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8 Aggregation Problems in the 
Measurement of Capital 
W. E. Diewert 

8.1 Introduction and Overview 

In his Introduction to this volume, Dan Usher has provided us with a 
rather comprehensive discussion on the purposes of capital measure- 
ment as well as the problems of defining capital in the context of a 
specific purpose. 

With Usher’s introduction in mind, the scope of the present paper can 
readily be defined: I will concentrate on the problems of defining and 
measuring capital in the context of estimating production functions and 
measuring total factor productivity, with particular emphasis on the 
associated index number problems. 

However, before discussing the special problems involved in aggre- 
gating capital, I will first discuss the general problem of aggregating 
over goods in section 8.2 and the general problem of aggregating over 
sectors in section 8.3. The material presented in these sections is for 
the most part not new, although much of it is fairly recent and not 
widely known. Usher’s new definition of real capital is discussed in 
section 8.2.6 along with some other definitions. 

I n  section 8.4 I discuss some of the aggregation problems that are 
specifically associated with capital. In particular, the problem of de- 
fining capital as an instantaneous stock or a service flow is discussed 
along with the concomitant problems of measuring depreciation. 

In section 8.5 I present some new material on the measurement of 
total factor productivity and technical progress. In this section, capital 
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does not play a more important role than any other factor of produc- 
tion, so that one could question its inclusion in a paper that is supposed 
to be restricted to capital aggregation problems. However, past discus- 
sions of technical change have emphasized the possibility that technical 
change may be embodied in new capital goods (see Jorgenson 1966)’ 
and thus I decided to include section 8.5. 

One of the most difficult problems in the measurement of capital is 
the problem of new goods. This is of course not specific to capital, and 
so in section 8.6 I present some suggestions for solving the new goods 
problem in general. 

In section 8.7 I briefly consider a problem that occurs when measur- 
ing capital as well as other inputs and outputs: the problem of aggregat- 
ing over time; that is, How should “monthly” estimates of a capital good 
be constructed? or, given monthly estimates, How should we construct 
an annual estimate of the capital component? 

In section 8.8 I conclude by making some concrete recommendations 
to national income accountants based on the material in the previous 
sections. Some mathematical proofs are contained in the Appendix. 

8.2 Methods for Justifying Aggregation over Goods 

8.2.1 Price Proportionality: Hicks’s Aggregation Theorem 

Hicks (1946, pp. 312-13) showed (in the context of twice-differ- 
entiable utility functions) that if the prices of a group of goods change 
in the same proportion, that group of goods behaves just as if it were 
a single commodity. This aggregation theorem and the homogeneous 
weak separability method (which will be discussed in the following 
section) are the two most general methods we have for justifying ag- 
gregation over goods. Alternative statements and proofs of Hicks’s 
aggregation theorem in the consumer context can be found in Wold 
(1953, pp. 109-lo), Gorman (1953, pp. 76-77), and Diewert 
(19784. 

Versions of Hicks’s aggregation theorem also exist in the producer 
context, particularly in the context of measuring real value added (see 
Khang 1971 ; Bruno 1978; Diewert 1978~) .  Below, I sketch yet another 
version of Hicks’s aggregation theorem in the producer context, a ver- 
sion that does not make use of any restrictive differentiability assump- 
tions. 

Suppose there are N + M goods that a given firm can produce or use 
as an input and that the set of feasible input-output combinations of 
goods is a set S = { (x,y) } = { (x1,x2, . . . ,xy,y1,y2, . . . , y N ) } ,  where 
x,, represents the quantity of good n produced (used as an input if 
x, < 0) and ym represents the quantity of good N + rn produced by 
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the firm (used as an input if ym < 0). We assume that the firm can 
buy or sell the first N goods at the positive prices ( w l , w p , .  . . ,wN) = 
w ) ) ON1 and the last M goods at the positive prices ( p 1 , p 2 ,  . . . , p ~ )  = 
p ) ) 0,. We assume that the firm behaves competitively and attempts to 
solve the following microeconomic profit-maximization problem: 

( 1  1 max,,v{w*x + p-y  : ( x , y )  E S }  3 II (w,p) .  

The solution to the above profit-maximization problem (if one ex- 
ists)2 is a function of the prices w,p that the producer is facing and is 
called the (micro) profit function TI. It can be shown (see McFadden 
1978 or Diewert 1 9 7 3 ~ )  that under suitable regularity conditions on the 
technology S, the profit function completely characterizes the underly- 
ing technology. This duality property will prove very useful in subse- 
quent sections of this chapter. 

The firm's gross3 or restricted4 or variable5 profit function IT* is de- 
fined as 

(2) 

The usual interpretation of the maximization problem (2) is that the 
firm is maximizing only with respect to its variable inputs and output x,  
while the inputs (and or outputs) y remain fixed in the short run. It 
can also be shown under suitable regularity conditions on S that a 
knowledge of the variable profit function II* is sufficient to completely 
determine the underlying technology S.6 Thus, we will use the variable 
profit function to define an aggregate technology. 

Suppose the prices of the first N goods vary in strict proportion; 
that is, 

( 3 )  

where p o  > 0 is a scalar that varies over time while the proportionality 
constants (alp2, . . . ,aN) - a ) ) ON remain fixed over time. 

We can now define a macro technology set S, using the variable profit 
function II* and the vector of constants a as follows: 

(4) S, = { ( Y o J )  : Y O  5 IT* ( a , y ) ,  where y is such that 
there exists an x such that ( x , y ) d } .  

II*(w,y) E maxo{w*x : ( x , y ) d } .  

(w1,wz,. . . ,WN) = (Po% p o a 2 ,  * * * , P o a N ) ,  

We will see that yo can be interpreted as an aggregate of the compo- 
nents of x ;  that is, y o  = w*x/po .  It is easy to show that the macro tech- 
nology set S, inherits many of the properties of the micro technology set 
S. For example, if S is a convex set7 (which is a generalization of the 
Hicksian [ 1946, p. 811 diminishing marginal rates of transformation reg- 
ularity conditions on s), then S, is also a convex set.* Moreover, if S 
exhibits constant returns to scale,g then S, also exhibits constant returns 
to scale.1° 
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Given that the macro technology set S, has been defined, we may 
now define the macro profit maximizations problem 

( 5 )  max, ,!/{POYO + P'Y : ( Y o , Y ) 4  = W P 0 , P ) .  
0 

The following theorem shows that if the price proportionality assump- 
tion in ( 3 )  is satisfied, then the macro profit maximization problem (5) 
is completely consistent with the underlying "true" micro profit maxi- 
mization problem ( 1 ). 

( 6 )  Thorem: If ( x * , y * )  is a solution to the micro profit 
maximization problem ( 1 ) and the price proportionality 
assumption ( 3 )  holds, then (y*",y*)  is a solution to the 
macro profit maximization ( 5 ) ,  where the aggregate 
y*o is defined by 

(7) y*o = w*x*/po .  

Note that, if the vector of constants a is known, the aggregate y*o 
can be calculated from observable price and quantity data. 

The theorem above shows that, if the factors of proportionality 
( ~ I , ( Y z ,  . . . , a ~ )  = a remain constant over time, then the true micro 
technology S can be replaced by the macro technology S,. However, in 
most practical situations, a will not remain constant over time, though 
it may be approximately constant, in which case the set S, will be ap- 
proximately constant also, and this approximate constancy may suffice 
for empirical work. Perhaps a concrete example would make this 
point clearer. 

Suppose the technology of the firm can be represented by a translog 
variable profit function1' II* which is defined by the following equation: 

N N N  

sj In yri + '/z S 2 ail, In y; In yrk, 
I - 1  k = l  

where w' = (wrl,wrz,  . . . ,wrN) ) ) 0, is the vector of prices for the first 
N goods in period r where r = 1,2, . . . ,T ( x r  = (xr l , x r2 ,  . . . ,x'N) is the 
corresponding quantity vector) and y" = (yrl ,yr2,  . . . ,y;) ) ) OM is a 
vector of purchases and sales of the last M goods in period r ( p r =  
(pr1,pr2,  . . . , p r l )  is the corresponding vector of prices). Because the 
logarithm of a negative number is not defined, we have temporarily 
changed our sign convention and made all components of y' positive 
whether the corresponding goods are outputs or inputs. Thus if the 
N + Mth good during period r is an output, yTm > 0 and prnL > 0; how- 
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ever, if the N + m th good during period r is an input, set yrm > 0 
equal to the absolute value of the amount of input and set pr, < 0 equal 
to minus the input price. 

The technological parameters Pih in (8) satisfy the symmetry re- 
strictions Pih = Phi for 1 < i < h < N ,  and the satisfy the restric- 
tions aJh = St j  for 1 5 j < k 2 M .  In order that the translog variable 
profit function II* ( w , y )  be linearly homogeneous in w, the following 
restrictions on the parameters in (8) must be satisfied: 

(9) 
N N N 

i=l h=l i=l 
2 P i = l ;  2 P i h = O f o r i = 1 , 2 ,  ..., N ;  2 

yij = 0 for j = 1,2,  . . . ,M. 
Now let the wr prices vary approximately proportionately over time; 

that is, 

( 1 0 )  w' = (w+1,w'*, . . . ,wrN) 

= (prOaleEr'I ,pr0(Y2eE+2, . . . , p ' O a N e C r N ) ,  

where pro represents the general level of prices of the first N goods, the 
ai represent fixed factors of proportionality, and the eri represent per- 
turbations in these fixed factors of proportionality. 

If we deflate II* (w',yr) = wr*xr by pOr (which converts a nominal 
value added into a "real" value added), then (10) and (8) yield 

M Y 

where the Hicks's aggregate approximation error E' in period r is defined 
as 

A' s 

i=l h = l  
+ 95 2 8 PihEriErh.  

Note that the left-hand side of ( 1  1 ) is observable (if pro is known), 
while the right-hand side is a conventional translog production function 
in the quantities y' if the error term e7. is neglected. Note how shifts in 
the price proportionality constants (Y 3 (a1,,a2, . . . ,aN) will systemati- 
cally shift this translog production function. 
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If the perturbations E‘, defined above are such that EE‘,=O and 
EE‘& = S,W,~ for i,h = 1,2, .  . . ,N and r,s = 1,2, .  . . ,T, where E 
denotes the expectation operator and Srt equals 0 if r # t but SYt = 1 if 
r = t ,  then it is trivial to show that the error E‘ will have a constant 
b i a P  that will be absorbed into the constant if regression techniques 
are used in order to estimate the parameters of ( 11 ) . Thus, with the 
above stochastic assumptions,13 the production function that corresponds 
to the macro technology set S, could be unbiasedly estimated up to a 
scaling factor, provided that the underlying technology S could be ade- 
quately approximated by the translog variable profit function II* defined 
by ( 8 ) .  This last proviso will be satisfied for moderate variations in 
prices and quantities, since the translog variable profit function can pro- 
vide a second-order approximation to an arbitrary twice-differentiable 
variable profit function that in turn provides a complete description of 
the underlying technology S under suitable regularity conditions. 

Thus it appears that the assumption of approximate price propor- 
tionality provides a rather powerful justification for aggregating over 
commodities. 

Note that the aggregation method studied in this section did not re- 
strict the technology in any essential way; rather, the set of prices that 
producers faced was restricted. I n  the following section, a method of 
aggregating over commodities is outlined that depends on the technol- 
ogy’s satisfying certain restrictive assumptions. 

8.2.2 Homogeneous Weak Separability 

The second major method justifying commodity aggregation is due to 
Leontief (1947) and Shephard (1953, pp. 61-71; 1970, pp. 145-46; 
see also Solow 1955-56; Green 1964; Arrow 1974; Geary and Morish- 
ima 1973), and I will outline this method below. To cover both pro- 
ducer and consumer theory applications of this method of aggregation, 
we assume cost minimizing (instead of profit maximizing) behavior on 
the part of producers. 

Suppose the microeconomic production (or utility) function f *  where 
u = f * (x ,z)  is output (or utility), x >_ 0, is a nonnegative N-dimen- 
sional vector of commodity inputs to be aggregated, and z 2 OM is an 
M-dimensional vector of “other” commodity inputs. The producer’s 
(or consumer’s) total minimum cost function is defined as: 

(13) 

where p = ( p , , p I ,  . . . ,p\)  ) ) O\. is a vector of positive input prices 
and w = (w1,w2, . . . ,w,[) ) ) O,, is a vector of “other” input prices. The 
Shephard (1953, 1970) duality theorem (see also Samuelson 1953-54; 
Uzawa 1964; McFadden 1978; Hanoch 1978; and Diewert 1971) states 

C* ( u ;  p,w) = min, {pax + w-z: f * ( x , z )  >_ u}, 
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that, under certain regularity conditions, the total cost function C* com- 
pletely determines the production function f*. Thus restrictions on the 
production function f* translate into restrictions on the cost function 
C* and vice versa. We will make use of this fact below. 

To justify the aggregation of the commodities x, Shephard assumed 
that x was homogeneously weakly sepurable14 from the “other” com- 
modities z ;  that is, he assumed that the micro function f*  could be writ- 
ten as 

(14) f* (x,z) = frf(x) ,zl, 

where is a macro production (or utility) function (satisfying the same 
regularity conditions as f* )  and f is an aggregator function that is as- 
sumed to satisfy the following regularity conditions. 

(15) Conditions on f :  
i)  
ii) 

iii) 

f is defined for x ) ) ON and f(x) > 0 (positivity); 
f(U) = Af(x) for A > 0, x )  ) ON (linear homo- 
geneity) ; 

0 5 A 5 1, x1 ) ) O N ,  x2 ) ) OAT( concavity). 
f(U1 + (1 - A)X’) 2 Af(xl) + ( 1  - A)f(X2)  for 

The macro function i has a cost function dual defined by 

(16) e ( u ;  po,w) = min,,,{po + w: J(Y,z) 2 u>, 

where P o  > 0 is the price of the aggregate, y. The aggregator function f 
also has a total cost function dual defined by 

(17) C(Y; P I  = minl{p*x: f(x) 2 Y} 

= y min,/,{p*x/y:f(x/y) 2 l} using (15.ii) 

= Y C ( P ) .  

It turns out that the unit cost function c ( p )  satisfies the same regularity 
conditions as f ;  that is, c(p) is positive, linearly homogeneous, and concave 
for p ) ) ON (see Samuelson 1953-54; Diewert 19743). Moreover, given 
a unit-cost function c ( p )  satisfying the conditions (15),  the production 
function dual may be defined as15 

(18) f(x) = l/mux,{c(p): p*x = 1, p 2 ON}. 
With the above preliminaries disposed of, we can now outline the 

Shephard-Solow-Arrow results. Suppose p**x* + w**z* = C* (u*; 
p*,w*); that is, x*,z* is a solution to the micro cost minimization prob- 
lem (13) when micro prices p*,w* (and utility or output u*) prevail. 
If the micro function f* is homogenously weakly separable (i.e., f *  
satisfies eq. 14) and if the functional form for the aggregator function f 
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is known (or the functional form for its unit-cost function c ( p )  is 
known), then the aggregate y* can be defined as 

(19) y* = f ( x * )  (or y* = p * * x * / c ( p * ) ) ,  

and the price of the aggregate may be defined as 

(20) p * o  =p**x*/f(x*) (or p * o  = c ( p * ) ) ,  

and ~ * ~ y *  + w**z* = f ( u * ; p * , , w * ) ;  that is, y*,z* is a solution to 
the macro cost minimization problem (16) with prices ~ * ~ , w *  (and 
utility or output u * )  .I6 

There are, of course, at least two problems with this aggregation 
method: ( a )  the micro function f* may not be homogeneously weakly 
separable in practice, and ( b )  the functional form for the aggregator 
function f is generally unknown. In the remainder of this section, our 
attention will be directed toward solving the second difficulty. 

Let p‘ ) ) O N ,  w‘) ! OM for r = 0,1, . . . ,T. If xr,zr is a solution to 
min,.,{pr*x + W*Z: ?[f(x) ,z]  2 u‘} and if 3 is increasing in its first 
argument, it is easy to see that xr must be a solution to the following 
aggregator maximization problem. 

(21 1 
In other words, if an economic agent wishes to minimize the cost of 

achieving a certain utility or output !eve1 when the micro function f *  
is weakly separable (i.e., f*(x,z) = f[f(x),z]) and the macro function 
3 is increasing in its first argument, then the “intermediate input” (or 
“real value added” or “category subutility”) f(x) must be a maximum 
subject to an expenditure constraint. 

Notice that (21 ) involves only the (unknown) aggregator function f 
and observable prices and quantities, {pr,xr} for r = 0,1, . . . ,T. If f 
is differentiable, then the first-order necessary conditions for a maximum 
yield the following identity after the Lagrange multiplier is eliminated : 

( 2 2 )  Lemma: (Konyus and Byushgens 1926, p. 155; Hotel- 
ling 1935, pp. 71-74; Wold 1944, pp. 69-71). Suppose 
f is differentiable and x‘ > ON is a solution to 
max,{f(x) : pr*x i pr*xr, x 2 O x } ,  where pr ) ) O N .  Then 

max,{f(x) : p‘*x I pr-xr; x 2: ON} r = 0,1, . . . ,T. 

where v f(xr) is the vector of first-order partial deriva- 
tives evaluated at xr. 

Corollary:1i If f is also homogeneous of degree one 
(i.e., f ( h x )  = h f ( x )  for every h > 0), then 
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The above corollary suggests the following Method Z (due to Arrow 
1974) for determining the aggregator function f given the micro data 
{p+,x'}, r = 0,1,2, . . . ,T: simply assume a convenient functional form 
for f and use the relations (23) to econometrically estimate the un- 
known parameters. For example, suppose that f is the homogeneous 
translog function (Christensen, Jorgenson, and Lau 1971 ) : 

(24) 
N A" 

n=1 j=1 k = l  
lnf(xr> = P o  + 8 P J n x ' n  + '/z 2 2 

pjkln xrj In x k ,  r = 0,1, . , . ,T, 
N N 

n = l  k = l  
where 8 Pa = 1, p j k  = p k j  and 2 

p j k  = 0 for j = 1,2, . . . ,N. 
With the above parameter restrictions, f turns out to be linearly 

homogeneous. Application of (23) yields the following system of equa- 
tions that is linear in the unknown parameters: 

where p* E (prl,pr2, . . . , p r N )  and xr = (xr1,x'2, . . .,xr~). Notice that 
the parameter Po is not identified, but once the other parameters are 
determined, an estimate for Po may be obtained by solving f ( x o )  = 1 
for Po (base period normaZization) . For an econometric application of 
this method in the context of estimating a real value-added production 
function, see Berndt and Christensen (1973). 

Instead of econometrically estimating the parameters of the aggregator 
function f ,  we may attempt to estimate the parameters of its unit cost 
function, c ( p ) .  In this context, the following result is useful. 

(26) Lemma: (Shephard 1953, p. 11; Samuelson 1953-54) 
If f satisfies (IS), pr*xr = minz{pr*x: f ( x )  2 f ( x r ) }  = 
c(pr)f(xr) for r = 0,1, . . .T, and the unit cost function 
c is differentiable at p', then 

x r =  k c ( p r ) f ( x r ) ,  r = 0 , 1 , .  . . ,T 

(27) CorolZary:18 xr/pr*xr = ' v l c (pr ) / c (pr ) ,  
Y = 0,1,. . . ,T.  

The above corollary suggests the following Method ZZ (also due to 
Arrow 1974) for determining the dual c to the aggregator function f 
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given the micro data {pc,xr}, r = 1,2, . . . ,T: assume a functional form 
for c ( p )  and use the relations (27) to estimate the unknown parameters 
of c ( p ) .  For example, suppose that c is the translog unit cost function 
(Christensen, Jorgenson, and Lau 197 1 ) : 

(28) 
N A" 

n = l  j=1 k = l  
In  c(P') =yo+ 2 y h p r ,  + 1/2 8 8 

yfk r 0 for j = 1,2, . . . ,N. 
Application of Shephard's lemma (27) yields the following system of 

equations that is linear in the unknown parameters: 
N 

Notice that the parameter yo is not identified, but once the other 
parameters are determined an estimate for yo may be obtained by soh- 
ing the equation pO*xO/c(po) = 1 (base period normalization), which 
makes f ( x o )  = 1 .  

Note that the translog unit cost function generates an aggregator func- 
tion via (1  8 )  that does not in generall9 coincide with the translog ag- 
gregator function defined by (24).  Thus, in general, the two translog 
functional forms correspond to different tastes or technologies, although 
either functional form can approximate the same underlying (differen- 
tiable) technology to the second order. 

At this point J should mention Method ZZZ for determining the ratio 
of the aggregates, f(xr)/f(xO). This final method involves assuming a 
functional form for the aggregator function f that is consistent with an 
index number formula (which is a function of observable prices and 
quantities for the two periods under consideration). The method as- 
sumes that X" is a solution to the aggregator maximization problem de- 
fined by (21>,2" and it will be studied in greater detail in section 8.2.4. 
When reading section 8.2.4, recall that it was the assumption of ex- 
penditure minimizing behavior (which is consistent with profit maximiz- 
ing behavior), plus the assumption that the technology was homo- 
geneously weakly separable in the x goods that led us to conclude that 
x" was a solution to the aggregator maximization problem max,{f(x) : 
PX 2 P+*x'}, where f is the linearly homogeneous aggregator function. 

In the next section, I outline another method for aggregating over 
goods, a method due to FranCois Divisia (1926). 
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8.2.3 The Divisia Index and Various Discrete Approximations 

The most frequently suggested index to be used in the measurement 
of total factor productivity is the Divisia (1926, p. 40) index. Let us 
briefly outline Solow’s (1957) derivation of the index.21 

Suppose a linearly homogeneous, concave, nondecreasing in x pro- 
duction function F exists where y ( t )  = F ( x ( t ) ;  t ) ,  y ( t )  is output at 
time t, and x ( t )  = (xl(t),x2(t), . . . ,xAr(t)) is a vector of inputs at 
time t. If the production function exhibits neutral technical change (see 
Blackorby, Lovell, and Thursby 1976 for a formal definition), then it 
can be written as F ( x ( t ) ;  t )  = A ( t ) f ( x ( t ) ) ,  where A ( t )  is the cumu- 
lative multiplicative shift factor for the production function at time t .  
If we totally differentiate the following equation 

(30)  

with respect to time and divide by y ( t )  , we obtain 

Y (t) = A (t)f(x(t) 1 

where a dot over a variable signifies a derivative with respect to time. 
Let p ( t )  I ( p l ( t ) ,  . . . , p N ( t ) )  be the vector of input prices at time t 
relative to the price of output, which is set equal to one. Then, if inputs 
are being paid the value of their marginal products, A ( t )  a f [ x ( t ) ] / a x 4  = 
pi(t), and if we define the ith input’s share of output as q ( t )  = 
p 6 ( t ) x i ( t ) / y ( t ) ,  i E 1 , 2 , .  . . ,N,  then (31)  may be rewritten as 

If A. ( t ) /A  ( t )  = 0, there is no exogenous shift in the production func- 
tion owing to technical progress, increasing returns to scale, or any 
other cause; that is, the growth of output is completely accounted for 
by the growth of inputs. 

We can integrate (32)  (given continuous data on output, inputs, 
and prices) to obtain the cumulative index of total factor productivity 
from time t = 0 to time t = T :  

A ( T )  - Y ( T ) / Y ( O )  
A(O)  
-- (33)  s,’ {Zl s ( t )  &(t) /xdt)  dt ’ 

e 

where the denominator on the right-hand side of (33)  is the Divisia 
index of input growth between, say, time 0 and T ,  X ( T ) / X ( O ) .  

Richter (1 966) and Jorgenson and Griliches (1967) have general- 
ized equations (32)  and (33)  by replacing the single output term 
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Y ( t ) / y ( t )  in (32) with a share-weighted average of the growth rates of 
many outputs, and the term y ( T ) / y ( O )  in (33) with a Divisia index 
of output growth. 

Since the right-hand sides of (32) and (33) are in principle ob- 
servable, the technical change term A ( t )  can, in principle, be esti- 
mated.22 But in practice data do not come in nice continuous series; 
rather they come at discrete intervals. Thus the continuous formulas 
(32) and (33) must be approximated using discrete data. 

Let us now introduce some new notation that is appropriate when 
data come at discrete intervals. Let the vector of period r inputs be 
x' = (xrl,xrZ, . . . ,xTN) and period r prices be p' = (p'l,p'z, . . . , p k )  
for r =  0,l. 

Denote the denominator of (33) as X ( l ) / X ( O ) ,  when T = 1. If 
the input shares are approximately constant, then In  X( 1 ) / X (  0) ap- 

proximately equals 8 siln xIi/xoi. For any number z close to 1 ,  In  

z can be accuratel;=ipproximated by -1 + z ,  so that X ( l ) / X ( O )  

approximately equals 2 sixli /xoi.  Thus the Divisia index of input growth 

X(l)!X(O) can be approximated by a share-weighted rate of growth 
of the quantity relatives x l i /x0 , ,  i = 1,2, , . . , N .  If we choose base- 
period shares, the resulting index is the Laspeyres quantity index Qr,: 

N 

N 

i= l  

(34) 
N 

1 =? 
where p0*xr 5 8 poixri denotes the inner product between the vectors 

p o  and x', r = 0,l. On the other hand, if we choose current-period 
prices and base-period quantities to form shares, the resulting index is 
the Paasche quantity index Qp: 

(35) 

A third way of approximating the share-weighted rate of growth of 
inputs that apepars in (32) would be to take a geometric mean of the 
index QL and Q p :  

(36) Q 2  (po ,p l ;  x ' , x~)  = (po*~1p1*~1/po*~Op1*~o)1/2. 

The index Q2 is Irving Fisher's (1922) ideal quantity index. The 
price index that corresponds to QZ is P2 defined implicitly by Fisher's 
weak factor reversal test: 

(37) P2 (p' , ,~';  x',x') Q ~ ( ~ I O , ~ ~ , X ~ , X ~ )  = p * * x l / p 0 * x o ;  

that is, the product of the price index times the quantity index equals 
the expenditure ratio between the two periods. Fisher called P2 and QZ 
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ideal indexes because they satisfied (37) and also P2(po ,p1;  xo ,x l )  = 
Q 2  (xo,xl;  p o , p l )  ; that is, the price and quantity indexes turn out to have 
the same functional form, except that the role of prices and quantities 
are reversed for the two indexes. 

The integral expression for the Divisia index of inputs found in (33) 
suggests some further discrete approximations. If the input shares si( t )  
remain constant between 0 and 1, then the log of the Divisia index 
becomes: 

Since the shares s i ( t )  are not generally the same for periods 0 and 1, 
Tornqvist ( 1936) suggested the following discrete approximation Qo to 
the continuous Divisia quantity index: 

(38)  

1 n[xldxOi]. 

Star and Hall (1976) develop an analytic expression for the differ- 
ence between the discrete approximation Qo defined by ( 3 8 )  and the 
continuous Divisia index. They conclude that the approximation error 
will be small provided the shares do not fluctuate wildly. 

The Tornqvist price index Po can be defined by the formula for Qo 
except that prices and quantities are interchanged; more explicitly: 

(39) 

1 n[P1i/pOil. 

Given the price index Po, an implicit Tornqvist quantity index 
may be defined using Fisher's weak factor reversal test: 

.-, 
(40) Qo (po ,p l ;  X',X') E [ p ' * ~ ' / p ~ * ~ ~ ] / P o  (po,p';  x',x'). 

Kloek (1967) and Theil (1968) showed that the Tornqvist indexes 
Qo,  Po, and Qo had some good approximation properties. Kloek noted 
that Qo was not well defined if some quantities were zero, while P o  
was not well defined if some prices were zero. Thus he advocated using 
the price index P,, and the quantity index Qo, since prices are usually 
nonzero. I will return to this problem of zero prices and quantities in 
section 8.6.2. 

We have now defined five reasonable-looking discrete approximations 
to the Divisia quantity index. The problem is that the theory of Divisia 
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indexes outlined above does not tell us which discrete index number 
formula should be used in empirical applications, even though it is 
known that the Laspeyres and Paasche quantity indexes can differ con- 
siderably from the other indexes.23 

It turns out that the economic theory of exact index numbers24 en- 
ables us to discriminate more sharply among the above index number 
formulas. I will briefly outline this theory. 

