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7 A Dynamic Index Model for 
Large Cross Sections 
Danny Quah and Thomas J. Sargent 

In studying macroeconomic business cycles, it is convenient to have some 
low-dimensional characterization of economy-wide fluctuations. If an aggre- 
gate measure of economic activity-such as GNP or total industrial produc- 
tion-could be widely agreed on as accurately assessing the state of the econ- 
omy, then all attention could focus on that measure alone. Econometric 
analysis and forecasting would then be, in principle, straightforward. 

But any one given aggregate measure is likely affected by many differ- 
ent disturbances: understanding economic fluctuations then involves disen- 
tangling the dynamic effects of those different disturbances. For instance, 
much has been written on decomposing aggregate measures of output into 
different interpretable components. Some of this work uses multivariate time- 
series methods to analyze such decompositions. Little empirical work has 
been done, however, proceeding in the opposite direction, that is, using infor- 
mation from a wide range of cross-sectional data to shed light on aggregate 
fluctuations. In other words, in the business-cycle analysis triad of depth, du- 
ration, and dispersion, the third has typically been ignored. 

We know that professional forecasters look at a variety of different indica- 
tors to predict aggregate activity. Interest rates, measures of consumer senti- 
ment, the money supply, and the spectrum of asset prices are all candidates 
for helping predict economy-wide movements. There again, to understand 
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aggregate fluctuations, one needs to go beyond examining a single time series 
in isolation. 

This paper takes the natural next step in these observations: it provides a 
framework for analyzing commonalities-aggregate comovements-in dy- 
namic models and data structures where the cross-sectional dimension is po- 
tentially as large, and thus potentially as informative, as the time-series di- 
mension. Why might this be useful for analyzing macroeconomic business 
cycles? 

When the aggregate state of the economy affects and is in turn affected by 
many different sectors, then it stands to reason that all those sectors should 
contain useful information for estimating and forecasting that aggregate state. 
It should then simply be good econometric practice to exploit such cross- 
sectional information jointly with the dynamic behavior to uncover the aggre- 
gate state of the economy. 

Standard time-series analysis, however, is not well suited to analyzing 
large-scale cross sections; rather, it is geared toward the study of fixed- 
dimensional vectors evolving over time. Cross-sectional and panel data anal- 
ysis, on the other hand, are typically not concerned with the dynamic fore- 
casting exercises that are of interest in macroeconomics. It is this gap in 
macroeconometric practice between cross-sectional and time-series analyses 
that this paper addresses. While there are many interesting issues to be inves- 
tigated for such data structures, we focus here on formulating and estimating 
dynamic index models for them. 

The plan for the remainder of this paper is as follows. Section 7.1 relates 
our analysis to previous work on index structures in time series. Section 7.2 
shows how (slight extensions of) standard econometric techniques for index 
models can be adapted to handle random fields. Section 7.3 then applies these 
ideas to study sectoral employment fluctuations in the U.S. economy. Appen- 
dices contain more careful data description as well as certain technical infor- 
mation on our application of the dynamic index model to random fields. 

7.1 Dynamic Index Models for Time Series 

This paper has technical antecedents in two distinct literatures. The first 
includes the dynamic index models of Geweke (1977), Sargent and Sims 
(1977), Geweke and Singleton (1981), and Watson and Kraft (1984). The 
second literature concerns primarily the analysis of common trends in cointe- 
grated models, as in, for example, Engle and Granger (1987), King et al. 
(1991), and Stock and Watson (1988, 1990). Because of the formal similarity 
of these two models-the dynamic index model and the common trends 
model-it is sometimes thought that one model contains the other. This turns 
out to be false in significant ways, and it is important to emphasize that these 
models represent different views on disturbances to the economy. We clarify 
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this in the current section in order to motivate the index structure that we will 
end up using in our own study. 

Notice first that neither of these standard models is well suited to analyzing 
structures having a large number of individual time series. When the number 
of individual series is large relative to the number of time-series observations, 
the matrix covariogram cannot be precisely estimated, much less reliably fac- 
tored-as would be required for standard dynamic index analysis. 

Such a situation calls for a different kind of probability structure from that 
used in standard time-series analysis. In particular, the natural probability 
model is no longer that of vector-valued singly indexed time series but instead 
that of multiply indexed stochastic processes, that is, random fields. In devel- 
oping an index model for such processes, this paper provides an explicit par- 
ameterization of dynamic and cross-sectional dependence in random fields. 
The analysis here thus gives an alternative to that research that attempts robust 
econometric analysis without such explicit modeling. 

Begin by recalling the dynamic index model of Geweke (1977) and Sargent 
and Sims (1977). An N X 1 vector time series X is said to be generated by 
a K-index model (K < N) if there exists a triple (U k: a )  with U K x  1 and 
Y N x 1 vectors of stochastic processes having all entries pairwise uncorrelated 
and with u an N x K matrix of lag distributions, such that 

(1) X ( t )  = a * U(t) + Y(t ) ,  

with * denoting convolution. Although jointly orthogonal, U and Y are al- 
lowed to be serially correlated; thus (1) restricts X only to the extent that K is 
(much) smaller than N .  Such a model captures the notion that individual ele- 
ments of X correlate with each other only through the K-vector U. In fact, this 
pattern of low-dimensional cross-sectional dependence is the defining feature 
of the dynamic index model. 

