This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: The Price Statistics of the Federal Goverment

Volume Author/Editor: Report of the Price Statistics Review Committee
Volume Publisher: NBER

Volume ISBN: 0-87014-072-8

Volume URL: http://www.nber.org/books/repo61-1
Publication Date: 1961

Chapter Title: A Study in Validity: BLS Wholesale Price Quotations

Chapter Author: John Flueck
Chapter URL: http://www.nber.org/chapters/c6498
Chapter pages in book: (p. 419-458)

STAFF PAPER 9

A STUDY IN VALIDITY: BLS WHOLESALE PRICE QUOTATIONS ${ }^{1}$

John A. Flueck, University of Chicago

I believe these tables will be found, not only confirmatory of the aphorism that "the world is much ruled by the belly,", but strongly suggestive of the conclusion that the history of prices . . . may, in the order of practical importance to mankind, take precedence of the history of politics.-J. T. DANson, JRSS, 1850.
Every since Fleetwood ${ }^{2}$ in 1703 became concerned with measuring the purchasing power of the English pound and Dutot ${ }^{3}$ in 1738, using a more refined total sum method, compared the prices of two periods (reigns of Louis XII and Louis XIV), the precision of index numbers has been seriously questioned. The controversy has ranged from David Ricardo, who expressed doubt about ever being able to measure changes in the average price level, to Irving Fisher, who in 1922 felt the total error of the U.S. Bureau of Labor Statistics Wholesale Price Index was "usually within one or two percent." "

The BLS itself has had little to say about the overall precision of the WPI except to invoke the strong law of large numbers ${ }^{5}$ or conspicuously to avoid the subject. Such an omission ought to be warning enough as to the complexity of the problem.

Clearly the precision of a price index number depends in part on the validity of the actual price data. It is with this most important problem, the validity of the individual price observations, that this paper deals.

Upon first note, the importance of this problem may not be realized or at least be greatly underestimated. Fisher himself felt that collected price data might err very little from the actual transaction price, "say, less than $1 / 10$ of 1% " ${ }^{6}$ in the case of the WPI.

Wesley C. Mitchell, on the other hand, in a 1915 BLS Bulletin stated that the collection of accurate price data was not only the most "perplexing" step in constructing an index but also the most important

[^0]irrespective of the quantity of the literature dealing with the other two areas (weighting and form of the index function). ${ }^{7}$

Uses and Collection of the WPI

The BLS has claimed three main uses of the index: first, as a measure of general price movements at other than the retail level; second, as a measure of price movements in particular markets or commodities, whereby its utilization as a deflator of certain components of the gross national product estimates and as an escalator in long-term contracts (construction contracts, production contracts, commercial leases, or supply contracts) ; third, as an indicator of market prices of specific commodities for both buyers and sellers. ${ }^{8}$

From an academic standpoint the WPI, or at least components of it, find great use not only as deflators of many different time series, but also as a measure of the flexibility of prices. This has been the case in some studies of monopoly power. Therefore, any attempt by an industrial group to present a more stable picture of its prices than actually exist might ironically result in strong public policy being directed against the industry.

In 1891 when Professor Roland Falkner; at the behest of the Senate Finance Committee, set out to see if wages or prices had fallen since the Civil War, he not only collected price data from trade journals and manufacturers but also from merchants. Hence it appears he collected both prices offered and prices paid.

By January 1958, the price quotations used in constructing the index were as far as possible taken from "the first significant commercial transaction in the U.S.," by the following methods:

Percent of Price
Quotations

A company report is a detailed confidential price questionnaire which is mailed monthly from the producer or manufacturer (seller) to the BLS.

Trade publications are supposedly those which are recognized as "reliable" by the industry in question, and the BLS further mentions that "some" independent spot checks are made of the trade publications' printed prices. Nothing is said as to the frequency of these checks. No indication is given as to the method (if any) utilized in checking trade associations. In the case of some commodities (agricultural products, fish, etc.) other government agencies are already officially collecting and publishing prices.

[^1]Hence, the BLS collects prices as quoted by the sellers themselves, their trade associations, or trade journals. The prices are supposedly samples of quotations which have been extended to public and private enterprises, regional governments, and the Federal Government. ${ }^{9}$

List Prices and Departures

Of the two prime sources of price quotations, buyers and sellers, one might expect that there would be no systematic difference between price quotations due to source. However, if sellers quote list prices ${ }^{10}$ and buyers quote actual transaction prices, the resulting difference (as will be shown) may be large for many commodity categories.

Rationale for the existence of list prices might take one or more of the following forms:

1. Many areas of the primary market (loosely defined as the first large-volume transaction) are noticeably marked by a high degree of homogeneity of product, relatively little advertising, and relatively few (2-10) sellers. If price changes on the part of one firm have no significant effect upon the prices of other firms in the industry, then the firm faces a demand curve of high elasticity with small changes in price having large effects on sales. If the firms in the industry are involved in a cartel arrangement, it usually pays for a member of the cartel to "shade" prices a bit lower than the cartel (list?) price. In these situations, the use of a list price allows sellers to inform buyers as to their presence in the market, to present a frame of reference (usually an upper bound) from which possible deductions (or in a few cases, additions) may occur, and to achieve these ends without actually disclosing their present transaction price or prices to competitors.
2. On grounds of price discrimination one might justify the use of list prices. By setting a price for some time period equal to or above the highest expected future price, the seller can clandestinely discriminate between individual buyers by the use of discounts, rebates, etc., with no fear of adverse customer repercussions due to comparison with published prices. The seller of course still bears the risk of buyers comparing prices.
3. In attempting to secure collusive action of sellers, a detailed schedule of list prices (either delivered or f.o.b. list prices with rules for determining freight) may be used. While this method of cartelizing has the advantages of simplicity and low operation costs, it encounters the difficulty (except in public auctions) of policing the participants.
4. The use of list prices may be based on costs. In markets where sellers have many agents in widely dispersed areas, the costs of contacting the "price makers," costs of repetitive price calculations for every possible combination of products, services, and terms, and the resultant costs of informing the selling agents of today's price may be prohibitive. Costs of changing list prices are relatively low, as all selling agents are merely notified of new discount terms. Additional discounts may be granted on factors best assessed by the selling agents themselves (i.e., services, likelihood of complaints, promptness of payment, etc.).
[^2]In the above rationales, list prices are usually an upper bound (and not necessarily a least one) on actual transaction prices, the latter varying greatly from the former, as will be seen later. Methods of concealing actual transaction prices are numerous and manifold.

One method is that sellers will quote the highest price they received during the period in question, and usually these prices will apply to small-lot sizes which may or may not be specified. Also the nonstipulation of delivery terms (freight equalized, freight allowed, freight prepaid on specified amounts, f.o.b. destination) allows variability in the actual f.o.b. plant transaction price. Fvidence of these practices was brought to public attention by the BLS in its "Supplementary Inquiry on the WPI Price Reports." ${ }^{11}$

Another common method in steel, petroleum, and no doubt other markets is to ship more than the invoiced quantity, thereby reducing the actual transaction price per unit. ${ }^{12}$

In the chemical industry, the use of different trade names for the exact same commodity allows price discrimination to go undetected. ${ }^{13}$

Apparently the most popular and widely used method is to offer discounts of varying degrees (depending on the market supply and demand situation) from the list price which is quoted in trade journals, newspapers, by trade associations, and, unfortunately for many commodities, the WPI. For discomiting appears to be very common in normal markets, rampant in weak (buyers') markets, and zero or negative in strong (sellers') markets. Examples of these practices are legion:

Gasoline is going through a period of "watchful waiting," refiners say. There are unconfirmed reports that most grades would find sellers to bids of " 0.5ϕ off" (per gallon). One source declares buyers' bids for quantities for shipment over balance of the year likely could get even wider discounts.Platts Daily Oilgram, March 10,1958.
A petroleum trade journal gives details of discounting:
"One can no longer pretend that present postings even remotely reflect the true market price," mentions an important oil executive. . . . It would still be foolhardy, of course, to predict an actual imminent cut in world crude postings-if only because no large oil company has any real desire to take such a lead. . . . Nor is anyone anxious to face the uproar such a move would undoubtedly precipitate in the producing countries of the Middle East and in Venezuela. . . .

