recognizes that the optimal con- 
temporaneous rule involves a high value of c. This fact means that, even in the 
case of contemporaneous rules, most of the reaction of interest rates to an 
inflationary shock such as an increase in G or a reduction in fs takes place 
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with a delay. Given this, it is not surprising that the further delay that comes 
about from responding to inflation and output with a lag has trivial welfare 
consequences. From an economic perspective, what is important is that de- 
layed responses still allow for substantial revisions in long-term real interest 
rates, and it is these that help stabilize inflation. 

2.2.5 Price Level Targeting Rules 

In this subsection we consider the possibility of making the funds rate re- 
spond to deviations of the price level from some target path (assumed to be a 
deterministic trend with growth rate a*), rather than responding to inflation. 
In particular, we consider rules of the form 

(43) ;, = a 4  + b i  + c;,+, . 

The rule given by (43) has the advantage that (if a # 0) it makes the price level 
stationary around the target (deterministic trend) path. Such rules thus reduce 
var{Ap-} to the maximum possible extent by ensuring this variance is zero. 
This may be considered a desirable goal of policy; for example, Hall and Man- 
kiw (1994) discuss the advantages of a price level targeting rule in this regard.2h 
Such rules also address the desire expressed by the 90 percent of the respon- 
dents to Shiller’s (1997) survey, that any change in the price level be subse- 
quently reversed. We wish to consider whether rules of this kind are also desir- 
able in terms of the other measures of performance that we treat here, or to 
what degree one might have to sacrifice other goals for the sake of stability of 
the long-run price level forecast. 

Figure 2.18 displays the contour plots of L + a*’, once again setting b equal 
to zero. As the figure shows, price level rules tend to be unstable when a is 
negative and c is large: lower values of c with negative values of a lead to 
indeterminate equilibria instead. Within the positive orthant, these rules do 
lead to determinate equilibria, however. In particular, points with positive a 
and c equal to zero lead to unique determinate equilibria. Since the same is 
true for rules in the family (41) with b equal to zero, c equal to one, and a 
positive, the corresponding equilibria must be the same. To see this, note that, 
when b is zero, c is one, and a is positive, rules in family (41) take the form 

(44) A;, = a A k .  

Price level rules in the family (43) must also satisfy this equation when b and 
c are zero since, in this case, (44) is just the first difference of (43). Thus, if 
the equilibrium with the first-differenced rule (44) is unique, it must be the 
same as that of the corresponding price level rule. This explains why we found 
that rules in the family (41) with b equal to zero and c equal to one had the 

26. But for a contrary view of the relative desirability of inflation stabilization and price level 
stabilization, see, e.g., Gertler (1996). 
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a 

Fig. 2.18 Price level rules: L + n** as a function of a and c 

dual property that the long-run price level was stable and that p" was equal 
to zero. These rules were in fact equivalent to price level rules. 

However, the optimal price level rule is not a member of the family (41) 
because the optimal b and c within the class (43) are not equal to zero. In 
particular, the lowest value for L + 7 ~ * ~  within the family of price level rules 
(43) obtains when a, b, and c equal 0.26,0.07, and 1.03, respectively. Because 
the optimal b is zero, this point is close to the optimum depicted in figure 2.18. 
Once again, the desire to stabilize interest rates leads to a high value of c, 
though this parameter has a somewhat different meaning in the context of price 
level rules than it does in the context of the family (41). 

Perhaps the most interesting aspect of these price level rules is that even the 
best such rule is somewhat worse from the perspective of L + T*' than the best 
rule that responds to contemporaneous inflation. Indeed, household welfare is 
slightly lower than it would be if the central bank followed the best rule that 
responds only to the lagged levels of inflation and output. The best among the 
rules that respond to lagged output and the lagged price level is even worse. 
Admittedly, the resulting differences in our welfare criterion are small, but it 
is worth knowing that price level rules are not particularly attractive in this 
context. 

One could argue that these results do not really say whether it is worth stabi- 
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lizing the price level, because we are only looking at a very narrow class of 
rules. To see whether one can obtain some incremental improvement in our 
criterion function by responding to both the price level and the rate of inflation, 
we analyze hybrid rules of the form 

(45) 

When we choose parameters a,, a, ,  b, and c to minimize L +  IT*^, we obtain 
the values a, = 1.22, a,  = -1.22, b = 0.06, and c = 1.28. Since a ,  = -a,, 
the optimal member of this family is a member of the more restricted family 
(41) and, in fact, it is once again the rule labeled E,, in table 2.1. There is thus 
nothing to be gained, from the point of view of our utility-based welfare crite- 
rion, by generalizing this family to add a term that ensures that the interest rate 
reacts to the price level, even though adding even a small term of that kind 
would serve to stabilize the long-run price level. 

The reason is that the best rule within the class (41) involves some base drift, 
and this base drift is optimal. Interestingly, this base drift is very different from, 
and in some ways exactly opposite to, the base drift that people usually worry 
about. In particular, it is not optimal to respond to shocks that temporarily raise 
inflation by allowing the price level to be higher forever-that is, to choose a 
rule that implies > 0. On the contrary, as discussed earlier, what is optimal 
is to have such shocks be followed by price declines that are sufficiently large 
that, eventually, the price level ends up below its initial value (when corrected 
for the average rate of inflation IT*). This is advantageous because the expecta- 
tion of future price declines, by itself, dampens the initial inflationary effect of 
increases in G and reductions in Ps. It is then possible to obtain the same de- 
gree of current price stabilization without having to raise interest rates so 
much. For this reason, the variability of interest rates is lower in the Er rules 
than in the best price-level-targeting rules. This additional stability of interest 
rates is what makes the Ec rules more attractive from the point of view of the 
loss criterion L +  IT*^ as well. 

2.3 Optimal Policy 

In this section we consider the best policy rule, from the point of view of 
minimization of our deadweight loss measure L +  IT*^. We start by analyzing 
not monetary rules per se but allocations. In particular, we ask what (condi- 
tional) paths of output, inflation, and interest rates achieve the lowest value of 
L + IT** while being consistent with our IS and AS curves as well as with the 
stochastic process for Gz and given in equations (27) and (28). In other 
words, we compute the optimal response of the whole economy to these struc- 
tural disturbances. 

We then show that this optimal response of the economy is the unique equi- 
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librium that emerges when the interest rate is set according to a rule belonging 
to the general class (23). This means that one cannot do better from the point 
of view of minimizing L + T** than using a rule within this class. Moreover, 
it should be obvious that the member of this class that induces the optimal 
allocation is also the optimal rule within the class (23). 

2.3.1 

In this subsection we compute the optimal allocation and characterize it as 
a response of the economy to the innovations in Gt and pf. For this purpose we 
start by constructing a moving average representation of the stochastic process 
for the real disturbances G and Ps. From equations (28) and (27) it follows that 
these variables can be written as functions of the history of the two indepen- 
dent identically distributed (i.i.d.) shocks in e:. Since these two shocks consist 
of e2,t and e3,t, we can rewrite the stochastic process of the structural distur- 
bances as 

Optimal Responses of the Economy to Real Disturbances 

The exact decomposition of the two shocks in (46) is irrelevant for present 
purposes; each is allowed to affect the evolution of both structural distur- 
bances. 

