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8 Modeling Nonlinearity over the 
Business Cycle 
Clive W. J. Granger, Timo Terasvirta, and 
Heather M. Anderson 

There seems to be wide acceptance that the relations between economic time 
series are often nonlinear. This is certainly true for relations suggested by 
economic theory, and econometricians can propose estimates of the parame- 
ters of any explicitly nonlinear model. However, exploratory or specification 
search forms of modeling are used when a theory is not specific about 
the dynamics of a relation apply to linear (or log-linear) models, such as the 
Box-Jenkins transfer functions and vector autoregressive models. There is no 
generally accepted class of nonlinear models that can be applied to explore 
relations. One difficulty is that the number of alternative nonlinear models is 
enormous and that there has not been sufficient experience accumulated to 
decide which of these models are most appropriate in economics. In the past 
decade or so, there has been a greater deal of activity among statisticians, 
time-series analysts, and econometricians suggesting possible nonlinear mod- 
els and techniques for their analysis. Tong (1990) surveys many of the univar- 
iate models, and Granger and Terasvirta (in press) consider multivariate mod- 
els but concentrate on single-equation nonlinear relations. The possible 
models include parametric forms (such as nonlinear autoregressive, bilinear, 
and doubly stochastic models), state space and flexible Fourier forms, many 
types of nonparametric models (including projection pursuit), and mixtures of 
these called semiparametric. These models are designed to be fairly general 
and to be flexible so that they can approximate a wide variety of actual nonlin- 
earities. A problem that arises from this flexibility is that the models are in- 
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clined to overfit in sample. We thus believe that it is important first to test 
linearity against the nonlinearity in which we are interested and then only if 
linearity is rejected to build a nonlinear model. Further, one way of judging 
the quality of this model should be its out-of-sample performance compared 
to other models, although there can be difficulties with this strategy, as will be 
seen later. 

There exist many tests of linearity, and many of these are discussed in Lee, 
White, and Granger (1993), where a variety of simulations are presented, and 
in Terasvirta (1990a), where theoretical power properties are discussed. A few 
tests are found to have good power under a variety of situations, including a 
new test based on neural network models. Let +(X) be a so-called squashing 
function, being smooth, bounded, and monotonic nondecreasing, such as a 
probability density function or a logistic function, so that in this last case 

P 

Y, = c + p ’ x l  + C Y $ ( ~ , ’ ~ ~ )  + white noise, 
1-  I 

(1) 

where X, is the vector of explanatory variables including lagged Y’s and pres- 
ent and lagged values of other variables. It is, of course, rather complicated to 
estimate the y parameters, so a simple procedure has been suggested by White 
(1989) in which values of y are chosen at random from some appropriate re- 
gion and a rather large valie of p is used, say 10 or 20. As the + terms are 
now directly observable, p and the a’s can be estimated by a standard regres- 
sion procedure and the significance of the a’s tested directly. If any are found 
to be significant, linearity can be rejected. In Lee, White, and Granger (1993), 
this test was found to have good power in most cases, but not for data gener- 
ated by a bilinear model. 

In Terasvirta, Lin, and Granger (1993), it is proposed that a Lagrange mul- 
tiplier (LM)-type test be used. As expected, simulations showed that it has 
comparable power to the neural network test and often better power. The test, 
here called the polynomial test, involves just adding squares and cross- 
products of the components of 3, (quadratic terms) and possibly also cubic 
terms (such as X ; ,  X:X,, and X,XjXk) .  These are added to a linear model, with 
constant, to form an artificial regression and an F-test used. 

If such a test suggests that linearity can be rejected, the question naturally 
arises of what model to fit to the data. The polynomial test immediately sug- 
gests a model, involving the quadratic and cubic terms, but this form is not 
easily interpreted and may be explosive. It also suggests (1) because the test 
is an LM-type test against this alternative. However, difficulties in estimating 
(1) discourage use of that model. 