Sales at substantial discounts below posted prices are nothing new at either of these two main world oil export centers. Offerings at 75ϕ to 85ϕ a barrel off postings in Venezuela have become routine. So have discounts of 20ϕ to 35ϕ at the Persian Gulf. . . . Sharp discounting is no longer confined

[^3]largely to sellers with limited sources of supply. New, and bigger, cut-price forces have entered the market. And everybody is now getting into the act, even major suppliers, in an ever-sharpening fight for outlets. . . .
At least two major oil companies have made deals for delivery of Middle East crude to Italy at discounts of 58ϕ and 91ϕ per barrel, respectively (that is, below Middle East postings plus A fra tanker rates).
Or look at Japan, by far the biggest crude market in the Far East. A tremendous amount of discounting is going on there now . . . the size of the discounts can no longer be kept secret (or hidden in "free transportation" and other gimmicks). The net result is that each new, bigger discount almost automatically starts with a new round of cuts. "If it was still just a case of price cuttings by some independents with limited crude supplies, it would be one thing, but when discounts are being offered openly by just about all major companies with unlimited supplies of crude at the Persian Gulf, the situation is altogether different." And in India after Russia offered crude "at a price substantially below the level at which these companies were importing from their parent companies" . . . as of mid-week, at least one major supplier had offered to reduce the delivered cost of its Middle East crude by an average of 274 a barrel.Petroleum Week, July 22, 1960, p. 14.
In the chemical industry:
Chemical executives report greater price firmness even where there are no actual list price changes. This takes the form of fewer price discounts, freight rebates and similar arrangements. . . . Sulfuric acid, for example, "is firmer at its base price than it has been in 18 months," declares the president of one major producer. He doesn't anticipate an increase in the base price, but he makes no secret of the fact that selling the acid at list price is an "improvement over the situation several months ago."-Wall Street Journal, February 2, 1960. [All this time, in fact since June 1953, the WPI quoted sulfuric acid unchanged at $\$ 22.35$ per ton, no doubt the seller's list price.]

Another interesting example in the chemical field was fumaric acid, which during the steel strike became greatly reduced in supply due to the fact that it was a joint product of steelmaking. "One fumaric acid buyer says that at the end of 1959 he was offered 'spot' fumaric at 70ϕ a pound, against a list price of $28.5 \nmid$. . . . Ironically, on January 1, the base price of fumaric was cut 4 to 4.5 cents a pound, despite the short supply and high spot prices. This price cut was viewed by many chemical industry observers as an attempt on the part of established producers to keep new competitors from entering the field."-Wall Street Journal, loc. cit.

Listing only a portion or none of a special discount or allowance is another method of disguising the actual transaction price. ${ }^{14}$

Still another scheme, which involves either an affiliate, agent, or "trusted" partner, seems to be widely used in the oil, coal, and steel industries. In a weak market, the steel producer merely finds a "trusted" warehouser who is willing to purchase the rest of a product run at a large discount, holding to sell in a more "profitable" market. In the oil industry the method is a bit different, ${ }^{15}$ but the result is again that the true transaction price is hidden.

In the coal industry and possibly in others, the agent device is sometimes employed to conceal transaction prices. For not only does the agent bear the onus of selling substantially below list price, but he probably submits no price data to the BLS.
And finally, there is always the possibility that the price quotation given to the BLS resembles neither actual transaction price nor seller's list price, but rather is a price sans fond.

No doubt other methods of hiding actual transaction prices exist, but these few examples should suffice to illustrate the point-that actual transaction prices can be well hidden and may differ from the seller's list prices.
One becomes concerned about the validity of seller's list prices when he looks back through the individual price indexes (Chart 1) and discovers either years of no change, as in the case of crude petroleum, cigarettes, synthetic rubber, cigars, typewriter ribbons, and many organic and inorganic chemicals; or at least very orderly step functions, as in the case of all the steels, billets, slabs, pig iron, anthracite coal, gasoline, coke, paints, drugs and pharmaceuticals, woodpulp, tires, tubes, power transformers, incandescent lamps, plate and safety glass, golf balls, baseball gloves, and even ball point pens, to mention only a few.

The BLS supplied evidence of the possible difference between sellers' quoted and actual transaction prices in a study of steel prices for the OPA and WPB in 1943. This study showed that actual delivered prices frequently deviated from delivered list prices and that base prices alone were not adequate measures of steel prices on account of the large "extra" costs present today in steel products. ${ }^{16}$ Despite its own findings, the BLS today still publishes only base prices for steel.

[^4]Ohart 1
Individual bls Coumodity Indexes, 1951-1959

Applicability of the Data
In order to form an estimate of the difference between transaction and list prices, and the manner in which this difference changes over time, data have been collected on a considerable number of commodities purchased by the Federal Government or its agencies. ${ }^{17}$ These

[^5]purchasing organizations all presently employ a competitive bid process in awarding spot and term contracts (excluding negotiated contracts which are less than 1 percent of the total): this means the organization solicits for bids, receives offers, compiles them, and then accepts one of the offers-the lowest, if all other conditions are fulfilled.
Although the BLS includes in the weight universe of the WPI "normal purchases of civilian goods by the government," ${ }^{1 s}$ the basic question as to the relevance of these price data is whether price quotations to the government under competitive bidding are representative of a large number of commodity transaction prices at the first "largevolume stage" as intended to be measured by the BLS. Differences might arise due to one or more of the following reasons:

1. Commodity difference. It is possible that commodities purchased by the government differ significantly from the standard commercial commodities due to advertising, services, or quality itself. However, the level of transactions that the BLS is attempting to measure (first significant commercial transaction or "primary market") is characterized by very little advertising. Services may vary slightly among classes of customers, but, in general, the Federal Government is considered a more difficult customer with which to deal than private firms. Furthermore, an attempt was made to take account of any quality differences that exist between government purchased and standard commercial commodities as described in the WPI. Thus, steel sheet and plate have been adjusted to conform with WPI quality specifications. In many cases it is stated that the government purchases standard commercial commodities. Only where commodities have wide quality ranges, and where the WPI gives no indication of quality content, is there a serious possibility of price reflecting quality differences. But even in such cases, if the quality differential does not change rapidly over time, comparisons of flexibility should still be valid.
2. Distress sales. Distress sales to government or its agencies at prices less than marginal cost do not appear to be important. Not only is the Federal Government a continuous buyer but, due to the procedure of identifying and publicly posting all prices offered to the Government, there appears to be less incentive to sell at distress prices in the government market than in the private market. This is in full accord with the "trusted" (no price disclosure) customers mentioned earlier. ${ }^{19}$
3. Entry attempts. New firms seeking to establish businesses and possibly lacking distribution systems or established products might use the government market where (other conditions fulfilled) only price is important. However, upon checking both the companies that offer price quotations and those whose bids are accepted, one finds that not only are the large corporations of the various industries represented but they also are heavily represented among the successful bidders. Very few successful bidders appear to be new entrants in an industry.
4. Competitive bidding. It could be argued that the government's procedure of competitive bidding results in lower prices than nongov-

[^6]ernment buyers achieve. But a claim of this sort simply denies the profit motive in private business.
5. Order quantity. The government often purchases smaller lots of those commodities for which the BLS stipulates minimum lot sizes. ${ }^{20}$ For all commodities, the BLS gives no indication of an upper limit on the number of lots (order quantity). Surely whether one purchases 1 or 100 carloads of a commodity should have some effect on price. Since most government transactions are for smaller quan. tities than many private transzctions at this level (i.e., steel, aluminum, chemicals, plate glass, plywood, linoleum, auto storage batteries, etc.), the bias is often upward relative to the average market transaction price.
6. Primary producers. Because almost anyone can submit a price offer to a government purchasing organization irrespective of level of supply, some price quotations come from levels other than the "primary market." Only in cases where all primary producers or suppliers are known can nonprimary market quotations be separated. ${ }^{21}$ This again produces an upward bias in the mean (\bar{X}) of government price quotations as compared with average transaction prices from the private market.
Hence it appears that if government price quotations are biased at all, they are probably biased upward with respect to the average of the population of market transaction prices at the "primary level." Table C-1 offers some support of this conclusion. Note that the relative rankings, from highest to lowest, are usually in this order: Bureau of Census price, offered contract price, and BLS price. For oxygen and acetylene, the BLS data are in the form of index numbers ${ }^{22}$ and cannot be directly compared with the price quotations in the other two series. Nonetheless, it may be noted that the movements of the latter are usually in accord and both differ from that of the BLS series. Calcium carbide comparisons involve delivered prices, and again the relative movements of the first two series are similar and different from the BLS series. These particular commodities were chosen so as to minimize product and quality differences between the price series.