We now consider how the endogenous variables ought to evolve. Because 
we can write our loss measure in the form (34), it suffices to consider the 
evolution of 2. It should be obvious from equation (34) that there is no advan- 
tage to any random movements in X apart from those needed for X ,  to respond 
to the shocks that contain information about the evolution of the real distur- 
bances. Thus we may restrict attention to processes X that may be written in 
the form 

(47) 

Substituting this into equation (34), we find that L equals 

where u: is the variance of el,,. We seek to obtain parameters QX, that make L 
as low as possible for a given variance of the funds rate, subject also to any 
constraints on the joint evolution of 2 and R implied by our structural model. 

Using equations (38) and (46) we can write 6, as a function of the lagged es. 
This means that using equation (47) in (37) we obtain an expression for the 
funds rate as a function of the history of the shocks, 
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(49) 

where the coefficients @;, can be written as functions of the coefficients @&, 
a;,, and @;,. This in turn allows us to write 

3 -  

i=2 j=O 

The characterization of the optimal process X then reduces to the choice of 
coefficients @ij to minimize the Lagrangian L + A var{k}, where we substitute 
expression (48) for L and (50) for var{k>. Here A 2 0 is a multiplier indicating 
the weight placed on the variance of the funds rate. By minimizing the Lagran- 
gian for different choices of A 2 0, we obtain the family of constrained optimal 
equilibria. This family corresponds to the frontier of minimum possible values 
of L for any given level of var{k) (and hence of IT*) that we report in Rotem- 
berg and Woodford (1997). 

There exists a particular value of A such that the marginal reduction in  IT*^ 
from raising A further (using eq. [39] to determine the lowest value of IT* 

consistent with any given value of var{k}) is of the same size as the resulting 
increase in L.27 The constrained optimal equilibrium associated with this par- 
ticular value of A achieves the minimum value of L +  IT*^ among all alloca- 
tions consistent with the structural equations of our model. The variability of 
inflation, output, the funds rate, and long-run price level growth in this alloca- 
tion are indicated by point I in figures 2.1, 2.2, and 2.3 above, and the row 
labeled I in table 2.1. 

Observe that the optimal allocation does not involve complete stabilization 
of inflation or of the long-run price level. This is not because complete stabili- 
zation is impossible in principle, but because complete stabilization would 
require too great a degree of volatility of the funds rate, and consequently 
too high an average inflation rate.28 Thus the concern expressed by Summers 
(1991)-that the desire to maintain a very low average rate of inflation con- 
flicts with the desire to use interest rates as an instrument of stabilization, given 
the existence of a zero nominal interest rate floor-matters quantitatively in 
the context of our model. On the other hand, our results imply that it is pos- 
sible, at least in principle, to stabilize both inflation and the funds rate-and 
thus both the average rate of inflation and the variance of inflation-to a 
greater extent than has been achieved by historical policy. This can be seen 

27. As reported in Rotemberg and Woodford (1997), the value of A is approximately 0.2249. 
28. As explained in  subsection 2.1.2 above, complete stabilization of the path of the price level 

would require that R, = fit-, each period. Given our estimated shock processes, this would imply 
a standard deviation of funds rate variations of 27 percentage points-10 times the funds rate 
volatility associated with historical policy. (See table 2 in Rotemberg and Woodford 1997.) Using 
eq. (39) to determine the minimum required value for T*, we conclude that the average inflation 
rate would have to equal 58 percent per year. 
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from the relative locations of points H and I in figure 2.2. Similarly, table 2.1 
shows that both L and T* are lower with the optimal policy than with histori- 
cal policy. 

2.3.2 Implementing the Optimal Allocation 

While the optimal allocation is consistent with equation (49), it is important 
to stress that equation (49) does not represent a viable policy proposal, even if 
the Fed could directly observe the structural disturbances and infer the history 
of the shocks err. Such a way of setting interest rates would, instead, result in 
price level indeterminacy because the path of the funds rate would be exo- 
genously specified, with no feedback from the evolution of prices or real ac- 
t i~i ty .*~ Thus the construction of a feedback rule for the funds rate that im- 
plements the optimal allocation-that is not only consistent with it but also 
renders it the unique stationary equilibrium consistent with the proposed pol- 
icy rule-remains a nontrivial problem. Furthermore, it is of considerable in- 
terest to ask how policy should make use of the information revealed by the 
evolution of inflation and output, as in the various variants of the Taylor rule 
discussed in section 2.2. Thus we are especially interested in finding a rule of 
the form 

C(L)Ff = A(L)Gf  + B ( L ) t ,  

where A@), B(L), and C(L) are finite-order lag polynomials, that implements 
the optimal allocation. 

To do this, we first consider whether any rule of this form is consistent with 
the stochastic processes for interest rates, inflation, and output that characterize 
this allocation. Substituting expression (47) into (20) and (36), we can write ef 
and pr as moving averages of e2,1 and e3,r. These moving average representations 
for the optimal evolution of inflation and output can be written compactly as 

(52) i, = [?I = a z ( L ) e , + , ,  

where 

Similarly writing equation (49) as Rr = it would then seem natural 
to attempt to obtain a representation of the form 

(53) Rr = e(Ll.2, 

29. The result that equilibrium is indeterminate in this case can be observed from the fact that 
the point a = 0, b = 0 is in the zone of indeterminacy in figs. 2.4 through 2.8, or similarly 
that the point a = 0, c = 0 is in the zone of indeterminacy in figs. 2.9 through 2.12. 
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by writing 0(L) = QR(L)@;l(L). Unfortunately, does not prove to be 
invertible, since the polynomial FDZ(z)l has a root inside the unit circle.3o This 
root is l/c, where c is approximately 1.3267. We can, however, write Qz(L) = 
(1 - cL)D(L), where D(L) is invertible so that (1 - cL)e,-, is equal to D(L)-l&. 
This means that 

(54) 

where 6(L) = @,,(L)D(L)-l. 
This gives us a relation of the form (51) between the funds rate, its own past 

values, and current and past values of inflation and output. The two elements 
(i = 1,2) of the matrix lag polynomial 6(L) can be written as 

(1 - c ~ ) i ,  = (1 - cL)@,(L)e,+, = G < L > ~ , ,  

where the coefficients 6, are square-summable, so that long lags j contribute 
only a small amount to the overall variation in the right-hand side of equation 
(54). However, the coefficients 6, die out for large j only relatively slowly; 
they evolve asymptotically according to the difference equation 

I 

0. = - 

where the coefficients 6 and b are approximately equal to 1.0404 and 0.9643, 
re~pectively.~~ These values imply that the characteristic equation z2 + 6z + 
6 = 0 has a pair of complex roots with modulus approximately equal to 0.9820. 
Thus the coefficients 6, decline in magnitude only at an average rate of less 
than 2 percent per quarter; a very long distributed lag is required for an accu- 
rate approximation to the exactly optimal rule of the form (54). The length of 
the distributed lag that is needed can be reduced significantly by further quasi 
differencing of R,, yielding a rule of the form (51), where A(L) = a, + a,L + 

bL2)8,(L), and C(L) = 1 - c,L - c2L2 ... = (1 + 6L  + bL2)(1 - cL). The 
coefficients in the matrix lag polynomials A(L) and B(L) then become negli- 
gible much sooner. 