8.2.4 Exact and Superlative Index Number Formulas 

Suppose the production function (or aggregator function) is y = 
f(xl ,x2, .  . . ,xN) = f ( x ) ,  where y is output (or the aggregate), x is a 
vector of inputs (or goods to be aggregated), and f is a nondecreasing, 
linearly homogeneous and concave function. Suppose further that, given 
a positive vector of input prices p = (p1,p2, . . . , p N ) ,  the producer at- 
tempts to minimize the cost of producing a given output level. The 
solution to the cost minimization problem is the total cost function 
C ( y ; p ) ,  which decomposes into a unit-cost function c ( p )  times the out- 
put level owing to the linear homogeneity of the aggregator functior 
f;25 that is, 

(41 1 C ( y ; p )  = minr{p*x: f (x)  = y }  = c ( p ) y .  

It is natural to identify c ( p )  with the price of output; that is, as being 
the price of the aggregate good y .  

Suppose we are given price and quantity data for two periods, 
po,pl ,xo,xl .  Define a price index simply as a function P of prices and 
quantities, P(pO,pl ;xo ,x l )  , while a quantity index Q(po,p l ;xo ,x l )  is an- 
other function of prices and quantities for the two periods. We gen- 
erally assume that the price and quantity indexes satisfy Fisher's weak 
factor reversal test; that is, P and Q satisfy 

A given functional form for a quantity index Q is defined to be exact 
for a functional form for the aggregator function f if given output levels 
yo ,y l ,  input price vectors po,p1;x0 a solution to the period 0 cost mini- 
mization problem (41) and x1 a solution to the period 1 cost minimiza- 
tion problem (4 1 ) , then 

(43) 

for all y o  > 0, y 1  > 0, p o  ) ) O N ,  p1 ) ) Similarly, a given functional 
form for a price index P is defined to be exact for a functional form for 
the aggregator function f (and its derived unit cost function c )  if given 
output levels yo ,y l ,  input price vectors po,pl;xr a solution to the period r 
cost minimization problem (41) for r = 0.1, then 
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(44) C(P1)/C(PO) = P(pO,pl; xO,xl). 

Thus the quantity index Q equals the ratio of the “outputs” yl/yo, 
and the price index P equals the ratio of the unit costs (or the ratio of 
the “prices” of the “outputs”) c ( p l ) / c ( p o ) ,  provided Q and P are 
exact for some f.  Note that for r = 0,1, 

C(yr; pr) = minm{pr*x: f (x)  = yr} = pr*xr = c(pr)yr, 

and, using (43) and (44), 

P(p0,p1; xo,xl) Q < p o , p l ;  xo,xl) = [c(p1)/c(po)l [f(xl>/f(xo)l 

= C(P1)Y1 / C ( P O ) Y O  

= pl*xl/pO*xO, 

so that exact price and quantity indexes satisfy the weak factor reversal 
test (43).27 

With the above theoretical considerations disposed of, we can now 
return to the problem of evaluating the five alternative discrete approxi- 
mations to the Divisia quantity index. Tt seems that we could define two 
other discrete approximations to the Divisia quantity index by defining 
the Laspeyres and Paasche price indexes analogously to the Laspeyres 
and Paasche quantity indexes (defined by equations 34 and 35), 
except that the roles of prices and quantities are reversed and then the 
implicit Laspeyres and Paasche quantity indexes, QL and QP, may be 
defined by the weak factor reversal test (42) : 

(45 1 &(pO,pl; x0,xl) =- [p’*xl/po*xo]/PL(po,pl; x0,xl) 

= pl*xl /pl*xO 

Qp(p0,p1; xo,xl ), 

Bp(p0 ,p ’ ;  x0 ,xf )  f [p’*xl/pO*xO]/Pp( p0,p’; xOx1) 

= p o * x ~ / p o ~ x o  

E Q r J ( ~ O , p l ;  x0,x1). 

Thus the quantity index that corresponds to the Laspeyres price index 
is the Paasche quantity index, and the Paasche price index corresponds 
to the Laspeyres quantity index. 

Konyus and Byushgens ( 1926) have shown that:28 ( a )  the Laspeyres 
and Paasche quantity indexes are exact for a fixed coefficients (or Leon- 
tief) aggregator function of the form fL(x1,x2, . . . ,XN = min{x,/ai: 
i = 1,2, . . . , N } ,  where the a{ > 0 are fixed coefficients, and ( b )  Fisher’s 
ideal quantity index Q2 defined by (36) is exact for a homogeneous 
quadratic aggregator function of the form f2(x1,x2,. . . ,XN) = 
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( , where aij = aji and the matrix of coefficients 

[av] is such that f 2  is concave and nondecreasing over the relevant range 
of quantities. Thus, under the assumption of cost-minimizing behavior 
and if the aggregator function is the homogeneous quadratic defined 
above, then we have 

aijxix, 
d = 1  j=1 >’” 

E Q 2  ( x0,x1). 

Thus we can calculate the “output” ratio ylIyo by calculating Q2, which 
can be evaluated without knowing what the aij coefficients are. 

On the other hand, Diewert (1976) has shown that the Tornqvist 
quantity index Qo defined by ( 3 8 )  is exact for the homogeneous trans- 
log aggregator function f ,  defined by 

where the parameters pi and pij = pji are such that f o ( x )  is concave, 
nondecreasing, and linearly homogeneous over the relevant range of 
xs. In order that f o  be linearly homogeneous, it is necessary and suffi- 
cient that the following restrictions be satisfied: 

(46) 
N N 

t= 1 j=1 
2 Pi = 1; 2 Pij = 0 for i = 1,2,. . . , N ;  

f ,  P i j =  0 for j =  1,2,. . . ,N.  
N 

i=l 

Thus the homogeneous translog aggregator function has exactly the 
same number of independent parameters as the homogeneous quadratic 
aggregator function defined earlier, namely N ( N  + 1) /2 independent 
parameters. Moreover, it turns out that both aggregator functions are 
capable of providing a second-order differentia120 approximation to an 
arbitrary twice continuously differentiable, linearly homogeneous func- 
tion. 

It was also shown in Diewert (1976) that the implicit Tornqvist 
quantity index 0” defined by equation (40) above is exact for the ag- 
gregator function f o  that has as its dual the translog unit cost function 
c o ( p )  defined by 

N 

i=l 
In CO(PI,PB, . . . ,PA.) = P*o + 8 P*i I n  pi 

N N  + % 2 f ,  P * d j  I n p J n p j ,  
i=l j=1 
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A’ 

i=l 

N 

i=1 

N 

j=1 

where 2 p*i = 1 ,  p*ij = p*ji, and 

2 p*ij = 0 for j = 1,2, . . . ,N.  

(The restrictions 2 p*ij = 0 for i = 1,2, . . ,N follow from the sym- 

metry restrictions p*ij = p*ii.) The translog unit cost function can pro- 
vide a second-order differential approximation to an arbitrary twice 
continuously differentiable unit cost function, which in turn is capable 
of completely describing the corresponding linearly homogeneous ag- 
gregator function. 

The fixed coefficients aggregator function has a linear unit cost func- 

tion (equal to 2 aipi) which can provide only a first-order approxi- 

mation to an arbitrary twice-differentiable unit-cost function. Thus the 
Tornqvist price index Po should be preferred to the Laspeyres and 
Paasche price indexes PL and Pp,  respectively. 

Thus the economic theory of exact index numbers has enabled us to 
discriminate somewhat between the five discrete approximations to the 
Divisia quantity index that we have considered: the indexes Q 2 ,  Qo, and eo are to be preferred to QL and Qp, since the former are exact for 
functional forms for the underlying aggregator function (or its dual unit 
cost function) that are more flexible than the very restrictive fixed co- 
efficients aggregator function. 

That the indexes Q2, Qo, and oo are approximately equivalent can 
be demonstrated in another way (which does not depend on the as- 
sumption that the producer attempted to minimize the cost of produc- 
ing the aggregate during the two periods). Diewert ( 197Xb) showed that 
when prices in the two periods are equal (i.e., p o  = p1 = p )  and quan- 
tities are also equal (i.e., xo = x1 = x), then 

(47 1 

N 

i=1 

Q ~ ( P , P ;  X,X) == Q o ( P , P ;  XJ) = O ~ ( P , P ;  X , X )  

V Q ~ ( P , P ;  X ,  X )  = VQo<p,p; W )  zz 

V&O(P,P;  x,x) and 

V2Q2(p,p; X , X )  = v‘Qo(p,p; X,X) = 
v2&o (P,K 4x1 ; 

that is, the three “better” quantity indexes differentially approximate 
each other to the second order at any point where the two price vectors 
are equal and the two quantity vectors are equal.30 Thus for small 
changes in prices and quantities between the two periods, the three in- 
dexes should give the same answer to the second order.31 The equalities 
in (47) can be derived simply by evaluating and differentiating the ap- 
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propriate index number formula-no assumptions about minimizing 
behavior are required. 

Diewert (1976) defined a price index (quantity index) to be superla- 
tive if it is exact for a unit cost function c (aggregator function f )  cap- 
able of providing a second-order differential approximation to an arbi- 
trary twice-differentiable linearly homogeneous function. Since a linearly 
homogeneous translog function can provide a second-order approxi- 
mation to an arbitrary twice-differentiable linearly homogeneous func- 
tion (see Lau 1974), it can be seen that Po defined by (39) is a 
superlative price index and Qo defined by (38) is a superlative quantity 
index. In general, “superlative” indexes are exact for “flexible” func- 
tional forms for the underlying aggregator function. 

It is easy to show that the three “better” quantity indexes are superla- 
tive indexes. Are there any other superlative indexes? The answer is 
yes, as the following examples show. 

For r # 0, define the quadratic mean of order r price index P,. as 

] 2 ( P 1 k X 1 k / P 1 * X 1 )  ( P o k / P ’ k ) r ~ 2  

2 ( ~ ~ i ~ ~ d ~ ~ * x ~ )  (P1i/poi)‘/2 

(48) P,(pO,pl; X0,Xl) = [I IC=l 

i - 1  

It can be shown (Diewert 1976) that P, is exact for the quadratic 
mean of order r unit cost function, 

Since cr can approximate an arbitrary unit cost function to the second 
order, P, is a superlative price index. 

For r # 0, define the quadratic mean of order r quantity index Qr 
as 

] l’,.. 2 ( p o ~ x o ~ / p o * X o )  ( X l i / X O i )  

2 ( p l j X 1 j / p 1 * X l )  (XOj/Xlj)r/2 

(49) Qr(p0,p1; fi,~’) = [: i= l  

j = l  

It can similarly be shown that Q, is exact for the quadratic mean of 
order r aggregator function,32 

that Qr is a superlative quantity index. 
The reason for our notation P2 and Qz for the Fisher ideal price and 

quantity indexes should now be evident: they are special cases of (48) 
and (49) when r = 2. 
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We can now also explain our reason for choosing the notation Po and 
Qo for the Tornqvist price and quantity indexes: it can be shown that 
f , . (x)  tends to fo (x ) ,  the homogeneous translog functional form, as r 
tends to zero under certain conditions, which we explain below. Thus 
Qo is in some sense a limiting case of Q,.. 

It is no loss of generality to choose units of measurement for "output)' 
y so that PiPjaij = 1 .  Let us further redefine the aij as aii = pi + 2ptir-l, 
and aij f 2pijr-l for i # j ,  where Sipi = 1 ,  pij = pji and 8&j = 0 for 
j = 1,2, . . . , N .  Then the equation that defines the quadratic mean of 
order r becomes 

1 N N N  

y = .x pix+i + 2r-1 8 2 pijxr/2ixr~2j L1 i=l j=1 

Now raise each side of this equation to the power r, subtract 1 from 
each side of the resulting equation, divide both sides by r ,  and upon 
making use of the restrictions on the pi and pij, we may write the result 
as 

y' - 1 (X+i - 1) = sipi r r 

If we take limits of both sides of this equation as r tends to zero, we 
obtain (since, using L'Hospital's rule, lim A + O ( x h  - l ) / h  = In x )  

which is the homogeneous translog functional form since, the pi and pij 
satisfy the restrictions (46) .  The above proof that f o  is a limiting case 
of f,. owes much to suggestions made by L. J. Lau. 

The following theorems indicate that it does not matter which superla- 
tive index is used in empirical work with time series data: they will all 
give virtually the same answer. 

(50)  

In y = P&ln xi + ?hPi8jpijln xi1n xj,  

Theorem (Diewert 1978b) : For any r # 0, P,.(po,pl; 
xO,xl) = Po(po,pl; xo,xl) and the first- and second-order 
partial derivatives of the two functions coincide provided 
po = p l  ) ) ON (all price components are positive) and 
xo = x1 > OAT (at least one quantity component is 
positive). 

(51) Theorem (Diewert 1978b): For any r # 0, the quantity 
index Q,. differentially approximates Qo to the second or- 
der at any point where the prices and quantities for the 
two periods are equal; that is, Qr(po,pl;xo,xl) = 
Qo(po,pl; xo,xl), and the first- and second-order partial 
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derivatives of the two functions coincide provided 
p0 = p l  > ON and xo = x1 ) ) ON.  

Thus, if changes in prices and quantities are small, all the superla- 
tives indexes P ,  and Q,. will give virtually the same answer, even if eco- 
nomic agents are not engaging in optimizing behavior.33 Some empirical 
evidence on the degree of closeness of the various indexes to each other 
is available in Fisher (1922), Ruggles (1967), and Diewert (19786). 

Theorems (50) and (51) suggest that using the chain principle (i.e., 
the base is changed to the previous period t - 1 rather than maintain- 
ing a fixed base when calculating the change in the aggregate going from 
period t - 1 to period t )  in calculating aggregates will minimize the 
differences between the various index number formulas, since the 
changes in prices and quantities will generally be small between adja- 
cent peri0ds.3~ Furthermore, as we saw in the previous section, the 
Paasche, Laspeyres, and any superlative index number can be regarded 
as discrete approximations to the continuous-line integral Divisia index, 
which has some useful optimality properties from the viewpoint of eco- 
nomic theory (see Malmquist 1953; Wold 1953; Richter 1966; and 
Hulten 1973 on these optimality properties). These discrete approxi- 
mations will be closer to the Divisia index if the chain principle is used. 

8.2.5 Two-Stage Aggregation 

To reduce the number of commodities, macroeconomic models gen- 
erally employ index numbers of prices and quantities. However, very 
often an index number that is used in an economic model has been con- 
structed in two or more stages, and thus the question arises: Does the 
two-stage procedure give the same answer as the single-stage pro- 
cedure? It is true that the usually employed Paasche and Laspeyres in- 
dexes have this property of consistency in aggregation, but these index 
numbers are consistent only with very restrictive functional forms for 
the underlying aggregator function, as we have seen in section 8.2.4. 

Diewert (19786) shows that superlative indexes have an approxi- 
mate consistency-in-aggregation property. This result was obtained by 
utilizing some results due to the Finnish economist Vartia (1 974, 1976), 
who proposed a discrete approximation to the continuous Divisia price 
or quantity index that has the following two remarkable properties: 
( a )  the price index and the corresponding quantity index (which is de- 
fined by the same formula except that prices and quantities are inter- 
changed) satisfy Fisher's (1922) factor-reversal test (i.e., the product 
of the price and quantity indexes equal the expenditure ratio for the two 
periods under consideration) and ( b )  the price or quantity index has the 
property of consistency in aggregation. 

Vartia defines an index number formula to be consistent in aggrega- 
tion if the value of the index calculated in two stages necessarily coin- 
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cides with the value of the index as calculated in an ordinary way, that 
is, in a single stage. 

As we saw in section 8.2.4, the economic theory of index numbers is 
concerned with rationalizing functional forms for index numbers with 
functional forms for the underlying aggregator function. Diewert 
(1978b) shows that the Vartia I price and quantity indexes are con- 
sistent only with a Cobb-Douglas aggregator function. This is perhaps 
not surprising, since thus far the only way the two-stage method of 
calculating index numbers has been justified from the viewpoint of the 
economic theory of index numbers has been to assume that the underly- 
ing aggregator function is weakly separable in the same partition that 
corresponds to the two stages.35 Thus, to justify the two-stage method of 
constructing index numbers for any partition of variables, one so far has 
had to assume that the aggregator function is weakly separable in any 
partition of its variables; but then the results of Leontief (1947) and 
Gorman (1968b) imply that the aggregator function is strongly sep- 
arable in the coordinatewise partition of its variables. If we also assume 
that aggregator function is linearly homogeneous, then, using Bergson's 
(1936) results, it can be seen that the aggregator function must be a 
mean of order r (Hardy, Littlewood, and Polya 1934); that is, a CES 
function. However, it turns out that the Vartia price and quantity indexes 
are exact only for a mean of order 0 (or Cobb-Douglas) aggregator 
function. 

In spite of the rather negative result that the Vartia I price and 
quantity indexes are exact only for a Cobb-Douglas aggregator func- 
tion, Diewert (1978b) shows that for small changes in prices and 
quantities these indexes have some rather good approximation proper- 
ties. I outline these results due to Vartia and Diewert below. 

Define the Vartia (1974, 1976)36 price index P v ( p o , p l ;  xo,xl) as 

( 5 2 )  1 n Pv (pO,p1; XO,X1) E 

2. L (P1iX'Q0iX0i> / L  (pl 'xl ,po*xO) 1 n ( P l d P P ) ,  
A' 

i=l 

where the logarithmic mean function L introduced by Vartia (1974) and 
Sat0 (19764  is defined by L(a,b) 3 ( a  - b ) / (  In a - In  b )  for a # b 
and L(a,a)  3 a. 

The Vartia quantity index Qr7(po,p1; x o , x l )  is defined by 

(53) In  Qv(po,pl; x0,x1) E 
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that is, the price and quantity indexes have the same functional form ex- 
cept that the role of prices and quantities are interchanged. Vartia 
shows that Pv and Qv satisfy the factor-reversal test and have the 
property of consistency in aggregation. 

Since the price index P o  defined in section 8.2.3 resembles somewhat 
the Vartia price index P, defined by ( 5 2 ) ,  the following theorems may 
not be too surprising. 

(54) Theorem (Diewert 1978b) : The Vartia price index dif- 
ferentially approximates the superlative price index PO 
to the second order at any point where the prices and 
quantities for the two periods are equal; that is, 
Pv(pO,pl ;xo ,x l )  = P o ( p o , p l ;  xO,xl), and the first- and 
second-order partial derivatives of the two functions 
coincide provided that po = p 1  ) ) ON and xo = x1 ) ) ON. 

Theorem (Diewert 1978b) : The Vartia quantity index 
differentially approximates the superlative quantity in- 
dex Qo to the second order at any point where the 
prices and quantities for the two periods are equal. 

( 5 5 )  

Thus P r ( p o , p l ;  xO,xl) will be close to Po(pO,pl; xo,xl) provided p o  is 
close to p l  and xo is close to xl. If we call an index that can approxi- 
mate a superlative index differentially to the second order at any point 
where p o  z p1 and xo = x1 a pseudosuperlative index, it can be seen 
that the Vartia price and quantity indexes are pseudosuperlative. 

Recall theorems (50) and (51).  Theorems (54) and (50) imply 
that the Vartia price index PI approximates all the superlative indexes 
PO and P,, while theorems (55) and (5 1 ) imply that the Vartia quantity 
index Qv. approximates all the superlative indexes Qo and Q, to the 
second order. 

For many years it was thought that the indexes Po and Qo had the 
property of consistency in aggregation. However, although Po and Q n  
are not consistent in aggregation, the results above show why they are 
approximately consistent in aggregation: each Po subindex can be ap- 
proximated to the second order by a Vartia index of the same size, while 
the “macro” Po index can be approximated to the second order by a 
“macro” Vartia index. Thus the macro index of the subindexes is ap- 
proximated to the second order by a Vartia macro index of Vartia sub- 
indexes which is identically equal to a Vartia index of the original micro 
components, which in turn approximates to the second order a Po index 
in the micro components. Therefore, for time-series data where indexes 
are constructed by chaining observations in successive periods, we would 
expect Po and Qo to be approximately consistent in aggregation. 
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The same conclusion holds for the quadratic mean of order r price 
indexes P, and quantity indexes Q,.: they will be approximately con- 
sistent in aggregation, since each P, approximates Pv and each Q,. ap- 
proximates Qv. 

Some empirical evidence is available that tends to support the theo- 
retical results above. Parkan (1975) compared the price indexes Po,  Pa,  
and Po (defined implicitly by the weak factor reversal test, using Qo 
as the quantity index) and the quantity indexes Qo, Q2, and do using 
some Canadian postwar consumption data on thirteen goods. He also 
calculated the nonparametric price and quantity indexes defined by Die- 
wert (1 973b, p. 424). Parkan then computed all four price indexes and 
all four quantity indexes in two stages, calculating four subaggregates 
in each case, then aggregating these subaggregates using the same index 
number formula. It was found that the resulting total of eight price in- 
dexes generally coincided to three significant figures, and the eight 
quantity indexes similarly closely approximated each other. Similar 
empirical results are reported in Diewert ( 1978b). The theoretical results 
cited above provide an explanation for this rather convenient empirical 
phenomenon. 

To summarize, the arguments above show that constructing aggregate 
price and quantity indexes by aggregating in two (or more) stages will 
give approximately the same answer that a one-stage index would, pro- 
vided that either a superlative index or the Vartia index is used.37 

8.2.6 The Measurement of Real Input, Real Output, and 
Real Value Added 

In this section we will study the various definitions of real output, 
input, and value added that economists have proposed, including the 
definition of real capital that Usher proposed in the introduction to this 
volume. We shall also indicate how various index number formulas can 
be used to closely approximate the various notions of real input and 
output. 

First it is necessary to recall the definition of the firm’s variable 
profit function from section 8.2.1 : 

( 5 6 )  W X , P )  = max,{pv: ( x , Y ) E S } ,  

where S is the firm’s technologically feasible set, (x,y) G ( x l , x z ,  . . . ,xN, 
y1,y2,. . . , Y , ~ )  is a vector that indicates the firm’s production or input 
demand for each of the N + M goods, and p = ( p 1 , p 2 , .  . . , p M )  ) ) OM 
is a vector of positive prices. In this section we will assume that the x 
goods are all inputs and that x ) ) 03. On the other hand, negative com- 
ponents of y will continue to indicate that the corresponding good is 
used as an input. With these sign conventions, it can be shown (see 
Diewert 1973a; Gorman 1 9 6 8 ~ ;  or Lau 1976) that if S is a nonempty, 
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closed, convex set with certain boundedness and free disposal properties, 
then II ( x , p )  will be a nonnegative, nondecreasing, and concave function 
in x for any fixed p ;  that is, I I ( x , p )  regarded as a function of x will 
have the usual regularity properties that a neoclassical production func- 
tion possesses. 

Thus a real input index X can sensibly be defined as 

(57) X(x0,xl; p * )  = rI(xl,p*)/rI(xO,p*), 

where xo  = (XO,, . . . ,xOx) is period 0 input, x1 E ( x l l , .  . . , x ~ N )  is 
period 1 input. and p* ) ) O,,[ is a reference price vector. Sat0 (1976b, p. 
438) calls X defined by (57) a true index of real value added, and he 
notes that the definition does not require any assumption of optimizing 
behavior on the part of the producer with respect to inputs (although 
profit-maximizing behavior with respect to outputs and intermediate in- 
puts in the y goods is of course required). Sat0 also notes that a sep- 
arability assumption on the technology is required in order to make X 
defined by (57) independent of p * ;  that is, we require that I I ( p , x )  = 
r ( p ) f ( x )  for some functions r and f ,  which implies that the x inputs are 
separable from y .  

We now study the problem of approximating (57) by observable 
data; that is, by means of an index number formula. However, it is first 
necessary to present some general material taken from Diewert (1976) 
that will be used repeatedly in this section. 

Let z be an N-dimensional vector and define the quadratic function 
f(z)  as 

( 5 8 )  f (z)  = a. + aTz + %z*Az 
N N N  

i=1 f=1 i=1 
= a0 + 8 Q Z ~  + 8 2 auziz!, 

where the ai,aij are constants and aij = aj, for all i,j. 

2 3 )  and Kloek (1967) local result. 

( 5 9 )  

(60) 

where v f(z') is the vector of first-order partial derivatives of f evalu- 
ated at z'. 

This result should be contrasted with the usual Taylor series expan- 
sion for a quadratic function, 

The following lemma is a global version of the Theil (1967, pp. 222- 

Quadratic approximation lemma: if the quadratic func- 
tion f is defined by ( 5 8 ) ,  then, 

f ( 2 )  - f ( zO)  = '/z[,vf(zl) + Vf(Z0)1~(Z1 - ZO), 

f (z '> - f ( t O )  = rvf(zo)l'(zl - zO)  + !/2(z1 
- z 0 ) * 0 ~ f ( z 0 ) ( z ~  - Z O ) ,  



457 Aggregation Problems in the Measurement of Capital 

where T2f(zo) is the matrix of second-order partial derivatives of f 
evaluated at an initial point zo. In the expansion (60), a knowledge of 
02 f (zo )  is not required, but a knowledge of @(zl) is required. Actually, 
(60) holds as an equality for all zl,zo belonging to an open set if and 
only if f is a quadratic function, provided f is once continuously differen- 
tiable (cf. Lau 1979). 

Suppose we are given a homogeneous translog aggregator function 
(Christensen, Jorgenson, and Lau 1971 1 defined by 

Recall that Jorgenson and Lau have shown that the homogeneous 
translog function can provide a second-order approximation to an 
arbitrary twice continuously differentiable linearly homogeneous func- 
tion. Let us use the parameters that occur in the translog functional form 
to define the following function f*: 

N N s 

j=1 a = 1  j=1 
f*(z) =a0 + 2 a&+ 1/2 2 8 . y@zj .  (61 1 

Since the function f* is quadratic, we can apply the quadratic approxi- 
mation lemma ( 5 9 ) ,  and we obtain 

(62) f*(z') - f*(zO) = %[vf*(zl)  +'Vf*(Z"I'(Z1 - Z O ) .  

Now we relate f* to the translog function f.  We have 

(63) af*(z')/azj = alnf(x ' ) /a ln  X ,  

= [af(x')/axjI [x'df(x')l. 

f"(2') = lnf(x'1, 

zrj = In xrj ,  for r = 0, l  and j = 1,2, . . . ,N .  

If we substitute relations (63) into (62) we obtain 

*[In x1 - lnxO], 

where In x1 = [In xll, In XI*, . . . , In xlN], In xo 3 [In xo l ,  In x02, . . . , 
In xoN] ,  = the vector x1 diagonalized into a matrix, and = the 
vector xo diagonalized into a matrix. 

Now suppose the firm's variable profit function can be adequately 
approximated by a translog variable profit function (see section 8.2.1 for 
a definition), which we will denote as n* ( x , p )  . 
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If p*  is fixed, then l n r I * ( x , p * )  is quadratic in 1nxl,lnx2,. . . , I n  
xN, and we can apply the identity (64) to obtain the following equality 
(define f(x) = r I * ( x , p * ) ) :  

( 6 5 )  In  n* (XI$*) - In n* (xO,p*) 

[In XI - In XO]. 