The class of models that we propose is known as smooth transition regres- 
sions (STRs), which take the form 
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where 0 I +(Z) I 1, and +(Z) is zero, or small, for some values of Z and is 
near to one for other Z values. In (2), Z, is the “indicator variable” and may be 
a linear combination of the components of X, or just a single lagged compo- 
nent of X I ,  plus a constant, for example, Z, = m + yY,-,. The model is seen 
to be a smooth transition between the linear model 

Y, = c,  + &XI + e, 

and the alternative linear model 

y, = (c ,  + c2) + ce, + F J X ,  + e,. 

These two linear models can have quite different properties-one could be 
I(1) and the other I(O), for example-and can perhaps be interpreted as two 
regimes. The models thus represent a smooth regime-switching situation. 
There are plenty of examples in economic theory of regime switching, such 
as full-employment or full-capacity models being different from the nonfull 
cases. Similarly, there is evidence of stock market price changes being fore- 
castable for certain indicator variable values, such as low volatility, but not 
otherwise. The following section considers the specification and testing of 
these models. 

8.1 Specification of Smooth Transition Regression Models 

Consider the following smooth transition regression (STR) model: 

(3) y, = p’x, + (wx,)F(a’zj + u,, 

where u, - i.i.d(O, a2), E(z,u,) = 0, p = (Po, P I ,  . . . , pm)’ ,  8 = (q,, e l ,  
. . . , em)’ ,  a = (ao, a,, . . . ,am+,,)‘, Zy2,; a, = 1, say,x, = ( l , y r p I ,  . . . , 
y,-,, x,,, . . . , xJ‘, and z, = (xi, v ; ) ’  with v,  = (v, , ,  . . . , v J ’ .  Two different 
types of F will be considered. First, 

(4) F(a’z,) = ( 1  + exp [--y(a‘zr)]}-’, y > 0,  

which makes (3) a logistic STR (LSTR) model. Maddala (1977, 396) sug- 
gested this formulation. If y = 0, (3) is a linear model. Second, if 

( 5 )  F(a’z,) = 1 - exp[-y(a’zjZ], y > 0, 

we have an exponential STR (ESTR) model. If y + 03 in (4), (3) becomes a 
switching regression model with a’z, as the linear combination of transition 
variables. If y + m in (3, (3) becomes a linear model; its parameters switch 
if a‘z, = 0, but that is an event with zero probability. Functions (4) and (5) 
describe two fundamentally different forms of parameter behavior. If (4) 
holds, the “stochastic parameter vector” p + 0F in (3) changes monotonically 
from p to p + 8 with a’z,. If ( 5 )  is valid, this change is symmetrical about 
zero: the parameters change from p + 0 to p and back again with increasing 
a’z,. Usually, (4) and ( 5 )  are still too general, in particular if the time series 
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available for modeling are relatively short. A way of restricting them is to let 
a = ( - c ,  0,  . . . , 0, 1, 0, . . . , 0)’ so that a‘z, = ztj - c .  Instead of a linear 
combination of variables determining the transition, a single variable is doing 
it. In practice, this variable may often be unknown; that is, it is not known to 
the investigator which aj = 1, and that has to be determined from the data. 
Furthermore, it is assumed here that, if the model is nonlinear, it is not known 
if the transition function is (4) or (5). 

A successful application of ( 3 )  to data requires the following three steps: 
(i) Specify a linear model to form a basis for further analysis. (ii) Test linearity 
of ( 3 )  (y = 0) against nonlinearity (y > 0). If linearity is rejected, determine 
the transition variable from the data. Once this has been done, (iii) the transi- 
tion function has to be selected, the choice being between (4) and (5). These 
steps may be carried out as follows: 

i. 

11. 

... 
111. 

Carry out the complete specification of a linear model. The maximum 
lag length p for lagged y ,  has to be determined from the data as well as 
regressors x,,, . . . , xfk if economic theory is not fully explicit about 
them. 
Test linearity of ( 3 )  against STR using each element of z, in turn as the 
transition variable. If linearity is rejected for more than one transition 
variable, choose the one for which the p-value of the test is the lowest. 
The rationale behind this procedure is that the linearity test has the high- 
est power against the correctly specified alternative. If a wrong transition 
variable is selected, the power of the test suffers from the erroneous 
choice. 
Treat the selected transition variable as given, and choose between (4) 
and (5) using an auxiliary regression already needed in testing linearity. 