Such a pattern of dependence is conspicuously absent from the common 
trends model for cointegrated time series. To see this, notice that, when X 
is individually integrated but jointly cointegrated with cointegrating rank 
N - K, then its common trends representation is 

X ( f )  = UU(t) + Y( t ) ,  

where U is a K X 1 vector of pairwise orthogonal random walks, Y is covari- 
ance stationary, and a is a matrix of numbers (Engle and Granger 1987; or 
Stock and Watson 1988, 1990). As calculated in the proof of the existence of 
such a representation, U has increments that are perfectly correlated with 
(some linear combination of) Z It is not hard to see that there need to be no 
transformation of (2) that leaves the stationary residuals Y pairwise uncorre- 
lated and uncorrelated with the increments in U. Thus, unlike the original 
index model, representation (2) is ill suited for analyzing cross-sectional de- 
pendence in general. In our view, it is not useful to call Y idiosyncratic or 
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sector specific when Y turns out to be perfectly correlated with the common 
components U. 

7.2 Dynamic Index Structures for Random Fields 

While model (1 )  as described above makes no assumptions about the sta- 
tionarity of X ,  its implementation in, for example, Sargent and Sims (1977) 
relied on being able to estimate a spectral density matrix for X .  In trending 
data, with permanent components that are potentially stochastic and with dif- 
ferent elements that are potentially cointegrated, such an estimation procedure 
is unavailable. 

Alternatively, Stock and Watson (1990) have used first-differenced data in 
applying the index model to their study of business-cycle coincident indica- 
tors-but, in doing so, they restrict the levels of their series to be eventually 
arbitrarily far from each series’s respective index component. Stock and Wat- 
son chose such a model after pretesting the data for cointegration and rejecting 
that characterization. Thus, their non-cointegration restriction might well be 
right to impose, but, again, the entire analysis is thereafter conditioned on the 
variables of interest having a particular cointegration structure. 

When the cross-sectional dimension is potentially large, standard cointe- 
gration tests cannot be used, and thus the researcher cannot condition on a 
particular assumed pattern of stochastic trends to analyze dynamic index 
structure. (For instance, if N exceeds T, the number of time-series observa- 
tions, no [sample] cointegrating regression can be computed.) Our approach 
explicitly refrains from specifying in advance any particular pattern of per- 
manent and common components: instead, we use only the orthogonality 
properties of the different components to characterize and estimate an index 
model for the data. It turns out that, by combining ingredients of (1) and ( 2 ) ,  
one obtains a tractable model having three desirable features: (1) the cross- 
sectional dependence is described by some (fixed) low-dimensional parame- 
terization; ( 2 )  the data can have differing, unknown orders of integration and 
cointegration; the model structure should not depend on knowing those pat- 
terns; and (3), finally, the key parameters of the model are consistently estim- 
able even when N and T have comparable magnitudes. 

Let {Xj( t ) ,  j = 1, 2 ,  . . . , N ,  t = 1, 2 ,  . . . , T} be an observed segment of 
a random field. We are concerned with data samples where the cross-sectional 
dimension N and the time-series dimension T take on the same order of mag- 
nitude. We hypothesize that the dependence in X across j and r can be repre- 
sented as 

(3) Xj( t )  = uj * U(t )  + Yj(t) ,  

where U is a K X 1 vector of orthogonal random walks; Y, is zero mean, 
stationary, and has its entries uncorrelated across all j as well as with the incre- 
ments in U at all leads and lags; and, finally, u, is a 1 X K vector of lag 
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distributions. Model (3) is identical to (1) except that (3) specifies U to be 
orthogonal random walks. A moment's thought, however, shows that the ran- 
dom walk restriction is without loss of generality: an entry in uJ can certainly 
sum to zero and thereby allow the corresponding element in U to have only 
transitory effects on X,. 

As is well known, model (3) restricts the correlation properties of the data: 
in particular, the number of parameters in X's second moments grows only 
linearly with N ,  rather than quadratically, as would be usual.' Further, it is 
useful to repeat that (3) differs from the common trends representation (2) in 
having the j-specific disturbances uncorrelated both with each other and with 
U ;  neither of these orthogonality properties holds for (2). Thus, (3) shares 
with the original index model (1) the property that all cross-correlation is me- 
diated only through the lower-dimensional U-independent of N and i? Such 
a property fails for the common trends representation. 

Since Y, is orthogonal to U, (3) is a projection representation, and thus (rel- 
evant linear combinations of) the coefficients uJ can be consistently estimated 
by a least squares calculation: this holds regardless of whether X, is stationary, 
regardless of the serial correlation properties of Y,, and regardless of the dis- 
tributions of the different variables. Notice further that, for this estimation, 
one does not require observations on U, but only consistent estimates of the 
conditional expectations of certain cross-products of U and X,. Finally, since 
Y, is uncorrelated across j 's  and the regressors U are common, equation-by- 
equation estimation is equivalent to joint estimation of the entire system. 
Many of these properties were already pointed out by Watson and Engle 
(1983); here we add that, if the parameters of (3) are consistently estimated as 
T + 03 independent of the value of N ,  then they remain consistently estimated 
even when N has the same order of magnitude as i? 

The estimation problem is made subtle, however, by the U's not being ob- 
servable. Nevertheless, using the ideas underlying the EM algorithm (see, 
e.g., Watson and Engle 1983; Wu 1983; or Ruud 1991), model (3) can easily 
be estimated. The key insight has already been mentioned above, and that is 
that, to calculate the least squares projection, one needs to have available only 
sample moments, not the actual values of U. When, in turn, these sample 
moments cannot be directly calculated, one is sometimes justified in substitut- 
ing in their place the conditional expectation of these sample moments, con- 
ditional on the observed data X .  Note, however, that these conditional expec- 
tations necessarily depend on all the unknown parameters. Thus, using them 
in place of the true sample moments, and then attempting to solve the first- 
order conditions characterizing the projection-even equation by equation- 
could again be intractable, for large N .  