To proceed further, we need to make two additional assumptions: 
( a )  the technology S is a cone (so that constant returns to scale prevail), 
and hence rI* (x,p) is linearly homogeneous in x, and ( h )  the producer 
attempts to minimize input costs, or alternatively to maximize nominal 
value added (or variable profits) subject to an expenditure constraint 
on inputs. Thus we assume that xr ) ) Oy is a solution to the maximiza- 
tion problem 

(66) 

where wr ) ) ON for r = 0,13* where wr = (wrl, . . . ,wrN) and w', is the 
nth input price in period r .  The first-order conditions for the two maxi- 
mizatioii problems, after elimination of the Lagrange multipliers, yield 
the relations wr/wr*x+ E v,rI*(xr,pr)/nr*vIrI*(x+,pr) for r = 0,l. Since 
rI* is linearly homogeneous in x,xr*~,JI*(xr,p') can be replaced by 
IT* ( x ' , ~ ' ) ,  and the resulting relations are 

(67) wr/wr*xr = vm*(xr,pr)/rI*(xr,pr), r = 0,l. 

max,(rI* (x,p') : W'*X 5 wr*xr, x 2 ON}, 

Now return to equation ( 6 5 ) .  Assume that the components of the 
(constant) output price vector p* = ( P * ~ ,  . . , , P * ~ )  are defined by 

(68) 

Substitution of (68) into ( 6 5 )  and differentiation of the translog 
variable profit function evaluated at the points (xl,p*) and (xo,p*) 
yields the following equation: 

(69) 

p" ,  3 ( P O ,  p ln)"2,  n = 1,2, . . . ,N .  

I n  rI*(xl,p*) - In rI*(xO,p*) 

*[In x1 - In XO] 

using (67),  or 
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(70) X(x0,xl; p * )  = IT*(x l ,p* ) / r I* (xO,p*)  = 
Q o ( w o , w l , ~ o , ~ l  1 ; 

that is, if the technology can be represented by a constant returns to 
scale, translog variable profit function and the reference output prices 
p*n are chosen to be the geometric mean of the output prices prevailing 
during the two periods; then the real input index X(xo,x l ;p*)  is equal 
to the Tornqvist quantity index of the inputs xo and xl. Note that this re- 
sult does not require the technology to be separable; that is, we do not 
require that IT* (p,x) z r ( p ) f ( x ) .  However, the above result did require 
us to pick a very specific reference vector p * .  

Note that we can associate an implicit input price deflator W(wo,wl ,  
xo ,x l ,p*)  with the real input index X :  

(71) 

Under the assumptions that justified (70), we tan see that the im- 
plicit input price deflator W(wo,wl,xo,xl; p * )  = Po(wo,wl,xo,xl), the 
implicit Tornqvist price index for the inputs (defined as w ~ * x ~ / w ~ * x ~  

It is also possible to  define an input price deflator directly. To do 

w(wo,w1,xo,x~,p*) = W1*X1/WO*XO X(x0,xl; p * ) .  

Qo ( ~ O , W ~ , X O , X ~  1 1. 

this, we need to define the joint cost function39 C as 

(72) C(y ,w)  e min${w*x: ( x , y ) d } .  

Now define the input price deflator W as 

(73)  

where the input price vectors wo and w1 have been defined above and 
y* is a reference output vector that is held constant during the two 
periods. As was the case with the real input index, the input price de- 
flator W(wo,wl ;y* )  is independent of the reference vector y * ( p *  in the 
case of the input index) if and only if the technology is separable (i.e., 

To obtain a specific functional form for W ,  we may proceed in a 
manner entirely analogous to our earlier treatment for X. First assume 
that the firm's technology can be adequately approximated by a trans- 
log joint cost function"O that exhibits constant returns to scale. Then, as- 
suming optimizing behavior on the part of the producer, we can repeat 
equations (65) to (70) with the obvious changes in notation, and we 
obtain the following equality: 

(74) 

W(w0,wl ; y * )  I C(y* ,w~) /C(y* ,wO) ,  

if C(Y,W) = d Y > C ( W )  1 * 

W(w0,w'; y * )  = C*(y* ,w~) /C*(y* ,wO)  = 

Po(wo,w1,xo,x~)' 
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where C* is a translog joint cost function, y* = ( ~ * ~ , y * ~ ,  . . . ,Y*,w) and 
E ( y o m y 1 m ) 1 / 2  for m = 1,2, . . . ,M,  and Po(wo,wl,xo,xl) is the 

Tornqvist price index for the inputs. 
An implicit real input index X can be defined as 

(75) x(wo,w1,xo,x1; y * )  = w1*x1/wo*xo W(w0,wl; y * ) .  

Obviously, if the input price deflator W is defined by (74), then the 
corresponding implicit real input index X is numerically equal to 
do (wo,wl,xoxl),  the implicit Tornqvist quantity index of inputs.41 

We now turn our attention to the output side. Define the producer's 
real output index Y as 

(76) Y(y0,yl;  w * )  = C(y1,w*)/C(yO,w*),  

where y o  and y l  are the output (and intermediate input) vectors are 
periods 0 and 1, C is the producer's joint cost function defined earlier 
by (72), and w* ) ) Ov is a reference input price vector. As usual, 
Y(yo,yl ,w*)  is independent of w* if and only if the technology is sep- 
arable. 

Again, we can assume that the firm's technology is approximated by a 
transiog joint cost function C* that exhibits constant returns to scale. 
Assuming optimizing behavior, we can repeat equations (65) to (701, 
with the obvious changes in notation, and obtain the following equality: 

(77) 

where C* is the firm's translog joint cost function, y o  ) ) ON and y l )  ) Ox 
are the output vectors produced by the firm during the two periods, p o  
and pl  are the corresponding output price and the reference 
input price vector w* = ( w * ~ ,  . . . , w * ~ , )  is defined by w*,= 
(won wln)l l2 ,  where wo = ( w o l , .  . . ,woN) ) ) ON and w1 = (w l l ,  . . . , 
W ~ A T )  ) ) ON are the input price vectors for the two periods. Qo(p0,p' ,yo,y1)  
is the Tornqvist quantity index for the outputs. 

Note that we can associate an implicit output price deflator P ( p o , p l ,  
yo,yl;  w*) with the real output index Y :  

Y(y0 ,y ' ;  w * )  = c * ( y ~ , w * ) / c * ( y o , w * )  = 
Q O ( P ~ , P ~ , Y O , Y ~ ) ,  

(78) P(pO,pl,yO,yl; w*) E 

p l * y l / p o * y o  Y (y0 , y l ;  w * ) .  

If the real output index Y is defined by (77), then the corresponding 
implicit output price deflator defined by (78) is numerically equal to 
~ O ( P ~ , P ~ , Y ~ , Y ~  1, the implicit Tornqvist price index of outputs. 

However, an output price deflator can be defined directly. Following 
Fisher and Shell (1972), define the firm's output price deflator P as 
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(79) P ( p O , p l ; x * )  = n ( x * , p ' )  / n . ( X * , P 0 ) ,  

where p o  and pl are the output (and intermediate input) price vectors 
facing the producer during periods 0 and 1, respectively, II is the pro- 
ducer's variable profit function defined earlier by (561, and x* ) ) ON is 
a reference input vector. Archibald (1977, p. 61 ) calls P the fixed input 
quantity output price index. He also shows that it satisfies certain tests, 
and he develops some bounds for it (along with two other alternative 
price indexes), utilizing the techniques developed by Pollak ( 1971 ) in 
his discussion of the cost-of-living index. 

As usual, assume that the firm's technology can be approximated by a 
translog variable profit function II* exhibiting constant returns to scale, 
repeat the analysis inherent in equations (65) to (70) with the obvious 
changes in notation, and obtain the following equality: 

(80) P(pO,pl;x*)  = n* ( x * , p l ) / I I *  (x*,pO) = 
Po (PO,P1,YO,Y1 1 > 

where II* is the firm's translog variable profit function, p o ) ) O ,  and 
p l  ) ) 0, are the price vectors for outputs (and intermediate inputs) the 
firm faces during periods 0 and 1 ,  y o  and y l  are the corresponding 
quantity vectors,43 and the reference input quantity vector x* = 
(x*~, . . . , x * ~ )  is defined by x * ~  = (xon x1n)1'2, where xo = ( x o l ,  
. . . ,xOx)  ) ) Ox and x1 = (xI1, . . . ,xlAT) ) )OAT are the input vectors for 
the two periods. Po(po ,p l , y" ,y l )  is the Tornqvist price index in output 
prices. 

Note that we can associate an implicit real output index Y with the 
output price deflator P :  

(81 )  

If the output price deflator P is defined by (go) ,  then the correspond- 
ing implicit real output index Y defined by (81) is numerically equal to 
c o ( p o , p l , y o , y l ) ,  the implicit Tornqvist quantity index of outputs. 

The astute reader will by now have noticed that the definitions given 
above for real output (input) and output (input) price deflators are 
entirely analogous to the Konyus (1939) and Allen (1949) definitions 
for the real cost of living and real income:44 instead of holding a scalar 
constant (utility), a vector (of inputs or outputs) is held constant. The 
astute reader will also know that an alternative approach to the Konyus- 
Allen approach to defining quantity indexes has ben provided by Malm- 
quist ( 1953). Malrnquist's approach has been extensively used by Pol- 
lak (1971) and Blackorby and Russell (1978) in the context of 
consumer theory, and by Bergson (1961), Moorsteen (1961), and Fisher 
and Shell ( I  972) in the context of producer theory. I outline this ap- 
proach below. 

c. 

Y(pO,pl ,yO,yl;  x*) = p'*y'/pO*yO P(p0,p';  x * ) .  
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Define the producer's input distance function D as 

(82) D[y,x]  = maxA{A: (y,x/A)€S, X 2 O}, 

where S is the firm's technological set, y is a given vector of outputs, 
and x ) )ON is a given vector of inputs. The interpretation of D[y,xl is 
that it is the proportion by which the input vector x can be deflated with 
the resulting deflated input vector just big enough to produce the output 
vector y .  If S is a nonempty, closed, convex set with certain free dis- 
posal properties, then it can be shown that D[y,x] is a positive, increas- 
ing, linearly homogeneous, and concave function in x for x ) ) ON and, 
moreover, the distance function can be used to characterize the tech- 
nology just as the variable profit function or joint cost function was 
used.45 We can use the distance function to define the Malmquist (1953), 
Moorsteen (1961), Fisher and Shell (1972, p. 51 1, and Usher real input 
index as 

(83) 

where y* is a reference output vector and xO$ are the vectors of inputs 
utilized by the firm during the two periods under consideration. The 
interpretation of XJI is straightforward: pick a reference output vector 
y*,  deflate xr by A' > 0 so that ( y * , x ' / ~ ' )  is just on the boundary of 
the production possibility set S for r = 0,1, and then measure the vol- 
ume of inputs in period 1 relative to period 0 by the ratio hl /Ao.  The 
resulting Malmquist real input index XJI(xo,xl ,y*)  will in general de- 
pend on the reference output vector y*;  it will be independent of y* if 
and only if the technology is such that D[y,x] = h ( y ) f ( x ) ,  which is a 
separability property that turns out to be equivalent to the earlier sepa- 
rability of outputs from inputs property discussed earlier in this section.46 

The Malmquist real input index X.,, defined by (83) has at least one 
major advantage over the (Konyus) real input index X defined earlier 
by (57):  the Malmquist index is defined solely by the technology and 
does not require any assumption that the producer competitively maxi- 
mizes profits. 

However, to evaluate X I f  using observable data, it will be necessary 
to assume cost-minimizing behavior plus a particular functional form 
for the firm's distance function. 

(84) Theorem: Assume that the firm's technology can be 
represented by a translog distance function D*,  where 
D* is defined by 

XM (x0,x1,y  * ) D [Y * ,xl 1 / D [ Y  * ,xol, 
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N a f  a f  

M a f  

j=1 k=l 
+ !'!Z 8 8 3/jklnyjlnYlc, 

N N 

i=1 h-1 
where 8 at = 1, a i h  = a h i ,  8 (Yih = 0 for i = 1,2, . . . ,N, 

N 

4=1 
8 aij = 0 for 

j =1,2, . . . ,M and yjk = ykj.47 Suppose that the quantity vector xo is 
a solution to the cost minimization problem, min,{wO*x: (yo,x)cS}, 
while x1 is a solution to the period 1 cost minimization problem, 
min,{wl*x: (yl,x)~S), where yo,yl are the output vectors produced dur- 
ing periods 0 and 1, wo ) ) ON and w1 ) ) ON are the input price vectors 
facing the producer during periods 0 and 1 and S is the firm's technol- 
ogy set. Then 

(86) 

where y* = ( Y * ~ ,  . . . ,Y*~[), y*,,, = (yomy1m)1/2 for m = 1,2, . . . ,M, 
and Q o ( ~ o , w l , ~ o , x l )  is the Tornqvist quantity index for the inputs. 

Thus the Tornqvist quantity index Qo (wo,wl,xo,xl) can be interpreted 
as either a Malmquist real input index (86) or a Konyus real input index 
(70). However, we note that the Malmquist interpretation requires 
fewer assumptions: constant returns to scale are not required, nor are 
producers required to competitively optimize with respect to inputs. 
Thus the Tornqvist quantity index can be given a strong economic 
justification. 

Obviously, once we have defined the Malmquist real input index XM, 
we can define an implicit (Malmquist) input price deflator W M  as 

xy (xO,xl,y* ) = D* [y * ,xl]/D* [y* ,xO] = 
Qo (wo,wl,xo,xl) 

(87) WN(wO,wl,xO,x1,y*) = w~*x1/wO-x0 Xy(xO,xl,y*). 

If Xy is defined by (86), then (87) becomes ~o(wo,wl,xo,xl), the 
implicit Tornqvist price index for inputs. 

With minor modifications, the entire Malmquist procedure from 
equation (82) to equation (87) can be repeated, except that outputs re- 
place inputs; that is, define the producer's output distance function d as 
d[y,x] = minh{A: (ylA,x)~S}, define the Malmquist real output index as 
Y~(yO,yl,x*) 3 d[yl,x*]/d[yO,x*], assume that the producer's technol- 
ogy can be adequately represented by a translog (output) distance 
function d* and that the producer is revenue maximizing with respect to 
outputs and intermediate inputs only, and finally show that 
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(88) YM(YO,Yl,X*) = d*[y1,x*]/d*[yO,x*] = 
Qo(PO,P~,YO,Y~) 

where Qo(po,pl,yo,yl) is the Tornqvist quantity index for the outputs 
and the nth component of the reference input vector, X*n = ( x O ~ X ~ ~ ) ~ ' ~ ,  

It = 1,2, . . . ,N.48 Thus again the Tornqvist index can be given a strong 
economic justification. 

8.3 Methods for Justifying Aggregation over Sectors 

8.3.1 Aggregation without Optimizing Behavior 

Suppose there are M firms in a sector, each of which produces a 
single product using N inputs. Let the firm technologies be representable 
by means of firm production functions f", where y" = fn(xml, . . . ,x"N) 
denotes the amount of output producible by firm rn using input quanti- 
ties xml, . . . ,xmN for m = 1,2, . . . ,M. Klein's ( 1 9 4 6 ~ )  aggregation over 
sectors problem49 can be phrased as follows: What conditions on the 
firm production function's f"' will guarantee the existence of: (a )  an 
aggregate production function G ,  ( b )  input aggregator functions 
g1, . . . ,gN, and (c) an output aggregator function F such that the fol- 
lowing equation holds for a suitable set of inputs x"*~? 

(89) F(Y', . . - ,y') = G[gi(xli,. - 
. . . , g N ( X l N , .  . . ,XMN)l. 

,xYi),g2(x12, . . - ,xM2), 

Klein (1946b) explicitly asked that (89) hold without the assump- 
tion of profit-maximizing behavior by producers, since in the real world 
monopolistic practices may be prevalent and thus it would be pref- 
erable to be able to derive an aggregate production function without 
the assumption of competitive behavior. 

Unfortunately, Nataf (1948) demonstrated that the conditions on the 
micro production functions f", m = 1,2, . . . ,M,  that are necessary to de- 
rive (89) are very stringent: the fm must be strongly separable; that is, f" 
must have the structure fm(xml, . . . ,xmN) = h"[kml (xml) + . . . + 
k r n ~ ( x m N ) ] ,  where the hm and k", are monotonically increasing func- 
t i o n ~ . ~ ~  

The restrictive separability assumptions on the micro production 
functions51 required for Klein-Nataf sectoral aggregation seem to limit 
the usefulness of the method from an empirical point of view.sA more 
promising method is outlined in the following section. 

8.3.2 Aggregation with Optimizing Behavior 

Bliss (1975, p. 146) notes that if all producers are competitive profit 
maximizers and face the same prices, then the group of producers can 
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be treated as if they were a single producer subject to the sum52 of the 
individual production sets. Thus, if the time period is chosen to be long 
enough so that all inputs and outputs are variable, there is no problem 
of aggregation over sectors (provided producers are behaving competi- 
tively). 

This extremely simple aggregation criterion does not seem to have 
been stressed very much in the literature, but it is certainly explicit in 
the contributions of Hotelling (1935), May (1946), Pu (1946) and 
Cornwall (1973, p. 512), though not stated as elegantly as the above 
criterion noted by Bliss. 

8.3.3 Aggregation with Optimizing Behavior for Some Goods: 
Vintage Production Functions 

Assume we have M sectors in an economy (or M firms in an industry 
or M plants or processes in a firm) and the production possibilities set 
for the mth sector is denoted by S”, m = 1,2, . . . ,M.  Define the sectoral 
variable profit functions ll” as 

(90) nm(p,X“,zm) = max,{p*y: ( y , x m , z m ) ~ S f f l ) ,  

where p ) ) Ox is a vector of output (and or intermediate input) prices 
each sector faces for the first K goods, x” 2 ON is a vector of “labor” 
inputs utilized by the mth sector, and z“ is a vector of fixed “capital” 
inputs that could be specific to the mth sector for m = 1,2, . . . ,M. Fol- 
lowing Solow (1964), we could interpret the nm as being dual to the 
“vintage” production functions f” (of a single firm) that utilize the 
“vintage” capital inputs zm in addition to labor inputs xm. Assume further 
that the firm has a fixed vector of labor inputs x ) ) ON to allocate across 
the M processes. The firm will then wish to solve the following vintage 
or micro labor maximization problem (which defines the aggregate vari- 
able profit function ll) : 

m =  1,2,. . . ,M, 

Y 

nt=l 
2 xm 5 x , x m  2 O N  

= ll(p,x,z1,22, . . . ,zM). (92) 

A g e n e r a l i ~ e d ~ ~  Solow (1964), Fisher (1965), and Stigum (1967, 
1968) vintage capital aggregation problem is: Under what condition: 
on the “vintage” technologies Sgfi (or nm) do there exist functions ll 
and g such that 
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where g(z1,z2, , . . ,zM) can be interpreted as a capital aggregate? 
This problem is difficult to solve because the aggregate variable profit 

function II(p,x,zl,. . . ,Zw) is not related to the micro variable profit 
functions IIm(p,xmzm) in any very obvious way. However, it is possible 
to derive a problem that is equivalent to (93) and then apply some re- 
sults from Gorman ( 1 9 6 8 ~ )  to the equivalent problem. Below, I indi- 
cate how this equivalent problem can be derived and solved. 

If the firm is given a vector of positive labor prices, w ) ) ON,  the firm 
can optimize with respect to the labor inputs. Thus define the following 
vintage or micro (labor optimized) variable profit functions HI*": 

(94) 
m = 1,2,. . . ,M,  

where p )  OK is the vector of output prices each sector faces for the 
first K goods and zm is the vector of fixed capital inputs specific to the 
mth sector. The (labor optimized) variable profit functions lI*" can 
be used to provide a complete characterization of the sectoral technol- 
ogies S" (under appropriate regularity conditions; see Gorman 1968a or 
Diewert 1 9 7 3 ~ )  just as the original variable profit functions II" can be 
used. 

The firm or macro (labor optimized) variable profit function II* dual 
to II is defined as 

(95) 

I I * n t ( p , ~ , ~ m )  = max,{II"(p,x,z") - W * X :  

x 2 O N } ,  

IT*(p,w,zl, . . . ,zdJ1) E rnax,{II(p,x,zl, . . . ,zM) - 
W * X :  x 2 O N } .  

We may now state the problem that is equivalent to the original 
generalized Solow vintage capital aggregation problem (93) : Under 
what conditions on the "vintage" technologies S" (or equivalently II" 
or II*") do there exist functions II* and g* such that 

(96) 

where g*(z', . . . ,P) can be interpreted as a capital aggregate? 
This problem is reasonably easy to solve because the aggregate (labor 

optimized) variable profit function 11* is related in a simple manner to 
the micro (labor optimized) variable profit functions II*". 

IT* (p,w,z1, . . . ,ZW) = II*[p,w,g* (Zl, . . . ,291,  

(97) Theorem: If the micro variable profit functions 
lIm(p,xm,zm) are concave54 and increasing in xm for 
m = 1,2, .  . . ,M, then 

M 

m=1 
rI*(p,w*,21,. . . ,zM) = 8 II*m(p,w*,zm), 
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where w* ) ) 0, is a vector of Lagrange multipliers or shadow prices for 
the maximization problem (91 ) . 

The decomposition (98) allows us to immediately prove the follow- 
ing theorem. 

(99) Theorem (Gorman 1 9 6 8 ~ ) :  If the micro (labor opti- 
mized) variable profit functions II*, can be written as 

(100) 
m = 1,2,. . . ,M, 

then capital aggregation is possible; that is, 

n*m(P,w,Zm) = b(p,w)h"(z") + Crn(P ,W) ,  

Thus the separability restrictions (100) on the micro production pos- 
sibility sets are sufficient to imply the existence of a capital aggregate; 
Gorman (1968a) shows that these conditions are also necessary under 
suitable regularity conditions on the technology (which do not involve 
differentiability restrictions). 

How restrictive in practice are the restrictions (loo)? They are not 
very restrictive at all if every zm is a scalar (i.e., there is only one fixed 
capital good for each sector), for in this case functions of the form 
b(p,w)hm(zm) + cm(p,w) can provide a second-order approximation to 
an arbitrary twice-differentiable variable profit function n * m ( p , ~ , ~ m ) .  
However, the restrictions ( 100) become progressively more unrealistic 
from an empirical point of view as the number of fixed capital goods 
in each sector increases. 

8.3.4 Aggregation with Optimizing Behavior for Some Goods: 
Putty-Putty Production Functions 

In the analysis of the previous section, we did not assume that there 
was any particular relationship between the sectoral production possi- 
bility sets S". In this section we will assume that these sets are related 
in the following manner: before the mth producer chooses a vector of 
fixed inputs zm, the set of technological possibilities open to him ex ante 
is S, a set of feasible input and output combinations open to all pro- 
ducers m = 1,2, . . . ,M. However, once the mth producer chooses his 
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vector of fixed inputs zm, his production possibilities set is S(zm), a sub- 
set of S .  If we know the ex ante production possibilities set plus the 
economy's distribution of fixed inputs, then we can readily calculate the 
economy's ex post production possibilities set for the variable inputs and 
outputs. Often (see Johansen 1959), the ex ante production function is 
taken to be Cobb-Douglas (putty), while the ex post production possi- 
bility sets S(zm) are taken to be of the fixed coefficients variety (clay), 
but this putty-clay model can readily be generalized to a putty-putty 
model (see the contributions by Fuss and McFadden 1978). 

Houthakker (1955-56), Johansen (1959, 1972), Cornwall (19731, 
Sat0 (1975), and Fuss and McFadden (1978) have all made substan- 
tial contributions to the theory of aggregation sketched above. 

To make the above discussion more concrete, I will outline in some 
detail Johansen's ( 1972) contribution. Johansen's basic theoretical 
model is presented in chapter 2, where the various types of production 
function are defined and related to each other. The ex ante micro pro- 
duction function @ gives the maximum output y ,  given amounts of two 
variable inputs x1,x2 and capital z invested in the eector; that is, 
y = @(x1,x2,z). The ex post micro production function for a particular 
firm or sector is defined as y = @(x1,x2,z) ; that is, the capital input is 
fixed at z.  Johansen restricts the functional form for $3 to be such that 
the ex post micro production function is of the fixed coefficients variety; 
that is, 0 5 y 2 y ,  xl = ,fly, x2 = f 2 y ,  where t1 and ,f2 depend on z. 
The short-run macro production function, F ( X 1 , X 2 ) ,  is defined as 

1 A4 A4 M 

m = l  m = l  m = l  
2 JZJ(x~1,x"2,z"): 2 xml 5 XI; 2 xm2 5 XZ , 

where the short-run ex post production function of the mth firm is 
@(xml,xmZ,zm) and X j  is the available factor supply for the jth variable 
input, j =  1,2. Thus this maximization problem takes the short-run 
micro production functions as given and maximizes industry output sub- 
ject to restrictions on the availability of variable inputs. With Johansen's 
restrictive a priori assumptions on the functional form for the micro pro- 
duction function @, this maximization problem simplifies to: 

Ai M Y 
max 

m=1 W % = l  

P 2 Y "  s xz; 0 5 y" 5 P" . 1 
Finally, Johansen defines the long-run macro production function. This 
function may be constructed from the ex ante micro function 0 as fol- 
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lows: given (variable) input-capital ratios u1 and uz, choose the opti- 
mal scale plant; that is, choose z so as to maximize output per unit of 
capital. @(ulz ,uzz ,z) /z ,  along a ray in input space. Denote the solution 
to this maximization problem as z = g ( u I , u 2 ) .  Now, given aggregate 
amounts of inputs X 1 , X z  and Z, the long-run macro production function 

g(u1,u2),  where u1 = X 1 / Z , u z  = X 2 / Z .  Note that q is homogeneous of 
degree one even though the micro function need not be (if Q, is linearly 
homogeneous, then J ,  = (d) . 

All the production functions above can be constructed if ( a )  we know 
the functional form for the ex ante micro function $3 and ( b )  we know 
the distribution of capital stocks across firms, {z1,z2, . . . ,zM}. However, 
because of Johansen's assumption of no substitution between variable 
inputs for a fixed capital stock, he is able to combine ( a )  and ( b )  by 
specifying a capacity distribution { fml , (mz,ym} m = 1,2, . . . ,M for the 
industry, where smj is the jth input-output coefficient for the mth firm 
and ym is the capacity for the mth firm. From a discrete capacity distri- 
bution for the input-output coefficients, it is a short step to a continu- 
ous capacity distribution, and in Johansen ( 1972), various functional 
forms for continuous capacity distributions are assumed (including the 
case of the Pareto distribution pioneered by Houthakker, 1955-56) and 
the resulting macro production functions are calculated. The important 
conclusion that there can be considerable substitution at the macro 
level (even though there is none at the micro level) is emphasized by 
Johansen. 

However, the putty-clay restrictions Johansen places on the functional 
form for 8 are unduly restrictive. Instead of assuming a distribution of 
input-output coefficients, an empirically richer and computationally 
simpler model would result if we assumed a "flexible" functional form 
for Q, (or its dual) and a multivariate distribution of fixed inputs.55 For 
example, let us combine output(s) and variable inputs in the vector y 
(where, as usual, inputs are indexed with a negative sign), let z be a 
vector of fixed inputs, and write the ex ante micro production function 
in implicit form as Q,(y,z)  = 0. Let p o  be a vector of variable output 
and input prices and define a firm's variable profit function as r ( p 0 ; z o )  = 
max,{po*y: +(y; zo )  = O}. Now, if T is differentiable with respect to p ,  
it turns out that the firm's (variable) profit maximizing supply and de- 
mand functions, y (po; zo ) ,  can be obtained by differentiating r with re- 
spect to p;56 that is, y (po; zO)  = y p ~ ( p o ; z o ) .  Now suppose there are M 
firms in the industry and let the multivariate distribution of fixed inputs 
in the industry be represented by the multivariate density function f ( z )  ; 
that is, the number of firms having a combination of fixed factors falling 

between z1 and z z  is approximated by the number M J z z  f(z)dz. The short- 

J ,  is defined as J,(Xl,XZ,Z) = ~ Q , [ ~ l g ( ~ l , ~ Z ) , ~ z g ~ ~ 1 , ~ 2 ) ,  g(u1,uz)I/ 

z1 
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run industry variable supply and demand functions Y ( p o )  can be ob- 
tained by integrating the firm supply and demand functions over the dis- 
tribution of fixed inputs; that is, Y ( p 0 )  = MJ,vpT(po; z )  f(z)dz, and the 
industry short-run profit function may be defined as I I ( p o >  = M J d p O ;  
z)f(z)dz, which has as its dual the industry short-run transformation 
function F( Y )  = 0. The Houthakker-Johansen putty-clay assumption 
could be tested in this framework by assuming an appropriate func- 
tional form for ~ ( p ; z ) .  