Results

The major results of the simple statistical comparisons of the BLS wholesale price and index series with the prices bid on government contracts (henceforth called contract prices) ${ }^{23}$ are:
a. The average levels of the BLS series are above those of the contract price series (Tables 2 and 3),
b. The BLS series change less frequently than the contract price series (Table 1),

[^7]c. The BLS series change by smaller magnitudes in the short run than the contract price series (Table 1).
Table 1 demonstrates that in 22 out of 30 commodities the number of price changes between successive monthly observations was greater for the contract price series than for the BLS series. This finding is all the more impressive in that our procedure exaggerates the number of price changes in the BLS series on two counts. First, to compare government term contract prices with BLS prices, the means of the BLS monthly prices for the term contract period are calculated. If prices are constant during term 1 , rise during term 2 , and are constant during term 3 , the method of averaging will show two price changes in the BLS series when in effect only one has occurred. Second, the same problem occurred in the basic BLS series when a monthly price was an average of weekly prices. Also, the BLS method of collecting prices of particular firms at particular moments can show as many price changes as there are firms. ${ }^{24}$

Adjusting coke and anthracite (buckwheat No. 1) for the first source of overstatement would result in both commodities showing more price changes in the contract price series than in the BLS series. There are 13 commodities which have term contract price data.

In commodity areas such as chemicals, nonferrous metals, pulp, paper, rubber and rubber products, etc., where BLS prices are given as f.o.b. shipping point, freight allowed, absorbed, or equalized, one would not expect BLS prices to be good indicators of short-run price flexibility, for no deduction is made by the $\mathrm{BI}_{2} \mathrm{~S}$ from the f.o.b. price for the allowed, absorbed, or equalized freight. This seriously limits the BLS series as a reliable measure of short-run price change magnitudes.

Table 1 exhibits 60 out of 64 cases where the contract price series showed greater mean magnitude of change than the BLS series. In only two cases out of 64 (steel plate and anthracite chestnut) did the BLS series show greater mean magnitude of movement. Two cases showed no change. Note that in all cases the mean percentage decrease of the data surpassed that of the BLS. This would certainly be an important characteristic of a comparison between list and transaction prices. Magnitude differences may be due in some part to differences in quantities purchased. Although some minimum quantity limit is often given in the BLS specifications (unfortunately there are numerous commodities where none is given), no maximum quantity limit is stated for any commodity. And even if maximum limits were given, some difference in prices might be expected because of variations in quantity within the stated limits. Tables B-2, B-10, B-14, B-23, and B-26 all present excellent examples of quantity-price difference in the same month.

The comparisons in Table 2 document the fact that on the average the BLS series are higher than the contract price series. For not only in 31 out of 32 commodities are the BLS series on the average above the mean of the contract series, but for all commodities the BLS series

[^8]| Commodity | Period of comparison | Number of observations ${ }^{1}$ | Number of price changes | | Mean (\bar{X})
 number of months between $\underset{\text { changes }}{\text { BLS price }}$ | $\begin{aligned} & \text { Mean } \\ & \text { percent } \\ & \text { DATA } \end{aligned}$ | $\begin{aligned} & \text { Increase } \\ & (+)^{2} \text { BLS } \end{aligned}$ | $\begin{aligned} & \text { Mean } \\ & \text { percent } \\ & \text { DATA } \end{aligned}$ | $\begin{aligned} & \text { Decrease } \\ & (-)^{\text {P BLS }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | DATA | BLS | | | | | |
| 1. Aluminum sulfate | July 1949 to November 1956 | 16 | 15 | 2 | 27.3 | 10.468 | 1.111 | 10.050 | +1.732 |
| 2. Calcium carbide (a and | April 1951 to September 1954 | 14 | 13 | 1 | 13.5 | 13.134 | . 455 | 16.703 | |
| 3. Calcium hypochlorite | February 1949 to March 1956 | 11 | 6 | 2 | 24.0 | 4.972 | 1. 302 | 4.250 | +4.488 |
| 6. X ylene.... | December 1954 to February 1957 | 5 | 4 | 0 | 38.0 | 2.190 | . 000 | 2.117 | . 000 |
| 7. Acetylene-.......... | November 1953 to October 1957 | 4 | 3 | 2 | 34.6 | 4.807 | 3. 145 | 7.212 | . 000 |
| 8. Carbon dioxide (gas) | November 1954 to October 1957 | $\frac{4}{3}$ | 3 | 0 | 30.0 | 8. 885 | . 000 | 26.531 | . 000 |
| 9b. Oxygen ${ }^{\text {9a }}$ | Jovember 1954 to October 1957 | 3 | 2 | 1 | 22.0 | 9. 12.308 | 8. 8.547 | 5.735 7.397 | . 000 |
| 10. Laundry soap (bar) | July 1954 to December 1959. | 21 | 20 | 7 | 5.5 | 26.268 | 8.769 | 10.913 | . 695 |
| 11. İaundry soap (powder) | March 1949 to December 1955. | 18 | 17 | 15 | 1.67 | 21.674 | 11.428 | 18.643 | 12.940 |
| 12. Paint interior. | March 1951 to February 1959 | 19 | 18 | 12 | 3.31 | 4.799 | 1. 186 | 6.267 | +. 828 |
| 13. Enamel | December 1856 to June 1957.. | 4 | 3 | 1 | 1.75 | 14.010 | . 000 | 8. 161 | +. 480 |
| 14. Gasoline.- | April 1954 to April 1958.- | 10 | 9 | 3 | 4.9 | 6.188 | -1.173 | 6. 236 | . 243 |
| 15. Anthracite, buckwheat | April 1951 to April 1959. | 17 | 16 | 16 | 2.04 | 9. 429 | 5. 440 | 11.034 | 3.005 |
| 16. Anthracite, chestnut | April 1951 to April 1959.. | 19 | 18 | 18 | 1.69 | 3.239 | 3. 580 | 6.392 | ${ }_{5} 3.841$ |
| 17. Anthracite, pea.-. | Apric 1953 to May 1955... | 3 | 2 | 2 | 2.12 | . 000 | . 000 | 12.053 | 5.383 |
| 18. Biturninous cosi, egg | March 1953 to June 1960 | 7 | 6 | 6 | 1.09 | 13.866 | 4. 128 | 5.682 | +2.644 |
| 19. Coke (Birmingham) | July 1957 to June 1960 | 3 | 1 | 2 | 15.0 | 2.830 | 2. 567 | . 000 | . 000 |
| 21. Aluminum alloy sheet | January 1955 to June 1959 | 12 | 10 | 5 | 7.0 | 15.805 | 2. 833 | 11. 502 | +1.025 |
| 21. Aluminum ingot | December 1953 to May 1956 | 5 | 4 | 4 | 5.6 | 8. 601 | 4. 644 | 1.724 | +5.172 |
| 22. Brass bar-- | January 1954 to September 1959 | 12 | 11 | 9 | 1.703 | 12.642 | 8. 987 | 10.203 | 7.250 |
| 233. Steel sheet ${ }^{8}$ | February 1949 to August 1954. | 14 | 13 | 5 | 6.8 | 5. 951 | 3.051 | 6.513 | +1.108 |
| 23b. Steel sheet. | July 1954 to April 1955- | 3 | 2 | 1 | 6.0 | . 858 | $-.205$ | 1.815 | . 000 |
| 24. Steel plate. | May 1955 to June 1957.. | 3 | 2 | 1 | 4.8 | 10. 827 | 13. 102 | . 224 | . 000 |
| 25. Plywood A-C | January 1952 to May 1957. | 17 | 16 | 13 | ${ }_{2}^{2.24}$ | 4.352 | 4. 344 | 9.037 | 6. 815 |
| 27. Oummed tape | Sepember 1951 to August 1955 | 16 22 | 15 21 | 8 9 | 2.00 4.00 | $\begin{array}{r}\text { 5. } \\ \text { 15.819 } \\ \\ \hline\end{array}$ | 4.161 -1.400 | 8.308 10.650 | 7.271 +.387 |
| 28. Auto tubes. | April 1956 to December 1959 | 6 | 4 | 4 | 10.00 | . 335 | . 083 | . 297 | +1.868 |
| 29. Storage batteries | February 1949 to February 1959 | 6 | 5 | 5 | 3.32 | 5.086 | -. 589 | 11.829 | +6.367 |
| 30. Linoleum- | August 1950 to November 1959. | 16 | 15 | 10 | 4.72 | 4.953
 9.95 | 1.130 | 5.765 6 8 | +1.137 |
| 32. Goll balls.. | July 1949 to February 1959... | 15 17 | 14 16 | 12 | 15.57 10.17 | 9.
 5. 780
 180 | 3. 1.994 1.955 | 6. 7.730 | +1.687 +1.787 |
| Total | | 345 | 306 | 188 | | | | | |