Ignoring the constant, the policy rule that we derive in this fashion can then 
be written as 

a2L2 * . *  = (1 + 6L + bL*)6,(L), B(L) = b, + b,L + b2L2 ... = (1 + 6L + 

30. We demonstrate this numerically by truncating the infinite lag polynomial @&) at a finite 
number of lags and solving for the roots of l@&)l. In our numerical work, we use the terms for 
j = 0 through 130 in eq. (47). We stop at lag 130 because both @,(1) and our estimate of the root 
of I@&)l, which lies inside the unit circle, are little affected by the addition of further terms. 

3 1 .  We determined this by inspection of the coefficients 8,, which can be computed recursively. 
The coefficients that we compute obey the stated recursion, up to four decimal places of accuracy, 
for both i = 1 and 2, for all values of j between 61 and 92. After this, the recursion breaks down, 
presumably because-a small numerical error in our estimate of c introduces a nontrivial error into 
our computation of Os for larger values of j .  
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(55)  + .16GI + 1.00&,-, + 2.45&,+, - 1.45&,+, + .74~,_, 

- .08&,-, + .25&,-, + .33&,-, + .23&,-, + .25&,_, 

where the omitted terms in ?t-J are all of size 0.01 or smaller (to two decimal 
places) and the omitted terms in %,-; are all of size 0.03 or smaller (to two 
decimal places).32 Supposing that the monetary policy rule is given by expres- 
sion (55), we find that our model has a unique stationary rational expectations 
equilibrium. Furthermore, this unique equilibrium involves responses of out- 
put, inflation, and interest rates to the real shocks that closely approximate the 
optimal responses derived in the previous subsection. Thus we conclude that 
rule (55)  does belong to the admissible class of interest rate feedback rules 
resulting in a determinate equilibrium; that it represents a good approximation 
to the optimal rule within the general class of rules of the form (51); and that 
the optimal rule within this class implements the optimal allocation as defined 
above. Rule (55) is accordingly the optimal policy rule, labeled I in table 2.1 
and in figures 2.1, 2.2, and 2.3. 

Several features of this optimal interest rate feedback rule are worth noting. 
First, the coefficient on +, is a small positive number, which means that the 
optimal rule calls for some immediate tightening in response to an observation 
of inflation above the target level. However, most of the tightening prescribed 
by the rule in response to an inflation rate above target occurs later. This subse- 
quent tightening is reflected both in the series of positive coefficients on lagged 
inflation deviations +,+ in rule ( 5 3 ,  and in the series of positive coefficients 
on lagged deviations of the funds rate itself. Even putting aside the conse- 
quences of the lagged funds rate terms, the %t-J terms in (55) prescribe a much 
larger response to lagged inflation than to current inflation; for example, these 
terms place an average weight of 0.7 on the rate of inflation over quarters 1 
through 4 prior to the quarter in which the funds rate is being set, or four times 
the weight that is placed on inflation in the current quarter. 

Second, the coefficient on ?t is exactly zero. This means that the optimal 
response to an innovation in 6, that increases output relative to what it would 
have been forecast to be a quarter earlier is to keep the interest rate at t un- 
changed. This does not mean that there is no optimal response to observed 

32. For j  = 50 and above, the terms in &,-, are all .0001 or smaller, while the same is true of the 
p,-,, terms f o r j  = 19 and above. Whether the small nonzero values that we still obtain for large j 
indicate that further quasi differencing is needed in order to obtain a rule of the form (51). with 
finite lag polynomials, or are simply due to numerical error, we have not been able to determine. 
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variations in output relative to trend, but that the optimal response is a delayed 
one. Moreover, the interest rate ought to respond more to the growth rate of 
output a quarter earlier than to the level of 

Finally, the lag polynomial C(L) has a root inside the unit circle, equal to 
the reciprocal of c = 1.33. Thus, just as in our optimal generalized Taylor 
rules, the optimal rule calls not simply for interest rate smoothing but for an 
explosively growing response of the funds rate to deviations of inflation from 
target. These explosions are avoided only if subsequent deviations with the 
opposite sign eventually counteract the effects of an initial deviation. If the 
inflation rate were permanently above its target, interest rates would grow 
asymptotically as (1.33)’, just as if we chose c = 1.33 in the case of the family 
of simple rules (41). This explosive behavior is of course exactly what we 
concluded was desirable in our previous discussion of simple rules, and indeed 
the value c = 1.33 is not too different from the most desirable value of c in the 
case of simple rules. 

One way of comparing the implications of rule (55)  with those of other can- 
didate interest rate rules is to plot its implications for the cumulative response 
of the funds rate to a sustained deviation of either inflation from target or out- 
put from its trend level. This particular way of describing the various feedback 
rules has the advantage of being independent of the degree of quasi differentia- 
tion that may have been used in the way that the rule is stated; for example, 
it treats expressions (54) and (55)  as equivalent. The prescribed cumulative 
responses of the funds rate to sustained 1 percent deviations in the two vari- 
ables are displayed in the two panels of figure 2.19. Each panel compares the 
prescribed response of the funds rate under four different rules: our estimate 
of historical U.S. policy over the period 1979-95, the rule proposed by Taylor 
(1993) as a rough description of recent U.S. policy, the optimal rule E, within 
the family (41), and our unrestricted optimal rule (55). We see in the top panel 
that, after two quarters of inflation being above target, the first two rules (which 
are quite similar to each other in this respect) involve much smaller responses 
of the interest rate to the inflation deviation than the latter two. Our unrestricted 
optimal rule is actually less aggressive than the optimal rule of the form (41) 
over the horizon displayed in this panel. Indeed, the initial reaction to inflation 
is actually smaller in this unrestricted optimum than it is in the case of the 
simple Taylor rule. This serves to highlight once again the fact that our model 
recommends postponing the reaction of interest rates while simultaneously in- 
creasing the absolute magnitude of these delayed reactions. 

The bottom panel shows the responses to a sustained output deviation. Here 
the Taylor rule and our estimate of actual policy involve much stronger reac- 
tions of the interest rate over the first three quarters than are implied by either 

33. Interestingly, our estimated historical policy rule for the United States, reported in Rotem- 
berg and Woodford (1997), also implies more response to the growth rate than to the detrended 
level of real GDP; bu,t the historical ru!e can be more accurately described as making the funds 
rate respond to Y, - Y,-2 rather than to Y,-,  - Y,-*. 
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Fig. 2.19 Cumulative interest rate response under alternative policies 

of the optimal rules. For the unrestricted optimal rule, the reaction remains 
more muted for the entire six-quarter horizon displayed here. This indicates an 
important difference between actual policy, at least as either Taylor or we have 
characterized it, and optimal policy according to our model: our model sug- 
gests that interest rate responses to output above trend should be much weaker, 
at least in the first few quarters, than they actually are. On the other hand, this 
does not mean that optimal policy would not involve interest rates eventually 
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being raised. For the optimal policy in the class (41), interest rates are actually 
higher after five quarters of high output than they would be under actual policy 
or the simple Taylor rule. If one extends the plot a few more quarters, this is 
also true of the unrestricted optimal policy, and both optimal rules (unlike the 
two characterizations of actual policy) imply that the funds rate eventually ex- 
plodes. 