Unfortunately, this approach to the problem of aggregation over 
sectors requires ( a )  information on aggregate variable outputs and in- 
puts, and their prices, and ( 6 )  detailed information on the distribution 
of fixed inputs by firm, information that is not generally available. 

This completes our discussion of the general problems of aggregation 
over goods and over sectors. We now turn our attention to some spe- 
cific problems associated with the aggregation of capital that we have 
not yet discussed. 

8.4 The Aggregation of Capital 

8.4.1 Capital: A Stock or a Flow of Services 

Jorgenson and Griliches (1967, p. 257) note that: “an almost uni- 
versal conceptual error in the measurement of capital input is to con- 
fuse the aggregation of capital stock with the aggregation of capital 
service.” They go on to note that the aggregation procedure appropriate 
for measuring real investment is not appropriate for measuring real 
capital: 

In converting estimates of capital stock into estimates of capital 
services we have disregarded an important conceptual error in the ag- 
gregation of capital services. While investment goods output must be 
aggregated by means of investment goods or asset prices, capital 
services must be aggregated by means of service prices. 

The prices of capital services are related to the prices of the cor- 
responding investment goods; in fact, the asset price is simply the 
discounted value of all future capital services. Asset prices for dif- 
ferent investment goods are not proportional to service prices because 
of differences in rates of replacement and rates of capital gain or loss 
among capital goods. [Jorgenson and Griliches 1967, p. 2671 

Thus, in the Jorgenson-Griliches framework, the user cost of capital 
in period t, p !  must be distinguished from the purchase cost Q t  of the 
capital good. The easiest way of deriving the rental price p t  from the 
purchase price Qt is to pretend that firms lease all their capital goods at 
rental price p t  from the “leasing” firm. Competition presumably forces 
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the “leasing” firm to earn the going rate of return r, after corporate in- 
come tax, on its leasing activities; thus we have the following equality: 
{purchase cost of one unit of the capital good plus corporate and prop- 
erty tax expenses minus rental received during the period} (1  + r )  = 
depreciated value of the capital good next period; in symbols we have: 

(104) { Q t  + u t b t  - vtsQt - 

xtQt1 + xtQt - ~ t }  (1  + r )  = 

(1 - B)Qt+i, 

where ut is corporate income tax rate, vt is the proportion of depreci- 
ation allowable for tax purposes, 6 is the one-period combined depreci- 
ation and obsolescence rate for the capital good, xt  is the property tax 
rate, and Qt+l  is next period’s expected purchase price for one unit of 
the capital good. Now equation (104) may be solved for p t : 5 7  

(105) P t  = {rQt + 6Qt+i - ( Q t + i  - Q t )  - (1 + r)utvtsQt 

+ (1 + r ) ( l  - u t ) x t Q t } / ( l  + r )  (1 - ut). 

If “leasing” firms do not exist, then the rental formula (105) can 
also be derived by setting up the firm’s profit maximization problem. 
For example, consider the following specific profit maximization problem: 

max pvY - w ~ W  - WBB - ]Qt - -Qt+i 

w.r.2. 
Y,W,B,K 4- xtQt 1 K 

subject to Y = f ( W , B , K ) ,  where p g  is the price of one unit of output 
Y ,  ww is the white-collar wage rate, we is the blue-collar wage rate, W 
and B are the inputs of white- and blue-collar labor, and f is the firm’s 
production function. The maximand (106) can be rewritten (after some 
algebraic manipulations) as: 

(107) 

where p t  is defined by (105). Thus, whether “leasing” firms exist or 
not, p t  defined by (105) is the appropriate user cost of a unit of 
(corporate) capital, and it appears to be the price which should be used 
to weight that particular component of the capital stock K ,  just as py is 
the appropriate price to weight Y, and so on. 

Once rental prices for the various components of the capital stock 
have been determined, the aggregation techniques discussed in sections 

(1 - ut) { P ~ Y  -wwW - WBB - M}, 
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8.2 and 8.3 can be used to form estimates of the aggregate stock of 
capital services (or components of this aggregate). This is essentially 
the procedure followed by Jorgenson and Griliches ( 1967). 

Under the assumptions above, rental prices of capital goods can be 
treated symmetrically (in the theory of production and productivity 
analysis) to output and variable input prices. Thus it seems that the 
aggregation of capital is no more difficult than the aggregation of any- 
thing else, such as labor, intermediate goods, or output. This is the posi- 
tion taken by Bliss (1975, p. 144). 

However, even if in theory the aggregation of capital does not appear 
to be any more difficult than the aggregation of say, labor, in practice it 
is very much more difficult to construct a capital aggregate that re- 
searchers can agree is appropriate for the purpose at hand.58 

In the following section we will consider some of the practical diffi- 
culties (and points of controversy) involved in the construction of capi- 
tal aggregates using rental price formulas similar to (105) above. In the 
present section, I will attempt to relax somewhat the simplifying assump- 
tions that allowed us to construct the rental price formula (105). 

Thus far my treatment of the capital aggregation problem has made 
two fundamental simplifying assumptions : ( a )  a depreciated durable 
good is measured in units of the undepreciated good (i.e., vintages are 
not distinguished), and ( b )  a durable good is assumed to evaporate or 
depreciate at a rate that is independent of “normal” use (and inde- 
pendent of the vintage of the capital good) ; specifically I have assumed 
a constant evaporation rare model. 

Jorgenson (1965, p. 51) has argued that the assumptions above are 
not as restrictive as they might first appear from the viewpoint of 
empirical applications; but, nonetheless, since they are restrictive (cf. 
Feldstein and Rothschild 1974), I shall indicate how they can be re- 
laxed in a model where capital appears as both an input and an output. 

The very general model of producer behavior that I propose to utilize 
was developed by J. R. Hicks in Value and Capital (1946, chap. 15; see 
also Malinvaud 1953; Bliss 1975). 

Hicks (1946, pp. 193-94) assumes that producers make production 
plans at the beginning of period 1 that will extend to period n. The 
plan consists of a list of inputs and outputs for each period, where 
period 1 inputs include the firm’s existing stocks of durable equipment, 
distinguished by physical characteristics and vintages. Hicks thinks of 
period n as the period when the firm winds up its affairs and sells all its 
remaining durable equipment, so that the list of period n outputs will 
include the firm’s depreciated capital stock that will be left over at the 
end of the period (or at the beginning of the following period). Thus, 
if we assume that n = 1, the Hicksian intertemporal production model 
reduces to the following profit maximization model: 59 
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where x = a nonnegative N1-dimensional vector of current pe- 
riod inputs, including the firm's beginning of the cur- 
rent period stocks of durable equipment. 

y = a nonnegative Nz-dimensional vector of current period 
outputs. 

z = a nonnegative N3-dimensional vector whose compo- 
nents represent how much durable equipment the firm 
will have available to it at the beginning of the follow- 
ing period, 

p z  = an N1-dimensional vector of nonnegative current period 
(purchase) prices for inputs. 

pr = an Nz-dimensional vector of nonnegative current period 
prices for outputs, 

pz  = an N3-dimensional vector of nonnegative expected fol- 
lowing period prices for the firm's (depreciated) dur- 
able equipment. 

r = the one-period interest rate at which the firm can bor- 
row or lend, and 

S = the firm's production possibility set, which is assumed 
to be convex, nonempty, and closed. 

We note that Hicks ( 1946, p. 230) assumes that S is smoothly convex 
(i.e., that the boundary of the convex set Y can be described by a 
twice-differentiable surface), while von Neumann (1945-46, p. 2) and 
Morishima (1969, pp. 29-94) assume that S is a polyhedral convex set 
(i.e., S can be described as the set of all convex combinations of a finite 
number of activities). 

If producer durables evaporate at a constant rate that is independent 
of the firm's utilization of other inputs, then the shape of the production 
possibility set S will be restricted, and it is easy to see that the profit 
maximization model (108) reduces to a profit maximization problem 
similar to (106). However, in general, a firm can prolong the life (and 
hence the value) of its durable equipment by spending more on inputs 
of maintenance labor and on inputs of replacement parts. Thus we 
should distinguish at least two broad types of labor input: production 
labor and maintenance labor. Increased inputs of the first type of labor 
will generally lead to smaller outputs of capital equipment available 
at the beginning of the following period, and vice versa for maintenance 
labor. 
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The model of short-run profit maximization defined by (108) is cap- 
able of being interpreted in several ways, depending on how narrowly 
capital goods are classified. 

If capital goods are not distinguished according to vintage, then the 
dimensionality of the x and z vectors will be relatively small, and (108) 
reduces to a variable evaporation rate model. 

If capital goods are distinguished not only according to their vintage 
but also by their physical condition (e.g., trucks may be classified ac- 
cording to how many miles they have been driven, structures may be 
distinguished by whether or not they have been painted recently, and 
so on), then the dimensionality of the x and z vectors will be enormous, 
and (108) may be termed a “vintage” variable evaporation rate model. 

Some special cases of the very general Hicksian intertemporal model 
of production have appeared in the literature: ( a )  Taubman and Wilk- 
inson (1970) assume that the physical amount of depreciation per 
unit of capital per unit of time depends on an index of capital utilization; 
( b )  Schworm (1977) assumes that depreciation depends on an index 
of capital utilization (miles driven in the case of his empirical example 
using truck data) and units of maintenance; while (c) Epstein (1977) 
actually implements a highly aggregated model based on equation 
(108) using aggregate United States manufacturing data, but his empiri- 
cal results are not very favorable to the Hicksian intertemporal model 
(perhaps owing to aggregation problems). On the other hand, Schworm 
is able to derive a formula for the rental price of capital that is similar 
to (105) above, except that utilization and maintenance variables also 
appear in the formula; but the other output and input variables pertain- 
ing to the firm do not appear in his formula, which makes the con- 
struction of rental prices for components of the capital stock much 
easier than in the more general Hicksian intertemporal model of pro- 
duction. 

How can we in fact construct a capital aggregate based on the 
Hicksian short-run profit maximization model ( l08 ) ,  and how will the 
resulting aggregate differ from a capital services aggregate constructed 
by means of an index number formula using rental prices similar to 
(105) above as weights? In the context of the Hicksian model, it is 
clear that we can construct several capital aggregates that must be care- 
fully distinguished: ( a )  a current-period capital stock aggregate (an in- 
put from the viewpoint of the current period) using current-period capi- 
tal stock prices as weights in the aggregation procedure; ( b )  a 
(depreciated) following-period capital stock aggregate (an output from 
the viewpoint of the current period) using discounted expected follow- 
ing-period capital stock prices as weights; (c) a current-period invest- 
ment aggregate (an output) using current-period investment goods 
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prices as weights in the aggregation procedure; and ( d )  a capital aggre- 
gate that is an aggregate of ( a )  and ( b )  where capital as an input and 
capital as an output are oppositely signed in the index number formula 
that is used. This “Hicksian” capital services aggregate60 should be 
comparable to the Jorgenson-Griliches capital aggregate discussed 
earlier, except that the assumption of constant evaporation rates is not 
required. 

Although the Hicksian model of producer behavior and the corre- 
sponding capital aggregates are more appealing than the constant 
evaporation rate model and the Jorgenson-Griliches capital aggregate, 
there is a major problem in implementing the Hicksian model; that is, 
the necessary data do not exist at present. Data on the market value and 
condition of the firm’s beginning of the period holdings of durables are 
either: ( a )  nonexistent, ( b )  extremely aggregated, or ( c )  conven- 
tionally determined according to depreciation rules used for tax pur- 
poses.G1 

I will conclude this section by considering a problem Usher raised in 
his introduction : Should expenditures on maintenance and repair be 
lumped with expenditures on capital goods? If we have enough data 
(and we are willing to make the necessary imputations) to implement 
the approach to capital aggregation based on the Hicksian model of 
producer behavior defined by (108), then maintenance and repair should 
not be lumped with capital expenditures. A similar concIusion should 
hold if the model is based on the constant evaporation rate model ( 106), 
since we would expect maintenance and repair expenditures to change 
6, the depreciation rate on the existing capital stock. 

8.4.2 

In the previous section I may have left the impression that from a 
theoretical point of view constructing a capital aggregate is no more 
difficult than constructing a labor aggregate.62 In the present section, I 
will readjust this impression by cataloging some of the practical diffi- 
culties and sources of controversy that occur when researchers attempt 
to construct capital aggregates that are suitable for estimating produc- 
tion functions or for estimating total factor productivity. 

Producer’s Expectations of Future Prices 

Whether we construct a capital services aggregate using the constant 
evaporation rate model (equation 106) or the variable evaporation rate 
model (equation 108), it is necessary to estimate the producer’s ex- 
pectations about next period’s capital stock prices (recall the price 
Qt+l  in eq. 105 and the expected prices p a / (  1 + r )  in eq. 108). These 
expected prices are generally unobservable, and thus reasonable ana- 
lysts could differ widely on how to estimate them. For example, Christen- 
sen and Jorgenson (1969, 1970) assume that producers perfectly an- 

Special Problems in the Aggregation of Capital 
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ticipate next period’s stock prices, whereas Woodland (1972, 1975) and 
many othersc3 assume that producers expect current stock prices to 
prevail in the following period (static expectations or Hicks’s [1946, 
p. 2051 unitary elasticity of expectations). A third alternative (followed 
by Epstein 1977) is to use a forecasting model to predict next period’s 
asset prices based on past information about the asset prices. It seems 
clear that the first two methods (perfect anticipations and static ex- 
pectations) for forming expected prices are not generally correct, while 
the third alternative requires extensive econometric modeling expertise, 
which individual producers and accountants may not possess. 

Another related difficulty must be mentioned at this point. We have 
been constructing aggregates under the assumption that producers are 
maximizing profits subjzct to their technological constraints, assuming 
that they are facing known prices for selling their outputs and buying 
their inputs. We have been assuming that there was no uncertainty in- 
volved in the individual producer’s profit maximization problems, and 
thus that their attitude toward risk and uncertainty was irrelevant. How- 
ever, since future-period prices of capital goods are not known with 
certainty, it is clear that our underlying profit maximization models 
(e.g., eq. 106 or 108) must be modified to incorporate producers’ atti- 
tudes toward risk. This leads to a great number of  complication^^^ 
whose implications for the construction of aggregates have not been 
fully worked out. 

The problem of modeling uncertainty is related to the problem of 
modeling the formation of expectations, in the sense that neither prob- 
lem would exist (at least in theory) if there were sufficient future and 
insurance markets, for then the appropriate prices could be observed in 
the market. However, in the absence of these markets, the analyst who 
wishes to construct a capital services aggregate will be forced to make 
an imputation or assumption about future expected prices. 

Jorgenson and Griliches ( 1967) have been criticized (cf. Denison 
1969, pp. 6-12; and Daly 1972, pp. 49-50) for including capital gains 
terms in their rental price formulas for capital services, which they use 
as weights in order to aggregate different components of the capital stock 
into a capital aggregate. However, from our rather narrow viewpoint, 
which concentrates on the measurement of capital in the context of pro- 
duction function estimation and the measurement of total factor pro- 
ductivity, it seems clear that the capital gains term belongs in the rental 
price formula-what is not as clear is the validity of the Jorgenson- 
Griliches perfect anticipations assumption. 

Interest Rates 

The rental price formula (105) and the profit maximization problems 
(106) and (108) in the previous section all involve an interest rate r.  
Which r should be used? If the firm is a net borrower, then r should be 
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the marginal cost of borrowing an additional dollar for one period, 
while if the firm is a net lender, then r should be the one-period interest 
rate it receives on its last loan. In practice, r is taken to be either ( a )  an 
exogenous bond rate that may or may not apply to the firm under con- 
sideration, or ( b )  an internal rate of return. I tend to use the first alter- 
native, while Woodland (1972, 1975) and Jorgenson and his co- 
workerse5 use the second. As usual, neither alternative appears to be 
correct from a theoretical a priori point of view; so, again, reasonable 
analysts could differ on which r to use in order to construct a capital 
aggregate.66 

Note that the appropriate interest rate is a nominal (not “real”) rate 
of interest: any (anticipated) inflation should be taken into account by 
the (anticipated) capital gains term in the user cost formula (105). 

Depreciation Rates 

The user-cost formula in the previous section involved a depreciation 
rate 6. I have already commented that, in theory, the assumption of an 
exogenous evaporation rate 6 is not warranted; but suppose that data 
limitations forced us to estimate a constant 6, or perhaps a series of 6s, 
{ a 8 } ,  say, where 6, would be the one-period evaporation rate applicable 
to a certain component of the capital stock that was s periods old. The 
depreciation rates (6,) are used not only in constructing rental prices 
in the Jorgenson-Griliches framework, but also by other analysts in con- 
structing capital stock series from deflated investment series (cf. Ken- 
drick 1961, 1976; Denison 1974). 

What depreciation rates {a,} are to be used, and how are they to be 
constructed? There is considerable controversy in this area, much of it 
being very ably reviewed by Creamer (1972, pp. 62-68). Two rela- 
tively extreme positions can be discerned in the literature, one used by 
Jorgenson and his co-workers (constant evaporation; i.e., 6, = 6 for all 
s) and the other used by Denison and Kendrick (one-horse-shay de- 
preciation; i.e., 6, = 0 for all s, except s = T when ST = 1) .  Actually, 
Denison’s depreciation assumptions are not quite as extreme as one- 
horse-shay depreciation, as the following quotations indicate: 67 

It is not assumed that all of the investment in a category made in 
a particular year disappears from the gross stock simultaneously, 
after expiration of the average service life. Instead more realistically, 
retirements are dispersed around the average service life. The Winfrey 
S-3 distribution is used to obtain this dispersion. [Denison 1974, pp. 
53-54] 

To introduce an allowance for rising maintenance expense and 
deterioration of capital services with the passage of time, I have 
adopted the following expedient. To measure input of structures and 
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equipment I have used a weighted average of indexes of the gross 
stock and net stock based on straight-line depreciation, with the 
gross stock weighted three and the net stock one. [Denison 1974, p. 
551 

On the other hand, for productivity comparisons, Kendrick prefers 
to use one-horse-shay depreciation “in order to relate real product to 
the comparable real capital stock estimates on a gross basis rather than 
a net basis” (Kendrick 1974, p. 20), but he also constructs estimates 
of a net capital stock using double declining-balance depreciation. 

Two questions arise with respect to assumptions made about the de- 
preciation, deterioration, and length of lives of components of the capi- 
tal stock: ( a )  Do the assumptions make much difference empirically? 
and ( b )  What is the empirical evidence on the appropriateness of the 
various assumptions? 

The answer to the first question appears to be an emphatic yes. Capi- 
tal stocks constructed on the basis of different depreciation assumptions 
can differ considerably.68 

Some negative empirical evidence on the validity of the constant 
evaporation rate form of depreciation (or declining-balance or geo- 
metric depreciation, as it is sometimes called) is reviewed by Feldstein 
and Rothschild (1974). Hulten and Wykoff (1977) utilize the theo- 
retical model developed by Hall (1968) to estimate economic depreci- 
ation for various types of structures used in the United States manu- 
facturing sector. They found that, in most cases, a constant geometric 
rate of depreciation could approximate the “true” rate of depreciation 
rather well, with the exception of the earliest years of the asset’s life. 

Overall, one can only conclude that empirical information on de- 
preciation rates and lengths of lives of assets is scanty, and I can only 
echo the recommendations of others that governments devote more re- 
sources in order to obtain more information. 

Treatment of Indirect Taxes 

Indirect taxes in a national income accounting framework are gen- 
erally defined as an amalgam of taxes on outputs produced by firms 
(sales taxes and various excise taxes) plus taxes on various inputs (in- 
cluding customs duties, real and property taxes, social insurance levies, 
and sometimes universal pension plan levies). There has been some 
controversy over where these taxes should be allocated when construct- 
ing a capital aggregate: 

The treatment of indirect taxes, property taxes, and corporate 
profits taxes can affect the income share of the capital-land category, 
and also the distribution to assets within that category. The choices 
of national income at market prices or factor costs for weights is in- 
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fluenced by this question. This question had come earlier in a review 
of Solow’s book, Capital Theory and the Rate of Return, as Solow 
had included both indirect taxes and corporate profits taxes in esti- 
mating the share of income to property. [Daly 1972, p. 491 

From the point of view that underlies the user-cost formula (eq. 105) 
(which was based on the assumption that producers competitively maxi- 
mize profits subject to their technological constraints), the treatment of 
indirect taxes seems clear: indirect taxes (such as property taxes) that 
fall on durable inputs shoyld be included in the user-cost formula for 
that input, other indirect taxes (such as Social Security payments) that 
fall on variable inputs should be added to the market price of those 
inputs, whereas indirect taxes (such as sales taxes) that fall on outputs 
should not be added to the market price of these outputs. The con- 
ceptually correct prices in the Jorgenson-Griliches framework are the 
output prices that reflect the revenue actually received by the firm and 
the input prices that reflect the actual costs paid by the firm for the use 
of the inputs involved in the production process. 

Thus customs duties and tariffs should be added to the prices of 
various imported goods used by firms, but sales taxes imposed on the 
outputs of a firm as they are sold to households (or other nonbusiness 
sectors) should not be added to the firm’s selling prices. But how should 
we treat (intermediate good) sales taxes imposed on the outputs of a 
firm (1, say) as the goods are sold to another firm (2, say)? Obvi- 
ously the tax should not be added to the selling price of firm 1, but it 
should be added to the selling price of firm 1 when the good is treated 
as an input into firm 2.69 

The Form of Business Organization 
The user-cost formula (105) developed in the previous section im- 

plicitly assumed that the firm was an incorporated firm and thus faced 
the appropriate corporate tax rate. However, if the firm is not incorpo- 
rated, then the appropriate tax rate is the owner’s personal (marginal) 
tax rate, which will generally differ from the corporate rate. Thus Chris- 
tenson and Jorgenson (1969) construct rental prices for the components 
of real capital input, disaggregated by class of asset and by legal form 
of organization. This appears to be a worthwhile methodological inno- 
vation, although reasonable analysts may find fault with some of the 
specific details of the Christensen-Jorgenson construction. 

Weighting the Components of Capital 

To construct real capital input, Kendrick (1972, p. 101) and Denison 
(1974, p. 51) favor weighting components of the captial stock by the 
components share of property incomei0 while Kendrick (1976) simply 
adds constant-dollar components of the capital stock. None of these 
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weights appear to agree with the user-cost weights we would obtain 
using formula (105), except in very restrictive circumstances: using the 
notation of the previous section, the suggested weights that would re- 
place the Jorgenson-Griliches user cost (105) are rQ, and Q t  respec- 
tively, where Qt is the current period asset price and r is a (gross or net 
of depreciation) rate of return. 

Since r e t  and Qt do not have a depreciation term, these weights tend 
to be much smaller than the Jorgenson-Griliches user-cost weights, and 
thus measures of real factor input (see section 8.5 below) using Jorgen- 
son-Griliches weights tend to grow faster than Kendrick-Denison mea- 
sures of real factor input, since capital typically has grown faster than 
labor during the past century. Thus the question of which weights to 
use when constructing a capital services aggregate is not empirically 
unimportant (cf. Denison 1969 and Jorgenson and Griliches 1972). 

From the viewpdint of our restrictive theoretical model of produc- 
tion, it seems clear that the Jorgenson-Griliches weights are to be pre- 
ferred over the Kendrick-Denison weights.’l 

Leased versus Owned Capital in the National Accounts 

There is a problem in using national income accounting data to esti- 
mate sectoral capital stocks that must be mentioned here.72 The prob- 
lem is that all rented or leased components of a firm’s capital stock 
appear as a primary input in the finance, insurance, and real estate 
sector and as an intermediate input in the firm’s sector. This creates 
problems when sectoral “value added” production functions are esti- 
mated, since the sectoral capital services input will be too Thus 
it would be helpful if official accounts were to provide a breakdown on 
which sector actually used the services of a leased component of the 
capital stock. 

The Domain of Definition of Capital 

Another fundamental problem in constructing a capital aggregate that 
we have not yet faced is the issue Usher raised in his introduction to 
this volume: Should capital be defined as an aggregate of produced 
means of production or as an aggregate of produced and nonproduced 
(natural resource) factors of production? Obviously, this is a defini- 
tional matter that could be decided either way. However, if we opt for 
the first definition of a capital aggregate and are interested in estimating 
aggregate production functions or explaining productivity change, then 
it is essential that we construct an aggregate for the noncapital, non- 
labor, nonproduced primary inputs (such as land and natural resources), 
since omitting this latter aggregate (“land”) will bias estimates of ag- 
gregate production functions as well as estimates of total factor pro- 
ductivity. This point has some applications for the current system of na- 
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tional income accounting in most countries, where land (and natural 
resources in general) is given a very minor partly because of data 
limitations, but partly because researchers have focused for the most 
part on reproducible capital and neglected the contribution of nonre- 
producible resources. 

A second problem with the definition of capital is that some national 
income accounting systems do not include inventories and goods in 
process as components of the capital stock. The essence of a capital 
good seems to be that it is a produced good, part of which lasts longer 
than the period under consideration. Thus, in agriculture, inventories of 
farm animals and feed and seed are generally large and should be in- 
cluded as components of the capital stock. This neglect of inventories 
seriously biases downward the contribution of capital in most industries. 
This point is well recognized, and Denison (19741, Kendrick (1976), 
and Christensen, Cummings, and Jorgenson (1976) all include in- 
ventory stocks as components of their capital stocks. However, when 
estimating production functions, many researchers (e.g., Woodland 
1975) omit inventories as components of their capital stock series. 

A final, related definitional problem has been raised by Creamer: 

Capital input is typically restricted to some combination of tangible 
assets although every analyst knows that an enterprise requires finan- 
cial assets, (cash and accounts receivable) as well as tangible assets 
in order to function. . . . However, financial assets lead a double life- 
one entity’s claim is another entity’s obligation. Thus, at the level of 
aggregation of the national economy financial claims and obligations 
cancel each other, except for the net balance of international claims 
which have been a relatively small part of U.S. stock of capital. If 
this is the reason for the exclusion of financial capital, it constitutes, in 
my view, still another argument in favor of a disaggregative approach. 
[Creamer 1972, p. 601 

An individual firm will generally hold an “inventory” of financial 
capital (or working capital, as it is sometimes called) during our 
Hicksian period, and the cost of holding this “inventory” is just as real 
a cost to the firm as a payment to labor. Aggregating across firms in the 
private business sector of an economy will not generally cancel out 
these financial claims: they will cancel only if we include households, 
governments, and the rest of the world in the aggregate. 

That financial capital is similar to physical inventories in some sense 
(both represent a real cost to a firm and to the private business sector of 
an economy) suggests that financial capital be treated like any other 
durable input in our accounting framework, and that financial capital 
should be included in any capital services aggregate, particularly since 
Creamer (1972, p. 60) suggests that there may have been substantial 
productivity gains in the use of financial capital since 1929, at least in 
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United States manufacturing. Unfortunately, we cannot insert financial 
capital into our production function as just another argument: the 
amount of financial capital a firm will require to produce a given out- 
put, given a vector of physical inputs, is simply not a well-defined 
quantity. 

One way of proceeding would be to exclude financial capital as an 
input into the firm’s “physical” production function, but to include 
financial capital as an input (along with labor, office space, etc.) into 
a “transactions” technology that would have the responsibility for sell- 
ing the physical outputs the firm produces in its “plant” and purchasing 
the inputs the “plant” requires. Normal credit arrangements and pay- 
ment procedures could be worked into the transactions technology. 

We have drifted into the domain of monetary theory, and the reader 
is referred to Fischer (1974) and Nagatani (1978) for further refer- 
ences and suggestions. At this point we can only conclude that Creamer 
has pointed out a serious conceptual omission from most capital aggre- 
gates and that it is not immediately clear how we can insert financial 
capital into a capital aggregate using our naive production model. 