[^9]are above the low of the contract series. In any given contract, the low price in the distribution of prices is the actual transaction price, provided other conditions are fulfilled. Note that many of these comparisons are over a 7 - to 9 -year period.

Table 2.-Average Level Comparisons of Price Series

Commodity	Perlod of comparison	Number of observations	$\frac{\mathrm{BLS}}{\bar{X}}$	$\frac{\text { BLS }}{\text { LOW }}$
5b. Acetone.	August 1958	1	1.061	1.174
1. Aluminum sulfate.	July 1949 to November 1956.......	16	1.039	1.161
2. Calcium carbide (a and b)	April 1951 to September 1954.	21	1.099	
3. Calcium hypochlorite........-	February 1949 to March 1956......	11	1. 206	
5a. Hydrochloric acid.-.	July 1958.	1	1.177	1.667
6. Xylene.	Deccmber 1954 to February 1957.-.	5	1.018	
10. Carbon dioxide ---............	November 1954 to October 1957...-	21	1.907 2.838	2.039
11. Laundry soap (powder)	March 1949 to December 1955.	18	1.273	
12. Paint interior.	March 1951 to February 1959.	19	2.079	
13. Enamel.	December 1956 to June 1957.	4	2. 238	2.566
14. Gasoline	April 1954 to April 1958.	10	1.027	1.069
15. Anthracite, buckwheat No. 1.	April 1951 to April 1959	17	1.135	1. 190
16. Anthracite, chestnut.	April 1951 to April 1959.	19	1.192	1. 279
17. Anthracite, pes....	April 1953 to May 1955.	3	1. 219	1.230
18. Bituminous cosl, egg	March 1853 to June 1960	7	1.363	1. 450
19. Coke (Birmingham)	July 1957 to June 1960	3	1.097	
${ }^{20}$. Aluminum alloy sheet	January 1855 to June 1959	12	1.137	
21. Aluminum ingot	December 1953 to May 1956 _-....	5	1.044	1.081
22. Brass bar-	January 1954 to September 1959...	12	1.054	
23 b . Steel Shect	July 1954 to April 1955	14 3	1.084	
24. Steel plate	May 1955 to June 1957.	3	1.059	1.078
25. Plywood A-C	January 1952 to May 1957.	17	1.082	
28. Plywood A-D	Decomber 1051 to August 1955	18	1. 045	
27. Gummed tapo	September 1951 to January 1959...	22	1. 1488	

Because of the different time periods over which the commodities were sampled, a meaningful mean value calculation of the difference in level between the BLS and contract data for all commodities is unavailable. However, for 18 commodities in 1953, the average level ratio BLS/contract \bar{X} was 1.187 , and for a different set of 22 commodities the average level ratio was 1.281 in 1954.

The contract price series unfortunately include some nonprimary market prices, and if they could be excluded, the differences in level would be still larger. Furthermore, the government often purchases in smaller lot sizes than private market buyers and in some cases in lots smaller than the WPI lot specifications (i.e., aluminum alloy sheet, steel sheet, brass bar, aluminum ingot, laundry soap (bar), plate glass, etc.). This results in a smaller difference between the two series than would otherwise exist if no such deviations from the WPI specifications were present.
For those commodities for which the BLS provides only index series, the contract prices were transformed into indexes at the same level as the initial BLS indexes for comparison (Table 3). Again, on the average, the BLS level for the period of comparison is higher, which reflects a difference in magnitudes of the movements.

Table 3.-Average Level Comparisons of Index Series, Selected Periods, 1949-60

Commodity	Period of comparison	Number of observations 1	$\frac{\text { BLS }}{\bar{X}}{ }^{\text {a }}$	$\frac{\text { BLS }}{\text { Low }}$
7. Acatylene.	November 1953 to October 1957		1.062	1.298
9a. Oxygen.	January 1956 to November 1959..		1. 058	1.344
9b. Oxygen	July 1954 to July 1960.	3	1.005	1. 404
31. Glass, plate	July 1949 to February 1959	15	986	1.069
28. Auto tubes	A pril 1956 to December 1959	16 6	1.106	
29. Storage battery	February 1949 to February 1959.	6	1.456	1. 558
32. Goll balls..	June 1949 to February 1960.-	17	1. 284	1.542

1 This is the number of months in which there is at least 1 price observation. Those months in which more than 1 observation falls are represented by mean prices in all calculations.
2 Mean of the BTS/DATA figures for the ontire period of comparison. Due to different periods of comparison, no mean is calculated for all commodities.

Clearly, if over time the comparisons show the BLS series above the contract series, then on the average the short-run comparisons (month to month) will certainly exhibit the same difference.

The evidence of Tables 1 to 3 is of course limited in time, frequency of observations, and in commodity coverage. But within these limits there are important differences in level, frequency, and magnitude of change between the BLS series and the contract price series. That would be the difference between list and transaction prices.

Appendix A

CONSTRUCTION OF THE TABLES

The flexibility and magnitude comparisons were constructed in the following manner. For the period of comparison, the total number of contract price observations was tabulated. Then the number of price changes between successive monthly observations was noted (successive in time; June, October, not necessarily adjacent) and compared with the corresponding number of changes between BLS price quotations for the same period. In situations where more than one observation was present for the month, the mean of the observations was used as the month's price quotation.

The mean (\bar{X}) number of months between BLS price changes commences with the first price change in the comparison period and terminates with the end of the last run of identical prices started within the period, whether it extended 1,2 , or 36 months beyond the comparison period.

The measure of the magnitudes of fluctuation, mean percentage increase and mean percentage decrease (T'able 1), was the mean of all successive percentage price changes for the comparison period. Increasing and decreasing price changes were segregated, then, if three increasing observations were present for the period of comparison, the mean of the two price changes expressed as percentages of their former value was tabulated as Mean Percentage Increase, Data. The mean of the price changes in the BLS for the same period was tabulated under BLS. The decreasing (-) price changes were handled similarly. Note that $(+)$ and $(-)$ refer to movements which were opposite those of the contract data.

In all comparisons between contract price observations and the BLS series, either delivered or f.o.b. data were used for the comparisons over time. No mixing of the two was tolerated.

Only on term contracts (delivery rate >150 days) were the means of the BLS monthly price quotations utilized.

For the average long-run level comparisons (Table 2), the sum of the applicable BLS monthly price quotations for the period of comparison was divided by the sum of the contract price observations. This comparison was made for both mean (\bar{X}) contract prices as well as low prices. In long-run level comparisons involving term contracts (delivery data>150 days), both the means and the lows of the contract series were compared to the BLS lows and means for the particular term contract periods.