A final feature of the optimal rule that is worth pointing out is its implication 
for long-run price level stability. We observe that the optimal rule has the form 
of an inflation-targeting rule, rather than a price-level-targeting rule, and in- 
deed it does not imply trend stationarity of the price level. On the other hand, 
it does imply a tendency for unexpected increases in the price level to be subse- 
quently offset by (forecastable) price level declines. This is indicated by a coef- 
ficient p" that is negative, indicating that unexpected price level increases are 
eventually more than completely offset by subsequent price level declines, as 
in the case of the optimal simple rules E,, and E,. As a result, optimal policy 
involves a significant degree of stabilization of the rate of change of long-run 
price level forecasts-the standard deviation of Apm is reduced by a factor of 
four, relative to our estimate of historical policy. 

Finally, it is worth asking to what extent our analysis implies that a simple 
rule such as E, or El can be improved upon by using additional information. 
We have already observed that, according to our structural model, the history 
of inflation and output variations alone, if observed with sufficient accuracy 
and timeliness, provide all of the information needed to implement the optimal 
equilibrium. Thus a sufficiently flexible rule of the form (51) suffices. But as 
a practical matter, it is probably even more interesting to observe that our re- 
sults imply that the unrestricted optimal rule is not too different from, and not 
too much better than, the optimal rule within a simple family such as (41). 
Ninety-nine percent of the nearly 15-fold reduction in the size of the dead- 
weight loss L + IT** that is achievable by going from actual policy to optimal 
policy can be obtained by adopting the simple rule E,. Furthermore, if E, is not 
considered operational due to its reliance on measures of the current quarter's 
inflation and output, the simple rule El, which requires only the previous quar- 
ter's data, results in performance that is nearly as good. Thus our analysis sup- 
ports the view that simple policy rules, variations on the sort of rule proposed 
by Taylor (1993), have highly desirable properties both from the point of view 
of stabilizing inflation, interest rates, and the long-run price level, as well as 
from the point of view of economic welfare. 

2.4 Conclusions 

Our results offer a number of conclusions of importance for the design of a 
monetary policy rule. All of our conclusions are subject, of course, to the ca- 
veat that the seriousness with which they should be taken depends on one's 
confidence in the extent to which the specification of our structural model is 
not grossly incorrect. 
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Probably our most important conclusion is that a simple interest rate feed- 
back rule of the kind proposed by Taylor (1993) can achieve outcomes nearly 
as good as are achievable in principle by any policy, assuming that the commit- 
ment of the monetary authority to the rule can be made sufficiently credible. 
At least in the context of the simple structural model that we consider, an inter- 
est rate feedback rule that uses only information about the recent behavior of 
inflation and output does quite well (and only the response to the recent level 
of inflation matters much for this). Furthermore, performance under the best 
rule of this kind is not significantly reduced if Zagged inflation data are used. 
Thus lags in the availability of accurate measurements of inflation are not nec- 
essarily a serious problem for the implementation of such a rule. 

It is worth noting in particular that a “backward-looking” rule, in which 
interest rates respond to measures of inflation that has already occurred, rather 
than to forecasts (of one sort or another) of future inflation (as in the rules 
considered by Rudebusch and Svensson, in chap. 5 of this volume, and Batini 
and Haldane, in chap. 41, do quite well. We show that, at least in our simple 
model, the theoretically optimal policy has a backward-looking representa- 
tion, given by expression (55). Perhaps more to the point, even very simple 
backward-looking rules, such as rules E, and E, in table 2.1, are quite good 
approximations to optimal policy. 

It is interesting to note that we obtain this result despite using a structural 
model that implies that monetary policy has no effects on inflation until the 
following quarter (and the largest effect only after two quarters), and no effects 
on real activity until after two quarters. Lags in the effects of a monetary policy 
change do not imply that an effective policy must be “forward looking.” The 
crucial insight is that there is no need for policy to be forward looking as long 
as the private sector is. A commitment to raise interest rates later, after inflation 
increases, is sufficient to cause an immediate contraction of aggregate demand 
in response to a shock that is expected to give rise to inflationary pressures. 
This channel should be effective as long as aggregate demand depends on ex- 
pectedfuture interest rates (or, equivalently, on long rates) and not simply on 
current short rates; as long as the monetary authority is understood to be com- 
mitted to adhering to the contemplated policy rule in the future, and not only 
at the present time; and as long as private agents have model-consistent (or 
“rational”) expectations. Indeed, if, as our model implies, aggregate demand 
is affected only by expectations of future interest rates, and not by unexpected 
interest rate variations (either immediately or with a lag), then a credible com- 
mitment to systematically respond in the future is the only way in which mone- 
tary policy can be effective. But when one conceives policy in these terms, 
there is no need for that commitment about future action to involve a commit- 
ment to be forward looking at that future date. 

Despite our general support for the type of policy rule proposed by Taylor, 
our analysis suggests that the best rules differ from the specific rule that he 
proposes in important respects. Probably the most important difference is our 
conclusion that short-term interest rates should depend not only on deviations 



110 Julio J. Rotemberg and Michael Woodford 

of inflation from target but also on their own past values-ideally with a coef- 
ficient even greater than one. A less radical-sounding version of our proposal 
would be to make the change in the funds rate, rather than the level of the 
funds rate, a function of deviations of inflation from its target value, as is also 
found to be desirable in the forward-looking models studied by Levin, Wie- 
land, and Williams (chap. 6 of this volume). It is interesting to note that in 
forward-looking models of these kinds, such dependence, even with a coeffi- 
cient greater than one on the lagged value, does not lead to instrument instabil- 
ity. This result contrasts sharply with the conclusion that one would obtain 
using a traditional, purely backward-looking macroeconometric model, such 
as the one considered by Rudebusch and Svensson (chap. 5 of this volume). 

In our analysis, the desirability of such dependence on the lagged funds rate 
does not rest on any assumption that variability in the change in the funds rate 
from one period to the next is a bad thing in itself. Rather, it represents a way 
of allowing the central bank to commit itself to raise interest rates later, in 
response to an increase in inflation that is not offset by a subsequent (and suf- 
ficiently prompt) inflation decline, without having to have much of the eventual 
interest rate response occur immediately. Assuming that the private sector un- 
derstands this commitment and is forward looking in its behavior, this allows 
the central bank to have a large effect on aggregate demand without having (in 
equilibrium) to move interest rates very much. This in turn is desirable if one 
wishes to maintain a low volatility of interest rates. We argue that a low volatil- 
ity of the funds rate is in fact desirable as it allows a given degree of inflation 
stabilization to be consistent with a lower average rate of inflation, due to the 
zero floor for the nominal funds rate. 

Our results here plainly depend on the assumption not only that the private 
sector is forward looking but that private agents fully understand and believe 
in the central bank’s policy rule. One might wonder whether such an analysis 
gives a correct account of the consequences of adopting such a rule, especially 
in the short run, given that it would represent a significant departure from pres- 
ent policy (according to our estimates). Nonetheless, our analysis shows that 
the possibility of achieving a significant degree of stabilization without a great 
deal of interest rate volatility through this channel is an important advantage 
of a high degree of credibility for the central bank’s commitment to a monetary 
policy rule. This helps to clarify why the design of arrangements under which 
such a rule could be credible could have significant benefits. 