Instead, treat the projections in (3) as solving a quasi-maximum likelihood 

1 .  If necessary, such statements concerning moments can be read as conditional on initial 
values. For brevity, however, such qualification is understood and omitted in the text. 
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problem, where we use the normal distribution as the quasi likelihood. Then 
the reasoning underlying the EM algorithm implies that, under regularity con- 
ditions, the algorithm correctly calculates the projection in (3). 

This procedure has two features worthy of note: first, estimation immedi- 
ately involves only least squares calculations, equation by equation, and thus 
can certainly be performed with no increased complexity for large N .  To ap- 
preciate the other characteristic, one should next ask, Given this first property, 
how has the cross-sectional information been useful? The answer lies of 
course in the second feature of this procedure-the cross-sectional informa- 
tion is used in calculating the conditional expectation of the relevant sample 
moments. 

To make this discussion concrete, we now briefly sketch the steps in the 
estimation. These calculations are already available in the literature; our con- 
tribution here has been just to provide a projection interpretation for the EM 
algorithm for estimating models with unobservables-thus, to distance the 
EM algorithm from any tightly specified distributional framework-and to 
note its applicability to the case when N is large. 

Write out (3) explicitly as 

(4) 

in words, each X, is affected by K common factors U = ( U , ,  U,, . . . ,U,)’ 
and an idiosyncratic disturbance Y,. This gives a strong-form decomposition 
for each observed XI  into unobserved components: the first, in U, common 
across all j and the second Y, specific to each j and orthogonal to all other X’s. 
It will be convenient sometimes to add a term d,W(t) to (4), where W com- 
prises purely exogenous factors, such as a constant or time trend. 

The common factors in (4) have dynamic effects on X, given by 

Take Uk’s to be integrated processes, with their first-differences pairwise or- 
thogonal and having finite autoregressive representation 

( 5 )  r(L)AU(o = rlcm 

where T(L) is diagonal, with the kth entry given by 

1 - g,(l)L - g,(2)L2 - . . . -gp(Mg)LMg M ,  finite, 

and qo is K-dimensional white noise having mean zero and the identity cov- 
ariance matrix. As suggested above, the normalizations following ( 5 )  are 
without loss of generality because U affects observed data only after convolu- 
tion with a. If X, were stationary, the sequences a,-provided that M ,  2 1- 
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can contain a first-differencing operation to remove the integration built into 
(5 ) .  

Recall that the idiosyncratic or sector-specific disturbances Y, are taken to 
be pairwise orthogonal as well as orthogonal to all AU. We now assume fur- 
ther that each Y, has the finite autoregressive representation 

(6) P,(L)Y,(t) = &,(?I, for all j ,  

with 

p,(L) = 1 - b,(l)L - b,(2)Lz - . . . --b,(Mb)LMb, M, finite. 

Combining (4) and (3, and defining +,k(L) = P,(L)aJL), we get 

K 

p,(L)x,(t) = z + , k ( L ) u k ( t )  + 
k =  I 

Notice that, because cx and p are individually unrestricted, we can consider 
the model to be parameterized in p and +, being careful to take the ratio +/P 
whenever we seek the dynamic effects of U on X. When W-the set of exog- 
enous variables-is lag invariant, as would be true for a time trend and con- 
stant, then p,(L)[d,W(t)] spans the same space as just W(t).  Thus, without loss 
of generality, we can write the model as simply 

(7) 

(possibly redefining dj). Subsequent manipulations will exploit this represen- 
tation (7) of the original strong-form decomposition ofX given in (4). 

Directly translating the model above into state space form-we do this in 
Appendix A below-gives 

(8) 

The state vector Z, unfortunately, has dimension O ( N :  this is computationally 
intractable for data structures with large N and i7 Conceptually more impor- 
tant, however, such a state space representation (8) simply describes N time 
series in terms of an O(N-dimensional vector process-certainly neither use- 
ful nor insightful. The reason for this is clear: from (7), lagged Xj’s are part of 
the state description for each X,  owing to the pj’s being nontrivial, that is, 
owing to the serial correlation in each idiosyncratic disturbance.* 

The solution to this is to notice that a large part of the state vector happens 

X ( t )  = M(t) + dW(t) + Y(t) ,  
Z ( t  + 1) = cZ(t) + q(t + 1). 

2. This serial correlation pervades our model in particular and business-cycle data in general. 
It is this feature that distinguishes our work from many EM algorithrdunobservable common 
factor applications in finance, e .g . ,  Lehmann and Modest (1988), where the data are either only a 
large cross section or, alternatively, taken to be serially independent. 
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to be directly observable; the unobservable part turns out to have dimension 
only O(K), independent of N. Exploiting this structure gives Kalman 
smoother projections and moment matrix calculations that are, effectively, in- 
dependent of N. (The assertions contained in this and the previous paragraph 
are detailed in Appendix A.) 

The intuition then is that increasing the cross-sectional dimension N can 
only help estimate more precisely (the conditional expectations of) the (unob- 
served part of the) state and its cross-moments. This must imply the same 
property for estimates of the parameters of interest. Notice further that delet- 
ing entries of X leaves invariant the orthogonality properties on an appropriate 
reduced version of (8). Thus, if the model is correctly specified, estimators 
that exploit the orthogonality conditions in (8) remain consistent independent 
of N; at the same time, smaller N-systems must imply less efficient estimators. 
This observation is useful for building up estimates for a large N-system from 
(easier to estimate) smaller systems; additionally, it suggests a Wu-Hausman- 
type specification test for these index  structure^.^ 

Next, when the unknown distribution of ( X ,  U ,  Y ,  W) generates a condi- 
tional expectation E(UlX,  W) that equals the linear projection of U on X and 

then standard Kalman smoother calculations yield the conditional expec- 
tations E[Z(t)Z(t)’ lX,  w] and E[Z(t) lX,  w], taking as given a particular setting 
for the unknown parameters. We will assume that the underlying unknown 
distribution does in fact fall within such a class.4 

Iteration on this scheme is of course simply the EM algorithm and, under 
weak regularity conditions, is guaranteed to converge to a point that solves 
the first-order (projection) conditions. Estimation of the dynamic index model 
for random fields with large N and T is thus seen to be feasible. 