In situations where the BLS reports only an index of price changes (Table 3), the original contract price series was transformed into an index based on the mean of the first year of comparison. The index was then adjusted to match the base of the BLS index and the comparisons then made as to long-run level for both the means and the low price observations.

Empirical support of the hypothesis concerning the bias of the contract price data is offered in Table C-1. The Bureau of Census yearly average price is calculated from the quantity and value data prepared by the Industry Division, Bureau of Census, as found in the Facts for Industry ${ }^{25}$ series.
data adjustments
In order to present more meaningful comparisons between contract price data and the BLS data, some contract price series were adjusted to alleviate possible price differences due to commodity specification differences.

1. Aluminum sulfate (Table 1). The majority of the price quotations were f.o.b. plant. In a few cases the applicable freight (exact freight cost from plant to destination for the particular date as figured by the government) was deducted.

Also $\$.05$ per 100 lbs. was deduced from all price quotations (as suggested by the sellers) to adjust for the special multiwall bag required by the Navy. Octagon was not considered a primary producer and hence its quotations, though included in the table, were not used.
2. Sulfuric acid (Table B-4). The majority of the price quotations were on a delivered basis. Hence exact freight costs from plant to destination as given by past rate schedules were needed, but, unfortunately, not available. Consequently, the commodity was not used in any comparison.
3. Gasoline (Table B-14). The government requires at least 86 octane and at times receives offers of 87 and 88 octane gas. Due to no systematic notification of the exact octane rating, all price quotations were subjected to the adjustment of $\$.002$ per gal. by deduction from the WPI price series. This figure was twice the magnitude suggested by a large midwestern oil company.
4. Steel sheet (Table B-23 a and b). A deduction of $\$ 1.05$ per 100 lbs. for quality and inspection extras was made for all price quotations in order to match the WPI specification. The adjustment and magni-

[^10]tude were suggested by government steel buyers and specification experts. In Table B-23a, a further adjustment was suggested by the specification experts with respect to delivered prices. In f.o.b. plant purchases after 1952, the government added an average delivered transportation cost in order to compare the price quotations with other delivered prices. Adjustment 2 gives the price quotations after deducting the average delivered transportation cost. Prices under adjustment 2 were not used in this study. Only adjustment 1 was used.
5. Steel plate (Table B-24). A deduction of $\$ 1.10$ per 100 lbs for quality and inspection extras was again made at the suggestion of the government buyers and specification experts.
6. Plywood (Tables B-25 and B-26). Price quotations that contained an average delivered transportation cost added by the government were adjusted to their former f.o.b. basis by subtracting the government-calculated increment.

In regard to the other price series, a few general comments are desirable. In a few commodities (steel sheet, storage batteries, aluminum sulfate, etc.) some nonprimary market price quotations were recognized and did not enter into the final analysis. No doubt others still remained, for only the most obvious were segregated.

In some commodities (brass bar, xylene, linoleum, etc.) the WPI specifications were given as f.o.b. plant, whereas the price quotations were on a delivered basis. And in a ferv commodities (aluminum sheet, brass bar, calcium carbide, etc.) the quantities of the quotations were less than the WPI specified minimum quantity.

All these factors tended to minimize the difference in level between the WPI and the contract price data and possibly bias the flexibility comparisons.

Appendix B

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Bid opening date} \& \multirow[t]{2}{*}{Dellvery date} \& \multirow[t]{2}{*}{Number of bidders} \& \multirow[t]{2}{*}{Quantity (pounds)} \& \multicolumn{3}{|l|}{Sellers offered prices (dollars per 100 pounds, no time discounts)} \& \multicolumn{3}{|l|}{BLS prices from opening to dellvery date} \\
\hline \& \& \& \& Low \& \(\overline{\boldsymbol{X}}\) \& High \& Opening \& \(\bar{X}\) \& Delivery \\
\hline July 25, 1949.... \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { A, S, O, N, D.... } \\
\& \text { 60 days. }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\(\stackrel{5}{21 / 5}\)} \& \multirow[t]{2}{*}{160,000
20,000} \& \$1. 375 \& \$1.60 \& \$1.70 \& \$1. 50 \& \& \(\$ 1.50\)
1.65 \\
\hline Feb. 7, \(1951 . .\). \& \& \& \& 1.55 \& \(\begin{array}{r}12.03 \\ 2.70 \\ \\ \\ \hline\end{array}\) \& 12.51
4.05 \& 1.65 \& 1.65 \& \multirow[t]{2}{*}{1.65} \\
\hline Apr. 16, 1951. \& 30................. \& 236 \& 40,000 \& 1.60 \& 11.60 \& 4.05
11.60 \& 1.65 \& 1.65 \& \\
\hline Oct. 17, 1951 \& \multirow[t]{3}{*}{O, N, D..........
J.A.S.-......
150....--} \& \multirow[t]{3}{*}{2
2
2} \& \multirow[t]{2}{*}{200,000
240,000
50,000} \& \multirow[t]{2}{*}{1.35
1.60} \& \multirow[t]{2}{*}{1.47
1.60} \& 1.59 \& \multirow[t]{2}{*}{1.65
1.65} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1.65 \\
1.65 \\
\hline 1.65
\end{tabular}} \& \multirow[t]{2}{*}{1.65
1.65
1.} \\
\hline June 6, 1952 \& \& \& \& \& \& 1. 60 \& \& \& \\
\hline Jan. 7, 1953.. \& \& \& \& 1.10 \& 11.40 \& \({ }^{2} 1.70\) \& 1.65 \& 1.65 \& 1.65 \\
\hline Mar. 3, 1953. \& \multirow[t]{3}{*}{60.................} \& \multirow[t]{3}{*}{3
2
\(21 / 3\)} \& \multirow[t]{2}{*}{80,000
180,000} \& \multirow[t]{2}{*}{1.28
1.48} \& \multirow[t]{2}{*}{1.51
2.01
1.01} \& \multirow[t]{2}{*}{1. 66} \& \multirow[t]{2}{*}{1.65
1.65} \& \multirow[t]{2}{*}{1.65} \& \\
\hline May 25, 1953 \& \& \& \& \& \& \& \& \& \multirow[t]{2}{*}{1. 65
1. 85} \\
\hline Mar. 8, 1955. \& \& \& 450,000 \& 1.46 \& 11.67 \& \({ }^{1} 1.78\) \& 1.85 \& \& \\
\hline Sept. 30, 1955 \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{3
3
314} \& \multirow[t]{2}{*}{80,000
- 270,000} \& \multirow[t]{2}{*}{1.45
1.60} \& \multirow[t]{2}{*}{1.56
1.73} \& \multirow[t]{2}{*}{1.78
1.80} \& \multirow[t]{2}{*}{\begin{tabular}{l}
1.85 \\
1.85 \\
\hline
\end{tabular}} \& \multirow[t]{2}{*}{1.85
1.85} \& \multirow[t]{3}{*}{1.85
1.85
1.85} \\
\hline Oct. 5, 1955.. \& \& \& \& \& \& \& \& \& \\
\hline A pr. 3, 1956. \& \& \& 84,000 \& 1.60 \& \({ }^{1} 1.78\) \& \({ }^{1} 2.00\) \& 1.85 \& 1.85 \& \\
\hline May 9, 1956 \& \multirow[t]{6}{*}{\begin{tabular}{l}
60. \\
30 \\
60 \\
60. \\
\(60:\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\end{tabular}} \& \multirow[t]{3}{*}{2
3
234} \& \multirow[t]{3}{*}{231,000
518,000
82,000} \& \multirow[t]{2}{*}{1.60
1.60} \& \multirow[t]{2}{*}{1.71
1.80} \& \multirow[t]{2}{*}{1.825
1.80} \& \multirow[t]{2}{*}{1.85
1.85
1.85} \& \multirow[t]{3}{*}{1.85
1.85
1.85} \& \multirow[t]{3}{*}{1.85
1.85
1.85
1.85} \\
\hline July 19, 1956. \& \& \& \& \& \& \& \& \& \\
\hline Aug. 7, 1956 \& \& \& \& 1.78 \& \({ }^{1} 1.78{ }^{\prime}\) \& 11.78 \& 1.85 \& \& \\
\hline Nov. 6, 1956. \& \& 638 \& 20,000-250,000 \& 1.71 \& 11.79
3.06
1 \& 11.80 \& 1.85 \& 1.85 \& - 1.85 \\
\hline Nov. 14, 1956. \& \& \multirow[t]{2}{*}{13/2} \& \multirow[t]{2}{*}{51,000} \& \multirow[t]{2}{*}{1.90} \& \multirow[t]{2}{*}{11.90