Another respect in which our conclusions differ from Taylor’s proposal is 
that we find little gain from making interest rates depend on the current level 
of economic activity. We find that optimal rules within our simple families 
involve a small positive response to the level of detrended output, but it is much 
more modest than the sort of response suggested by Taylor, or indicated by our 
estimate of actual U.S. policy. The reason it is undesirable to respond to output 
deviations, in our model, is that deviations of output from trend have so little 
to do with deviations of output from potential (which, according to our esti- 
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mates, is quite volatile). It is possible that an alternative interpretation of the 
residuals in our aggregate supply equation, under which they would not all 
represent variations in the eflcient level of output, would increase the role for 
responses to output variations in an optimal rule. Alternatively, it is possible 
that if we considered other real variables (such as employment) along with 
variations in detrended output, we would be able to construct a better proxy 
for deviations of output from potential (as proposed, e.g., by McCallum and 
Nelson in chap. 1 of this volume), to which it would be desirable for interest 
rates to respond. 

Finally, our results shed light on the debate about the relative advantages of 
price level targeting and inflation targeting. We find that under a desirable pol- 
icy, the central bank should consistently act to subsequently reverse any move- 
ments of inflation above its target level, rather than simply preventing further 
price increases without undoing the ones that have already occurred. Nonethe- 
less, according to our analysis, there is no special significance to the goal of 
returning the price level to a deterministic target path. Our optimal policy rules 
actually imply that an unexpected increase in inflation should decrease the 
expected long-run price level. Such an outcome is obtained by a policy that 
involves no reference to a target price level path. It follows simply from the 
dependence of the funds rate on the lagged funds rate, mentioned above, which 
has the consequence that, in equilibrium, inflation increases must be followed 
by subsequent, and even greater, inflation declines in order to avoid causing 
the funds rate to grow explosively. 

Appendix 
Derivation of the Utility-Based Loss Function 

Here we present further details of the derivation of equations (30), (31), (33), 
and (34), which describe our utility-based loss function L + T * ~ .  We begin 
with the derivation of equation (30) as a second-order Taylor series approxima- 
tion to (29). Note that our objective function is of the form W = Ew,, where w, 
is the average utility flow (integrating over the continuum of households) each 
period. This utility flow may be written as a function solely of the pattern of 
real activity {y,(z)} within a period, and the exogenous shocks: 

We begin by considering a Taylor series expansion for each of the two terms 
in this expression, expanding around the levels of output y,(z) = y for each z 
and the values G, = and 5, = 0 for the exogenous shocks. Here r represents 
the level of output in an optimal steady state; it represents the constant equilib- 
rium level of output in an equilibrium with no variation in the values of G, and 
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5, around their steady state values, a constant price level, and a tax rate T = T* 
= - ( O  - l ) - I  that perfectly offsets the distortion resulting from firms’ monop- 
oly power. (As we shall see, our loss function takes an especially simple form 
in this case, and we wish to direct attention to the terms in it that survive even 
under these ideal circumstances. We leave for further work the analysis of how 
the welfare effects of monetary policy change when one considers possible 
interactions between monetary policy and distortions other than the one re- 
sulting from sluggish nominal price adjustment.) The steady state value is 
chosen to equal E(G,), and the shocks 5, are normalized so that E(&) = 0; thus 
the steady state values of the exogenous variables equal their unconditional 
means. 

A second-order Taylor series expansion for the first term on the right-hand 
side of equation (Al)  is given by 

= u(C;O) + u , Y ( t  + - Y ; -  1 -  G,) + u5C1 
2 (A3) 

In (A2) we simply expand in terms of the index of aggregate consumption 
C,, where c = r - G, and each of the partial derivatives is evaluated at the 
steady state values (c;O). Here the term O(llEl13) indicates that we neglect terms 
that are of third or higher order in the deviations of the various variables from 
their steady state values. In the case of a monetary policy rule that implies 
T* = 0 and a tax rate T = T*, the variables will deviate from these values in 
an equilibrium only because of fluctuations in the shocks G, and Et around their 
steady state values. In this case, the omitted terms are all of third or higher 
order in the size of the exogenous shocks (and we use 11511 to indicate the a 
measure of the size of these shocks, where the size of fluctuations in G, is 
intended to be included). More generally, the omitted terms also include terms 
that are of third or higher order in deviations of T* from the value zero and of 
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T from the value T*; but we shall (for now) retain terms that are of first or 
second order in perturbations of those assumptions about long-run aspects of 
policy. In equation _ -  (A3) we rewrite the expressions in terms of f, = log(YI/y) 
and G, = (GI - G)/Y, using the Taylor expansion 

q = Y ( l  + f + 9;) + 6(11~113).  
2 

In equation (A4) we suppress the terms that are independent of policy (because 
they involve only constants and exogenous disturbances), denoted “tip.” as in 
the text, and make use of the definition uc&, = - u c c E r  to obtain a scalar 
representation of the disturbance to the marginal utility of consumption. Fi- 
nally, in equation (AS) we recall the notation 

where “unf.” stands for an unforecastable term (i.e., a term x,  with the property 
that E , - 2 ~ ,  = 0). Unforecastable terms may be neglected because we are ul- 
timately interested only in the unconditional expectation of each of the terms 
in equation (AS). 

Similarly, a second-order Taylor series expansion of household z’s disutility 
of working is given by 

v = v ( Y ; 0 )  + vy(y,(z)  - Y) + v&, 

1 1 
2 

+ - V y y ( Y , ( Z )  - TI2 + V Y & Y I ( Z )  - m, + y V & ?  + f7(llUl3> 
(A61 

+ t.i.p. + O(IIcII’), 

where now f , ( z )  = log(y,(z)/y) and y,, defined by the relation vY&, = -vy,Fr, 
provides a scalar measure of disturbances to the marginal disutility of supply. 
Integrating equation (A6) over z we obtain 

1 -  - 

2 
+ -(VyY + VY,Y’)VarZjI(Z) - v YY Y’ ‘ E i , ( z )  z r  

+ t.i.p. + O(ll~lt3). 

Next we wish to express the terms in equation (A7) involving the population 
average EZjr(z) in terms of the Dixit-Stiglitz output aggregate fr instead. To do 
so, we first compute a Taylor series expansion for the right-hand side of the 
aggregator equation (2), obtaining 
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Solving this equation for E$,(z) and substituting into equation (A7) yields 

1 
2 

j; v(y,(z);~,)dz = vyY . f + +),Y + v,,Y2)Y: 

1 
2 

+ -(e-'v,,Y + v y y r * ) V ~ E j , ( Z )  - vYyY2 . f r  
+ t i p .  + O(11~113). 

('48) 

Substituting equations (A5) and (A8) into (Al),  we obtain 

('49) + t.i.p. + unf. + O(IIQ13) 

1 
2 

= - - u , Y [ ( a  + w ) f ;  - 2 ( 0  + w > f f f  + (0-1 + w )  varZj,(z)l 

+ t.i.p. + unf. + O(IIQ13). 

Note that in deriving (A9) from the line above we have (at last) used the as- 
sumption that ?is the efficient level of output, so that uc = vy , and the definition 

P; = (u  + w>-l(uGl + ~ E , - , Y >  = ((r + w)-l[aG, + w i 3  + unf. 

Then taking the unconditional expectation of equation (A9), we obtain 

1 
2 

w = - - u c Y [ ( a  + 0) var{f - f;) + (a + W ) [ E ( f ) 1 2  

('410) 
+ (0-' + w ) E  varZjf(z)] + t.i.p. + O(II@13). 