It is seen that linearity testing plays a central role in this specification strat- 
egy. In this case, not the only, but the most convenient, way of expressing the 
null hypothesis of linearity is 

(6) H:: y = 0 against H;: y > 0. 

It is clear from (3) that the model is not identified under this null hypothesis. 
A Lagrange multiplier-type test may be derived for testing (6) using the sug- 
gestions in Davies (1977). The test is described in detail in Granger and Ter- 
asvirta (in press, chaps. 6 and 7). It is based on the following artificial regres- 
sion: 

(7) 

where zi, - i.i.d.(O, a*), f, = ( y  ,-,, . . . , Y , - ~ ,  x,, . . . , XJ’ and zrd is the 
transition variable, which is an element of if. The null hypothesis (6 )  trans- 
lates into 

(8) H . 6  0 ’ 2  = 6  3 = 6 , = 0 .  

y ,  = 6, + s ; i ,  + s;(f,zrd) + 6;(%,z;) + &( f ,Z2 )  + ti,, 
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Table 8.1 Alternative Choices of STR Model Type Based on Outcomes of a 
Sequence of F-Tests within the Artificial Model (7) 

Hypothesis 

6, = 0 6, = 016, = 0 6, = 016, = 6, = 0 Choice 

Reject . . .  
Accept Reject 
Accept Accept 
Accept Reject 

. . .  
Accept 
Reject 
Reject 

LSTR 
ESTR 
LSTR 
No decision 

The alternative is that at least one element in either a,, 6,, or 6, is not equal to 
zero. The fourth-order terms are needed in the case that the true model is an 
LSTR model in which the most important nonlinearity parameters is the inter- 
cept in the nonlinear part, 0,. 

If the true model is an ESTR model, then 6, = 0 (see Granger and Teras- 
virta, in press, chap. 7). Also, if 6, = 0, the model can be only an LSTR 
model. This suggests the following testing sequence. First, test H, in (7),  and 
continue as follows: 

i. If (8) is rejected, test H,: 6, = 0 against HI,: 6, # 0 in (7). 
ii. If H ,  is accepted, test H,,: 6, = 0 I 6, = 0 against H , , :  6, # 0 I 6, = 0. 

iii. If H,, is accepted, test H,,: 6, = 0 I 6, = 6, = 0 against HI,: 6, # 0 I 6, 

In practice, it is advisable to carry out these three tests automatically indepen- 
dent of the outcome of the previous test. The outcomes help us decide be- 
tween LSTR and ESTR models (see table 8.1). 

The only problem is the case where both H,,, and H,, are rejected after H, 
is accepted. Then this scheme does not provide a clear-cut answer to the prob- 
lem of choosing between the two models (see Granger and Terasvirta, in press 
chap. 7). Recomputing the test statistic after shifting zfd may provide some 
guidance, as in the univariate case that Terasvirta (1990b) discussed. 

The situation is less complicated if the transition variable is not an element 
o f f ,  but one of v, = (vfl ,  . . . , vJ', say, vfd. Then an artificial regression 
corresponding to (7) is 

= 6, = 0. 

y ,  = 6" + sin, + 6,v, + 6,v; + 6;Y,v, + s;n,v; + 0,. 
The null hypothesis of linearity is 

(9) H,,: 6, = 6, = 0; 6, = 6, = 0, 

the alternative being that (9) is not valid. The test has power against both 
LSTR and ESTR alternatives. If, after rejecting (9), we test H,,: 6, = 0 and 
reject it, the conclusion is that (3) is an ESTR model. 

The steps of the specification strategy outlined above leave open the ques- 
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tion of the dynamic structure of (3). Specifying that may be best carried out 
by estimating different specifications and learning from them. This has turned 
out to be a successful way in univariate STAR (smooth transition autoregres- 
sion) modeling (for examples, see Terasvirta 1990b; and Terasvirta and An- 
derson 1992). The specification of STAR models follows the same principles 
as those presented above. The main difference is that x, = (1, y,-,, . . . , 
y,-J' and the transition variable is zrd = where d is not known a priori 
(for discussion, see Terasvirta 1990b). 