Another definitional issue with respect to the scope of a capital ag- 
gregate has been raised by Christensen and Jo rgen~on’s~~  inclusion of 
the stock of household consumer durables in their recent estimates of 
the capital stock. Creamer makes the following comments on their 
procedure: 

This is a puzzling addition. . . . It is certainly inconsistent with 
the underlying definition of a capital good-one that is used to pro- 
duce other goods and services. Moreover, it is inconsistent with their 
own (Christensen-Jorgenson) statement that “the main analytical use 
of the production account is in the study of producer behavior. Reve- 
nue and outlay must be measured from the producer’s point of 
view.” . . . Moreover, the inclusion of consumer’s durables in the 
capital stock understates aggregate total factor productivity since the 
methodology of estimates is such that this sector makes no contribu- 
tion to prod~ctivity.?~ [Creamer 1972, p. 611 

Some further comments seem warranted. Christensen and Jorgenson 
have included in the private production sector of an economy the 
“process” that converts household stocks of consumer durables into 
service flows. Kendrick (1976) has also added consumer durables to 
the capital stock, justifying the procedure as follows: “This is merely 
an extension of the treatment presently accorded owner-occupied resi- 
dential structures and may be justified by the argument cited above- 
that shifts in sector ownership patterns should not affect investment, 
capital, or the associated income estimates” (Kendrick 1976, pp. 5-6). 

Thus, for some purposes the inclusion of consumer durables in a 
capital aggregate can be justified.’? However, since this discussion of 
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capital aggregation is in the context of the estimation of total factor pro- 
ductivity and production function estimation for the business sector of 
an economy that is oriented toward maximizing private profit, I would 
not recommend including consumer durables in a capital aggregate, 
since a household’s conversion of durable stocks into flows is not gen- 
erally a genuine business activity. 

To conclude our discussion about the domain of definition of a 
capital aggregate, let us examine Kendrick’s (1976) rather compre- 
hensive definition of the capital stock. Kendrick includes the following 
items in his capital stock estimates for the United States: 

1. business nonhuman tangibles, consisting of structures, land, natural 
resources, machinery and other durable equipment, and inventory 
stocks used in the private business sector; 

2. household nonhuman tangibles, consisting of household residential 
real estate, automobiles, other durable goods, and household 
inventories; 

3. government nonhuman tangibles, consisting of government struc- 
tures, machinery and equipment, and public capital (such as high- 
way construction) ; 

4. human tangibles, which are defined as outlays required to produce 
mature human beings (rearing costs); 

5.  research and development expenditures; 
6. education and training expenses; 
7. health and safety expenditures (one-half of all outlays for health 

and safety, which reduce mortality and disability are taken as rep- 
resenting investment) ; and 

8. mobility payments, which includes portions of unemployment in- 
surance benefits paid, job search and hiring expenses, and moving 
expenses. 78 

From our narrow viewpoint, concerned with productivity and pro- 
duction function estimation for the private business sector of an econ- 
omy, we would not recommend the inclusion of any of Kendrick‘s 
capital stock components beyond item ( 1 ) , business nonhuman tangi- 
bles, since the main effect of the investments listed in items ( 3 )  to (8) 
is to change the prices and possibly the qualities of the inputs a private 
firm utilizes; but these price changes are quite consistent with our 
model of producer behavior and do not require any special treatment. 
However, we can discern three possible exceptions to the general state- 
ment made above. 

First, if portions of the government capital stock (item 3 above) are 
leased to private firms, these rentals could be treated as intermediate 
inputs into the private sector. It would also make sense to aggregate 
these rentals of government capital together with the corresponding 
privately owned components of the business capital stock. 
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Second, the existence of certain "free" government-provided goods 
such as highways creates some conceptual difficulties with our basic profit 
maximization problems listed in section 8.4.1. For example, consider 
the first profit maximization problem in section 8.4.1, modified to allow 
for the existence of government public goods: 

(109) 
max (1 -ut)  { p I Y  - WWW - wBB - ptK}  

w.r.t. 
Y,W,B,K 

subject to Y = f (  W,B,K,R1,Rz), 

where all variables have been defined in section 8.4.1 except R1 = num- 
ber of miles of nonfreeway road utilized by the firm and Rz = number 
of miles of freeway used by the firm. If f is differentiable and an interior 
solution to the profit maximization problem exists, Y * ,  W*,  B*, K * ,  say, 
then the solution will satisfy the following first-order necessary condi- 
tions for (109): 

The value of the marginal products of R1 and R2 can be defined as 

(W*,B*,K*,R1,R2) = p 1  2 0 and 
pv aR, 

(114) 

respectively. Define the optimal output as Y* = f (  W*,B*,K*,Rl,RZ). If 
the production function exhibits constant returns to scale in all five inputs, 
then Euler's theorem on homogeneous functions implies 

af (W*,B*,K*,Rl,Rz) = p z  2 0, 

(115) pIY* = wwW* + WBB* + ptK* + p iR l+  PZRZ.  

If p 1  or p 2  are positive, then the firm will capture the positive mar- 
ginal products of the two free inputs R 1  and R2,  thus making excess 
profits. However, if there is free entry into the industry, new firms will 
enter the industry and the price of the output, pV,  will tend to fall. In fact, 
if the production function f (W,B,K,R, ,Rz) ,  with R I  and R2 held fixed, 
exhibits initially increasing returns to scale and eventual decreasing re- 
turns to scale in W,B,K,79 then for industry equilibrium the price of out- 
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put will be close to the average cost of production; that is, the following 
equation should (almost) hold for an individual firm in the industry: 

pgY* = wWW* + WBB" + p&*. 

Equations (1 15) and (1 16) imply that the shadow prices of the 
two types of road, p1 and p z ,  should be close to zero. 

With this highly simplified model in mind, we can return to our dis- 
cussion of whether to include certain government capital goods such as 
highways in a capital aggregate. The answer (from the viewpoint of the 
economic theory of production) appears to be yes, except that the price 
weights for these government capital stock components will be shadow 
prices whose magnitude will not generally be known. However, if we 
assume competitive producer behavior with free entry into each in- 
dustry using the public capital goods, then the price weights should be 
close to zero. In this case government capital goods would not show up 
in a capital aggregate constructed according to the index number 
formulas discussed in section 8.2.R0 

The third possible exception to my general statement that items (2) 
through (8)  of Kendrick's capital aggregate should not be included in 
a capital aggregate based on my naive economic model of producer 
behavior is item ( 5 ) ,  research and development expenditures. How- 
ever, I am unable to make any concrete recommendations on just how 
research and development expenditures should be treated when forming 
a capital aggregate: it depends on how R&D enters the underlying eco- 
nomic model upon which we base our aggregation procedures.*' 

The Time Period 

This discussion of capital aggregation based on the Jorgenson-Gri- 
liches economic model of producer behavior has thus far proceeded 
under the assumption that all components of the capital stock are 
freely variable during the period under consideration. Obviously, as we 
shorten our Hicksian period from, say, a decade to a week, an increas- 
ing number of inputs will become fixed rather than variable, and in 
these cases (observable) market prices should be replaced by (unob- 
servable) shadow prices, which equal the value of the marginal products 
of the fixed inputs. Since these shadow prices are not generally ob- 
servable, it will not generally be possible to construct capital aggre- 
gates based on our model of producer behavior when the time period 
becomes short enough to cause components of the capital stock to be- 
come fixed. 

In view of this, one might think that capital stock aggregates based 
on annual data would be "better" than ones based on weekly data. This 
is not the case, however: the annual model of producer behavior as- 
sumes that all inputs are freely variable and that the prices the producer 
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faces remain constant throughout the year when neither assumption is 
actually satisfied in practice, and thus neither annual nor weekly aggre- 
gates constructed on the basis of market data will be precisely equal to 
the “correct” aggregates, constructed using the appropriate shadow 
prices. 

In section 8.7 I will discuss how to build up “annual” aggregates 
from “weekly” aggregates, assuming that the “weekly” aggregates have 
been constructed correctly from the viewpoint of our economic model 
of producer behavior. 

Choice of Index Number Formula 

Unfortunately, there is no unique solution to the index number 
problem. Fisher’s “ideal” index number, which employs a geometric 
mean of the weights from both periods in a binary comparison, is 
neat, but it has no more fundamental economic rationale than using 
either first or last period weights! [Kendrick 1972, p. 951 

In section 8.2.4 I argued that there was a strong economic rationale 
for using Fisher’s ideal index number formula, since it is a superlative 
index number formula; that is, it corresponds to a flexible functional 
form, for the underlying production function. Moreover, we indicated that 
all superlative index number formulas approximate each other to the sec- 
ond order if changes in prices and quantities between the two periods are 
small, while the more commonly used Paasche or Laspeyres formulas 
approximate superlative indexes to the first order only. 

Given that the economic justification for using a superlative index 
number formula seems fairly strong, should we use the fixed-base 
method for forming a capital aggregate, or should we compare each 
period with the immediately preceding period-that is, use the chain 
principle? In section 8.2.4 I argued for the use of the chain principle, 
since, if it is used, price and quantity changes should be small, and all 
superlative index number formulas should generate virtually the same 
aggregate series, so that the choice of a specific superlative index num- 
ber formula becomes empirically irrelevant. 

To conclude this section, let me note that the construction of a 
capital aggregate is fraught with both theoretical and empirical diffi- 
culties, even taking it as given that we wish to construct an aggregate 
that would be used in the context of production function or productivity 
estimation. It appears to me that the major conceptual problems are in 
the determination of producer’s expectations about future prices and 
how to deal with the resulting uncertainty, while the major practical dif- 
ficulties are in the estimation of depreciation rates. 

With the above difficulties firmly in mind, let us turn now to a closely 
related topic: how to construct estimates of total factor productivity in 
the context of our naive model of producer behavior. 
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8.5 Capital and the Measurement of Technical Progress 

8.5.1 The Measurement of Total Factor Productivity with a 
Separable Technology 

For a brief but useful survey of the literature on the measurement of 
economic growth and total factor productivity, see Christensen, Cum- 
mings, and Jorgenson (1976). 

Jorgenson and Griliches (1967, 1972, pp. 83-84) advocated the use 
of the Tornqvist quantity index number formula Qo (recall section 8.2.3 
of this chapter) and the corresponding implicit Tornqvist price index 
Po in the context of the measurement of total factor productivity. In 
this section I repeat Diewert’s (1976, pp. 124-27) justification for their 
procedure. 

Jorgenson and Griliches (1972) use the index number formula 
Q o ( p o , p l ; r o , x l )  defined in section 8.2.3 not only to form an index of 
real input, but also to form an index of real output. Just as the aggrega- 
tion of inputs into a composite input rests on the duality between unit 
cost and homogeneous production functions, the aggregation of outputs 
into a composite output can be based on the duality between unit reve- 
nue and homogeneous factor requirements functioms2 I will briefly out- 
line this latter duality. 

Suppose that a producer is producing M outputs, (y1,y2, . . . ,yM) = y ,  
and the technology of the producer can be described by a factor require- 
ments function, g, where g(y) = the minimum amount of aggregate in- 
put required to produce the vector of outputs y.83 The producer’s unit 
(aggregate input) revenue functions4 is defined for each price vector 
P 2 OM by 

(1 17) r (p)  = max,{p*y : g(Y) 5 1, Y 2 OM}. 

Thus given a factor requirements function g, (1  17) may be used to 
define a unit revenue function. On the other hand, given a unit revenue 
function t( p )  that is a positive, linearly homogeneous, convex function 
for p ) ) O,u, a factor requirements function g* consistent with r may be 
defined for y ) )OM bys5 

(118) g * ( y )  = minh{h:p*y 5 r(p)A for every p 2 0,) 
= mink {A: 1 5 @)A for every p 2 OM such that p - y  

= 1 )  = l/max,{r(p) : p * y  =1, p 2 OM}. 

As usual, the translog functional form may be used to provide a 
second-order approximation to an arbitrary twice-diff erentiable factor 
requirements function. Thus, assume that g is defined (at least over the 
relevant range of ys) by 
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cjk In y‘j In Y‘k, for r = 0, 1, 

M M 

where 2 am = 1, cjk = ckj ,  2 
m = l  k=l 

cjk = 0, for j = 1,2,. . . , M. 
Now assume that yr ) ) Oaf is a solution to the aggregate input mini- 

mization problem min,{g(y) :pray = pr*yr, y 2 O M } ,  where p‘ ) ) OM for 
r = 0,1, and g is the translog function defined by (1 19). Then the first- 
order necessary conditions for the minimization problems along with 
the linear homogeneity of g yield the relations pr/p‘*y‘ = \vjg(y‘)/g(y+), 
for r = 0,1, and using these two relations in lemma (59) applied to 
(119) yields 

(120) 

where Qo is the Tornqvist quantity index defined by ( 3 8 ) .  
Thus the Tornqvist formula can again be used to aggregate quantities 

consistently, provided the underlying aggregator function is homogene- 
ous translog. 

Similarly, if the revenue function r(p) is translog over the relevant 
range of data and if the producer is in fact maximizing revenue, then we 
can show that r(pl)/r(pO) = Po(po,pl; yo,yl), the Tornqvist price index. 

Using the material above, we may now justify the Jorgenson and 
Griliches ( 1972) method of measuring technical progress. Assume that 
the production possibilities efficient set can be represented as the set of 
outputs y and inputs x such that 

g(Y1)/g(Yo) = Qo(p0,  P’; YO, Y’) 

(121) d Y )  = f ( x ) ,  

where g is the homogeneous translog factor requirements function de- 
fined by (1 19), and f is the homogeneous translog production function 
defined in section 8.2.4. Let p‘ ? ) O J f ,  wr ) ) O N ,  r = 0, 1 be vectors of 
output and input prices during periods 0 and 1 ,  and assume that 
yo ) ? OM and xo ? ) ON is a solution to the period 0 profit-maximization 
problem, 

(122) maxy,z{po*y - wO*x:g(y) = f ( x ) } .  

Suppose “technical progress” occurs between periods 0 and 1, which 
we assume to be a parallel outward shift of the “isoquants” of the ag- 
gregator function f ;  that is, we assume that the equation that defines the 
efficient set of outputs and inputs in period 1 is g(y) = (1 + T ) ~ ( x ) ,  
where T represents the amount of “technical progress” if T > 0 or 
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“technical regress” if T < 0. Finally, assume that y1 ) j OM and x1 ) ) ON 
is a solution to the period 1 profit-maximization problem, 

(123) max, . c { ~ l * ~  - wl*x:g(y) = (1  + T)f(X)}. 
Thus we have g(yo) = f(xo) and g(yl) = (1  + r ) f (xl) .  I t  is easy 

to see that y‘) ) OLM is a solution to the aggregate input minimization 
problem min,{g(y) : pr*y = pr*yr,y 2 Ox}, for r = 0,1, and thus 
(120) holds. Similarly, xr ) ) ON is a solution to the aggregator maxi- 
mization problem max,E{f(x) : W‘*X = wr*xr, x 2 ON}, for r = 0,1, and 
thus (43) holds. Substituting (43) and (120) into the identity 
g(yl)/g(yo) = (1  + r)f(xl)/f(xO) yields the following expression for 
(1  + T) in terms of observable prices and quantities: 

= QO(P~,P~,Y~,Y~)/QO<W~,W~,X~,X~) - 
Thus the Jorgenson-Griliches method of measuring technical progress 

can be justified if: ( a )  the economy’s production possibilities set can be 
represented by a separable transformation surface defined by g(y ) I 
f(x), where the input aggregator function f and the output aggregator 
function g are both homogeneous translog functions; (b)  producers are 
maximizing profits; and ( c )  technical progress takes place in the “neu- 
tral” manner postulated above.s6 

Since the separability assumption g(y) = f(x) is somewhat restrictive 
from an a priori theoretical point of view, it would be of some interest 
to devise a measure of technical progress that did not depend on this 
separability assumption. This can be done, as we shall see in the next 
section. 

8.5.2 The Measurement of Total Factor Productivity in the 
General Case 

Before analyzing a general M outputs, N inputs case, we warm up 

Suppose the technology of the producer can be represented by the 
with the one output, N inputs case.Ri 

following (time modified) translog production function f :  

(125) 
N Y N 

n = l  i = l  h = l  
lnf(x,t) = ( Y o  + 2 (Yn I n  xn + ?h 2 r, 

x 
8 P n  t In  xn + yr2, 

n = l  
(YUI In  xi In  x h  + P O  t + 
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where Y = f ( x , t )  is output produced during period t ,  and x = (XI, x2, 

. . . , xN) is a vector of inputs used by the firm during period t .  We note 
that f defined by (125) can provide a second-order approximation to an 
arbitrary twice continuously differentiable function of x and t .  With the 
following restrictions on the parameters, 

N 

n = l  
and 2 Pn= 0, 

f defined by (125) is linearly homogeneous in x ,  and the resulting func- 
tion can provide a second-order approximation to an arbitrary twice 
continuously differentiable function of (x , t  ) that is linearly homogeneous 
in x (see Woodland 1976). 

We interpret t as representing the effects of technological change. As 
t changes, the production function f shifts in the manner postulated by 
equation (125) above. Our present goal is to show how the impact ef- 
fect on output of technological change, T ( x , t )  =a l n f ( ~ , t ) / a t , ~ ~  can 
be estimated using only observable price and quantity data. 

Assuming that f exhibits constant returns to scale (i.e., that the 
restrictions [ 1261 above are satisfied), then application of the quadratic 
approximation lemma (59) or its consequence (64) to f defined by 
(125) and (126) yields the following identity: 

(127) In  f(x1, t l )  - In  f(x0,tO) = 
1/2[9vX l n f ( x 1 , t l )  + 9'0. lnf(x0,t0)] 

-[tl - to], 

where the notation is the same as in section 8.2.6. If we now add the 
assumption that the producer faces the input price vectors wo ) ) ON, 
w1 ) 0s during periods 0, 1 and that he competitively minimizes costs, 
then we can derive the usual identities (recall equation 23) : 

(128) v, In  f(x0,tO) = wo/wo~Xo; v, In  f (x1 , t ' )  = w'/w19x1.  

Substituting (128) into (127) yields the equation 
N 

n = l  
In  y l  - In yo = 2 [sin + SO,] In [X1,/XO,] (129) 
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where yr = f ( x r , t 9  and sr, E wr, x"~/w'*x' for r = 0,l  and n = 1,2, 
. . . , N .  Equation (129) can be rearranged and exponentiated to yield 
the following exact relationship : 

= ~ / Q o ( ~ o , w l , ~ o , x l ) ,  
Y O  

where Q o ( ~ o , ~ l , x o , ~ l )  is the Tornqvist quantity index in inputs. The 
left-hand side of (130) represents a theoretical expression for the 
cumulative effects of technical progress while the right-hand side of 
(130) can be calculated using observable data. If we define T' = a 
In f (x' , t ' ) /dt  for r = 0,1, then (130) can be rewritten as 

The expression (13  1 ) simplifies further if we make the additional 
assumption that f(x,t) = eootf(x,O), which is a strong form of Hicks's 
neutral technological change.s9 This assumption is equivalent to the ad- 
ditional restrictions on the parameters 

(132) & = O , n =  1 , 2  , . . . ,  N a n d y = O .  

With assumption ( 132), ( 13 1 ) can be rewritten as 

eSort --t 1 = [ 1 (133) Y /yoI/Qo ( ~ O , w ~ , x O , x ~ )  , 
where Po E a In f (x , t ) /a t  can be interpreted as a constant impact ef- 
fect of technological change. 

Consider now the multiple output, multiple input case. Recall the 
definition of the firm's variable profit function in sections 8.2.1 and 
8.2.6: 

1 0  

where S t r  is the firm's production possibilities set at time t+, (x',y) = 
( x r l ,  . . . , xrN, yl, . . . , yM) is a feasible vector of inputs and outputs for 
the firm at time tr, and p ) ) 0, is a vector of output prices at time tr.sO 

Recall that the variable profit function can provide a complete de- 
scription of the technology of a firm under certain conditions. Now as- 
sume that the firm's variable profit function is the following (time modi- 
fied) translog function :91 

(135) 
N A" 

n = l  i=l h = l  
In rI* (X',P',t+) = a0 + 2 a, In x'n + % 8 2 

N Y 

n = l  m = l  
a h  In xyi In X'h + Pot' + 2 Pn fr In + 2 
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M M  

m = l  k = l  
6,1nprm+'/Z 2 Z: 6mk1nprm1npry+ 

N Y  Y 

n = l  m = l  m=1 
2 2 Enm In xrn In prm + 2 Emtr ~ ' m  + ~ ( t ' ) ~ ,  

where x" =_ (Y1, . . . , xrN) ) ) ON is the vector of inputs utilized by the 
firm at time I", and pr = ( p r ,  . . . , prM) ) ) Ox is the vector of output 
(and intermediate input) prices that the firm is facing at time tr, r = 0,l .  
The parameters on the right-hand side of (135) satisfy the following 
restrictions (which ensure that I I ( x , p , t )  is linearly homogeneous in p) : 

(136) 
M Y 

2 8 m = 1 , 6 m k = 8 k m ,  2 S m y = O f o r k = l ,  . . . ,  M 
n C = l  m = l  

Y Y 

m=1 m = l  
2 enm = 0 for n = 1 , 2 , .  . . , N a n d  8 ern = 0. 

We will also assume that the firm's production is subject to constant 
returns to scale so that the following restrictions are also satisfied: 

(137) 
N N 

n=l  i=l 
3 a n  = 1, ( ~ i h  = a h i ,  2 ( ~ i h  = 0, h = 1,2 ,  . . . , N, 

N N 

n = l  n = l  
2 P n  = 0 and 2 enrn = 0 for m = 1 ,2 , .  . . , M. 

If the producer is (variable) profit maximizing at time t", r = 0,1, 
where y r  denotes the profit-maximizing vector of outputs (and inter- 
mediate inputs) and the producer is also cost-minimizing at time f, 
where w' ) ) O N  denotes the vector of input prices that the producer is 
facing at time t', then it can be showng2 that the following equations 
hold : 

(138)  yr/pr*yr = v P  In II* (xr,pr,tr) ; 

wr/wr*xr = v In II* (.xr,pr,tr) ; r z 0 , l .  

Note that the right-hand side of (135) is quadratic in the variables 
In xn,  In p m ,  and t .  Thus we can apply the quadratic approximation 
lemma ( 5 9 )  to (135) and obtain the following equality, which is 
analogous to (127) above: 

(139) In II*(xl,pl,tl) - In  II*(xo,po,P) x ?h [ 

.to veII*(xO,pO,t0) + 21 t7$ In rI*(x',p',t')] 

*[lnxl- lnxo]+1/2[j1vp lnII*(xl,pl,tl) + j O  

Vp II*(xo,po,tO)]*[lnpl - lnp0] 
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Now define the impact effect on real value added of technological 
change as ~ * ( ~ , p , t )  = a In I I * ( x , p , t ) / a t .  This simply a convenient 
way of summarizing the percentage change in real value added due to a 
small increment of time. In particular, define T * ~  = a In II*(xl,pl,fl)at 
and T * O  = a In II*(xo ,p0 , to) ) /a t .  Substitution of these definitions plus 
the relations (138) plus the identities II*(xl,pl,tl) = p l * y l  and 
II* (xo,po, tO) = po*yo into (139) yields 

After exponentiating both sides of (140), we get 
'1 10 1 0 

(141) e1/2[T + 7  1 [t  --t 1 = ~ o ( p ~ , p l , y ~ , y l ) / ~ o ( ~ ~ , ~ ~ , ~ ~ , ~ ~ ) ,  

an implicit Tornqvist index of outputs divided by the Tornqvist index of 
inputs. Thus the right-hand side of (141) is almost identicalQ3 to the 
right-hand side of (124), and the Jorgenson and Griliches (1967, 
1972) measure of technical progress can be (approximately) justified 
in the context of a general (not necessarily separable) technology. 

(142) Pn = 0, n = 1,2,. . . ,N,  ern = 0,  m = 1,2,. . . ,M 
and y = 0. 

Then II* ( x , p , t )  = ePot II* (x ,p ,O)  = II* (xePot,p,O) ; that is, technical 
change is of the primary factor augmenting strongly Hicks's neutral 
variety. Then 7.l = T * O  = PO and (141) becomes 

Finally, suppose II* satisfies the additional restrictions : 

(143) 

Usher [1974, p. 2781 has criticized the use of the continuous time 
Divisia index (recall section 8.2.3) in the measurement of total factor 
productivity. I conclude this section by evaluating my measure of the 
residual (141) in the light of Usher's objections. 

Usher's (1974, pp. 277-82) first objection to the Divisia index is 
that it will not give the correct answer unless the technology is homo- 
theticg4 and technical change affects the technology in a Hicks neutral 
manner. In my model the technology is restricted to be homothetic, 
since I have imposed constant returns to scale on my technology by the 
restrictions (137) above, and thus this part of Usher's objection applies 
also to my model. However, we do not require Hicks neutral tech- 
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nological change in my model: isoquants are allowed to twist owing to 
technical change. 

Usher’s (1974, p. 278) second objection to the Divisia index is that 
it is defined using time as a continuous variable but has to be computed 
using some sort of discrete time approximation, and that this approxi- 
mation will introduce errors that will possibly cumulate over time. My 
method of calculating the residual seems free from this defect of the 
Divisia index, since (141) can be evaluated as an exact equality using 
discrete time data. However, in reality my method is not entirely free 
from this criticism, since it is unlikely that my modified translog vari- 
able profit function n* defined by (135) could provide a very accurate 
approximation to the actual technology we are modeling for very long 
periods of time.95 

Usher’s (1974, p. 278) third criticism of the Divisia index also ap- 
plies to my formula (141): the formula depends on the assumption 
that there is competitive price-taking behavior on the part of producers. 
However, the assumption of competitive behavior can readily be relaxed 
in theory: if there is monopolistic pricing behavior on the part of a 
producer, all we have to do is replace the observed w, p prices that occur 
in (141) with the appropriate marginal prices.s6 In practice this is ex- 
tremely difficult to do. 

Usher’s (1974, p. 288) final criticism of the Divisia index methodol- 
ogy is more subtle than the criticisms above and deserves to be ex- 
tensively quoted: 

The 1965 graduate is equally productive in some occupations, 
more productive in others, and he possesses skills that were unknown 
in 1940 because they depend on technology developed in the inter- 
vening period. The point I am making is that the relative wage of 
college graduates has been preserved because, and only because, 
technical advance has brought forth new skills and has made it 
profitable for people to acquire these skills, so that what we measure 
as labour input contains a very large component of technical change. 
Inputs with the same name are not the same inputs at different periods 
of time. . . . These considerations suggest that the use of the Divisia 
index coupled with the practice of treating factors of production with 
identical names as though they were identical factors of production 
may be leading us to attribute a disproportionate share of observed 
economic growth to the mere replication of factors of production, 
and may conceal the vital role of invention. 

Obviously the above criticism applies with equal force to my formula 
(141). Of course, one method of attenuating the force of Usher’s 
criticism would be to treat changed inputs as new inputs. This leads us 
to consider the new goods problem, a problem that will be considered 
in section 8.6. 



495 Aggregation Problems in the Measurement of Capital 

Before studying the new goods problem, we will study one additional 
issue in the measurement of total factor productivity: the problem of 
defining an aggregate over sectors (or producers) measure of technical 
change. 

8.5.3 Sectoral Estimates of Total Factor Productivity versus 
Economywide Measures 

Domar (1961), in a classic paper,97 raised the issue of working out 
a method of measuring technical progress that would be invariant to the 
degree of aggregation and integration of processes (at the firm level), 
firms, industries (aggregates of firms) , and sectors (aggregates of in- 
dustries): "We should be free to take the economy apart, to aggregate 
one industry with another, to integrate final products with their inputs, 
and to reassemble the economy once more and possibly over different 
time units without affecting the magnitude of the Residual. The latter's 
rate of growth should, therefore, be invariant to the degree of aggrega- 
tion and integration and to the choice of time unit, be it a year or a 
decade" (Domar 1961, pp. 713-14). 