7.3 An Application: Sectoral Employment 

This section gives a sectoral, employment-disaggregated description of 
U.S. economic fluctuations as interpreted by our index-model structure. We 
consider the behavior of annual full-time equivalent (FTE) employment across 
sixty industries. 

The national income and product accounts (NIPA) report the number of 
full-time equivalent workers in different industries on an annual basis (NIPA, 
table 6.7b). Excluding the government sector and U.S. workers employed 
outside this country, there are sixty industrial sectors for which these data are 

3. We do not follow up this testing suggestion below, leaving it instead for future work. 
4. Elliptically symmetrical distributions would be one such class. Some researchers, such as 

Hamilton (1989), prefer to work with state vectors that have a discrete distribution-this of course 
need not invalidate the hypothesized equality of conditional expectations and linear projections, 
although it does make that coincidence less likely. In principle, one can directly calculate those 
conditional expectations using only laws of conditional probability. Thus, any simplification- 
whether by using linear projections or by discrete distributions-is not conceptual but only com- 
putational. 
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employment 

Fig. 7.1 Log (times ten) of employment, across sector and time 

available from 1948 through 1989. The industries range from farming, metal 
mining, and coal mining through motion pictures, legal services, and private 
household services. (The entire set of sixty industries-complete with Citi- 
base codes-is reported in Appendix B.) Figure 7.1 gives a three-dimensional 
depiction of these FTE employment data; the “sectors” axis in this graph ar- 
rays the different industries in the order given in NIPA table 6.7b and Appen- 
dix B. The vertical axis is the log (times ten) of employment in each sector. It 
is possible to give a more traditional time-series plot of these sixty series. 
Doing so, however, reveals very little information: the different time-series 
lines quickly merge, and the page is simply awash in black. 

Since these employment figures are available only annually from 1948 
through 1989, our data are larger in the cross-sectional than in the time-series 
dimension (60 = N > T = 42). No full rank (60 X 60) covariance matrix 
estimator is available; consequently, no full-rank spectral density estimator 
can be formed. From figure 7.1, it is also clear that the data are trending, with 
potentially differing orders of stochastic and deterministic permanent compo- 
nents. Again by N > T, no cointegrating regression could be calculated; no 
cointegration tests could be performed. 

Figures 7.2-7.4 explore the extent to which the cross-correlation across 
sectors can be captured by two observable measures typically used by empiri- 
cal researchers: first, (the log of annual) real GNP and, second, (the log times 
ten of) total-equivalently, average-employment across the sixty sectors. 
When we refer to total employment subsequently, we mean this second series, 
not total U.S. employment. These figures plot residual sample standard devia- 
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Standard.Deviation 

0.2 0.4 0.6 0.8 
Innov.AR(2) 

Residual standard deviations projecting on own two lags plus GNP, Fig. 7.2 
against those projecting on just own two lags 

tions from second-order autoregressions, fitted independently across individ- 
ual sectors, over 1951-87, and always including a constant and time trend. 
(In a study with as high dimensionality as this one, presenting alternative 
specifications-varying lag lengths, e.g. -quickly becomes awkward; the 
signal-noise ratio in presentation falls rapidly and dramatically. Unless stated 
otherwise, the main conclusions hereafter should be taken as robust across 
small lag length increases.) 

Figure 7.2 graphs the residual sample standard deviation when values for 
GNP at lag -2 through lag 2 are included as additional regressors (on its verti- 
cal axis) and when they are not (on the horizontal axis).5 By least squares 
algebra, no point in figure 7.2 can lie above the forty-five-degree line. The 
further, however, that points fall below the forty-five-degree line, the more 
successfully does GNP-common to all sectors-explain employment in 

5 .  Notice that these regressions include past, present, and future values of GNP. Below, we 
shall compare the residual variances from these regressions with residual variances from regres- 
sions on estimates of our indexes. Those estimates are projections of our indexes on past, present, 
and future values of all the employment series. 
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Fig. 7.3 Residual standard deviations projecting on own two lags plus total 
employment, against those projecting on just own two lags 

each sector. From this graph, we conclude that aggregate GNP does appear to 
be an important common component in sectoral employment fluctuations. 

Figure 7.3 is the same as 7.2, except GNP is replaced by total employment 
across the sixty sectors. The message remains much the same. There appear 
to be common comovements in sectoral employment, and those comovements 
are related to aggregate GNP and total employment movements. We empha- 
size that, in the regressions above, both lagged and lead aggregate measures 
enter as right-hand-side variables. The sample standard deviations increase 
significantly when lead measures are excluded. 

Figure 7.4 compares these two measures of common comovements by plot- 
ting against each other the sample standard deviations from the vertical axes 
of figures 7.2 and 7.3. We conclude from the graph here that both GNP and 
total employment give similar descriptions of the underlying comovements in 
sectoral employment. 