8.2 Modeling the Relations between GNP and the Index of 
Leading Indicators 

This section describes an exploratory modeling exercise between y, = real 
GNP and x, = the Department of Commerce quarterly index of leading indi- 
cators. The objective of the exercise is to consider if a nonlinear model pro- 
vides better forecasts of GNP. The results are indecisive, with some evidence 
of nonlinearity being found but no clear-cut improvement in forecastability. 
The series used are those designated GNP82 and DLEAD in the Citibase data 
bank. The series are quarterly, real, and seasonally adjusted, with 166 obser- 
vations from the period 1948: 14989: 11. Models were constructed using the 
full sample, and then twenty terms were held back for use in a forecast com- 
parison, so that the models were reestimated using just the first 146 observa- 
tions. The leading indicator series was originally recorded monthly but was 
summed over the adjacent values to obtain a quarterly series. It was decided 
to use GNP as the variable of interest as it is probably the best available ap- 
proximation to the variable that the leading indicators were designed to lead. 
The problem is that this variable is available only quarterly. The alternative 
would be to use the index of industrial production, which is available monthly, 
but, with the growth in the importance of the service industries, the industrial 
sector now provides a poor approximation of GNP. 

To help decide what models to fit, the two series, y, and x,, and their logs, 
Ly, and Lx,, were tested for unit roots and then for cointegration. 

Augmented Dickey-Fuller 7-tests (see Dickey and Fuller 1979) suggest that 
both y andx are I(1), that Ls is also I ( l ) ,  but that Ly is less clearly so. (Details 
are shown in appendix 8A. 1 .) The first-differences of all these series are all 
clearly I(0). The fitted univariate linear model for y, is 

y ,  = 1.28y,-, - 0.14y,-, - O.I4y,-, + 3.64 + e,, (10) 
( .13) ( .08) (5.67) 

R2 = .9992, D-W = 1.97, T~ = - 12.22 

where standard errors are shown in brackets, and T~ is the augmented Dickey- 
Fuller 7-statistic applied to the residuals using k lags of the differenced vari- 
able. It is seen that the coefficients add to one, and the errors e, seem to be I(0) 
(or stationary), suggesting that y, is I( I) ,  possibly with drift. 
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To investigate possible cointegration, it will be assumed that all the series 
are I(]). The Engle-Granger (1987) two-step tests found no evidence of coin- 
tegration in levels and weak evidence of cointegration for logs, as the follow- 
ing regressions show: 

(11) y f  = 520.3 + 9.10t + 4.57xf, D-W = .133, T, = -2.82; 
(25.6) ( .52)  (.27) 

y, = 155.5 + 9.27xf, D-W= .15, 7, = -3.35; (12) 
(25.3) ( . lo)  

(13) Ly, = 5.07 + .004t + .421L,, D-W = .11, 7 ,  = -4.02; 

(.19) (.0003) (.04) 

Ly, = 2.59 + .85Lrf, D-W = .18, T~ = -3.61. (14) 
(.05) (.009) 

The critical value for the 7-statistics is - 3.44, so the null hypothesis that the 
residuals are I(1) is rejected only in (13) and (14). It should be noted that the 
standard errors given here cannot be used to evaluate the significance of pa- 
rameters in the model because of the very low Durbin-Watson statistics. How- 
ever, these results are confused by different results obtained by using the Jo- 
hansen ( 1988) maximum likelihood procedure, which find cointegration for 
both levels and logarithms of the series. (Again, details are shown in appendix 
table 8A.2.) The Johansen procedure is known to be more powerful than the 
two-step procedure (as shown by Gonzalo [1991]), but the results do not sug- 
gest that it is necessarily a good modeling strategy to impose cointegration on 
further models, so a flexible specification was adopted. 