Suppose we have two time periods, J sectors (or processes, or firms, 
or industries), and that the constant returns to scale technology of each 
sector can be represented by a variable profit function (which can be 
interpreted as a value-added function) 98 P ,  where 

j = 1,2, . . . ,I ,  

where Sit' is the jth sector's production possibilities set at time t', 
x'j = (xrj l ,  . . . , x"jNj) ) ) ONj is an N-dimensional vector of primary in- 

puts used by sector j during period r, wrj = (wlrj, . . . , wrjNj) ) ) ON 

is the corresponding vector of primary input prices the jth sector faces 
during period r, p' = (prl, . . . , prjr) ) ) O,u is the vector of positive final 
product (and intermediate input) prices all sectors face during period 
r ,  and yrjl, . . . , yrjlw) is the vector of outputs produced (and intermediate 
inputs used) by the jth sector during period r.  As usual, if y'j, > 0, 
then the jth sector is producing the mth good during period r while if 
y'j, < 0, then the mth good is being utilized as an input by the jth sector 
during period r.  Thus the components of yrj are not restricted in sign 
but pr*yrj > 0, since the value of outputs (minus the value of inter- 
mediate inputs used), pr*yrj, equals the value of primary inputs used by 
the jth sector during period r, wrj*xrj > 0. Note also that the primary 
inputs need not be the same across sectors, but that each sector faces 
the same output (and intermediate input) prices. 

j 
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Define the aggregate real value function II as 

ll(xr1, . . . , xrJ, pr,  t r )  E max,,', . . . ,,;{pro 8 y' (145) (ir, ) 

Thus aggregate value added is equal to the sum of sectoral value added. 
Define the aggregate net output vector in period r as 

(147) 

and define the "aggregate" vectors of inputs and input prices as 

(148) x"= ( x r * , x d , .  . . , x r J ) ,  r = 0, l  

(149) 

Finally, define the sectoral technical change impact coeficients dur- 
ing period r (assuming differentiability of the l-Ij with respect to time) 
as 

(150) 

and define the aggregate technical change impact coe@cients during 
period r as 

(151) T " =  a In  II(xr,pr,tr)/at ,  r = 0,l. 

Using (146) above, it is easy to show that the following relationship 
between the sectoral coefficients rrj  and the aggregate technical change 
impact coefficient T" holds: 

wr= (wrl, wr2,. . . , wrJ),  r z 0,l. 

T r j  = a I n  lTj(xr.i,pr,tr)/at, r = 0,l; j = 1,2, . . . ,I ,  

J 

j=1 
r 2 ~ " j  s'j, r = 0 3 9  1 

using the definitions (150) and defining the sectoral value added shares 
as s"] = IIj( xrj,p",t") /II ( xr ,  pr,tr) = pr*yr~/pr*yr.  

Recall that in section 8.5.2 I indicated that, under certain conditions, 
an arithmetic average of the impact coefficients % [ T O  + T'] could be 
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calculated using only observable price and quantity data. Using (152) , 
we see that the following relationship holds between the sectoral and 
aggregate average technical change coefficients: 

J 

j = 1  
%[To + T 1 ]  = ,x %[To’soi + T1’S1’]. (153) 

Now suppose that for each sector the technology can be adequately 
represented by a sectoral translog variable profit function W* similar to 
the function defined by (135) ,  (1 36), and (137) .  Then for each sector 
we can derive an identity similar to (141) : 

1t ‘ 1  0” 
(154) el/2[Tof+T 1 [ t  - t  1 = ~ o ( p o , p ~ , y o ~ , y ~ ~ ) /  

Q , , ( W ~ ~ , W ~ ~ , ~ ~ ~ , ~ ~ ~ )  for j = 1, 2, . . . , 1. 

Unfortunately, the relations (154) do not enable us to calculate the 
terms ‘ / Z [ T O ~ S O ~  + T1’+], which are needed to calculate the average of 
the aggregate technical change impact coefficients % [ T O  + T 1 ]  via for- 
mula (153) .  However, if we assume that the sectoral translog variable 
profit functions ni* satisfy the additional restrictions similar to (142) 
(so that technical change is strongly Hicks neutral in each sector), then 
we can show, as in section 8.5.2, that 

- l i -  j ’ (155) - T = T for]= 1, 2 , .  . . ,I ,  

and the relations (1 54) can be rewritten as 

(156) 
‘ 1  0 

e9[t --t 1 = Go (pO,pl,yoj,yli) / Q o  ( W ~ ~ , W ~ ~ , X ~ J , X ~ ~ )  , 
j = 1 ,  ..., 1, 

which means that the (constant) sectoral technical change coefficients 
can be calculated using observable price and quantity data for the two 
periods. Using (153) ,  (155), and (1561, it can be seen that the cor- 
rect average aggregate technical change impact coeficient ?/2 [TO + T I ]  

can be calculated from observable data using the following equations : 

(157) 

J 

j=1 

= n [oo (pO,p~,yO~,yli)/Qo(~Oi,~lJ,~Oi,~li)] 1/2[8°i+81i1 

E f(pO,pl,yO,yl,WO,W~,~~,x~). 

0 

(158) 

Thus the correct aggregate measure of technical change, 

+‘l] [ t l - toJ,  is equal to a geometric average of the sectoral measures of 
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1 0  
technical change, eTiCt - - t  1,  with weights equal to the sector’s average 
share of value added, Yi [sOj + s’jl (which sum to unity). 

Suppose now that’ we (incorrectly) assume that the technology of 
the “economy” (i.e., the aggregate over sectors technology) was repre- 
sented by a translog variable profit function II* (xr,pr,tr) similar to that 
defined by (135) ’  (1361, and (137) (except that here xr= (xT1, x ~ ,  
. . . , xrJ) and each xrj ) )OAT7 is a vector and we calculated the following 
incorrect average aggregate technical change impact coefficient ?4 [T*O 

+ T*l] from observable data using the following equation that corre- 
sponds to formula (141 ) : 

(159) 
J J 

j=1 j=1 
2 Y”, .x 

(160) E g ( p ~ , p ~ , y ~ , y ~ , w ~ , w ~ , x ~ , x ~ )  . 
The formula (159) is incorrect because we are assuming that each of 
the sectoral technologies is precisely representable by a translog variable 
profit function satisfying the appropriate restrictions, and thus the 
aggregate technology is not precisely representable by a translog vari- 
able profit function. However, the aggregate technology could be up- 
proximated to the second order by an aggregate translog variable profit 
function. Thus we would hope that the two estimates of average aggre- 
gate technical progress defined by (157) and (159) would give ap- 
proximately the same answer when applied to empirical data. This 
hope turns out to be justified, as the following theorem indicates. 

(161) Theorem: The functions f and g, defined by (158) and 
( 160), respectively, differentially approximate each 
other to the second orderDg at any point where p o  = p l ,  
wo = wl, xo =xl and yo = yl. 

The proof of this theorem is a very tedious series of computations that 
can be simplified using tricks similar to those used in Diewert (1978b). 

8.6 The New Goods Problem 

8.6.1 
One of the problems that has troubled index number theorists and 

practioners is constructing price and quantity indexes that are compa- 
rable over a period when new commodities are being introduced into 
the economy. For example, how can one construct meaningful price 
and quantity indexes of capital during a period of time when new capi- 

New Goods and Index Number Formulas 
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tal goods are constantly appearing on (and disappearing from) the 
market? 

My solution to the problem is quite conventional:loO assume that the 
consumer (or producer) is consistently trying to solve the aggregator 
maximization subject to an expenditure constraint problem max,(f(x) 
: p' x 5 p' xr, x 2 OAT} for r = 0,l except that in period 0, when 
some goods are not available, the aggregator maximization problem has 
additional constraints imposed upon it that set the components of 
x = (x1,x2, . . . ,xX) that correspond to unavailable goods equal to zero. 

For the sake of definiteness, let us suppose the first good is the new 
good that is introduced into the economy at some stage. 

Obviously, if a given price and quantity are always zero, then when 
calculating a price or quantity index the zero good can simply be 
omitted from the computations. However, if a good is at a zero level 
during period 0 and nonzero during period 1, it is clear that the 
Tornqvist quantity index number formula Qo cannot be used, since the 
logarithm of zero is minus infinity. The Fisher quantity index Q z  is 
well defined even if a subset of prices and quantities is zero, but we shall 
show below that it is not in general correct (from the viewpoint of the 
theory of exact index numbers) to use Q2 without some modification. 

Suppose that the nonzero prices and quantities in period 0 are po2,p03, 
. . . , pON and xo2,  xo3, . . . ,xoH, while the nonzero prices and quantities 
in period 1 are p l  I (pll, p l ~ ,  . . . , p l ~ )  and xl= (xll, xlp,. . . , 
x l N )  respectively. We suppose that the quantity of good 1 in period 0 is 
xol = 0. In some circumstances we will often incorrectly assume that 
the price of good 1 in period 0 is also zero. However, when a new good 
enters the domain of our model during period 1, we should attempt to 
estimate the reservation price of the new good for the previous period 
that would rationalize the zero demand for the new good of the previous 
period. 

Thus the theoretically correct procedure would be to form an esti- 
mate of the (reservation) price of good 1 in period 0, pol > 0, say, and 
then apply our usual index number formulas ( P z  and Q 2 ,  say), using 
p" = (p01 ,p02 ,  . . . , p o N ) ,  x0 = (0, x02, . . . , xoN) and the period 1 price 
and quantity vectors, p' and xl .  Let us denote the theoretically correct 
Fisher price index in the usual manner as: 

(162) P2(p",p1; X 0 , X l )  = [ (p'*x"1*xl) /  

(pO*xOp"*x1) 11'2. 

Note that the theoretically correct index depends on the empirically 
unobservable price pol > 0. If we incorrectly set pol = 0 and substitute 
the resulting price vector into (162), we obtain the following incorrect 
Fisher price index (recall that xOI = 0) : 
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Another theoretically incorrect Fisher price index could be obtained 
by simply ignoring good 1 for both periods; that is, set pol = p'1 = xol 
= xll = 0 and substitute the resulting price and quantity vectors into 
(162) to obtain the following index: 

(164) P*2(p"p1; x0,x') = 
P2([0,P02, * * . , P O N I ,  [0,P12, * - * , pN21; 

[0,x02, * . . , XONI, E0,X12,. . . ,X1NI>  

The virtue of the incorrect indexes P*2 and P**, is that they may 
be calculated without a knowledge of the empirically unobservable 
PO1 > 0. 

We now evaluate the bias in each of the incorrect index number 
formulas; that is, we take the ratio of (163) to (162) and the ratio of 
(164) to (162) : 

where soll = pol xll/p0=x1, the share of good 1 using period 0 prices 
and period 1 quantities, and 

and period 1 quantities. 

$11 1 - = p 1 xll/pl*xl, the share of good 1 using period 1 prices 

Several points immediately become apparent. ( a )  The Fisher price 
index P2** that incorrectly sets the price of good 1 equal to zero for 
period 0 is always biased upward. ( b )  The Fisher price index P*2 that 
incorrectly ignores the existence of good 1 for both periods need not be 
biased. The bias will be zero if pll/pol = pl*xl/po*xl = Pp(p0, 
pl;xo,xl);  that is, the bias will be zero if the relative change in the 
price of good 1 over the two periods is equal to the general change in 
prices as measured by a Paasche price index. In general we would ex- 
pect that the relative price of good 1 would be higher in period 0 when 
good 1 is not yet being demanded; that is, we would expect that 
pll/pol 5 pl*xl/po*x', in which case 
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(167) P2(p0,p1;  X 0 , X 1 )  2 P*2(p0,p1; X 0 , X 1 )  

< P* * 2 (p0 ,p l ;  x0,x' ) . 
Thus, in general P*2 will probably have a upward bias, while P**2 

will definitely have a larger upward bias. Hence, in empirical applica- 
tions where nothing is known about the magnitude of the reservation 
price, pol, I would recommend the use of P*2 rather than P**, (which 
is sometimes used). 

The quantity index corresponding to P*2 is defined by deflating the 
actual expenditure ratio (remember xol = 0) by P*2:  

/ P * 2  (p0 ,p l ;  xO,x1) = [ p l * x l / p o ~ x o ] / P * 2  (p0 ,p l ;  X O , X 1 ) .  

Thus the quantity index Q*2 can be calculated without a knowledge 
of p o l .  Note that P*2 and Q * 2  are consistent with the weak factor re- 
versal test. 

In the following section we will consider a method for obtaining 
empirical estimates of demand reservation prices. 

8.6.2 

Let us consider a slightly more general situation than the model of 
the previous section. We now suppose that only the first K goods to be 
aggregated are available in period 0 where 1 < K < N and that N 
goods are available in period t ,  t = 1, 2, . . . , T .  Then the period 0 
aggregator maximization problem is 

(169) 

A Simple Econometric Approach to the New Goods Problem 

max, , 5 , .  . . ,2 {f(x1,~2, .  . . ,XR,  0 , .  . . $1: 
1 2  R 

K 

2 
k = l  

p 0 k &  5 Yo, x k  2 0, k = 1, 2, . . . , K}, 
where Y o  > 0 is period 0 expenditure, and the period t aggregator 
maximization problems are 

(170) max5 ,$ , . . . ,, { f (x1 ,x2 ,  . . . , X N >  : 
1 2  N 

N 

2 P t k X k  5 y t , X k  2 0, k = 1,2,. . . , N } ; t  z 1, .  . . ,T, 
k = l  

where Yt  > 0 is period t expenditure. Denote a solution to the period 0 
aggregation maximization problem by the K-dimensional vector fo = 
(xo1,xo2, . . . , x ° K ) ,  and define the N-dimensional vector xo = ( x O I , X O Z ,  

. . . , xoR,O, . . . ,0) = ( i 0 , O N p K )  and similarly denote period 0 prices by 
the K-dimensional vector bo = (po1 ,po2 ,  . . . , p o x ) .  Denote a solution to 
the period t aggregation maximization problem by the N-dimensional 
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vector xt = ( x t l , x t Z , .  . . , x t N )  and define the period t price vector as 

The “demand reservation prices” pOk+l,  . . . ,poN are defined to be 
prices that “rationalize” the consumer’s or producer’s choice of xo in 
period 0, assuming that the new goods were available in period 0; that 
is, ( P O I C + ~ ,   PO=+^, . . . , p o N )  is a set of period 0 demand reservation (or 
shadow) prices if xo, a solution to (169), is also a solution to: 

(171) 

P t  = (Ptl,Pt2, . . . ,p%) ) ) O N .  

max,{f(x) : po*x 2 p0*x0, x 2 O N } ,  

where Po = (PO,PO$+l, P 0 k + 2 ,  . . , P O X ) .  

If f were differentiable at xo and we knew the functional form for 
f, p o  could be defined by using the first-order conditions for the con- 
strained maximization problem ( 17 1 ) (after eliminating the Lagrange 
multiplier) ; that is, po/p0-xO = V,f(x0)/x0*Vf(xo) or, since po*xo 
= po.i.0 

(172) po = (~~~~~)cl,f(x~)/x~~Vf(x~). 

Thus, if the functional form for the aggregator function f were known, 
formula (172) could be used to estimate the “shadow” price compo- 
nents pOrc+l, . . . ,poN of p o  = (Po, p o k + l ,  . . . , p o N )  = (pol, . . . , PO*,  

P 0 k + l ,  * * * $ O N ) .  

Now assume f = f r  for some r > 0101 where the quadratic means of 
order r aggregator functions f,. were defined in section 8.2.4: 

Assuming that all components of .fo are nonzero, the Kuhn-Tucker 
conditions for the period 0 aggregator maximization problem (169) 
imply : 

(174) f i 0 / p * z o  = V,-fr(fO, 0 , - K > / f r ( P ,  O N - K ) .  

Similarly, assuming that all components of x1 are nonzero,1o2 the 
Kuhn-Tucker conditions for the period t aggregator maximization prob- 
lems (170) imply: 

(175) p t / p t * x t =  V,f , . (~~) / f , . (x~) ,  t = 1 , 2 , .  . . , T .  

Make the base period normalization : 

(176) f , ( i O ,  O N - K )  = 1. 

Now regard the system of equations defined by (174), (175), and (176) 
as a system of equations in the unknown aii parameters occurring in f r  

defined by (173) ; that is, we are back to method I (recall section 
8.2.2) for the determination of an aggregator function. The equations 
(174)-( 176) are particularly simple if r = 1 or r = 2. Once the para- 
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meters aij that occur in the definition of f,. have been statistically deter- 
mined, estimated demand reservation prices for period 0 can be cal- 
culated using formula (172). However, in order to estimate econo- 
metrically the N ( N  + 1) /2  aij parameters,1°3 we will require that the 
number of observations T + 1 be large relative to the number of goods 
N .  In many practical situations, this condition is unlikely to be met. 

8.6.3 The Hedonic Approach to the New Goods Problem 

Many capital goods (e.g., trucks) came in so many varieties that it 
is possible to think of the good as being indexed by varying amounts 
x1,x2, . . . ,XN of N continuous characteristics. For example, in Griliches’s 
(1961) classic work,lo4 automobiles were indexed by the continuous 
variables horsepower, weight, and length in addition to some discrete 
variables. In this section I will attempt to provide a theoretical justifica- 
tion for Griliches’s hedonic price index approach. 

Let us suppose that the producers of “trucks” can produce a truck 
indexed by the vector of characteristics x 3 (x1,x2, . . . , xN) in period r 
at a price P, . (x)  equal to the minimum cost of production: 

(177) P , ( x )  E C(w‘,x) ,  

where C is a “truck” producer’s joint cost function, wr is a vector of 
input prices the truck producer faces during period r, and x is the vector 
of characteristics that indexes the truck, It can be shownlo5 that, under 
reasonable assumptions on the technology, the joint cost function C 
will be nondecreasing, linearly homogeneous, and concave in the input 
prices w, and, assuming that we are measuring characteristics so that 
more of a characteristic increases the cost of a truck, then C will be 
nondecreasing and concave in the vector x (assuming that the underly- 
ing technology is convex). In addition, we make the not-so-reasonable 
assumption that the technology is subject to constant returns to scale, 
so that C is linearly homogeneous with respect to x as well as w. 

Another producer who uses “trucks” as an input into his productive 
process will want to solve the following profit maximization problem: 

where uo is the number of “trucks” with characteristics x purchasedlo6 
during period r at price Pp(x), u E (ul,u”) 5 (u1,uz,u3,. . . , uM) is a 
vector of nontruck outputs (indexed positively) and inputs (indexed 
negatively) produced and utilized by the producer, p r  5 (pr1,pr2, . . . , 
p r M )  ) ) OM is the vector of nontruck prices facing the producer during 
period r, and t is the producer’s transformation function.loi Note that 
we are assuming that characteristics enter the producer’s transformation 
function as uox = (uoxI, u,&, . . . , u O x N ) ,  the number of “trucks” pur- 
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chased times the per truck vector of characteristics. This is not an 
innocuous assumption. Now define the total characteristics purchased 
vector y as 

(179) y 3 uox 

and substitute (177) and (179) into (178). Making use of the linear 
homogeneity in x property of C, C(wr,x)uo = C(w',uox), (178) be- 
comes 

(180) max,,,,{pp*u + C(wr,y) : u1 = t(ii,y), u = (ul , i)}.  

If t is differentiable with respect to its arguments and C is differen- 
tiable with respect to the components of y, then a solution up, y' to 
( 180) will satisfy the following conditions : 

(181) pr = (P'l, P'2, . . . 7 P ' M )  = A'(1, a t < i r , y r > / a u 2 ,  * 

at(u',Y'/auM) 9 

., 

(182) v,C(w',y') = A' V, t($,y'), r = 1, 2, . . . , T ,  

where V, C(wr,yr) = (aC(wr,y') /ayl,  . . . , ~C(W' ,Y ' ) /~YM) , V,, W,Y'J 
= ( at(u"',y') / ay l ,  . . . , at (2 ,y r )  / a y N )  , ur = ( url, ii'), and A" is the 
Lagrange multiplier for the constrained maximization problem ( 180). 

From ( 1  82) it can be seen that the partial derivative aC(w',y') /aYn 
can be interpreted as the price of one unit of the nth characteristic in 
period r ,  Prn; that is, define 

(183) 

whereP = (Prl ,Pr2,  , . . , P r y )  is a vector of characteristic prices during 
period r.  The constant returns to scale property of C in y implies that 

(184) 

Thus, if econometric estimates of the "truck" producer's joint cost 
function are available and if we can observe a purchasing firm's input 
of "trucks" uTo with characteristics x' during period r, then we can 
calculate the characteristic prices P using (1 83),  and we can decompose 
the purchasing firm's expenditure on "trucks," P , ( x )  ur0, into a price 
component P' and a quantity component yr. At this point, standard in- 
dex number formulas can be used to form a "truck" aggregate for the 
purchasing firm. 

A further useful specification of this model is possible. Suppose the 
truck-producing technology is separablelo8 so that the joint cost function 
C decomposes in the following manner: 

(185) C(W,X) = c (w)g(x ) .  

P' SES 0, c (w",y') , 

P y '  = c (w',y') = c (w',x') u',,. 
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The effect of the additional assumption (185) is that a combination 
of cross-sectional and time-series analysis can be used to estimate the 
parameters of C ;  that is, we can econometrically estimate the para- 
meters that occur in the following equation: 

(186) r = 1 ,  2, . . . , T ;  j = 1, 2, . . . , J ,  

where a, = c(w')  and Pl.(xrj)  = C(wr, x") is the price of a "truck" 
with characteristics xrj purchased by the jth firm during period r. 

If, in addition, the function g in (185) can be approximated by the 
translog functional form, then (186) can be rewritten as (after taking 
logarithms of both sides) : 

P,(xrj)  = a,.g(x'j), 

N 

N N  

n = l  m = l  
+ Vi 8 8 anm In xrjn In xr', 

r = 1,2, . . . ,T; j = 1,2,. . . ,J ,  
N s 

n = l  n = l  
where 2 a,= 1 ,  anm = am, and 8 an,= 0 for m =  1,2,. . . , N .  

If we further specify that anm = 0 for all n,m, then the model defined 
by (187) becomes very close to Griliches's (1961) classic hedonic 

prices model. However, if anm = 0 for all n,m and an > 0 with 8 
a, = 1, then the function glo9 reduces to the Cobb-Douglas function 
that is concave in x instead of being convex in x .  Thus the Griliches 
model cannot be obtained as a special case of our model (187),  which 
is based on the assumption that the "truck" producer's technology is 
separable. However, if we assumed that the consumers of "trucks" all 
used a concave, linearly homogeneous, weakly separable aggregator 
function f in the characteristics x in order to form a "truck" aggregate 
f ( x ) ,  then instead of (186) we would obtain the model P,(x'j) = a, 
f ( x ' j ) ,  where a, can be interpreted as the price of the "truck" aggregate 
during period r .  If we further specify f to be the translog aggregator 
function, we would again obtain the system of equations (187),  but 
now the Cobb-Douglas case is perfectly consistent with this second 
model of producer behavior. 

There are many difficulties with these theoretical treatments of the 
new goods problem in the context of a continuous characteristics model. 
However, in certain industries it should be possible to modify these 
models into empirically useful techniques.l1° 

We have discussed the problems of aggregation over goods and ag- 
gregation over producers, but we have not yet discussed the problem 
of aggregation over time. 

x 

n = l  
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8.7 Aggregation over Time: The Problem of Seasonality 

All the analysis thus far has been based on the implicit assumption 
that the time under consideration is a year, or a decade, or some period 
where seasonal influences are absent. The questions I address in this 
section are: ( a )  how should "monthly" (or weekly) indexes be con- 
structed ( b )  how should "annual" indexes be related to the monthly 
indexes? These questions are relevant to the problem of forming capital 
aggregates as well as other aggregates. 

Zarnowitz (1961) looks at the problem of constructing seasonal in- 
dex in an excellent paper. I extend his analysis a bit by utilizing some 
of the results discussed earlier in the present paper. 

Suppose xrm is a solution to the following producer (or consumer) 
aggregator maximization problemlll in year r and month m: 

(188) 

where prm = (pml, p m z ,  . . . , pmX) ) ) Ox is the vector of goods prices 
facing the producer (or consumer) during year r, and month m, 
ym = (yrml, y'",, . . . , ~ ' ~ $ 1 )  ) ) 0, is a vector of variables that expresses 
weather and seasonal taste variations in year r and month m, and f is 
the producer's production function (or the consumer's subutility func- 
tion) that is a function of both the goods vector x 3 (xl,xZ, . . . , XN) 
and the vector of seasonal variables yrm. Suppose further that the ag- 
gregator function f can be closely approximated by a linearly homo- 
geneous in x translog aggregator function f*(y,x) where f*  is defined 
exactly in the same manner as D* was defined equation (85). Then we 
can prove the following result in exactly the same manner as equation 
(70) or theorem (84) was proved: 

(189) Theorem: Qo (p'", ps", xrm, xs") = f*(y*, xs")/ 

where Qo is the Tornqvist quantity index and the vector of average 
seasonal variables y* is defined by y* = ( Y * ~ ,  y*,, . . . ,Y*~[) where 

The proof of this theorem rests on the assumptions of: ( a )  optimiz- 
ing behavior, ( b )  the translog functional form for the aggregator func- 
tion, and ( 3 )  the quadratic approximation lemma (59). 

We can now attack the questions that were posed at the beginning of 
this section. First, should the monthly indexes be computed using the 
chain principle across months within a year, or should we construct 
twelve separate monthly indexes, chaining the twelve indexes across 
years? Thus we could calculate the Tornqvist indexes Qo (p'", p r ,m+l ,  
X ~ " , X ' ~ ~ + ~ ) ,  or the twelve monthly Tornqvist indexes Qo (p'", p'+lvm, 

xrm, x'+l,"), m = 1,2,. . . , 12. In view of theorem (189) above, it 

max,{f(ym,x> : prm*x 5 pmL*xrm, x 2 O X } ,  

f*(Y*, X r t n ) ,  

y*j = (~'"j y5m,)1'2, j = 1, 2, . . . , M. 
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seems that the latter procedure of constructing twelve monthly indexes 
would be better in normal circumstances, where we would expect the 
seasonal variables y"" to repeat themselves every twelve months. Thus, 
if y'" = yr+lsm, then theorem (189) tells us that we can calculate pre- 
cisely the ratio we are interested in, f*  ( y r+ l lm,  ~ ~ + l , ~ ) / f *  (yrm,xrm), by 
evaluating the Tornqvist index, Qo(prm, pr+lpm , ¶  xrm xr+lsm), using ob- 
servable price and quantity data. This conclusion agrees with that 
reached by Hofsten and Zarnowitz, as the following quotations indicate. 

This difficulty is especially obvious if seasonal fluctuations are 
considered. It is unnatural to accept an index which may after a year 
give a result different from 1, if the prices have returned to their 
initial values. . . . Yearly links should then be used. [Hofsten 1952, 
P. 271 

Since 1887, when Marshall first advanced the chain system and 
Edgeworth seconded it, many students of index numbers have come 
to look upon the chain index as the standard statistical solution to 
changing weights. But careful consideration must be given to the 
question of how well chain indexes can be applied to the seasonal 
weight changes with whose specific features they were surely not de- 
signed to cope. 

It is easy to demonstrate that a chain index with varying weights 
does not fulfill the test of proportionality (or identity). . . . Thus, on 
the identity test, the indexes for the same seasons should be equal, 
too, but they are so only for the fixed-base, not for the chain, 
formulae. [Zarnowitz 1961, p. 2351 

Second, given that we are going to construct twelve monthly indexes, 
how should these indexes be related during the base year, r = O? A 
reasonable procedure would be to use the Tornqvist quantity index 
formula to construct the following eleven numbers, which could be used 
to compare the levels of the twelve monthly indexes during the base 
year: Q O ( p o m ,  p o - m + l  9 5  xorn xoqrn+l), rn = 1,2, . . . , 11. Theorem (189) 
can then be used to provide an economic interpretation of the resulting 
indexes. We should also note at this point (as does Zarnowitz 1961, p. 
244) that the problem of disappearing goods giving rise to zero prices 
and quantities is particularly acute when we deal with seasonal indexes, 
and the reader is reminded of the discussion of the new goods prob- 
lem in sections 8.6.1 and 8.6.2. The techniques discussed there can also 
be used in the present context. Summarizing the discussion thus far, I 
have recommended that the chain principle across months during a 
base year be used to construct monthly indexes for the base year, and 
then the chain principle across years be used to construct twelve sep- 
arate monthly indexes. This procedure is of course not invariant to the 
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choice of the base year, but in practice we would expect deviations 
from circularity112 to be rather small. 