For the period 1948-89, we have estimated one- and two-index represen- 
tations for sectoral employment.6 (In the notation of the previous section, we 
take Ma = 1, M, = 1, and Mb = 2; again, small increases in lag lengths do 

6. All index-model and regression calculations and all graphs in this paper were executed using 
the authors' time-series, random-fields econometrics shell tsrf. 
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Fig. 7.4 Residual standard deviations projecting on own two lags plus GNP, 
against those projecting on own two lags plus total employment 
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Fig. 7.5 Standard deviations of idiosyncratic disturbances in two-index model, 
against those of the residuals in the projection on own two lags plus GNP 
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not affect our conclusions materially.) Figure 7.5 plots standard deviations of 
the innovations in the idiosyncratic disturbances E j ( t ) ,  under the two-index 
representation, against the residuals in sector-by-sector projections including 
GNP (i.e., the vertical axis of fig. 7.2). In other words, the vertical axis de- 
scribes the innovations on removing two common unobservable indexes and 
imposing extensive orthogonality conditions; the horizontal axis describes the 
innovations on removing the single index that is GNP and without requiring 
the resulting innovations to be orthogonal across sectors.’ Since the models 
are not nested, there is no necessity for the points to lie in any particular 
region relative to the forty-five-degree line. Again, however, to the extent that 
these points fall below that line, we can conclude that the comovements are 
better described by the model represented on the vertical axis than that on the 
horizontal. 

In this figure, twelve sectors lie marginally above the forty-five-degree line, 
six marginally below, and the remainder quite a bit below. Overall, we con- 
clude that the two unobservable indexes provide a better description of under- 
lying commonalities in sectoral employment than does aggregate GNP. 

Figure 7.6 is the same as figure 7.5 except that GNP is replaced by total 
employment. We draw much the same conclusions from this as the previous 
graph. 

Figure 7.7 replaces the horizontal axes of figures 7.5 and 7.6 with the stan- 
dard deviation of idiosyncratic innovations from a single-index representa- 
tion. Notice that the improvement in fit of the additional index is about the 
same order of magnitude as that of the two-index representation over either of 
the single observable aggregates. 

We do not present here the calculations that we have performed comparing 
the single unobservable index with the two observable aggregates. The calcu- 
lations show much what one would expect from the analysis thus far. Aggre- 
gate GNP and average employment are about as good descriptions of sectoral 
comovements as is the single unobservable index model. 

So what have we learned up until now? If one were concerned only about 
goodness of fit in describing the commonalities in sectoral employment fluc- 
tuations, then one might well simply use just total GNP or average employ- 
ment.9 In our view, index models should be motivated by a Bums-Mitchell 
kind of “pre-GNP accounting,” dimensionality-restricted modeling. The idea 

7.  Thus, the vertical dimension of fig. 7.5 contains enough information to compute a normal 
quasi-likelihood value for the unobservable index model; for the horizontal dimension, however, 
the cross-correlations are nonzero and cannot, as a whole, be consistently estimated. 

8.  This finding is related to patterns detected in previous applications of unobservable index 
models to aggregate U.S. time series. For example, Sargent and Sims (1977) encountered so- 
called Heywood solutions at low frequencies: in those solutions, the coherence of GNP with one 
of the indexes is unity. 

9 .  We should emphasize again that this is true only when one proxies for those common co- 
movements using both leads and lags of these indicators. As already stated above, the projection 
residuals get considerably larger when future aggregates are excluded. 
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Fig. 7.6 Standard deviations of idiosyncratic disturbances in two-index model, 
against those of the residuals in the projection on own two lags plus total 
employment 

is to allow a one-dimensional measure of “business activity” to emerge from 
analyzing long lists of different price and quantity time series. We have imple- 
mented one version of this vision and arrived at projection estimators of one- 
and two-index models. In computing these estimated indexes, we have used 
only employment series. Now we wish to see how, in particular dimensions, 
our estimated indexes compare with GNP, the most popular single “index” of 
real macroeconomic activity. GNP is, of course, constructed using an ac- 
counting method very different in spirit from that used by us and other work- 
ers in the Bums-Mitchell tradition. 

Thus, we turn to some projections designed to explore this difference. A 
regression (over 1952-89) of GNP growth rates on a constant and first- 
differences of our fitted two indexes, lags 0-3, gives an R2 of 83 percent. A 
similar regression using just the single index (estimated from the one-index 
model), again lags 0-3, gives an R2 of 72 percent. GNP growth rates are thus 
highly correlated with the estimated index process. This correlation captures 
the sense in which a purely mechanical low-dimensional index construction 
yields an aggregate that closely tracks GNP growth. l o  

10. Note that sample versions of these indexes are estimated by a Kalman smoothing procedure 
and therefore use observations on sectoral employment over the entire sample, past and future. 
This is also why, in figs. 7.2 on, we always used future and past observable aggregates to make 
the comparison fairer. 
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Fig. 7.7 Standard deviations of idiosyncratic disturbances in two-index model, 
against those in one-index model 

We have also experimented with vector autoregressions in GNP growth, 
average employment growth, and first-differences of the indexes. Exclusion 
tests of lag blocks of the indexes here, however, cannot be viewed as Granger- 
causality tests because the estimated indexes are themselves two-sided distrib- 
uted lags of employment. It would be possible to use the estimated parameters 
of our index representations to construct one-sided-on-the-past index projec- 
tions. These one-sided projections could then be used to conduct Granger- 
causality tests. We have not done this here, but we think that it would be a 
useful exercise. 

In concluding this empirical section, we judge that the unobservable index 
application to the large cross section here has been, in the main, successful. 
The empirical results here encourage us to be optimistic about continued use 
of large cross sections for dynamic analysis. There are, however, dimensions 
along which relative failure might be argued. Most notably, the refinement in 
the description of commonalities given by the unobservable index model was 
not spectacular relative to that given by observable measures, such as aggre- 
gate GNP or total employment. While the two-index representation is a better 
description of sectoral employment fluctuations, relative to a single-index rep- 
resentation, not both indexes turn out to be equally important for predicting 
GNP. For this exercise, the tighter parameterization implicit in a single in- 
dex appears to dominate the marginal increase in information from a two- 
index representation. These failures should be contrasted with our two princi- 
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pal successes: (i) the tractability of our extension of standard index model 
analysis (simultaneously to encompass differing nonstationarities, large cross- 
sectional dimensions, and extensive orthogonality restrictions) and (ii) the 
strong informational, predictive content for GNP of our estimated common 
indexes. 