2.46} \& \multirow[t]{2}{*}{11.80
3.01} \& \multirow[t]{2}{*}{1.85} \& \multirow[t]{2}{*}{1.85} \& \multirow[t]{2}{*}{1.8}

\hline \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

${ }^{1}$ Calculated by omitting most obvious nonprimary market producers. $\quad 2$ Delivery period assumed to be 60 days.
06-11-11 WPI Spec. 1949-50: Aluminum sulfate, commercial, bulk, carlots; f.o.b. works, freight equalized.
Table B-2(a).-Calcium Carbide, Quarter, 100-Pound Drums, Delivered Various Destinations East of the Rocky Mountains

Contract date	Delivery date	Destination area ${ }^{1}$	Company	Quantity (pounds)	Actual transaction price (dollars per ton no count) ?	$\underset{\substack{\text { of contract } \\ \text { date }}}{\text { BLS price as }}$
April 1951	September 1951	Brooklyn, N.Y	National Ca	120,000	\$116.60	\$128. 00
Jnne 1951	June 1951	Portsmouth N -	Air Reduction	24, 3 , 500	144.20	128.00
ugast 1961-........	Septem ber 1951	Brooklyn, N.Y	National Carbid	200.000	117.60	${ }^{128.00}$
Do	Oecember 1951	do	Shawioigan.	${ }^{240} 0000$	125. 83	128.00
February 1952	August 1952	do		400,000	${ }^{97.00}$	128.00
June 185.	---.-do.	----do	Linde Alr Products	$1,000,000$ 595,000	${ }_{117}^{110} 20$	134.40
Do.		do	Shawinigan--	295,000	114.80	134.40
October 1952	March 1053.	-do	National Carbide.	190, 000	${ }_{117}^{115} \mathbf{6 0}$	134.40
Do.-	--.do	do	Ü̇nde Air Products	350,000	116.00	
January 1053	Appril 1953.	Charlosto--	National Carblde.-	${ }^{120} 80000$	${ }^{120.80}$	134.40 134.40
September	September ${ }^{\text {October } 1953}$	Charleston, s.c.	National Carbide-	15,000	122.00	134.40
	November 1953.	do	Shawinigan--i	330,000	${ }^{97} \mathbf{1 6 0}$	134.40
March 1954.	March 1954.	${ }_{\text {Brookl }}$ Great Liks,	National Carbice	100, 000	137.40	134.40
June 1954..	do...	Norfolk, V	-----do..	27, 200	106.88	134.40

[^11]Table B-2(b).-Calcium Carbide, Quarter, 100-Pound Drums, Delivered Various Destinations on West Coast

Contract date	Delivery date	Destination area ${ }^{1}$	Company	(pounds) Quantity	Actual transaction price (dollars per ton, no time discount) ${ }^{2}$	BLS price $8 s$ of contract date
April 1951.	April 1951	Los Angeles, Calif	Linde Air Products.	100,000 15000	\$127.30	$\$ 128.00$ 128.00
August 1951	September 1951		Stuart Oxygen		8106.00	128.00
October 1951.	November 1951	Puget Sound, Wash	Linde Air Coral	134,800	-141.12	128.00
	December 1951	Ougand, Cound, Wash	Linde Air	300,000	${ }^{2} 106.00$	128.00
November 1951	February 1952..	Los Angeles, Calif.	Pacific Carbide.	200,000	125.28	128.00
January 1953.	Februsry 1953	Oakland, Calif.	Shawinigan Products	153,000	129.60	134.40
September 1953.	September 1953		Pacific Carbide.	100,000	122.00	134.40 134.40
June 1954			National Carbide..	96,700	143.40	134.40
September 1954	October 1954		Pacific Carbide.	117, 500	143.40	134.40

[^12]
Table B-3.-Calcium Hypochlorite, Technical, Type I, 100-Pound Drums, Delivered East of the Rockies

Contract date	Dellvery date	Company	Quantity(pounds)	Actual transaction price (dollars per 100 pounds, including drum cost)	BLS prices as of contract and delivery date	
					Contract	Delivery
February 1949.	June 1949	Pennsylvania Salt Man-	73,300	\$20. 25	\$24.00	\$24.00
June 1949.	November 1019...	Cole Labs	20,000	20.29	24.00	24.00
Do...	February 1950..	Pennsylvania Salt Man-	40,000	20.69	24.00	24.00
August 1949.	September 1940	Plttsburgh Plate Glass..	30,000	20.55	24.00	24.00
November 1949	February 1950.	Pennsylvania Salt Man-	240, 000	${ }^{1} 18.50$	24.00	24.00
April 1951.	June 1951	Mathieson Chemical	50,000	21.75	25.25	25.25
July 1951.	October 1951.		20,000	21.75	25. 25	25.25
October 1951	December 1951	Columbia Southern...	50,000	21.75	25.25	25.25
A pril 1052.	May 1952.	Pennsylvania Salt Man-	50,000	${ }^{1} 19.10$	25. 25	25.25
May 1952.	June 1952	Columbia Southern	25, 000	21.75	25.25	25.25
June 1953.	August 1953...	Pennsylvania Salt Man-	40, 000	118.08	25. 25	25.25
September 1933..	November 1953	Columibia Southern.	60,000	21.72	28.65	28.65
January 1954.....	January 1954...	Pennsylvania Salt Man-	45, 000	24.30	28.65	28.65
July 1954.	August 1954	Braun-Knceth-Heiman -	60, 000	${ }^{2} 24.75$	28.65	28.65
February 1955.	May 1955.	Pennsylvanda Salt Man-	26, 000	21.40	28.65	28.65
March 1956	May 1956		7,900	21.40	28.65	28.65

${ }^{1}$ F.o.b. plant.
2 Delivered west of Rockies-San Francisco-and not including cost of drunis.
06-11-27 WPI Spec. 1949-56: Calcium hypochlorite, 100-pound drums, delivered east of lockies.
Table B-4.-Sulfuric Acid, Technical, Specifc Gravity 1.8287, 30-50-Ton Tank: Cars, Delivered Various Destinations

Contract date	Delivery date	Destination area	Company	Quantity (pounds)	Actual transaction price (doliars per ton, no time discount)	BLS price as of contract date
November 1946...	November 1946..	Brooklyn, N.Y..	Gencral Chemical.	1(0,000	$1 \$ 13.00$	\$16.50
November 1948...	December 1948.-	Brodo.........--	Allied Chemical...	100,000	17.12	17.00
February 1949....	June 1949....-...-	Portsmouth, N.H.	General Chemical.	100,000	23.50	17.00
August 1949.	October 1949...-	Brooklyn, N.Y.-	.-do.	100,000	22.00	17.00
January 1950.......	January 1950...-	Portsmouth, N.H.	Monsanto Chemical.	115,000	22.50	17.00
March 1950.	April 1950........	..-do........	..-.-do...---.......-	115, 000	22.50	17.00
June 1951........--	June 1951.........	--do.....----	--do...---------	115,000	25.70	20.00
June 1947.........-	10 days..........--	Oakland, Calif.-	General Chemical	120,000	115.40	16.50
November 1948..--	December 1948.-	--..-do.........--	Stauffer Chemical.	160,000	22.35	17.00
May 1949......---	June 1948....-. --	-do......------	-.-.-do.....-.-....--	100,000	18.60	17.00
June 1950.........-	July 1950........-	.-do........-.-.	---do..........---	100,000	18.72	17.75
April 1951.-......--	April 1951.......-	.-do............	Allied Chemical..-	104,000	21.24	20.00
July 1951..........-		do	Stauffer Chemical.	212,000	21.24	20.00
July 1953-.......--	July 1953	do	.-do.	100, 000	26.00	22.35
February 1954....	February 1954...	do	. do	100,000	26.60	22.35

${ }^{1}$ F.o.b, plant price.
06-11-09 WPI Spec 1947-56: Sulfuric acid, $68^{\circ} \mathrm{Be}$, tanks, f.o.b. works.