For later purposes, it is relevant to ask if various nonlinear transforms of 
our series seem to be 1(1) or not. Using both simulations and simple theory, 
Granger and Hallman (1988) show that polynomials in I( 1) variables also con- 
tain linear roots if a linear model is constructed. Table 8.2 shows Dickey- 
Fuller 7-test statistics for several of these polynomials. A critical value of 
- 3.44 or less allows one to reject the null hypothesis of a unit root with 95 
percent confidence. It is seen that, using x, y, in no case is the null rejected, 
but it is rejected twice using Lr, Ly. 

The modeling experiment used the following steps: 

i. Construct a few alternative models for y, with and without the constraints 
suggested by possible cointegration, using the full sample. 

ii. Use Lagrange multiplier tests to test for missing variables that are second- 
and third-order polynomials of lagged dependent (GNP) and explanatory 
(leading index) variables. 

iii. Reestimate the model using the shorter sample, and compare the one-step 
forecasting ability of the alternative models over the final twenty terms 
of the sample. 
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Table 8.2 Augmented Dickey-Fuller (D-F) Tests for Quadratic and Cubic Functions o 
x and y 

Variable y’ XY X2 Y’ Y’X Y X 2  x3 

Variable ( L Y ) ~  k , L Y  (W2 (LYY ( L Y ) 2 k  LY(W2 (W3 

D-F stat. .59 - . I7  - .77 I .93 .79 .64 .10 

D-F stat. -3.01 -3.17 -3.26 -3.71 -4.33 -3.19 - 3.19 

These steps were repeated for the logarithms of the variables, Ly, and Lx,. 
Once evidence for nonlinearity has been found, the best procedure is to try to 
build specific models, such as nonlinear autoregressive or neural network 
models, but this has been attempted just with an STR model, as reported in 
the next section. 

Two of the preliminary models considered for y, are reported (together with 
specifications tests and the Lagrange multiplier test results, for possible aug- 
menting nonlinear variables). Denoting these models as M1 and M2, M1 is 
given by, 

Ay, = .06Ay,-, + 12.55 + 2.45A.x-,, 

(15) (2.04)* (.35)* 

N = 164 (1948:111-1989:11), 

R2 = .33, D-W = 2.14, T ,  = -7.78*, SE = 21.17, 

Serial Correlation: F(6,155) = 1.26, ARCH: F(6, 149) = .52, 
Normality: x 2  = 24.51*, 

LM(Ay)-: (Ax-,: F(1, 160) = 5.17*, 

and M2 is given by 

(16) Ay, = 14.90 - .06(ECT)_, + (2 .05)A~-,  

(1.75)* (.02)* (.31)* 

N = 159 (1949:1V-1989:11), 

R2 = .38, D-W = 2.08, 70 = -13.41*, SE = 20.38, 

Serial Correlation: F(6, 150) = .72, ARCH: F(6, 144) = .67, 
Normality: x2 = 18.76*, 

LM(Ay2, Ax-,) = F ( 1 ,  155) = 5.31*. 

Here ECT is the error-correction term from (12), ECT = yf - 155.5 - 
9 . 2 7 ~ ~ .  

We provide a variety of statistics to help evaluate the models, and these 
include R2, Durbin-Watson (D-W), the standard error (standard deviation of 
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Table 8.3 In Sample and Postsample Standard Errors for Models M1 and M2 
and Their Nonlinear Extension 

Standard Error 

Short 
Model Long Sample Sample Postsample 

M1 21.17 20.83 24.47 
MI augmented 20.75 23.11 

M2 20.38 20.33 21.13 
M2 augmented 20.10 20.50 

residuals), and T,, the augmented Dickey-Fuller test statistic based on the re- 
siduals using k lags. Standard specification test statistics for serial correlation, 
ARCH, and normality are also given. The Lagrange multiplier test results, 
with the apparently successful augmenting nonlinear variables, are shown 
after the specification statistics. 

A linear trend was added to M1 but was not found to be significant. In both 
models, the LM tests suggested that some nonlinearity in mean may be pre- 
sent. These models were augmented by adding a term (Ay,- ,)*(Axl- ,). Table 
8.3 shows the standard errors in sample for both the long and the shortened 
sample plus the postsample forecast standard errors. 