As promised, we have obtained a welfare measure that allows us to compute 
all second-order or lower terms in W using only a first-order (log-linear) ap- 
proximation to the equilibrium solution for the pattern of activity {y,(z)}, since 
no terms of order O(ll.EI*) in the solution for y,(z) have any effect on terms of 
order lower than O(11511') in equation (A10).34 If we furthermore assume that the 

34. This result depends on our having linearized arou;d the efficient ?, since otherwise our 
expression for W would contain a term that is linear in E(Y,). However, even without this choice, 
we could have obtained the same result by assuming that tax policy adjusts in response to any 
change in the monetary policy rule in order to preserve a particular value for E(Y,), where this 
quantity then becomes one of the terms independent of the monetary policy rule. In fact, we as- 
sume that taxes respond to keep output fixed in the work reported here in any event. 
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tax rate T (or some other aspect of “long-run” policy) is adjusted so as to guar- 
antee that E (PJ = 0 (i.e., log Y, equals log y on average) regardless of the 
monetary policy rule, then the [E(?JI2 term in equation (A10) can also be sup- 
pressed, as this term is also independent of the monetary policy rule. Our deci- 
sion to assume this results from a belief, as discussed in the text, that monetary 
policy is not an appropriate instrument with which to seek to affect the long- 
run average level of economic activity, given the existence of other instruments 
with which policymakers may more directly seek to offset the distortion re- 
sulting from suppliers’ market power. Finally, noting that ?, equals E,-*Ft plus 
a forecast error term that is both unforecastable and independent of monetary 
policy, one can show that 

var{y - Y : ]  = var{E,-2(y - Y f ) )  + t.i.p. 

Substitution of this into equation (AIO), along with the stipulation that E(?J = 

0 regardless of monetary policy, then yields equation (30). 
Some might prefer instead an analysis that would assume a tax rate T that 

remained invariant under alternative monetary policy rules. In this case, we 
would not be able to drop the [E(?,)l2 term in equation (A10). However, our 
model implies that 

where the first equality follows from taking the unconditional expectation of 
all terms in equation (21), and the second from taking the unconditional expec- 
tation of all terms in (20). (Note that in the log-linear approximations to the 
model equations reported in the paper, we routinely suppress terms of order 
f7(~~~~~z).) Thus the only difference in the alternative case would be the presence 
of an additional negative term in T * ~  in equation (31). This would have no 
effect on the definition of the loss from incomplete stabilization L in equation 
(33),  but it would mean that in (32) we would have L + FIT** instead of L + 
T * ~ ,  for a certain p > 1, as our overall deadweight loss measure. This would 
imply that the optimal point on the L - T* frontier (discussed and graphed in 
Rotemberg and Woodford 1997) would be slightly different from the one that 
we assume here, involving a slightly smaller, though still slightly positive, 
value of T*. Such a change makes no qualitative difference, however, in the 
conclusions announced here about the nature of optimal policy. 

Next we turn to the derivation of equation (31) from (30). As noted in the 
text, we need to show that the dispersion of levels of production across differ- 
entiated goods is a function of the degree of variability of the aggregate price 
level. We begin by noting that output dispersion follows from price dispersion, 
since equation (3) implies that 
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To relate the cross-sectional variance of prices to the variability over time of 
the price index P,, we begin by recalling that in any period t ,  a fraction (Y of 
suppliers charge the same price as at t - 1 (and the distribution of their prices 
is the same as the distribution of period t - 1 prices); a fraction (1 - a ) y  
charge a common new price p: chosen at t - 1, and a fraction (1 - a)( 1 - y) 
charge a common new price p: chosen at t - 2. Then, introducing the notation 
p ,  = E, log p,(z), we obtain 
- 

var,{logp,(z)J = varz{l0gp,(z) - j j - 1 1  = E,{[logp,(z) - P,-1121 + (AF,Y 

= aEz{[logp,_,(z) - P,_112) + (1 - c-u)Y(logP: - P,+l12 

(A121 + (1 - 4 ( 1  - Y)(logP: - + (APr12 

= avar,~logpr-,(z)~ + (1 - 4Y(logP: - P(-,)2 

+ (1 - a)(l  - Y)(logP: - FJ + ( A P y .  

Taking the unconditional expectation of both sides of (A12) then yields 

(A13) 
E var,{logpl(z)l = yE[(logp: - P,-l>21 + (1 - y)E[(logPT - Pt-l)21 

- (1 - a>-'E[(AjT,)']. 

Similar reasoning as is used in deriving equation (A12) also yields 

p, - P,+l = E,[logp,(z) - P,-,l 
= aEz[logp,+,(z) - F,-,I + (1 - a)Y(l%P: - P I - , )  

+ ( 1  - 4 ( 1  - Y)(logP: - P,-l) 

(1 - a)y(logpf - Fr-J + (1 - a)(l  - Y)(logP: - Fr-1). 

(A141 

= 

Talung the expectation of (A14) conditional on date t - 2 information, one ob- 
tains 

(A151 E,-2(P, - jTr- l )  = (1 - a)(logp? - P,-,) + 0(11~112), 

using the facts that log p: = Et-2 log pi + Q ( \ \ ( / 1 2 )  and that all date t - 1 prices 
are known at t - 2. This combined with (A14) implies that 

(A 16) 
(P ,  - P,J - (1 - y)E,+,(P, - Pl-,) = (1 - a)y(logP: - $,-I) 

+ a(ll~lr*). 

Furthermore, given that we are expanding around a steady state with zero 
inflation, the right-hand sides of both equations (A15) and (A16) consist solely 
of terms of order S(lleII). Thus by squaring (A15) and taking the unconditional 
expectation, we obtain 
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Finally, the definition of the price index (4) implies that 

p, = log? + a(ll~IIz). 

Making this substitution in equation (A17), we obtain 

Substitution of equations (All)  and (A18) into (30), and the fact that (as a 
consequence of our definition of n*) ET, = T* + CJ(ll€J’>, then yields equation 
(31). This last expression can in turn obviously be written in the form (32), 
where L is defined by (33), and 

Finally, we can rewrite L so that it depends only on the stochastic process for 
the relative price variable X .  To do this, note first that equation (21) implies that 

“419) E,-Jf - = ( l w E , - z ( i ,  - Pi,+,) .  

At the same time, equation (20) implies that 

(‘420) 

so that 

(‘421) 

T, - E , _ 2 ~ ,  = +(i, - E f - 2 i , ) ,  

v a r ( ~ , }  = ~ a r { E , - ~ i ~ }  + +’ V X { ~ ,  - E,-z i ,} .  

Substituting the expressions in (A19), (A20), and (A21) into equation (33), we 
obtain (34). 
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COIlUllent Martin Feldstein 

The paper by Julio Rotemberg and Michael Woodford is a complex and rich 
virtuoso performance. It is worth careful reading not only because of the diffi- 
cult technical problem that they solve but also because of the extension that 
they propose to the basic Taylor rule, making the optimal interest rate a func- 
tion of the past interest rate with a coefficient greater than one. Although I 
have reservations about specific aspects of the paper, I think it is an important 
contribution to the analysis of model-based monetary rules that will serve as a 
base for further useful developments. 

Martin Feldstein is the George F. Baker Professor of Economics at Harvard University and 
president of the National Bureau of Economic Research. 
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Collections of Rules 

Before commenting on the Rotemberg and Woodford paper itself, I will 
discuss the broader issue of the appropriate role of formal monetary policy 
rules. I think that such rules should not be viewed as substitutes for judgment 
by the monetary authorities but rather as inputs into that judgmental process. 
A good rule is therefore one that provides a useful starting point for central 
bank deliberations. 