Unlike in research on interpreting unobservable disturbances-such as in 
VAR (vector autoregressive) studies-we do not attempt here to name the two 
unobservable factors. Rather, the goal of the present paper has been to carry 
out the methodological extensions in point i above and to examine the fore- 
casting properties of the resulting common factors in point ii. Future work 
could, in principle, attempt the same exercise for the unobservable index 
models here as has been performed for VAR representations elsewhere. 

7.4 Conclusion 

We have provided a framework for analyzing comovements-aggregate 
dynamics-in random fields, that is, data where the number of cross-sectional 
time series is comparable in magnitude to the time length. We have shown 
how, on reinterpretation, standard techniques can be used to estimate such 
index models. 

In applying the model to estimate aggregate dynamics in employment 
across different sectors, we discovered that a model with two common factors 
turns out to fit those data surprisingly well. Put differently, much of the ob- 
served fluctuation in employment in those many diverse industries is well ex- 
plained by disturbances that are perfectly correlated across all the sectors. 

The econometric structure that we have used here seems to us quite rich and 
potentially capable of dealing with many different interesting questions. 
Among others, this includes issues of the relative importance of different 
kinds of disturbances (e.g., Long and Plosser 1983; and Prescott 1986), con- 
vergence across economic regions (e.g., Barro and Sala-i-Martin 1992; and 
Blanchard and Katz 1992), aggregate and sectoral comovements (e.g., Abra- 
ham and Katz 1986; Lilien 1982; and Rogerson 1987), and location dynam- 
ics, conditioning on exogenous policy variables (e.g., Papke 1989). Previous 
work, however, has used measurement and econometric techniques that differ 
substantially from that which we propose here; clearly, we think our procedure 
is closer in spirit to the relevant economic ideas. Questions about the appro- 
priate definition and measurement of inflation, comovement in consumption 
across economic regions, and the joint behavior of asset prices observed for 
many assets and over long periods of time all can be coherently dealt with in 
our framework. In future research, we intend to apply our techniques to these 
and similar, related issues. 
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Appendix A 
Tec hn ica 1 Appendix 

This appendix constructs a state space representation for the model of section 
7.2; this is needed to compute the Kalman-smoothed projections that are in 
turn used in applying the EM algorithm to our estimation problem. 

Recall that +jk = pj a jk and that the maximum lags on pj and ajk are Mb and 
Ma, respectively. Define M, = Mb + Ma; this is the maximum lag on +jk. From 
M,, the maximum lag on r in (5 ) ,  define Mh = max (M,, M,), and let 

O(t) = [u(t)’. u(t - I ) ’ ,  . . . ,u(t - M,)‘]’ 

Ti&) = [q&)’, O ’ ,  . . . ,O’ ] ’ .  

U( t )  = c O(t - 1) + Ti&), 

and conformably 

Then write ( 5 )  in first-order form as 

(‘41) 

where C is ( 1  + M,) x K square, with the following structure: Call a collec- 
tion of K successive rows (or columns) a K-row (or -column) block. The last 
Mh K-row blocks comprise simply zeroes and ones, in the usual way, forming 
identities. Consider then the kth row (k = 1 ,  2, . . . , K) in the first K-row 
block. The first K-column block of this row vanishes everywhere except in the 
kth position, where it contains g,(l) + 1; the ( 1  + M,)-th K-column block 
of this row vanishes everywhere except in the kth position, where it con- 
tains - g k ( M J .  For K-column block m (m = 2, 3, . . . , M,), the entries 
again vanish everywhere except in the kth position, where they equal g,(m) - 
gk(m - 1).  This pattern of coefficients comes from ( 5 )  being in first- 
differences whereas (Al) is in levels. 

Turning to the observables, write 

X ( t )  = [X , ( t ) ,  X&>, . . . 9 XNMI’; 

since this is observed at time t ,  we denote 

info(t) = {x(t), X ( t  - l), X ( t  - 2), . . . }. 

Let 

X(t)  = [x(t)’, x(f  - I ) ’?  . . . > x(t - Mb f I)’]’. 

Also, write out +,(L) explicitly as 

MI 

+,(L) = z &(m)Lrn. 
m = O  

We can then rewrite equation (7) as 
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where d has rows formed from dJ, and A has the following structure. Its jth 
row has the first (1 + M,) K entries given by 

V;,(O), . . . ,Jyo),&l(l), . . . ,4#4,)1; 
the remaining entries in this row differ from zero only in M b  places. After the 
first (1 + Mh)K entries (not the first [ 1 + M,]K),  there are M ,  N-row blocks. 
Each such block vanishes except in thejth entry, which equals bJ(m), form = 

1,2,. . . , M b .  

('43) 

with 

Now augment the transition equation (Al)  with X and W ;  that is, write 

Z( t  + 1) = cZ(t)  + SW(t) + q(t + l) ,  

where the first N rows of (cz, cZz) contain a ,  and the remaining rows comprise 
just zeros and ones; the matrix S vanishes everywhere except in the N rows 
after the first (1 + Mh)K (in those N rows it is composed of d ) ;  and, finally, 

I?"(t + 1) 

Notice that (A3) contains within it (A2). 
Since all but the first (1 + Mh)K entries of Z(z + 1) are observed at time 2, 

it will be natural to let P[Z( t  + 1) 1 info(t)] equal X(t)  except in its first 
(1 + Mh)K entries. Similarly, we will choose the conditional mean square 
Var[Z(t + 1) 1 info(t)] to be zero everywhere except in the leading (1 + Mh)K 
square diagonal block. 