Using the test outlined in Granger and Newbold (1986,278-79) to compare 
the sum of squared forecast errors, the M1 augmented model is significantly 
better than M1. However, the error correction model M2, which is superior 
both in and out of sample, does not produce a clearly superior forecast when 
augmented by a nonlinear term. 

A more extensive experiment was conducted using the log series and three 
models, denoted L1, L2 and L3, are reported here. L1 is given by 

Ly, = .85Ly,-, + .56 + .0003t + .ll,!,x-,, 
(17) (.02)* (.13)* (.OOOl)* (.01) 

N = 165 (1948:11-1989:11), 

R2 = .9994, D-W = 1.519, T~ = -7.94*, SE = .0093, 

Serial Correlation: F(6, 155) = 2.78*, ARCH: F(6, 149) = 2.69*, 
Normality: x 2  = 1.17, 

LM(LrLy)_,: F(1, 160) = 4.55*, LM (Ly)?,: F(1, 160) = 3.91*, 

LM (Ly)2,(Lx)L,: F(1, 160) = 4.42*, LM (Ly)-, (k)<,: 

F(1,  160) = 4.68*, LM(Lx)?,: F(1, 160) = 4.77*. 

L2 is given by 
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(18) ALy, = .llALy,-, + .005 + .23ALx,-,, 

(. 07) (.0009)* (.03)* 

N = 164 (1948:111-1989:11), 

R2 = .34, D-W = 2.19, T~ = -13.24*, SE = .0090, 

Serial Correlation: F(6, 155) = 1.40, ARCH: F(6, 149) = 1.69, 
Normality: x2 = 4.58*, 

LM[(hLy)Z,, (hLyhLx ) - , ,  ( M x ) ~ , ] :  F(3, 158) = 4.30*, 

LM[(hLy)Y,, ( h L y ) 2 , ( ~ ) L I 9  ( u ~ ) - , ( f i ) 2 , ,  (UX)~ , :  

F(4, 157) = 3.08*, 

and, finally, L3, 

(19) U y ,  = .007 - .08(ECT)_, + .18&,-,, 

(.0007)* (.O 16)* (.03)* 

N = 159 (1949:1V-1989:11), 

R2 = .42, D-W = 1.99, T~ = -4.22*, SE = .0084, 

Serial Correlation: F(6, 150) = .73, ARCH: F(6, 144) = .24, 
Normality: x2 = 2.49*, 

LM ( A L Y ) ~ ~ ,  (hLy-,)(pLx)Ll, (hLx)2, : F(3, 153) = 3.79*. [ 1 
In each of the models, the LM tests found evidence of nonlinearity. Table 8.4 
shows the in-sample and postsample values of the standard errors of the vari- 
ous models. 

It is seen that the augmentations of L1 all involve particular single quadratic 
and cubic terms and that all the augmented models forecast better than the 
original linear models, and the improvement in forecasting ability is found to 
be significant. The best linear model, both in and out of sample, is L3, which 
is an error-correction form, and the augmentation with quadratic lagged terms 
gives a slight improvement. Thus, the initial conclusion is that there does 
appear to be some evidence of nonlinearity in mean and that the nonlinear 
models can lead to an improvement in forecasts. 

The augmented models are considered just for the purpose of testing for 
nonlinearity and are not proposed as serious, interpretable, nonlinear models. 
Their postsample performance is presented just for general interest. 

One final experiment included the current value of the index of leading 
indicators in the model for GNP, in which case the LM tests found no evidence 
of missing nonlinearity in mean using lagged quadratic or cubic terms. Al- 
though this result has no direct forecasting implications for GNP, it suggests 
that a nonlinear model for the leading index is worth exploring. A modeling 
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Table 8.4 In-Sample and Postsample Standard Errors for Models L1, L2, and 
L3 

Model Additional Nonlinear Terms In Sample Postsample 

L1 
LIA, 
LIA, 
LIA, 
LIA, 
LIA, 

L2 
L2A, 

L2A, 

L3 
L3A 

,0096 
,0096 
,0096 
,0096 
,0096 
.0096 

,0094 
,009 1 

,009 1 

,0087 
,0085 

.0076 
,0057 
.0061 
,0058 
,0056 
,0055 

.0054 
,0059 

,0061 

.0055 
,0054 

exercise, not reported here in detail, did find that a univariate LSTAR model 
of the index fitted better in sample than a linear model but did not forecast 
better. It should be noted that we could not find a suitable univariate STAR 
model for GNP. 