More specifically, I believe that a central bank can benefit from having a 
collection of alternative good rules, that is, rules that have optimal properties 
in a variety of models. I envisage central bank officials or staff using such a 
collection of rules each time a federal funds rate decision must be made. Be- 
fore the decision is taken, the staff would calculate what the optimal federal 
funds rate would be according to each of the several different rules.’ If the 
different rules all point to the same decision, the central bank‘s choice should 
be relatively easy. If they do not, the officials and staff have to dig deeper into 
the reasons for the differences and the authorities have to consider more care- 
fully the decision that seems best in the current circumstances. 

I emphasize the idea of using a collection of rules in this way because of the 
uncertainty inherent in the monetary policy process. There are two types of 
uncertainty for which this approach can be helpful: model uncertainty and situ- 
ation uncertainty. 

Ben McCallum has emphasized model uncertainty in his important writing 
on the choice of a monetary policy rule. McCallum’s research imagines trying 
alternative rules in a variety of models and picking the single rule that does 
well under a variety of model assumptions. That approach may be too optimis- 
tic. There may be no rule that does uniformly better in a broad class of plaus- 
ible economic models. Moreover, the rule that is optimal for the true structure 
of the economy may not do very well at all over a wide range of other possible 
models of the economy. McCallum’s procedure may nevertheless help mone- 
tary authorities to develop and use a collection of rules by excluding some 
rules completely and by suggesting that certain rules deserve more weight in 
the central bank’s thinking than others because of their robustness to different 
plausible models of the economy. 

The second type of uncertainty, situation uncertainty, is the uncertainty 
about the current state of the economy and about where the economy would 
be going with no change in the federal funds rate. The expected values of 
uncertain estimates and of uncertain forecasts can be used in the decision rules 
only in very special circumstances. A prudent decision maker would therefore 
consider the optimal policy under different assumptions about the unobserv- 

1. In the spirit of the Rotemberg and Woodford paper, I will discuss rules in terms of the federal 
funds rate rather than in terms of an optimal monetary aggregate, but the logic of what I say can 
obviously be transposed to models that indicate optimal monetary aggregates. 
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able state of the economy and about its future path. This would be done with 
a collection of rules since a single rule may not reflect the sensitivity of the 
optimal policy to the situation uncertainty. 

All of this sounds like a lot of information for central bank decision makers 
to absorb. But it basically comes down to a list of the optimal federal funds 
value implied by each model in the collection, cross-classified by each set of 
alternative forecast scenarios (where forecasts include the current as well as 
future values of key economic magnitudes). 

The Lagged Interest Rate and the Weakness of Monetary Policy 

This brings me back to the Rotemberg and Woodford paper. An important 
feature of their work is that it extends the traditional Taylor rule by making the 
current optimal interest rate depend on the lagged interest rate as well as on 
inflation and output. In their analysis, the optimal response of the current opti- 
mal interest rate to the lagged value of the interest rate may have a coefficient 
greater than one because doing so significantly reduces the resulting average 
rate of inflation. 

Although I find the analysis that leads Rotemberg and Woodford to this con- 
clusion quite interesting, in the end I am not persuaded. Let me therefore re- 
view the logic behind their rule specification and then explain why I am not 
convinced. The starting point of the Rotemberg-Woodford analysis is the fact 
that the nominal interest rate that the central bank sets must be greater than or 
equal to zero. If the inflation rate is high, the mean value of this nominal inter- 
est rate will be high and the standard deviation of the fluctuations in that nomi- 
nal rate can also be large. But if the inflation rate is low, the mean nominal 
interest rate will also be relatively low and the standard deviation of the interest 
rate must be small so that the actual nominal interest rate that the central bank 
sets is never required to be less than zero. 

The Rotemberg-Woodford analysis shows that a monetary policy rule with 
a lagged value of the interest rate with a coefficient greater than one permits a 
low rate of inflation. This occurs because (in their rational expectations analy- 
sis) the public understands the rule and knows that when the Fed raises the 
interest rate it will go on raising the rate until the effect of this autoregressive 
process is dominated by a decline in actual inflation. This is sufficient to cause 
the actual inflation rate to decline before the rate is raised very much. They 
note that this low-inflation outcome comes with a high price in terms of in- 
creased variance of output. 

I believe that their analysis overstates the extent to which low inflation re- 
quires volatile output. I think that a richer class of rules would also show that 
the autoregressive interest rate with the coefficient greater than one is also not 
necessary for low inflation. 

A key limitation of the Rotemberg-Woodford analysis that they impose in 
order to carry out the complex rational expectations calculations is that the 
policy rule is linear. Thus the response of the interest rate must be the same to 
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low and high rates of inflation. This means that if a large interest rate decrease 
is not possible (because of the nonnegativity constraint), there cannot be a 
large interest rate increase to dampen inflation. The substitute for large interest 
rate increases is the lagged interest rate with a coefficient greater than one 
because, as I noted above, individuals understand the autoregressive rule and 
respond to small interest rate increases in a way that damps economic activity. 

In actual practice (although not in their model) it would of course be pos- 
sible to have an asymmetric (i.e., nonlinear) rule. The magnitude of the interest 
rate increase when inflation is regarded as too high could be much greater than 
the magnitude of the decrease when inflation is low and output is regarded as 
too low. This would make it unnecessary to have the lagged interest rate to 
signal the expected future tightening of interest rates when inflation is deemed 
to be too high. 

The nonlinear rule means that high interest rates can be used to damp strong 
demand. But what about situations of weak demand? Rotemberg and Wood- 
ford are certainly correct that when inflation is low, the real interest rate cannot 
be reduced much because the nominal interest rate cannot be negative. But that 
need not mean that monetary policy is ineffective in dealing with weak de- 
mand. A central bank that cannot reduce the real interest rate can still increase 
demand through open market sales of the domestic currency for foreign cur- 
rencies. Reducing the currency’s value through such unsterilized intervention 
increases exports and reduces imports. The closed economy character of the 
Rotemberg-Woodford model precludes that, but it is a feature of the real world 
that needs to be taken into account. 

Similarly, a sustained weakness of demand may be a reason for a fiscal stim- 
ulus-as in Japan today-which can be effective if the monetary authority 
keeps the real interest rate and the exchange rate from rising in response to the 
fiscal expansion. This too can prevent output declines even though interest 
rates cannot move down. 

For these reasons, I remain to be convinced of the desirability of the lagged 
interest rate with a greater-than-one coefficient that Rotemberg and Woodford 
find in their optimal policy rule. I hasten to add that a lagged interest rate in 
the optimal response function may be a good idea for other reasons-uncer- 
tainty about economic conditions, the need to appear consistent, and the poten- 
tial adverse effects of interest rate volatility on financial institutions-but that 
is a separate matter. 

In a richer analysis, it may also be desirable to have asymmetric policy re- 
sponses and unsterilized foreign exchange intervention. But those are matters 
that require further analysis. 

Sticky Prices 

The Rotemberg-Woodford analysis is both sparse and sophisticated. It is 
sparse in the sense that it boils down to two equations describing the behavior 
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of households and price-setting sellers. It is sophisticated in that it presents 
dynamic optimizing behavior of those agents with respect to a continuum of 
commodities in a rational expectations framework. But to make monetary 
policy effective in this framework and to create the observed stylized fact 
of a two-quarter lag in the impact of monetary policy, Rotemberg and Wood- 
ford introduce arbitrary lags into the behavior of both the households and the 
sellers. 