In summary, our state space representation is 

z(t + 1) = cZ(t) + SW(t) + ~ ( t  + l) ,  

with Var[Z( l)linfo(O)] initialized to vanish everywhere except in the leading 
(1 + Mh)K diagonal block. The disturbance vector [q(t + l) ' ,  ~ ( t ) ' ] '  is seri- 
ally uncorrelated and has covariance matrix 

x(t) = AZ(t) dW(t) E(f), 

where R, is singular, RqE contains .RE, and R, is N x N diagonal. We write 
(R,J1 to denote the first (1 + M,)K rows of R,, and R,, to denote the leading 

(1 + Mh)K diagonal block of R,,. 
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Partition Z(r) as [Z,(r)’, Z, ( t ) ’ ] ’ ,  where 

Z,(t) = U(t), (1 + Mh)K x 1, 

and 

c = (z:: z::), with c, ,=C(I + M,)K square, c12 = 0. 

Thus, q(t) is also partitioned into lq,(t)’, q2(t)’1’, with rl, = 
x 11. We can now write the measurement equation 

+- M,)K 

where a ,  comprises the first (1 + M,) K 
Var[Z,(t)linfo(s)] is thus only (1 + Mh)K square 
invariant to N .  

columns of a. Note that 
and has dimensions that are 

Appendix B 
Data Appendix 

Real GNP in the text refers to the annual version of GNP82 obtained from 
Citibase July 1991. This series is normalized to constant 1982 dollars and is 
no longer available-the new constant-dollar GNP series in Citibase is nor- 
malized to constant 1987 dollars and is available only from 1959. Since the 
employment data that we use go back through 1948, we decided to use the 
older GNP82. 

Next, the sectoral description we study is from the national income and 
product accounts: employment (as listed below). 

FTE Employees by Industry (annual) 

Private Industries 

1. Farms (GAFAF1) 
2. Agriculture, forestry, and fisheries (GAFAF7) 
3. Metal mining (GAFM10) 
4. Coal mining (GAFM12) 
5 .  Oil and gas extraction (GAFM 13) 
6. Nonmetallic minerals, except fuels (GAFM14) 
7. Construction (GAFCC) 

Manufacturing: Durable Goods 

8. Lumber and wood products (GAFD24) 
9. Furniture and fixtures (GAFD25) 
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10. Stone, clay, and glass products (GAFD32) 
11. Primary metal industries (GAFD33) 
12. Fabricated metal products (GAFD34) 
13. Machinery, excluding electric (GAFD35) 
14. Electric and electronic equipment (GAFD36) 
15. Motor vehicles and equipment (GAF371) 
16. Other transportation (GAFD37) 
17. Instruments and related products (GAFD38) 
18. Miscellaneous manufacturing industries (GAFM39) 

Manufacturing: Nondurable Goods 

19. Food and kindred products (GAFN20) 
20. Tobacco manufacturing (GAFN21) 
21. Textile mill products (GAFN22) 
22. Apparel and other textile products (GAFN23) 
23. Paper and allied products (GAFN26) 
24. Printing and publishing (GAFN27) 
25. Chemicals and allied products (GAFN28) 
26. Petroleum and coal products (GAFN29) 
27. Rubber and miscellaneous plastic products (GAFN30) 
28. Leather and leather products (GAFN3 1) 

Transportation and Public Utilities 

29. Railroad transportation (GAFT40) 
30. Local and interurban passenger transit (GAFT41) 
31. Trucking and warehousing (GAlT42) 
32. Water transportation (GAFT44) 
33. Transportation by air (GAFT45) 
34. Pipelines, except gas (GAFT46) 
35. Transportation services (GAFT47) 

Communication 

36. Telephone and telegraph (GAF481) 
37. Radio and television broadcastings (GAF483) 
38. Electric, gas, and sanitary services (GAFUT) 

39. Wholesale trade (GAFW) 
40. Retail trade (GAFR) 

Finance, Insurance, and Real Estate 

41. Banking (GAFF60) 
42. Credit agencies other than banks (GAFF61) 
43. Security and commodity brokers (GAFF62) 
44. Insurance carriers (GAFF63) 
45. Insurance agents and brokers (GAFF64) 



305 A Dynamic Index Model for Large Cross Sections 

46. Real estate (GAFF65) 
47. Holding and other investment companies (GAF67F) 

Services 

48. Hotels and other lodging places (GAFS70) 
49. Personal services (GAFS72) 
50. Business services (GAFS73) 
5 1. Auto repair services and garages (GAFS75) 
52. Miscellaneous repair services (GAFS76) 
53. Motion pictures (GAFS78) 
54. Amusement and recreational services (GAFS79) 
55. Health services (GAFSSO) 
56. Legal services (GAFS81) 
57. Educational services (GAFS82) 
58. Social services and membership organizations (GAFS86) 
59. Miscellaneous professional services (GAFS89) 
60. Private households (GAFS88) 
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Comment John Geweke 

The paper by Danny Quah and Thomas J. Sargent examines some possibilities 
for the application of index models of multiple time series in situations in 
which the number of cross sections (N) is large relative to the number of time 
periods (Z'). Since there are, in fact, many more of the former than there are 
of the latter, this is an interesting and worthwhile project. The paper argues 
that, when N >> T, one cannot estimate covariograms or autoregressions be- 
cause the number of parameters grows quadratically with the number of ob- 
servations but that one can estimate index models because the number of 
parameters grows linearly. In fact, stronger cases can be made for both ap- 
proaches. In autoregressions, it is natural to regard sectors of the economy as 
exchangeable in a prior distribution, and either the Minnesota prior (Litterman 
1986) or a hierarchical prior could be employed to yield a manageable infer- 
ence problem. Bayesian inference for covariograms and spectra would follow 
at once. With regard to index models, it is clear that, given conventional nor- 
malizations and identifying restrictions, one can consistently extract the unob- 

John Geweke is professor of economics at the University of Minnesota and adviser at the Fed- 
eral Reserve Bank of Minneapolis. The views expressed here are the author's and not necessarily 
those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. 
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served indexes, as N + m with fixed T. Just how N must be related to T to do 
so as (N, Tj += m would be a significant research question. 