Table B-5
A. ACETONE, DELIVERED OAK RIDGE, TENN.

Contract date	Terms	Company	Lecation	Quan. tity	Sellers' offered price (dollars per gallon)	$\begin{gathered} \text { BLS } \\ \text { price at } \\ \text { contrat } \\ \text { date } \end{gathered}$
Aug. 12, 1058.Do......Do......Do.....-Do......Do.....Do......Do......	Net 30 days..	Allied Chemical Corp.	New York City...	Tankcar	\$0. 477	
	.do	Chemical Compound-	Perth Amboy,	do.	. 559	
	.do	C. P. Chemical	New York City ..-	do	. 561	
		Solvents.				
	.do.---.--	Estman Chemical	Kingsport, Tenn.	do.	. 495	
	Net 10 days. Net 30 days. 5 percent, 10 days. Net 30 days. do........	Enjoy Codis.	New York City .-.	-do.	56	
		Octogon Process. \qquad Phipps Products Corp. Shell Chemical Corp.- Union Carbide Chemical Co.	Staten Island, N.Y. Boston, Mass.	..do....	. 559	
				do	. 50369	
			New York City...	do.		
			do	-.do.	. 478	1 $\$ 0.56015$
					$\bar{X}=.528$	

${ }^{1}$ Translated from dollars per pound to dollars per gallon at 6.59 pounds per gallon.
06-12-01 WPI Spec 1058: Acetone, Chem. pure, tankcars, producer to first buyer, delivered. Friday price.
B. HYDROCHLORIC ACID, DELIVERED OAK RIDGE, TENN.

Contract date	Terms	Company	Location	$\begin{aligned} & \text { Quan- } \\ & \text { tity } \end{aligned}$	Sellers' offered price (dollars per ton)	$\underset{\text { price at }}{\text { BLS }}$ contract date
July 31, 1958..	Net 30 days..	Columbia SouthernChemical.Dow Chemical Co..	Charlotte, N.C... Midland, Mich... Wilmington, Del..	Tankcar lots. ..-do.	\$30.10	
					26.34	
Do.	do	E. I. du Pont de			26.53	
Do.......-	-.....do..................	Monsanto Chemical -	$\begin{array}{\|l\|} \hline \text { St. Loull, Mo....-. } \\ \text { Nashville, Tenn } \end{array}$		26.49	
		Tennessee Products \& Chemical Corp.			18.00	\$30.00
					$\bar{X}=25.49$	

Data from Vernon A. Mund, "Identical Bid Prices," Journal of Political Economy, April 1960, p. 156.
06-11-03 WPI Spec. 1958: HCL, $20^{\circ} \mathrm{Be}$, Carboys, tankcars. producer to first buyer, l.o.b. works, freight equalized, Friday price.

Table B-6.-Xylene, Grade A and B, Technical, Tankear Lots, F.O.B. Various Points

Bid opening date	F.o.b. point	Company	Actual transaction		BLS prices	
			$\begin{aligned} & \text { Quan- } \\ & \text { tity } \\ & \text { (gai.) } \end{aligned}$	Price (dollars per gal., no tim count)	$\begin{aligned} & \text { Open- } \\ & \text { ing } \end{aligned}$	$\begin{array}{\|c} 3 \\ \text { months } \\ \text { later } \end{array}$
Dec. 27, 1954	Plant, Sewell Point	Esso Standard Oil.----	40,000	\$0. 335	\$0. 340	\$0. 340
June 25, 1956..	Portsmouth, Va..	Shell Oil.-.-....---	13,140	. 323	. 340	. 340
Aug. 1, 1056	Norfolk,	Esso Standard oril.	10,000	. 3335	.340 .	. 340
Aug. ${ }^{\text {Nov. }} 19,1056$.	Mare Island, Calit.	Ameo Chemical Corp.	23. 512	. 3379	. 340	340
Nov. 23, 1956.	Portsmouth, Va.	Shell Oil	19, 132	. 3365	. 340	. 340
Feb. 15, 1057		Esso Standard Oll.	24, 820	. 335	. 340	. 340

[^13]Table B-7.-Acetylene, Gas, 225-Cubic-Foot Cylinder, Delivered Various Destinations

Contract date	Contract period	Number of contracts	Quantity (ft. ${ }^{\text {a }}$)		High	Actual transaction price (dollars per $100 \mathrm{ft} .^{\text {b }}$)			BLS index for contract period		
			Low	$\overline{\boldsymbol{X}}$. Low	$\overrightarrow{\boldsymbol{X}}$	High	Low	\bar{X}	High
November 1959...	November 1959 to November 1960	13	165,000	2,223,500		\$1.87	\$2. 32	\$2.86	124.8	124.8	124.8
April 1959.........	May 1959--.-.-........		2, 763, 000	3, 006,500	3, 250,000	2.04	2.11	2.178	124.8	124.8	124.8
November 1958.	November 1958 to November 1959.		100,000	1,599,730	8, 000, 000	1. 66	2.58	5. 975	124.8	124.8	124.8
November 1957.	November 1957 to November 1958.	14	129, 150	2, 022, 230	8, 000, 000	1.71	2.18	2. 62	124.8	124.8	124.8
November 1956.	November 1956 to November 1957	8	100, 125	1,075, 200	4,410,200	1.88 11.89	2.33 12.12	$\begin{array}{r}\text { 1 } \\ +1.42 \\ \hline 1\end{array}$	118.7	120.22	124.8
December 1955.	December 1955 to November 1956	13	125, 325	2, 248, 100	8, 256, 000	${ }^{1} 1.50$	${ }^{1} 2.02$	12.45	113.0	116.8	118.7
November 1954.	November 1954 to November 1955	15	120, 150	2, 138,800	8,346, 800	${ }^{1} 1.54$	${ }^{1} 1.93$	12.25	113.0	113.0	113.0
November 1953.	November 1953 to November 1954	17	14,625	2, 125,620	12,872, 700	${ }^{1} 1.59$	12.08	12.69	113.0	113.0	113.0

\footnotetext{
06-12-03 W PI Spec. 1947-56: Acetylene, dissolved, in cylinders, f.o.b, plant or delivered
in specified amounts; 1957-60: F.o.b. plant.
Table B-8.-Carbon Dioxide, Gas, Grade B, Type II, Class I, 60-Pound Cylinders Delivered Various Destinations

Contract date	Contract period	Quantity (lbs.)			Number of contracts	Actual transaction price (dollars per lb., no time discount)			BLS prices for contract period		
		Low	\bar{X}	High		Low	\bar{X}	High	Low	\bar{X}	High
November 1959	November 1959 to November 1960.....	100,000	195,590	402, 750	6	\$0.028	\$0.0453	\$0.068			
November 1958	November 1958 to November 1959....-	74,600	275,950	460, 000	7	. 038	. 0463	. 069			
November 1957.	November 1957 to November 1958....-	71,250	335, 860	682, 000	5	. 032	. 0438	. 06	${ }^{1} \$ 0.080$	$1 \$ 0.080$	${ }^{1} 9.080$
November 1956	November 1956 to November 1957....-	111,600	403,866	693,000	3	$\left\{\begin{array}{l}.0425 \\ 9.0387\end{array}\right.$.0489 2.0397	.054 3.0425	$\} .080$. 080	. 080
February 1956.		388, 250	388, 250	388, 250	1	$\left\{\begin{array}{l}.036 \\ \mathbf{2 . 0 3 6}\end{array}\right.$.036 $\mathbf{8} .036$.036 .036 .036	$\} .080$. 080	. 080
November 1955	November 1955 to November 1956....--	53,000	257,500	530,000	4	$\left\{\begin{array}{l}.0383 \\ 3.049\end{array}\right.$.045 8.049	.0526 2.049	$\} .080$. 080	. 080
November 1954	November 1954 to November 1955....-	60,000		523,000	2	(2.045	2.0455	2.04594	. 080	. 080	. 080