I find this mixture of brilliant rational expectations optimizing behavior on 
the one hand and arbitrary lags on the other very disconcerting. Moreover, to 
the extent that the optimal policy rules are sensitive to the resulting lag pattern, 
as presumably they are since that is where the impact of monetary policy origi- 
nates, how much weight should be put on rules that reflect arbitrarily imposed 
lag structures? What would happen if different assumptions were made about 
the lags in household and firm behavior? 

Since the strength of the Rotemberg-Woodford model is its optimizing ratio- 
nal expectations framework, it would be interesting to drop the arbitrary lags 
and derive lags from the assumption that individuals and firms are following 
some kind of optimal Bayesian learning strategy. The resulting lags might pro- 
duce a model that is too difficult for policy optimization of the type developed 
in section 2.3 of the paper, but such a change would give a more logically 
consistent basis for simulating alternative rules. 

Since this paper already represents an enormous amount of complex work, 
it seems greedy of me to ask for more. The extension to Bayesian learning of 
the rational expectations model is certainly work for another paper. 

Final Thoughts 

But there is one exercise that could easily be done and that I think would be 
quite interesting. That would be to pick a few historical dates and calculate 
what the different rules described in this paper would mean for the optimal 
interest rate at those dates. At a minimum, it would be interesting to see how 
much the optimal interest rates differ across the different rules. 

There is a final question that I would like to raise about the role of public 
confidence. I believe one of the reasons monetary policy has been effective in 
reducing inflation in the United States and in many other countries in recent 
years is that the Federal Reserve and other monetary authorities have stated 
the goal of reducing inflation and have, to a greater or lesser extent, specified 
numerical targets for future inflation. 

To what extent would the effectiveness of monetary policy be enhanced in 
practice by using a rule or a collection of rules that emphasizes price stability? 
And to what extent is that effectiveness weakened by using an explicit mone- 
tary rule that attempts to optimize multiple criteria? Shifting from the existing 
informal emphasis on price stability to anything like a Taylor rule surely re- 
quires consideration of that issue. 
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Discussion Summary 

In response to Martin Feldstein’s point about the Lucas critique, Michael 
Woodford clarified that the assumption in the paper is not that agents do not 
act on the basis of knowledge of the monetary policy rule. The reason why the 
Lucas critique does not apply to the model is that optimal behavior is described 
by Euler equations that do not depend on the coefficients of the policy rule. 
These Euler equations are the first two equations in the model. This means that 
when changing the coefficients of the monetary policy rule, two of the three 
equations that characterize the equilibrium remain unchanged. Glenn Rude- 
busch noted that the Lucas critique still affects the results of the paper since 
the parameter estimates for the first two equations were obtained using a histor- 
ical VAR reaction function. A different assumption about the historical reac- 
tion function would lead to different parameter estimates. 

Lars Svensson asked whether the rules derived in the paper are only con- 
strained optimal. Woodford responded that the rules are actually globally opti- 
mal assuming complete information about the underlying state variables, the 
real disturbances. The best rule in the family of rules that only respond to 
inflation and output observations is equivalent to the optimal rule. The intuition 
behind this result is that there are two real disturbances in the model and ob- 
serving two endogenous variables gives enough information about these real 
disturbances. 

Svensson also suggested an intuition for the response coefficient c on the 
lagged federal funds rate being above unity. Ideally, the central bank would 
like to affect long interest rates and thereby aggregate demand. The optimal 
way to do this is to have a large positive response coefficient on the lagged 
short rate. This will make future short rates react to the current short rate, 
which in turn will affect the long rate. Thus the rule works like a threat to do 
something in the future. 

Donald Kohn remarked that the high coefficient on the lagged funds rate 
was interesting since central banks do not have a series of yield raises in mind 
when they reverse policy. They know they are too easy or too tight, but they 
have no idea by how much. Since they tend to think they are off by a fairly 
small amount initially, central banks often perceive bond markets as overreact- 
ing to their initial move. Looking at federal funds futures and forward rates, 
bond markets rarely call correctly the amount by which the Federal Reserve 
changes rates and almost always anticipate that the tightening or easing will 
persist beyond the point it actually stops and begins to be reversed. 

Lawrence Christian0 noted that a policymaker faced with a recommended 
rule might not follow the rule exactly but just a rule nearby. The graphs in the 
paper seem to suggest that if a rule with slightly different parameter values 
than the optimal rule of the model is picked, the result may be catastrophic. 
The problem arises in particular at the boundaries of indeterminacy and explo- 
siveness regions. Also, the results may change dramatically when parameter 
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uncertainty is accounted for. Woodford responded that these features would 
have to be built into the model to provide answers to these questions. 

Ben Friedman emphasized the importance of distinguishing between two 
kinds of rules: rules and rules of thumb. First, when evaluating rules of 
thumb-that is, some indicative guide used as input into the judgmental pro- 
cess-the whole class of arguments stemming from time inconsistency in sup- 
port of the rule is unavailable. Second, if a model is solved on the presumption 
that the rule is a rule-that is, the dynamic equilibrium is solved based on 
the assumption that agents form expectations based on commitment-then the 
results cannot be used to justify a rule of thumb. Ralph Bryunt noted that the 
evaluation of committed rules is still useful when thinking about rules of 
thumb. For example, the inference drawn about what variables to consider in 
a setting with committed rules can be carried over to rules of thumb. Frederic 
Mishkin remarked that the distinction is also important for the communication 
of policy advice to central banks. Central bankers often get upset when they 
hear the word “rules” because, given that the true model of the economy is not 
known, they want to have some discretion available to them. 

Nicolettu Butini wondered how the rules in the paper compared to forward- 
looking rules. With the output predetermined at t - 2 and a coefficient on the 
lagged interest rate bigger than one, a feedback on current-dated variables may 
be de facto equivalent to a forward-looking rule. Wuodford replied that in equi- 
librium the federal funds rate depends on expected future inflation. In this 
sense, the rule is similar to a forward-looking rule that depends directly on ex- 
pected inflation. 

Volker Wieland noted that, according to the paper, rules that are very effec- 
tive in stabilizing inflation would require a fairly high degree of interest rate 
variability and thus frequently violate the zero-bound constraint on nominal 
interest rates-especially in a low-inflation environment. In recent work Fuh- 
rer and Madigan (1997) incorporate the zero bound explicitly in a small macro- 
economic model of the U.S. economy and use deterministic simulations to 
evaluate the effect of the zero bound in the event of a negative demand shock. 
They find only modest effects on output adjustment with a zero inflation target. 
However, Orphanides and Wieland (1998) find that in a stochastic framework 
with shocks similar to those in the 1980s and 1990s, the zero bound signifi- 
cantly increases the variability of output and inflation and introduces a long- 
run trade-off between inflation and output at inflation targets below 2 percent. 

Bob Hull expressed three criticisms of the behavioral assumptions made by 
the paper. First, it is not clear why the public is devoted to a monetary unit. In 
fact, most intermediate product transactions are set in real terms, not in nomi- 
nal terms. Second, firms change prices as frequently as they change quantities. 
Third, firms do not grant their customers call options. In wholesale, these op- 
tions are not granted at all. In retail, while many call options are granted, these 
are with respect to limited quantities, and when firms run out, they reconsider 
their prices. 
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