Finally, there is the question of how an annual index should be re- 
lated to the monthly indexes. In theory, the most appropriate way of 
forming annual aggregates would be to treat each good in each month 
as a separate argument in the index number formula; for example, we 
should compute Q,( [ p o J ,  . . . , p0J2], [ P I " ,  . . . , p1*12], [xoJ], . . . , ~ ~ v ~ ~ ] ,  

[~l,', . . . , as representing the ratio of the aggregate in year 1 to 
year 0. However, we could apply the results on two-stage aggregation 
outlined in section 8.2.5 to conclude that a close approximation to the 
above aggregate ratio can be obtained by either ( a )  constructing monthly 
indexes and then aggregating these indexes over the year, or ( b )  con- 
structing annual indexes for each good and then aggregating over goods. 
The index number formula Q,, (or any other superlative quantity index) 
is to be used whenever an aggregate is calculated in the above two-stage 
procedures. 

8.8 Concluding Comments 

It is necessary to reemphasize that this discussion of capital aggrega- 
tion (and aggregation in general) has taken place in the context of 
production function and total factor productivity estimation, where we 
have consistently assumed that producers are competitively profit- 
maximizing or cost-minimizing or both. However, I have noted that the 
assumption of competitive or price taking behavior can be easily re- 
laxed in theory: simply replace observed prices with the appropriate 
marginal or shadow prices.' l a  In practice, the assumption of competitive 
behavior will probably be required for some time yet in order to con- 
struct aggregates. 

Given the rather narrow competitive optimizing framework, I have 
discussed two methods for justifying aggregation over goods such as 
components of the capital stock: ( a )  price pr~portionalityl'~ or Hicks's 
aggregation theorem (section 8.2.1 ) , and ( b )  homogeneous weak sep- 
arability (section 8.2.2). We have discussed a number of methods for 
justifying aggregation over sectors, including: (c) the method that as- 
sumes that all producers face the same prices with all goods (except 
possibly one) being freely variable during the period under consider- 
ation (section 8.3.2) and ( d )  a method due to Gorman ( 1 9 6 8 ~ )  and 
Fisher (1965) that assumes some goods are fixed but the functional 
forms for producer's production functions are restricted in a certain man- 
ner (section 8 .3 .3 ) .  

In actual practice, we do not expect any of the above justifications 
for aggregation to hold exactly; however, we can hope that both 
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methods ( a )  and (c) hold approximately at least, so that, if aggregates 
are used in actual applications, there is some hope that microeconomic 
theory will be at least approximately relevant. 

I have argued that superlative index number formulas (recall section 
8.2.4) should be used when aggregating over goods, assuming that there 
is a homogeneous weakly separable aggregator function defined over 
the goods in the aggregate, since superlative index number formulas 
correspond to flexible functional forms for aggregator functions. If the 
prices of the goods to be aggregated move proportionally, then the use 
of a superlative index number formula will also lead to the construc- 
tion of an aggregate that is consistent with Hicks’s aggregation theorem, 
even if there does not exist a homogeneous weakly separable aggregator 
function defined over the micro goods to be aggregated. Thus the use of 
a superlative index number formula is consistent with both of the gen- 
eral methods above for justifying aggregation over goods, and thus my 
first specific recommendation is that superlative indexes be used to con- 
struct aggregates whenever possible. 

My second specific recommendation is that the chain principle be 
used (rather than a fixed base) whenever possible. Theoretical and 
practical reasons for this recommendation are scattered throughout the 
chapter and will not be reviewed here. 

My third recommendation is that rental prices be used to weight the 
components of the capital stock when constructing a capital aggregate 
suitable for the measurement of productivity and the estimation of pro- 
duction functions. These rental prices should involve depreciation rates, 
taxes, and expectations of capital gains, although the last item presents 
some conceptual and practical difficulties (cf. section 8.4). However, 
rental prices for capital stock components need not be constructed if 
one employs the Hicksian view of production, which regards depreci- 
ated capital as a separate output. 

My fourth specific recommendation is that new goods be treated in 
the manner outlined in section 8.6.1 when resources do not permit the 
implementation of the theoretically more refined techniques outlined in 
sections 8.6.2 and 8.6.3. 

My fifth specific recommendation is that seasonaE series be constructed 
in the manner outlined in section 8.7; that is, roughly speaking, “sea- 
sonal weights” must be estimated and utilized in the construction of 
seasonal series. 

My final recommendation is that serious consideration be given to 
revising the system of national accounts used in most Western countries. 
The basic problem with the current system is that it is not very well 
suited to estimating production functions or systems of consumer de- 
mand and labor supply functions: prices that producers face are not 
generally distinguished from prices consumers pay. In fact, on primary 
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input markets (labor, capital, land, and natural resources), it is often 
difficult to determine prices or quantities separately at all: total pay- 
ments to labor, total payments to capital (including land and natural 
resources), and certain payments to governments (direct and indirect 
taxes) are distinguished in the current system of accounts, but there is 
no systematic decomposition of these highly aggregated payments into 
detailed price and quantity components for each type of labor, capital, 
land, and so on. 

Finally, it is useful to contrast this chapter on the aggregation of 
capita1 with the excellent chapter by Murray Brown in this volume 
(chap. 7). Our discussions of the theoretical conditions allowing for 
the construction of capital aggregates have been very similar and we 
have reached broadly consistent conclusions-no small accomplishment 
considering that our papers were written completely independently. 
Some differences in emphasis remain-Brown's chapter has a somewhat 
broader theoretical coverage (his excellent discussion of the Cambridge 
controversies and of the general equilibrium approach to aggregation is 
entirely missing in my chapter), whereas mine has placed a greater 
emphasis on index number problems. However, taken together, perhaps 
the two offer a fairly comprehensive survey of the current state of ag- 
gregation theory, with particular emphasis on the problems of capital 
aggregation. 

Appendix : Proofs of Theorems 

Proof of (6) 

H ( w , P )  = max3,,{wTx + P'Y : (x ,Y)  E S) 

(A1 1 = W'X* + pTy* by assumption 

= max,z{wTx + p'y* : (x,y*) E S) 

= H * ( W , Y * )  + PTY* 

= H*(PO% Y * )  + PTY* 

= Pnn* ( a ~ *  1 + P'Y* 

by the definition of 
rI* 

using ( 3 )  

by a homogeneity 
property of II* 

Pn Y*O + P*Y* defining y*O 
= 11* (a , y* )  
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Suppose f i ( w , ~ )  < I T ( P o , P )  = POJO + pTJ,  where ( 9 0 , y )  E S,. Then 
J O  = IT* (a,Y) = aTX for some X such that (x,J) E S 

.*. II(w,p) = max,,,{poaTx + pTy : (x,y) E S} 

2 PoaTx + PTJ 

= P O J O  + P*J 

> W w , P ) ,  

which is aAcontradiction, and thus our supposition is false and thus 
II(w,p)  = I I ( p o , p ) .  Note that ( A l )  = (A2) implies that 
= wTx*, which is equivalent to (7 ) .  

Proof of (84) 

The producer's technology S can be completely described by means 
of a transformation function t (see Diewert 1973a) : t(Y2,Y3, . . . ,YY, 
x1,x2, . . . ,XN) = max,,{y, : (y1,y2, . , , ,yY,xl, . . . ,xN) E S}. Further- 

more, it is easy to see that if the producer has minimized the cost W*X 

of producing a given vector of outputs (y1,y2, . . . ,yN), then under the 
usual monotonicity assumptions, the producer will also be producing the 
maximal amount of output 1 given that he must also produce y2, . . . ,Yr 
and is subject to an expenditure constraint on inputs. Thus we assume 
that xo is a solution to maxz{t*(y02,y03, . . . , yow,x) : WO*X = wO*XO, 

x 2 ON} = yol and that x1 is a solution to max,(t* (y12, y13, . . . , Y'M, 
x)  : wl*x = wl*xl} = yll, where t* is the firm's transformation function 
that corresponds to the translog distance function D*. The proof of the 
rest of the theorem is virtually identical to the proof of theorem (2.1 7)  in 
Diewert (1976, pp. 139-40), except that the transformation function 
t*(yz,y3, . . . , yJf7 x) replaces the utility function f (x ) ,  and yl replaces 
the utility level u. 

Proof of (97) 

Let xl*, x2*, . . . , xu' be a solution to the maximization problem 
(91) .  Using our assumed regularity conditions on ITrn, (91) becomes a 
concave programming problem, and we may apply the saddle-point 
theorem of Karlin (1959, p. 201) and Uzawa (1958) to obtain the 
existence of shadow prices w* 2 Oh', such that XI', xZ*, . . . , xY* is a 
solution to the following unconstrained maximization problem: 

(A3 1 

In fact, our strong monotonicity assumptions on IIrn (along with the 
concavity assumptions) imply that w* ) ) On. and that 
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M 

m = l  
8 x m .  = x .  (A4 ) 

Now rewrite (A3) as 

M 
,....Lo 

max x~ 

= 2 maxam 
Y 

V b = l  

,W - 
= 2 II*m(p,w*,z") using definitions (94). 

m = l  

2 x m = x  , 
dl 

m-1 

1 

m= 8 1 x m s x l  

dl 

m= 1 

which is equivalent to (A3) upon defining x = 8 xrn 

=max  1 M 2 rI"(p,x",z") - w**x : 
5,5 I . . . ,a m = l  

Y 

using the monotonicity properties of rIm 

= maxs{II(p,x,zl,. . . ,zM) - w*ex} 

upon optimizing w.r.t. 9, . . , ,xN and using the defini- 
tion of II, (92) 

(A61 = H*(p,w*,?, . . . , PI 
using the definition of II*, (95). 

Thus (A5) = (A6),  the desired result. 

Notes 

1. Notation: w ) ) 0 ,  means that each component of the N-dimensional vector 
w 3 ( w 1 , w 2 , .  . . ,w,) is positive where 0, is a vector of zeros; w 2 0, means 
that each component is nonnegative; w > 0, means w 2 0, but wf;O,;  

WTX = 8 wnxn = W * X  is the inner product of the vectors w and x .  

2. The only regularity condition we need impose on S is that a solution to 
the profit maximization problem (1 )  exist for the set of prices ( w , p )  under con- 

N 

n = l  
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sideration. This existence will generally be assured if 5’ is a closed nonempty set 
with an appropriate property of boundedness from above. See McFadden (1978) 
or Diewert (1973a) on this point. 

3.  Gorman (1968a) uses this terminology. 
4. McFadden (1978) and Lau (1976) use this terminology. 
5. Diewert (1973a, 19746) uses this terminology. 
6. See Gorman (1968a), Diewert (1973a), and Lau (1976). A property of 

n* that we require below is the linear homogeneity of n* in w; that is, for 
every A > O ,  w ) ) O , , , ,  we have n * ( X w , y )  = A I I * ( w , y ) .  

7. S is convex if and only if for every scalar such that 0 2 A 5 1 and ( x l , y l )  
E S, (xz,yz) E S, we have (Ax1 + (1 - X)xZ, Ayl + ( 1  - X)yZ)c S .  

8. Let 0 5 A 5 1 ,  ( y l , ,  y 1 )  E S ,  and ( y z 0 , y 2 )  E S,. Then y1, 2 n * ( a , y l )  and 
y2,  2 n*(ol ,yZ) .  Convexity of S implies that n * ( a , y )  is a concave function of y 
(cf. Gorman 1 9 6 8 ~ )  so n*(a, Ay1 + (1 - A ) y 2 )  2 A U * ( a , y l )  + (1 - A ) I I *  
(a ,y2)  2 Ayl,  + (1 - A)yzo, which implies ( h y l ,  + (1  - A)y2,, 
hy l  + (1 - A)Y2) E s,. 

9. That is, S is a cone; if ( x , y )  E S and A 2 0, then (Ax, h y )  e S. 
10. If S is a cone, then n*(h ,  y )  = An*(a,y) for every k 2 0, and the proof 

11. See Diewert (19746, p. 139). It is an obvious modification of the translog 
follows readily. 

function introduced by Jorgenson and Lau (1970). 
N Ar 

z = 1  h = l  

12. E E ~  = !h 2 2 pzh cth, which does not depend on r. If N = 2, then the 

regularity conditions (9 )  on pzh along with the symmetry conditions pzh  = phi  
imply that p r p l l  = -p12 = -pal  = p21, so that in this case E E ~  = %p[uI1 
- 2uI2 + ~ ~ ~ 1 .  Note that positive semidefiniteness of the variance covariance 
matrix [u,] implies that ull - 2uI2 + u22 2 0, so that the sign of the bias Eer is 
determined by the sign of p. For a general N, we could expect the bias to be 
small, since we would not expect a systematic correlation between p z h  and u$zn. 

13. The assumption of time independence is somewhat unrealistic: if the rela- 
tive price of the first good is higher than usual during a given period, we would 
expect this condition to persist for a number of subsequent periods. Thus autocor- 
relation is to be expected when estimating the parameters of an equation like (1  1) .  

14. This terminology follows Geary and Morishima (1973). The concept of 
weak separability is due to Sono (1961) and Leontief (1947). Note that Shephard 
actually considered the problem of simultaneously aggregating x and z into two 
aggregates. 

15. See Diewert (1974b, p. 112). Similar formulas have been derived by Chip- 
man ( 1970) and Samuelson ( 1972). 

16. p*2’x* + w*Tz* = C*(u*; p*,w*) 
- - min,,,{p*Tx + w*Tz : f * ( x , z )  2 u*} 
= min,,z{p*Tx + W * T Z  : f [ f ( x ) , z ]  2 u * }  using (14) 
= min,,,,y{p*Tx + W * ~ Z  : f [ y , z ]  2 u*, y = f ( x ) }  adding 

an additional variable and equation 
= min,,y{c(p*)y + w*Tz : f^[y,zl 2 u*} upon minimizing 

with respect to x using (17) 
= t ( u * ;  c ( p * ) , w * )  using definition (16) 
= c ( p “ ) f ( x * )  + W * ~ Z *  since x*,z* is a solution to the 

first cost-minimization problem. 
17. Proof: xr’Vf(x9 ) = f(xr) by Euler’s theorem on homogeneous functions. 
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18. Proof: divide (26) by p r W  = c(pr)f(xr). 
19. If all y j k  = 0, then we are in the Cobb-Douglas case and the two aggrega- 

tor functions coincide. 
20. Or, alternatively, assume that xr is a solution to the cost-minimization prob- 

lem (17) : min,{prTx : f ( x )  2 f ( x r ) } .  

21. Solow (1957) presented his exposition in terms of a single output and two 
inputs. His argument is readily extended to the case of N inputs, as is done in 
Richter (1966), Star (1974), and Star and Hall (1976), for example. 

22. Note that we do not have to estimate the unknown parameters of the pro- 
duction function. 

23. See, for example, the empirical examples worked out in Fisher (1922). 
24. See Konyus and Byushgens (1926), Afriat (1972), Pollak (1971), and 

25. See Shephard (1953) or Diewert (1974b), or recall the material presented 

26. Actually, we require (43) to hold only for an empirically relevant subset of 

27. This theory is perhaps more clearly presented in Shephard (1953) and 

28. See also Afriat (1972), Pollak (1971), Samuelson and Swamy (1974), and 
Diewert (1976). 

29. The term is due to Lau (1974): f is a second-order differential approxi- 
mation to f" at the point x" if and only if f ( x 0 )  = f * ( x o ) ,  , V f ( x o )  = Vf*(xO) 
and V Z f ( x 0 )  = VZf"(x-0); that is, the levels of the functions coincide as well as 
their first- and second-order partial derivatives evaluated at x0. Note that V f ( x 0 )  

is the vector of first-order partial derivatives of f evaluated at xo, while v * f ( x 0 )  is 
the matrix of second-order partial derivatives. 

30. Note that VQ, stands for the vector of first-order partial derivatives of 
Q, with respect to all 4N arguments, etc. 

31. The Laspeyres and Paasche quantity indexes give the same answer as the 
three "better" indexes only to the first order; that is, 

Samuelson and Swamy (1974). 

in section 8.2.2. 

positive prices and outputs. 

SO~OW (1955-56). 

V2QL(p,~;x,x) # V'Qp(p#;x,+)  # V'Q~(P,P;XJ). 
32. The functional forms f,. and c, were studied by Denny (1974). 
33. The proofs of theorems (50) and (51) do not rest on any assumption of 

optimizing behavior: they are simply theorems in numerical analysis rather than 
economics. 

34. When the chain principle is used, the limited empirical evidence in Diewert 
(1978b) suggests that even the Paasche and Laspeyres indexes give virtually the 
same answer as the superlative indexes. 

35. See Shephard (1953, pp. 61-71), Solow (1955-56), Gorman (1959), 
Blackorby et al. (1970), and Geary and Morishima (1973, pp. 100-103). 

36. We consider only the Vartia I indexes, since they are indexes that have the 
property of consistency in aggregation. Sat0 (19760) showed that the Vartia I1 
indexes were exact for a CES aggregator function. 

37. In fact, any pseudosuperlative index could be used. It is shown in Diewert 
( 1978b) that any twice continuously differentiable symmetric mean of the Paasche 
and Laspeyres price indexes is a pseudosuperlative price index; for example, 
?h P,(pO,pl; xO,xl) + ?h P p ( p o , p l ;  x0,xl) is pseudosuperlative. 

38. Actually, some of the components of xr can be outputs instead of inputs, 
in which case the corresponding components of wr are indexed with a minus sign. 

39. See McFadden (1978) for the properties of these functions. 
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40. The translog joint cost function is defined analogously to the translog vari- 
able profit function defined in section 8.2.1. However, since the logarithm of a 
negative number is not defined, we must renormalize the components of y s (yl, 
. . . , Y , )  so that each y ,  > 0. If y ,  is an intermediate input, then we renormalize 
the corresponding price p ,  to be mizus the initial positive price. 

41. Diewert (19786) shows that Qo differentially approximates Qo to the sec- 
ond order if the partial-derivatives are evaluated at equal price and quantity vec- 
tors. Thus, normally, Qo(wO,wl ,xO,x~)  will be numerically close to  Q,(wO,wl ,  
x 0 , x l ) .  Similarly, Po will normally be close to Po.  

42. We make the same sign conventions as were noted in note 40. Thus, if 
there are intermediate inputs, the corresponding components of p o  and p l  will 
be negative. However, Qo(pO,pl,yO,yl) can still be calculated in the usual way 
even if some components of p o  and p l  are negative. 

43. We now revert back to our original sign conventions: output and input 
prices are all positive, as are inputs x ,  but components of y can be negative if 
the corresponding good is an (intermediate) input. Note that even if some compo- 
nents of yo  or y l  are negative, we can still calculate Po using the usual formula. 

44. There is also a close correspondence with consumer surplus concepts. De- 
fine the consumer’s cost or expenditure function rn as r n [ f ( x ) , p ]  E min,{p*x : f ( n )  
2 f ( x ) } ,  where f is the consumer’s utility function and p is a vector of com- 
modity rental prices that the consumer faces. The (Laspeyres) Allen (1949) 
quantity index is defined as QA(xO,xl ,pO) = rn[f(xl),po]/rn[f(xo),pl], while the 
(Laspeyres) Konyus (1939) cost of living index is defined as P,(pO,p*,xO) 

rn [ f (xO)  , p l ] / r n [ f ( x o )  ,po l .  The consumer surplus concepts use arithmetic dif- 
ferences rather than ratios. Thus Hicks’s (1946, pp. 40-41) compensating vari- 
ation in income can be defined as r n [ f ( x o ) , p l ]  - rn[f(xo) ,pO],  while Hicks’s 
(1946, p. 331) equivalent variation in income can be defined as r n [ f ( x l ) , p o l  

45. For formal proofs of duality theorems between distance functions and pro- 
duction or utility functions, see Shephard (1970), Hanoch (1978), McFadden 
(1978), Rockafellar (1970) and Blackorby, Primont, and Russell (1978). 

46, See Gorman (1970), McFadden (1978), Hanoch (1975), and Blackorby 
and Russell (1976) for discussions on the separability properties of distance 
functions. 

47. As usual, we have to change our sign conventions with respect to the 
components of y :  assume that y = ( y l ,  yB, . . . , y , )  ) ) OM, but if the mth good i s  
actually an intermediate input, then the corresponding price p, is taken to be 
negative. Note that we have not restricted D * [ y , x ]  to be homogeneous of degree 
- 1  in the components of y ,  which would be the case if production were subject to 
constant returns to scale. Finally, we note that the translog distance function can 
provide a second-order approximation to an arbitrary twice-differentiable distance 
function. 

- m[f (x0) ,p03 .  

48. The sign conventions of note 47 are operative here also. 
49. Actually, Klein considered the problem of simultaneously aggregating over 

commodities as well as sectors. 
50. For an alternative proof, see Green (1964). Nataf (1948) and Green as- 

sumed the f ” L  were twice differentiable. These regularity conditions were relaxed 
by Gorman (19686) to continuity and by Pokropp (1972) to monotonicity condi- 
tions alone. 

51. A strongly separable production function can provide only a first-order ap- 
proximation to a general production function. 
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52. If the individual production sets are Sm, m = 1,2,. . . ,M, then the ag- 
gregate technology S can be defined as the sum of the individual production sets; 

that is, S = { z  : z = z,, where zm E Sm for m = 1,2, .  . . ,M}. If the indi- 

vidual producer profit functions are defined as T l m ( p )  I maxzm{p*zn:zm E Sm>, 

then II(p) n m ( p ) ;  that is, the aggregate profit func- 

tion equals the sum of the individual profit functions. There does not appear to 
be a simple characterization of the aggregate transformation function in terms 
of the individual transformation or production functions. 

53. In the Solow problem, K (the number of outputs) is taken to be 1, and 
p 1  (the price of the output) is taken to be 1 also. 

54. Concavity of I I n ~ ( p , x m , z m )  in xm is implied by convexity of Sm but is a 
considerably weaker restriction on the technology than convexity of Sm.  

5 5 .  This approach was pioneered by Cornwall (1973). 
56. This result can be traced back to Hotelling (1932). For modern proofs, 

see Gorman (1968u), McFadden (1978), or Diewert ( 1 9 7 3 ~ ) .  
57. The rental price formula defined by equation (105) is similar to those de- 

rived by Jorgenson and Griliches (1967), except that they derive their formulas 
on the basis of a continuous-time optimization problem (as opposed to my dis- 
crete-time “Hicksian” period formulation), and thus the term ( 1  + r )  is missing 
from the denominator of their formulas. However, my formula (105) has the 
property that if 6 = 1 (i.e., the good is actually a nondurable), then the rental 
price equals the purchase price of the good plus associated tax payments (cf. eq. 
104). 

58 .  For example, consider the controversy between Jorgenson and his co- 
workers (Jorgenson and Griliches 1967, 1972; Christensen and Jorgenson 1969, 
1970; Christensen, Cummings, and Jorgenson 1976) and Denison 1969, 1974, and 
Kendrick 1961, 1972, 1976. 

59. The tax system that the producer is facing is not explicitly modeled in 
(108) but is implicit in the definitions of the prices p z ,  pv,  and p,. 

60. Generally, if interest rates are positive, this capital aggregate would be an 
aggregate input. However, if maintenance and renovation expenditures were par- 
ticularly large for the firm under consideration, it is possible for the capital ag- 
gregate to be a net output. 

61. Epstein (1977, chap. 7 )  shows how the data limitations can be overcome in 
theory by an explicit econometric model. 

62. From a theoretical point of view, the “Hicksian” capital services aggregate 
appears to be more appropriate than the Jorgenson-Griliches aggregate. However, 
from an empirical point of view, the “Hicksian” aggregate is more difficult to 
construct. 

63. Kendrick (1972, p. 37) notes that official national income accounts in the 
United States and generally elsewhere exclude capital gains and losses, a comment 
that also applies to private accounting practices. With the recent upsurge of world- 
wide inflation, it has become more difficult to ignore capital gains, and a litera- 
ture on accounting for inflation has sprung up (cf. Shoven and Bulow 1975 and 
the discussion following their paper). 

$1 

8 
na=l  

M 
maxz{p*z : z E S} = 8 

? ? L = l  

64. See the analysis and references to the literature in Epstein (1977). 
65. See Jorgenson and Griliches (1967), Christensen and Jorgenson (1969, 

1970), and Christensen, Cummings, and Jorgenson (1976). 
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66. The former alternative seems more plausible to me: ex post internal rates 
of return seem to be coo volatile to be an adequate approximation to the firm’s 
actual borrowing or lending rates. 

67. Winfrey distributions are widely used in the construction of capital stock 
aggregates. However, the following quotation from Creamer (1972, p. 68) indi- 
cates that their empirical foundation is not strong: “An examination of Winfrey’s 
report discloses that the empirical basis of his distribution is his analysis of a 
sample of equipment retirements that are heavily weighted with railroad ties, 
trestles and power generating equipment. Moreover, these retirements occurred 
over the period 1869 and 1934. Clearly, this is an area that calls for new research.” 

68. See the examples tabulated in Tice (1967) and Creamer (1972). 
69. Taxes on intermediate goods could be treated as follows in a model that 

aggregated firms 1 and 2: for each intermediate tax, break the corresponding com- 
modity up into two commodities, one of which would be the “untaxed” market 
where firm 1 would sell its output q at price p. The government is thought of as 
buying the untaxed commodity at price p and then selling it back to  firm 2 on the 
“taxed” market price p(1 + t ) .  Aggregating over the two firms would yield an 
aggregate “untaxed” output of q > 0 selling at price p and an aggregate “taxed” 
input of -q at price p(1 + f), while aggregation over the other goods could 
proceed as outlined in section 8.3.2. If t remained constant over time, the taxed 
and untaxed commodities could be aggregated using Hicks’s aggregation theorem. 

70. Denison (1974) favors estimating property income nef  of depreciation, 
whereas Kendrick (1972, p. 102) favors the net concept if one is interested in 
real product from a welfare standpoint, but the gross concept for production and 
productivity analysis. 

71. The most preferred alternative would be to construct the “Hicksian” mea- 
sure of capital services mentioned in the previous section. 

72. See Denny and Sawyer (1976) for references to the theoretical national in- 
come accounting literature, plus a review of current Canadian accounting prac- 
tices from the viewpoint of a neoclassical as opposed to a Keynesian approach to 
macroeconomic theory. 

73. This would not be a problem if the capital services were included in 
sectoral estimates of intermediate inputs and gross output sectoral production 
functions were estimated. 

74. Typically, rents to land are included in the accounting system, but asset 
prices and quantities of the different types of land do not appear. 

75. See Christensen and Jorgenson (1969) and Christensen, Cummings, and 
Jorgenson (1976). 

76. Creamer attributes this last point to Denison. 
77. Under the appropriate assumptions, we can use the results of section 8.3.2 

to justify the aggregation over the private producer sector and the household 
“processes” that create services out of consumer durable stocks. 

78. Kendrick’s (1976, p. 15) justification for including this item is ~ v e n  in 
the following quotation: “The costs of transfering resources are a form of in- 
vestment, for investment in mobility results in an increase in the future income 
stream beyond what incomes would be if the shifts were not made.” 

79. Alternative assumptions giving the same result (item 8) are: f is linearly 
homogeneous, nondecreasing, and concave in all five inputs and the marginal 
products Bj(O,O,O,R,,R,) /aW, af(O,O,O,R,,R,) / a K  exist and are finite. In this 
case the industry will be made up of many tiny firms each earning tiny excess 
profits. 

80. This does not mean that government public capital is unimportant (con- 
sider the massive United States interstate highway system): it means that in the 
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context of production function estimation, public capital goods should not be 
aggregated together with private capital but should appear as a separate inputs 
into the production function. However, in the context of productivity measure- 
ment, it does no harm to omit public capital goods, provided the shadow prices 
are zero, as we shall see in section 8.5. 