8.3 Application of STR Models 

The tests of linearity suggest that nonlinear models are appropriate, and this 
section presents and evaluates a pair of models for the changes in log GNP. A 
critical decision in the specification of these models is the choice of the 
switching variable. From the justification of these models presented earlier, 
this variable should itself be slowly changing, and it should not contain a 
dominant deterministic trend as the variable is inserted into a bounded func- 
tion. The variable selected was the linear detrended log of the index of leading 
indicators, denoted by 

LI, = log (index leading indicator) - 4.73 - .008r. 

A linear error-correction model which relaxes Ly, and Lx, was estimated to be 

(20) M y ,  = .006 - .09ECT-, - .08 A L Y , ~ ,  

(.002) (.02) (.08) 

(.08) (.08) (.08) 

(.07) (. 07) (.07) 

+ .lOALy,-, - .11AL,y,-, - .03ALy,-, 

+ .02ALy,-, + .11ALy,_, + .06ALy,-, 
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+ 0.22ALA_,, 

(.04) 
SE = 0.0085, 

where ECT, = Ly, - 2.50 - .96 Lx,. The model is clearly overparameter- 
ized, but the standard reduction procedure has not been used. 

Testing this error correction model against STR alternatives that use lags of 
the log of the leading indicator index as indicator variables found strong evi- 
dence of nonlinearity when z, = LI,-2. (The p value of this test was p = 
.001.) The corresponding STR model was estimated to be 
,001 .) The corresponding STR model was estimated to be 

(21) M y ,  = .011 - .16ECT-, - .27ALy,_, 

(.002) (.02) (. 09) 
- .17AL,y,-, - .13AL,y,-, + .l3AL.y,-, + .OlOALy,-, + .19hL~,- ,  

(.08) (.08) (.07) (. 06) (.04) 

- .015 + .14ECT-, + .54ALy,-, + .44ALy,-, + .32ALy,-, 1 
(.003) (.06) (. 19) (.20) (. 17) 

[l + exp[-221(LIL2 - .036)]]-1, 

(.005) 

SE = 0.007, 

There are seen to be quite substantial differences in the two regimes, which 
approximately correspond to the troughs and peaks of the business cycle. The 
models were constructed using just the in-sample data. The forecasting per- 
formance of the two models (20) and (21) over the following twenty-six quar- 
ters (i.e., 1984:III-l99O:IV) is presented in table 8.5. 

It is noteworthy that both these models produce forecasts that are too high, 
giving negative forecast errors on every occasion except for three. Neither 
model performed satisfactorily in forecasting the most recent downturn, as 
shown in figure 8.1. Figure 8.2 shows the movement of the detrended leading 
indicator LI over time, which is the switching variable used in the model. 
Using a lag of two, it is seen that the switching variable has changed little 

Table 8.5 In-Sample and Postsample Standard Errors for Models (20) and (21) 

Root Mean Squared Errors 

In Sample Postsample 

Linear (20) ,0085 .0072 
STR (21) ,0077 ,0109 
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-Actual -- Linear Predictions - - Nonlinear Predictions 

Fig. 8.1 Postsample forecasting performance of the model 
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Fig. 8.2 Detrended leading indicator 

from its recent high at the end of the postsample period and so was not helpful 
in forecasting the downturn. 

8.4 Conclusions 

A number of linear models have been compared to nonlinear ones. It has 
often been found that the nonlinear models appear to be superior in sample 
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2 - 1.69 
4 -2.13 
2 -3.11 
4 -3.16 

but not out of sample. When using nonlinear models, there is always the pos- 
sibility of overfitting due to data mining, although this is less likely to occur 
when tests for linearity have first found evidence against it before model esti- 
mation. The postsample evaluation of models is thus particularly important 
for distinguishing real versus spurious nonlinearity. However, a practical 
question arises that the postsample period will be limited in extent, and, in 
this period, both regimes in an STR model may not occur sufficiently often 
for the inherent advantage of a true nonlinear model to become apparent. For 
example, if one of the regimes occurs when z ,  takes a large value, as in the 
STR example given above, but this large value occurs less often in the post- 
sample evaluation period, again as in the example, the advantage of the non- 
linearity will not be apparent. 