It would be useful to know how the authors resolved important identifica- 
tion questions. A necessary step in identifying the time series U(t)  is removal 
of the possibilities for rotating these latent factors through premultiplication 
by an orthonormal matrix. This problem arises in traditional factor analysis 
(Lawley and Maxwell 1971) and can be resolved in a variety of ways. If left 
unresolved, it must arise as a mechanical problem in application of the EM 
algorithm, but the technical appendix does not indicate what normalizations 
were used. Additional identification problems are introduced by the fact that 
AU(r) is a stationary time series. In particular, even after removal of conven- 
tional rotation possibilities, there are several ways to represent AU(t) as a 
linear combination of serially uncorrelated processes (Whittle 1983, chap. 2). 
Finally, dynamic-factor models that are “overfit” in the number of factors be- 
come underidentified in fundamental ways since a sector-specific disturbance 
can masquerade as a commonality. This has subtle but damaging effects on 
test statistics in the factor-analysis model (Geweke and Singleton 1980), and 
it is unlikely that these effects would be mitigated in a dynamic-factor model. 
It is difficult to see how a careful demonstration of the convergence of the EM 
algorithm to maximum likelihood estimates could proceed, without first deal- 
ing with these identification issues. 

The development of an asymptotic distribution theory also depends on re- 
solving identification questions: hence (presumably) the absence of standard 
errors, test statistics, or any other sort of formal statistical analysis in the 
paper. The development of an appropriate asymptotic foundation for inference 
is likely to be more difficult than resolution of identification questions. 
Asymptotics in T would require managing the unconventional unit root theory 
in the context of a nontrivial latent-variable model. Given the authors’ moti- 
vation for examining these models, asymptotics in N is presumably of more 
compelling interest. Here the ratio of parameters to observations converges to 
a positive value, but the ratio of the number of latent variables to observations 
drops to zero: hence the opportunity to extract signals without error asymp- 
totically. But, if T is fixed, and perhaps even if only NIT -+ a, it may be 
sensible to abandon most of the time-series structure on the commonalities 
altogether, in the same way that it is not necessary to assume a time-series 
structure for disturbances in panel data when N is very large relative to T. 
There is a rich supply of nontrivial problems for the frequentist econometri- 
cian here. 

For the authors’ application, with N = 60 and T = 37, the presence or 
absence of such theory could turn out to be moot since no asymptotic theory 
might be applicable. It appears that the EM algorithm is used to estimate 540 
parameters (nine for each of sixty sectors in the dynamic-factor model) and to 
extract forty latent variables, based on 2,400 initial degrees of freedom. For 
the two-factor model, the numbers rise to 780 parameters and eighty latent 
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variables. Without any distribution theory, it would be difficult to evaluate the 
claim in the concluding section that “much of the observed fluctuation in em- 
ployment in those many diverse industries is well explained by disturbances 
that are perfectly correlated across all the sectors.” Summary statistics on pro- 
portion of variance accounted for by commonalities would help, but there 
would still be no basis for discriminating between statistical artifact and prop- 
erties of the population. Nevertheless, two aspects of the reported empirical 
results cast doubt on this claim. 

First, from the information given in section 7.3, a conventional test of the 
hypothesis that real GNP does not affect sectoral employment may be applied 
using an F ( 5 ,  28) distribution. The hypothesis fails to be rejected at the 5 
percent level for all those industries that lie above a ray from the origin with a 
slope of .828 and at the 1 percent level with a slope of .684. The hypothesis 
is not rejected for about one-quarter of the industries at the 5 percent level and 
for about half the industries at the 1 percent level. More informative would be 
confidence intervals for the fraction of variation accounted for by real GNP, 
but this cannot be reconstructed on the basis of the information provided. The 
outcome is similar when real GNP is replaced by the multisector employment 
measure (fig. 7.3). 

Second, the presentation in figures 7.5 and 7.6 does little to support the 
case for the dynamic-index model. As the authors point out, neither of the 
models compared is nested in the other. However, the time-series structure of 
the commonality in the index model (i.e., the autocorrelation function of 
+,&]U[t]) is very close to that of real GNP given that annual log real GNP is 
a random walk to a rough order of approximation and that coefficients can 
unwind modest departures from a random walk. Beyond this, in the index 
model, one is free to choose the time-series realizations of the commonality. 
From a strictly heuristic point of view-all one has here, given that no theory 
has been worked out-this appears to give an edge to the index model that 
goes beyond the usual counting rules of thumb for parameters. Further, notice 
that figures 7.5 and 7.6 report results for two-index models, which have, by 
my count, thirteen parameters per sector, whereas the real GNP regressions 
have only ten. (At this point, the two-index model still gets an additional 
eighty realizations of the commonality unavailable to the regressions!) The 
issue is somewhat clouded by the fact that sectoral employment in the regres- 
sions apparently extended from 1951 through 1987, whereas in the index 
models it ranged from 1948 through 1989. In this situation, figures 7.5 and 
7.6 do nothing to dislodge the null hypothesis that the estimated index models 
reflect nothing beyond the regressions on real GNP. 

Index models for large numbers of cross sections may well become an im- 
portant tool in the decomposition of aggregate output. If they are to become a 
reliable and discriminating tool, however, substantial further development of 
the theory of inference for such models is needed. 
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