81. Alternative economic models of R&D have recently been very ably sur- 
veyed by Woodland (1976). 

82. See Diewert (1974a), Fisher and Shell (1972), and Samuelson and Swamy 
(1974) on this topic. 

83. Assume g is defined for y 2 OM, and has the following yroperties: (i) g ( y )  
> 0 for y ) ) 0,  (positivity) (ii) g ( X y )  = h g ( y )  for x 2 0, y 2 0 (linear homo- 
geneity), and (iii) g ( X y l  + (1 - X ) y 2 )  < Xg(y1)  + (1 - A ) g ( y 2 )  for 0 < A 
2 1, y l  2 OA,{, y2 2 0, (convexity). 

84. If g satisfies the three properties listed in note 83, then r also has those 
three properties. 

85. The proof is analogous to the proof of the Samuelson-Shephard duality 
theorem presented in Diewert (1974a); alternatively, see Samuelson and Swamy 
(1974). 

86. A more complete exposition of the material presented in this section, with 
some additional material on the theory of partial Divisia indexes, can be found in 
Chinloy (1974). 

87. The analysis for this case has been independently developed by Christen- 
sen, Cummings, and Jorgenson (1976), who cite Jorgenson and Lau (1979) as 
their source. 

88. Ohta (1974) calls T the primal rate of technical progress, and he shows 
that it is equal to the dual rate of technical progress A defined as X = -3 In 
C ( y , w , t ) / a t  if f exhibits constant returns to scale, where C ( y , w , f )  = minz{w*x 
: y = f ( x , t ) }  is the producer's total cost function. 

89. See Blackorby, Lovell, and Thursby (1976) for a discussion of the dif- 
ferent definitions of neutral technological change. 

90. Make the same sign conventions as were made in the first part of section 
8.2.6. 

91. As usual, IT*(x,p,f) can provide a second-order approximation to an arbi- 
trary twice continuously differentiable n ( x , p , t ) .  A special case of the time- 
modified translog variable profit function n* has been considered by Berndt and 
Wood (1975): in their model, r is a scalar output and y is a vector of inputs, SO 

that, with appropriate sign changes, n* becomes a cost function. They also show 
under what conditions such a functional form can be consistent with factor- 
augmenting technical change. 

92. See Diewert (1974b, pp. 137-40). 
93. In Diewert (19786) it is shown that go(pO,p l , yO ,y l )  and Q o ( p o , p l , ~ o , ~ l )  

approximate each other to  the second order at any point where p o  = p1 and 
YO = y l .  

94. See Shephard (1953, p. 41).  A production function f is homothetic if there 
exists a monotonically increasing function of one variable g such that g [ f ( A x ) l  
= h g [ f ( x ) ]  for every h > 0, x 2 0,; that is, g [ f ]  is linearly homogeneous. 

95. The use of the chain principle should minimize this type of error: for any 
two consecutive time periods, tr, t r + l ,  we could approximate accurately the shift- 
ing technology of the sector by a n*T defined by (135),  whose parameters depend 
on r. 

96. This point was made by Frisch (1936) forty years ago. For more details, 
see Diewert (1974a, p. 155) and Appelbaum (1979). 

97. Other papers on the subject include Star (1974) and Hulten ( 1978). 
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98. Recall section 8.2.6. 
99. Recall the discussion on this concept in section 8.2.5. 
100. See Fisher and Shell (1972, p. 101) or Hofsten (1952, p. 97).  
101. We require r > 0 so that f,.(xo, O N - K )  is well defined. Thus the translog 

functional form cannot be used as an aggregator function in this section. 
102. If any components of x0 or x t  are zero, then drop the corresponding 

equations from (174) or (175). For r = 2, we can drop the requirement that all 
components of the x vectors x0 and xi  be nonnegative. We require only that 
pO*xO > 0 and pt*xt  > 0. Thus we can deal with the case where f p  is a trans- 
formation function. A negative component of the x vector indicates an output, a 
positive component indicates an input. 

103. Actually, the base period normalization (176) implies that the number of 
independent parameters is ( N ( N  + 1) /2 )  - 1. 

104. This paper is reprinted in Griliches (1971), where several other papers 
and an extensive bibliography on the hedonic approach to the quality adjustment 
problem will be found. Additional empirical work can be found in Gordon 
(1977), King (1976), and Ohta and Griliches (1976). 

105. See McFadden (1978) for properties of joint cost functions. 
106. If “trucks” are a durable input, then P J x )  should be the user cost of a 

“truck” with characteristics x during period r rather than the purchase price. Re- 
call the discussion of rental price formulas in section 8.4.1. 

107. See Diewert (1973a) for a discussion of the properties of such trans- 
formation functions. We do not require constant returns for the technology de- 
scribed by t. 

108. See Blackorby, Primont, and Russell (1978) for a comprehensive discus- 
sion of separability. 

109. Such functions are sometimes called input requirements functions. See 
Diewert (1974a) for a discussion of their properties. 

110. An excellent discussion of many of the theoretical and practical difficulties 
associated with “hedonic” techniques can be found in Triplett (1975, 1976). 

11  1 .  Recall the discussion about homogeneous weak separability in section 
8.2.2. Note that we do not assume that the seasonal variables yrm enter the ob- 
jective function f in a separable way. Gersovitz and MacKinnon (1977) argue 
that in this case it is extremely difficult to construct deseasonalized p m  and xrm 
series that will be consistent with an underlying (nonseasonal) economic model. 
Thus, in the case of nonseparable seasonal variables interacting with economic 
variables, they suggest that it may often be appropriate to estimate econometrically 
completely separate models, one for each season, rather than attempting to esti- 
mate econometrically one model using data “seasonally adjusted” by conventional 
methods. 

112. See Fisher (1922) for a discussion of the circular test and some empirical 
evidence that Q, satisfies circularity rather well. Since Qo is very close to Q, in 
most empirical situations, we would expect the same conclusion to hold for Qo. 

113. Appelbaum (1979) and Appelbaum and Kohli (1979) have applied this 
theoretical technique due originally to Frisch (1936). 

114. Brown (this volume, chap. 7)  calls this the commodity aggregation 
approach. 
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Comment Michael Denny 

The analysis of capital aggregation given at this conference may appear 
technically complex, but it is possible to summarize the results in a 
simpler, though not rigorous, manner. Before turning to the details of 
Professor Diewert’s paper, let me consider some implications of the basic 
results that underlie and motivate both his paper and Professor Brown’s. 
As theorists, both Brown and Diewert are arguing that the conditions re- 
quired for aggregation are stringent. So stringent that perhaps we should 
not publish or use aggregated data in the unassuming manner that is 
our current practice. 

We are all familiar with the necessity to aggregate quantities of dif- 
ferent goods or services. It is impossible to imagine economic data 
without aggregation : thus we should seriously consider the losses in- 
volved in our current techniques. Fundamentally, aggregation in prac- 
tice involves weighting the elements according to some formula that 
produces an aggregate of the elements. One must remember that it is 
not the voluminous literature on index numbers that is relevant. Our 
authors are asking a prior question: When may we aggregate by any 
method and not suffer losses because of the information suppressed by 
aggregation? The aggregate provides less information, and in the loose 
framework that 1 am currently using there is a loss that will result in 
errors. Consider a specific example in which two types of capital, K, 
and K 2 ,  and labor, L,  are used to produce output (fig. C8.1). We can 
characterize this process abstractly as a production function, Q = f ( K , ,  

Michael Denny is associated with the Institute for Policy Analysis and the 
Department of Political Economy, University of Toronto. 
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Fig. C8.1 

K z ,  15). Although I have chosen a production function, the argument 
would be similar for any other technical or behavioral function, for 
example, supply, demand, or cost function. 

Suppose we consider the aggregation of the two types of capital. In 
general we will have, K = g ( K 1 ,  K2), where K is the aggregate quantity 
of capital and g is the function or rule that describes how we aggregate. 
In figure (28.1, the line “AB” represents a specific value of aggregate 
capital using a particular aggregation rule. Similarly, the line “CD’ 
represents a greater value of aggregate capital using the same aggrega- 
tion rule or formula. The loss of information is obvious. Any point Z, on 
line AB, represents particular quantities of the two capital services. 
Once we aggregate we can not distinguish Z from any other point X 
on the same line AB. We can distinguish Z (and X) from W on line CD. 

We wish to know how this loss of information will affect our ability 
to investigate our production process. In figure C8.2, the line AB repre- 
sents an aggregate quantity of capital. An isoquant, labeled (Qo,L,), has 
also been drawn tangent to AB at point W. The isoquant shows the 
alternative combinations of the two types of capital that can be used 

Fig. C8.2 
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to produce output level, Qo, when labor is used at a level, Lo. Remem- 
ber that we have to fix the level of labor; we will return to this in a 
moment. 

Suppose we have data only on Q, L,  and aggregate capital, K. Can 
we adequately acquire information about the disaggregated production 
technology from the aggregate capital, labor, and output data? From 
figure C8.2, we can state that at the point of tangency W, the quantity 
of aggregate capital represented by all the points on AB is an aggregate 
of the true disaggregated quantities of capital. Nontangency points on 
AB, while they present the same aggregate quantity of capital as W, 
must represent capital input combinations that lie on different isoquants. 

Holding labor constant, the same aggregate quantity of capital will 
produce smaller and smaller quantities of output as we move away from 
W along AB in either direction. The use of aggregate capital will imply 
that the same quantities of aggregate capital and labor are capable of 
producing a wide variety of output levels. This is inconsistent with the 
production function that assumes that only one output level is associ- 
ated with the efficient use of a given input bundle. 

A very special linear aggregation function was used in figure C8.1. 
Consider bending the line AB so that it coincides precisely with isoquant 
(Qo,Lo) .  Now this will mean that the single aggregate quantity of capi- 
tal corresponds to all disaggregated input quantities that produce output 
Qo in conjunction with a labor input, Lo. This seems hopeful, since now 
we have a measure of aggregate capital that corresponds to a particular 
unique input-output combination. 

We have made a different but special assumption about the aggrega- 
tion formula when we require that it correspond to the isoquant. How- 
ever, this assertion is required if we are to eliminate aggregation errors. 

Our special aggregator function that corresponds to a unique isoquant 
in figure C8.2 must be generalized to cover situations in which the level 
of output or labor do not equal (Qo,Lo) .  The set of isoquants in figure 
C8.3 represents three different levels of output and the same quantity 
of labor input. However, these labels are not necessarily unique: any 
point on an isoquant could be consistent with a large number of output- 
labor combinations. For example, our initial capital combination, point 
A, could also produce output levels Ql and Q2 for some levels of labor 
greater than Lo. 

We have defined our aggregator function, K = g ( K 1 , K z ) ,  to depend 
on the disaggregated quantities of capital only. Thus when we plot the 
level sets of this function, we can label them as representing values of 
aggregate capital, independent of the level of Q and L. This is simply 
the condition required for weak separability of the production function, 
and in this case, we can write our production function as 

(1) Q = f(g(Ki,K,),L). 
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Fig. C8.3 

Our aggregator function g is the first argument of the production func- 
tion in this case. It turns out that the micro capital inputs, K1 and K 2 ,  
must be weakly separable from all other inputs and output in order for 
a capital aggregate to exist; that is, we must be able to write the pro- 
duction function in the form (1) in order for a capital aggregate to 
exist (unless the rental prices of K, and K 2  happen to vary propor- 
tionally, in which case an aggregate can be constructed using Hicks’s 
aggregation theorem even if the technology is not weakly separable in 
the micro capital inputs). Moreover, to actually measure the capital 
aggregate using just market data, we require an additional assumption 
in addition to (1) : we require that the aggregator function g be homo- 
theric, that is, we require that g be a monotonically increasing function 
of a linearly homogeneous function. In fact, it turns out that there is 
no real loss of generality in assuming that g is actually linearly homo- 
geneous once we have made the initial assumption of homotheticity. 

In  figure C8.3, the ray OR through the origin cuts the isoquants at 
points A, B, and C. It was mentioned above that, to measure the capital 
aggregate, we required homotheticity in addition to weak separability. 
This property requires that the slopes of the isoquants at A, B, and C 
are equal. Why is this property or the (equivalent in the present con- 
text) property of linear homogeneity needed? The link between aggre- 
gation theory and index number theory requires the homogeneity 
property. Index numbers almost always have the property that they 
are linear homogeneous in their elements. If you double all the compo- 
nents, then you double the aggregate. If we are to have an aggregate 
quantity calculated by a rule that is consistent with an index number 
formula, then the isoquants in figure C8.3 must be homothetic (except 
when one uses a Malmquist index number formula, which does not re- 
quire homotheticity). However, there are other reasons for assuming 
homotheticity. Consistent two-stage maximization will require this 
property, and this is the primary theoretical rationale. 
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The other major conditions that permit aggregation can be discussed 
in relation to the first case. Remember that from the point of view of a 
national statistics office, our first case implies that aggregation of capital 
must be done separately for each different production function. When 
the aggregation function was “bent” to match the isoquant in figure 
C8.2, this was done for a specific production technology. The unfor- 
tunate conclusion must be that not only must each production tech- 
nology be homothetically weakly separable, but the aggregation must 
be done separately if the isoquants are different in any two technologies. 
Practically, this is impossible, and it may be that this problem is at least 
as important in practice as the assumption of separability. 

For a single aggregate capital to be useful in two different produc- 
tion sectors, it turns out that each sector, i ,  must have a production 
function, Qt = f,(g(K,,K,),L), i = 1,2. The idea of aggregating across 
sectors is only an extension of using the same aggregate in different 
sectors. Although the details will not be included here, the nonmathe- 
matical reader should be able to understand the following argument. 

Consider the following special case of intersectoral aggregation. The 
disaggregated problem is to maximize the value of one output given the 
value of the other output and a fixed total amount of our three inputs. 
This problem will have a solution of the form P, (Ql,Q2,K1,K,,L) = 0, 
where Qi is the ith output and K ,  and L are the simple aggregates of 
each input. Suppose we wish to have aggregate production technology 
of the form, 

(2) Q = f f ( Q i , Q ~ >  = ~ ( K I , K P , L ) ,  
or 

( 3  1 
where K = g ( K I . K 2 )  is an aggregate of the different types of capital. 

Without rigorous proof we can link this type of problem to our 
earlier case. If we are to shift from the disaggregated function P, to the 
aggregation involved in (2) we are already severely constraining the 
technologies of the sectors. For (2)  to be a valid representation of 0, 
the production technologies for the individual sectors must have almost 
identical isoquants. The almost has to be put in because the isoquants 
can be numbered differently for each sector. Notice that in (2) we have 
not aggregated capital of different types. Even without capital aggrega- 
tion, the aggregation of output will force the isoquants of the two sectors 
to be almost identical. If we now aggregate the different types of capital, 
the restrictive assumptions on the already similar isoquants of the two 
sectors will be increased. This movement from equation (2) to equa- 
tion (3) is nothing more than the simultaneous application of our 
earlier argument to both sectors. Aggregation of outputs and capital re- 
quires a more complex and restrictive set of assumptions. 

Q = H(Q1,Q.I = F ( K , L ) ,  
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Should we throw up our hands? No, the requirements of both policy 
and science rule against that reaction. Economic theory without empiri- 
cal confirmation will not be science. Both theorists and empirical 
investigators must accept the stringent conditions of aggregating. How- 
ever, while more disaggregated data is desirable and is becoming avail- 
able, the high costs of high-quality disaggregated data will preclude the 
elimination of aggregation. The notion of a totaZZy disaggregated pro- 
duction function as a technical constraint is an abstraction. There is no 
room for an extensive catalog of possibilities, but I will state a rough 
guide. Both empirical and theoretical economists must continue at- 
tempts to reorient the theory to bring the “level” of abstraction closer 
to the “level” of observations. 

At the most general level, one can approach Diewert’s paper in the 
following manner. There is a large body of literature on aggregation 
and index numbers. What Diewert has done is to focus and link the 
powerful theoretical tools of duality theory and the recent work on 
flexible functional forms with this traditional literature. While there are 
no startling new results, the paper does integrate a scattered literature 
and provide some interesting insights on the interface between these 
areas. 

Diewert has broken down the problems of aggregation into ( a )  aggre- 
gation over goods, ( b )  aggregation over sectors, and ( c )  aggregation 
over time. The aggregation of capital is initially treated as a special 
case of these types of aggregation. However, in the final three sections 
the special problems of technical progress, new goods, and seasonality 
are investigated. These are all problems that are intimately related to 
the special nature of capital goods and their production. 

There are two sets of conditions that permit aggregation of goods. 
These are price proportionality and homogeneous weak separability 
(which is equivalent to the homothetic weak separability assumption 
we discussed above). The first condition states that if the prices of a 
group of goods varies proportionally, then it is possible to define an 
aggregate quantity of the goods. Provided the micro price propor- 
tionality holds, then the aggregate quantity can be used in place of the 
micro quantities. Many empirical price series seem to move with ap- 
proximate proportionality. Diewert opens the investigation of an area 
that could have wide application. For a particular model of how prices 
deviate from proportionality, Diewert shows how the absence of strict 
price proportionality will affect the results. In this example as well as 
several others, Diewert does not clearly indicate the possibilities of gen- 
eralizing his special case. It may be possible to aggregate with relatively 
small errors in a wide variety of situations if the very particular model 
can be expanded. 
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The second set of conditions, homogeneous weak separability, im- 
poses restrictions on the production, demand, or utility function. Die- 
wert concentrates on investigating the alternative methods of finding the 
most suitable aggregate under the assumption that homogeneous weak 
separability is acceptable. This problem nrovides the core of a very 
large section of the paper. If micro data are available and the second 
set of aggregation conditions is acceptable, then one can proceed by 
two methods. Using the micro data, the investigator may either estimate 
a functional form for an aggregator function or else choose an index 
number formula. Diewert defines the concepts of exact and superlative 
index numbers to provide a link between these two methods. If we 
choose an index number, then what assumptions about the underlying 
technology are we making? For a number of well-known index formu- 
las, Diewert shows that they are equivalent to the use of a particular 
functional form. This work provides a link to the recent development 
of flexible functional forms. Essentially, the following proposition is 
being suggested. Flexible functional forms such as the Translog can 
approximate to the second order any functional form. Consequently, if 
we do not know the true functional form for an index, we should choose 
a superlative index, that is, one that is exact for a flexible functional 
form. This will ensure that we can approximate the true form, and we 
do not need to estimate the true function. This also suggests that the 
choice of a particular index formula from those that are superlative is 
not important. All the formulas will provide a second-order approxi- 
mation to the true function, and it will not matter which formula is 
chosen. 

If one uses one of the superlative indexes, then the following problem 
will arise. If one aggregates over some group of commodities and then 
uses the calculated aggregates in a second-state aggregation, will the 
results be consistent with single-stage aggregation? The answer in gen- 
eral is no. For consistency in two-stage aggregation, the function must 
be Cobb-Douglas. What Diewert does is to show that, provided one 
uses a superlative index or a Vartia index, the results will be approxi- 
mately consistent. Basically, as one would expect, the underlying ra- 
tionale is that if observations in adjacent periods are chained, then for 
small changes between adjacent periods, no problem will arise with 
multistage aggregates. 

Let me provide one concrete example of the type of specific problem 
that is being considered. A true index of inputs between two periods 
X ( X o , X 1 ; p * )  must equal the ratio of the variable profit functions in the 
two periods: ~ ( X l , p * ) / ~ ( x O , p * ) .  

It is shown that if there are: 
(a) constant returns to scale, 
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( b )  profit-maximizing behavior with respect to inputs X and outputs 
Y for periods 0 and 1 given output price vectors p o ,  p l  and input 
price vectors wo,wl, 

( c )  a translog function for T, and 
( d )  the reference price p *  equals the geometric mean of p o  and pl, 

then Qo(wo,wl,Xo X l )  - a Tornqvist index of inputs will be correct. 
An alternative approach to index numbers has been developed by 

Malmquist and extended by Pollak and by Blackorby and Russell. What 
Diewert is able to show is that the Tornqvist index defined above can 
be interpreted as a Malmquist index provided the distance function is 
translog and producers minimize with respect to the inputs. The point 
is that the Malmquist interpretation requires fewer restrictions. Neither 
constant returns to scale nor profit maximization is required. 

Diewert has developed a very useful set of procedures for choosing 
an aggregation function. We must remember that he has accepted the 
weak separability conditions required for aggregation. While this may 
seem like a very weak second-best procedure, I believe this type of 
two-stage investigation will become very common. This topic is beyond 
the concern of this conference, but it is one of the links of index num- 
bers and aggregation theory with a growing empirical literature. 

The section on aggregation over sectors is brief and, as expected, the 
results do not suggest much optimism. I believe Diewert is correct in 
focusing on the possibilities of models, such as Johansen's, that attempt 
to link micro and macro observations. Further empirical investigations 
of these models is needed. 

Capital aggregation suffers from all the problems of goods aggregation 
in general. While Diewert does suggest a more general intertemporal 
Hicksian model for a capital-using firm, he backs away from any serious 
suggestion of its implementation owing to the difficulties of obtaining 
the required data. This section should be extended to clarify the possi- 
bilities of measurement. If capital aggregation is viewed as equivalent 
to noncapital aggregation, as Diewert states in section 8.4.1, then the 
problems of aggregation over time must be solved. Better data on de- 
preciation, discards, and used capital market prices could mean that 
capital aggregation is similar to noncapital aggregation. However, at 
present this is not true. The durability of capital creates difficulties in 
constructing a capital aggregate from an empirical point of view, addi- 
tional to the theoretical difficulties inherent in constructing any kind of 
an aggregate. 

The rest of the chapter turns to a number of special problems that 
are closely connected with capital goods. The latter are generally thought 
to be durable, heterogeneous in design, and subject to rapid design 
changes. This description may be biased toward problems with equip- 
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ment, although structures are by no means homogeneous even if design 
changes may be less relevant. 

The measurement of technical change has been fraught with all the 
problems of capital goods measurement. It has also been an emotional 
area where prior beliefs often determine one’s evaluation of particular 
studies. Using the work of Jorgenson and Griliches as an example, sev- 
eral points are made. Provided all variables are measured correctly the 
Jorgenson-Griliches technique requires : (a) separability of outputs and 
inputs; (6)  competitive profit-maximizing behavior; (c) neutral techni- 
cal progress. Diewert develops a more general case in which (a) and 
(c) are weakened. His results, which are mildly surprising, are that the 
measure of technical change is approximately equal in both cases. The 
only difference is the use of an implicit rather than explicit index. This 
is encouraging. 

In attempting to extend this result to technical progress over a num- 
ber of sectors, some difficulties arise. To  obtain an answer, further re- 
strictions on technical change within a sector are required. They must 
all be strongly Hicks neutral. In this case, the geometric mean of the 
sectoral measures of technical change provides the correct answer. 

Having assessed the present status of measures of technical change, 
Diewert turns to perhaps the most serious and frustrating problem of 
all. New goods are continually being developed, and our capability of 
analyzing problems is limited by the complexity of measurement and 
theory in the presence of new goods. 

In examining the new-goods problem, two approaches are considered. 
An attempt to evaluate the errors associated with ( a )  setting the price of 
a good equal to zero in the period in which a new good is unavailable 
and ( b )  setting the price equal to zero in both periods. The first is al- 
ways biased upward. The second is biased upward if the new good has 
a relative price change less than the relative price change of a Paasche 
price index of all goods. It is shown that the upward bias in (a) is 
smaller than in ( b ) ,  which suggests a method for measuring prices not 
commonly used in these cases. 

The second approach uses duality theory and flexible functional forms 
to suggest a possible method for estimating the “reservation” prices of 
the new good in the first period. I cannot explain the details here. How- 
ever, I think it is clear as the author states that the data requirements 
for implementation are severe. 

I would like to see some suggestions made from the floor over the 
course of this conference on how we proceed under conditions that I 
believe we can roughly agree upon. If our theoretical understanding of 
measurement and aggregation problems in capital requires vastly im- 
proved data, then how are we to proceed on either generating that data 
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or evaluating the net benefits of alternative data collection systems? The 
distance in Canada and the United States between the designers and 
implementers of data-collection systems and the users in economics is 
large. While my appeal is not original, I believe we need to and can 
provide assistance in improving the data. I will go no further here, but 
I hope that some mechanism for more serious consultation will arise 
in both the United States and Canada. 

Although he has not pursued it intensively enough, in my opinion, 
Diewert does begin the investigation of the problems of specifying and 
estimating a hedonic model in which goods have characteristics. Un- 
fortunately, the problem of aggregating the qualities of characteristics 
is simplified by assuming that only one type of trade is purchased and 
that the total quantity of a given characteristic is simply the product of 
the number of trades, times the per trade quantity of that characteristic. 
Diewert is aware of this limitation, and within a limited space he does 
provide the beginnings of a useful model for estimating hedonic models. 

I have omitted several topics such as aggregation of seasonal variables 
and vintage capital models. It is very difficult to provide an evaluation 
of a very long and detailed paper. I will restrict myself to some quite 
general remarks. The theory of index numbers has predominantly been 
developed in terms of homogeneous functions. This appears perfectly 
reasonable when you think of an aggregate quantity index as indepen- 
dent of any behavioral or technical function. However, if you pursue 
the links between economic theory, index numbers, and flexible forms, 
then this assumption becomes suspect. If you double a subset of the 
micro inputs of a production function, you need not expect the aggre- 
gate input to double unless you want the production technology to be 
homogeneous. The problem is that, though weak separability does 
not require homotheticity or homogeneity, consistent two-stage opti- 
mization and consequently consistent aggregation does require one of 
these assumptions. It would be pleasant to hope some work could be 
done on considering weaker forms of homotheticity and errors associ- 
ated with approximate homotheticity. The latter, of course, should be 
contrasted with the possibility of approximate price proportionality. 

I would like to emphasize a few points of danger. First, the detailed 
concrete results in many portions of the paper are derived using par- 
ticular cases of flexible functional forms. I have urged Diewert to at- 
tempt to clarify the following issue. In what cases is it true that the 
results can be obtained for any or many flexible forms, and in what case 
are the results highly specific to a particular form? 

Empirical studies in economics are slowly recognizing the necessity 
of a more direct recognition of the approximations involved in both the 
data and the functional forms. The pure theory of aggregation is never 
going to comfort the empirical economists. The gap must be closed 
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with more explicit models of the errors of approximation and aggrega- 
tion that are bound to arise. Diewert’s paper is a contribution to this 
very broad question, although it is only a beginning. 

Reply by Diewert 

A brief response to a number of specific points raised by Professor 
Denny seems in order. Section 8.4 of my paper has been totally revised 
to reflect Denny’s comment that “the durability of capital creates diffi- 
culties in constructing a capital aggregate from an empirical point of 
view, additional to the theoretical difficulties inherent in constructing 
any kind of an aggregate.” 

Second, Professor Denny astutely observes that the many concrete 
results in the paper have been derived under the assumption that the 
underlying functional form is translog, and he asks whether similar con- 
crete results can be generated by using other flexible functional forms 
instead of the translop. My answer is that it may be possible, but I 
have not been able to do it. It appears to be difficult to obtain functional 
forms that are linearly homogeneous, flexible, and quadratic in loga- 
rithms so that the quadratic approximation lemma (59) yields the very 
useful identity (64), upon which my concrete results are built. 

Third, Professor Denny notes that the theory of index numbers has 
predominantly been developed in terms of homogeneous functions, and 
he wonders to what extent this assumption could be relaxed. I have 
certainly made liberal use of the assumption of constant returns to scale 
in my paper. However, the reader should note that all of my results 
involving the Malmquist quantity index did not require the linear 
homogeneity assumption (but they did require the choice of a very 
specific reference vector). I further note that although I have assumed 
homogeneous weak separability in order to justify two-stage optimiza- 
tion and aggregation, the theoreticd literature on two-stage budgeting 
and decentralization does not require homogeneous weak separability. 
The main theorems in this area are due to Gorman (1959) and the 
extensive literature on the subject is reviewed and extended by Black- 
orby, Primont, and Russell (1978, chap. 5 ) .  On the other hand, the 
index number implications of this literature have not yet been completely 
worked out, although Afriat’s (1  972) theory of marginal price indexes 
makes a start in this direction. This appears to be a fruitful area for 
further research, as Denny notes. 