AY 0 - 8.98 
AX 3 -7.56 
ALy 2 - 6.67 
ALx 3 -8.14 

Appendix 

Table 8A. 1 shows the augmented Dickey-Fuller T,-test statistics, together with 
the number of lags used. The 5 percent critical value is - 3.44. 

The lag k was chosen in each case so that the residual in the Dickey-Fuller 
equation 

k 

Ay, = a + by,- ,  + Y t  + P,Ay,-, + residual 
, = I  

appears to be white noise. The Dickey-Fuller test statistic is the t-value for the 
estimate of b. 

The Johansen maximum likelihood procedure uses as an alternative test 
statistic the maximum eigenvalue (A) and the value of the trace (7)  of an esti- 
mated matrix. Table 8A.2 shows the values of these statistics for levels and 
logs of the variables. The notation r represents the number of cointegrating 
vectors, and, with only two variables (x and y),  r can take only the values zero 
or one. 

The 5 percent critical values for A ,  and A, are 4.08 and 14.60 and those for 
T ,  and 7, 8.08 and 17.84, respectively (Johansen and Juselius 1990). The evi- 
dence suggests that there exists a single cointegrating vector in both levels and 
logs. 

Table 8A.1 Augmented Dickey-Fuller Test Statistics 

Variable No. of D-F Test Variable No. of D-F Test 
Lags Used Statistic Lags Used Statistic 

Y 
X 

LY 
Lx 
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~~~ ~ 

r 5  1 2.03 2.03 
r = O  35.70 37.73 

Table 8A.2 Maximum Eigenvalue and 'lkace Statistics 

Series in Levels Series in Logs 

Null x 7 I Null A 7 

r s  1 1.37 1.37 
r = O  40.09 41.46 
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Comment Andrew Harvey 

Data mining is always a problem in time-series modelling. As Granger, 
Terasvirta, and Anderson point out, this problem is particularly acute with 
nonlinear models, and it is certainly very important to assess the performance 
of models out of sample as well as in sample. The range of nonlinear models 
is very wide, and it seems virtually impossible to work within a particular 
class. Indeed, I have not been very convinced by attempts to work within 
classes of models such as bilinear or state dependent. In order to be useful, 
nonlinear models should have some economic meaning and a reasonably 
straightforward interpretation. As a simple example, we might consider an 
unobserved components model, consisting of a stochastic trend and a stochas- 
tic cycle of the kind considered in Harvey (1985) but with the period changing 
according to whether the change in observations in the previous period, Ay,-, , 
is negative or positive. 

The model described at the end of the previous paragraph is a nonlinear 
univariate model. The paper considers models with explanatory variables, and 
an additional source of nonlinearity here comes from nonlinearity in the func- 
tional form. This then raises the question of what kind of nonlinearity it is that 
the tests are picking up. Another issue surrounding the tests is that, if several 
are applied, it becomes difficult to say much about the Type I error. If enough 
powers of lagged variables are put into the test statistics, one is probably 
bound to reject at some stage. This being the case, the comment in the conclu- 
sion that overfitting due to data mining “is less likely to occur when tests for 
linearity have first found evidence against it before model estimation” be- 
comes less convincing. 

I feel that the tests for cointegration are a bit tangential since there is no 
strong economic reason for GNP and the index of leading indicators to be 
cointegrated and the tests are not being used to find other variables that might 
go in a set of cointegrated variables. More generally, the whole autoregressive 
distributed lag framework is not ideal for the kind of exercise being carried 
out here. Equation (21), with its large number of parameters and arbitrary lag 
structure, is not particularly appealing. Coupled with the difficulty of speci- 
fying the switching mechanism, and the associated lag, I suspect that the 
equation may not be very robust. 
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