Table B-9A.-Oxygen, General Use, 200-Fool ${ }^{3}$ Cylinder, Delivered Various Destinations

Contract date	Contract period	Number of contracts	Quantity (${ }^{\text {ft. }}$)			Actual transaction price (dollars per $100 \mathrm{ft}^{2}$ no time discount)			BLS price index for contract period		
			Low	\bar{X}	High	Low	\bar{X}	High	Low	$\overline{\boldsymbol{X}}$	High
November 1959.	November 1959 to November 1960_	11	335, 620	1,444, 300	3, 320,000	\$0.48	\$0. 597	\$0. 854	114.3	114.3	114.3
November 1958.		13		1,719,400	9, 330,400	. 52	- 651	1.175	114.3	114.3	114.3
November 1957	November 1957 to November 1958.	12	347,400	1,386,600	5, 237, 100	. 49	. 697	1.075	114.3	114.3	114.3
November 1956.	November 1956 to November 1957.	6	361,600	1,022, 430	2, 150, 000	. 60	. 657	. 73	110.6	111.216	114.3
January 1956..	January 1956 to November 1956.	14	350,000	1,353, 060	3,440,800	.50 .	.689 .689	. 99	105.3	109.28	110.6
November 1954.	November 1954 to November 1955	11	400, 000	1,825, 230	3, 441, 000	1.42 1.436	1.526 1.558	1. 67	105.3	105.3	105.3
1 F.o.b. plant price.				06-11-49 WPI Spec. 1956-60: Orygen, liquefaction, 991/2 percent pure, manufacturer to reseller, f.o.b. plant.							

Table B-9B.-Oxyyen, Users' Cylinders, 200-224 Ft. ${ }^{3}$ per Cylimeter, F.O.B. Plant

Contract period	Num. ber of bidders	$\begin{aligned} & \text { Quan- } \\ & \text { tity } \\ & \text { (cylin- } \\ & \text { ders) } \end{aligned}$	Sellers offered prices (dollars per $100 \mathrm{ft} \mathrm{I}^{3}$ no time discounts)			BLS price index during contract period		
			Low	$\overline{\boldsymbol{X}}$	High	Low	$\overline{\boldsymbol{X}}$	High
July 1954, to July 1955.	4	3,000	\$0.60	\$0.65	\$0.73	106.3	105.3	105.3
July 1958, to July 1959.	2	4,200	. 55	. 73	1.91/2. 40	114.3	114.3	114.3
July 1959, to July 1960.	5	4,500	. 41	. 676	${ }^{1} 1.07 / 2.40$	114.3	114.3	114.3
July 1960, to July 1961.	5	4,250	. 41	. 686	$11.07 / 2.40$	114.3		

${ }^{1}$ Believed to be nonprimary market price quotes, hence not used in calculation of the mean (\bar{X}).
06-11-49 WPI Spec. 1953-60: Oxygen, Iiquefaction, 991/2 percent pure, manufacturer to seller, f.o.b. plant.
Table B-10.-Soap, Laundry, White, 1-Pound Bar Delivered Various Destinations

Contract date	Delivery date	Company	$\underset{\text { (pounds) }}{\text { Quantity }}{ }^{1}$	Actual transaction price(dollars per pound, no time discount)	BLS prices for contract anddelivery date	
					Contract	Dellvery
July 1950	November 1954....	Procter \& Gamble	130,000 44,600	${ }^{50.0606}$	\$0. 162	¢0. 1162
November 1954..	January ${ }^{\text {July } 1955 . \ldots ~}$	Colgate Palmolive	44,600 57,000	${ }^{.0605}$		
July 1955-...-	September 1955...	Colgate Palmolive	23,340	0512	.164	. 164
April 1936	July 1956 ${ }_{\text {December }} 1956$	Newport Soap.	100,000 124,740	$\begin{array}{r}0562 \\ .0518 \\ \hline 0\end{array}$	178	. 174
December 1956.	January 1957.....	Procter \& Ġamble	7,320	.0722	174	174
January 1957...	March 1957..-----	West Coast Soap -	52, 5800	. 0601	174	177
April 1957.	July 1957-7.c....	National Miliing \& C Cemica	161,280	.071	177 177	177
Octo ber 1957...	December 1957...	Newport Products	122,280	. 038	182	182
Novemberi 1957	January 1958.....	Malley Products.	34,	071		
April 1958-...-	July 1958.........		28,020	0868	182	182
May 1958.	August 1958.......	Kamen Soap-	83,820	. 068	182	182
June 1958.	September 1958.-.	Murro Chemic	36, 300	. 064	182	182
October 1958	January 1959----	Proneer Soap--	32,160 46,200	.0783 .0745	$\begin{array}{r}182 \\ 182 \\ \\ \hline\end{array}$	190
November 1958..	February 1959...-	Pioneer Soap.al.	19,500	:067	190	190
February 1959....	Aprine 1959.-......--	Murro Chemical	28, 500	.056	190	190
September 1959.-	December 1959....	Colgate Palmolive	238,470 84,720	. 04630	169 169	169 164
December 1959.	March 1900...	Murro soap..				

06-71-21 WPI Spec. 1947-60: Soap, laundry, bars, white, household use, manufacturer to jobber, or other carlot, buyer carlots, delivered.

Table B-11.-Soap, Laundry, Powdered, 100-Pound Drums, Delivered Various Destinations

1 Price Includes cost of drums.
06-71-41 WPI Spec. 1947-56: Soap, powdered or granulated, for laundry use, bulk, dellvered in specified area.

Table B-12.-Paint, Interior, Flat, First Grade, White, in One Gallon Cans, Delivered Various Destinations

Contract date	Delivery date	Company	Quantity (gallons)	Actual transaction price (dollars per gallon)	BLS price at contract date
March 1951.	March 1951......	Old Colony Paint..........	100	\$1.89	\$2. 74
December 1951	December 1951.-	Bradley Paint.-...--.-.--	1,000	1.50	2.762
February 1952.	March 1952 .-..-	Central Paint \& Varnish.-	3,700	1.47	2.771
August 1952...	September 1952..	Carolina Paint --7-......-	500	1. 48	2.782
Do......	-...do.......-.	Central Paint \& Varnish.-	600	1.58	2.782
December 1952	June 1952.	Jaegle Paint \& Varnish. --	2,000	1.47	2. 782
March 1953...	May 1953........	William A. Smith	1,100	1. 46	2.782
June 1954	July 1954.........	Ampruf Paint.-.-.-.-. --	2,100	1.499	2. 868
	- .-.-do - .-........-	Pur-all Products	600	1. 58	2.868
$\text { May } 1855$	August 1955.....	William A. Smith.........-	1,800	1.33	2.945
	July 1855.......-	Ampruf Paint	4,300	1.468	2.945
February 1956	April 1956.	Hub Paint \& V arnish.----	1,300	1.42	3.116
May 1956	July 1056...	Olympic Paint...........-. -	800	1.68	3.116
August 1956.	October 1956	8. K. Labs......	2, 600	1.49	3.116
November 1956	December 1956..	Ampruf. --. ---	4,000	1.45	3. 242
April 1957...	September 1957.-	William A. Smith	3, 068	1.53	3. 264
Do....	...-do.-...-.-.--	Ampruf.	500	1.49	3.264
May 1957	do.	--.-do	5,500	1.39	3. 280
July 1957.	January 1958.	Atlas Paint	6,000	1.40	3.383
Do.	February 1958...	Hub Paint.	3,700	1.46	3.383
Do.	January 1958....	Ampruf.	900	1.39	3. 383
October 1857	February 1958..-	---do - --.-.---............	4,000	1.35	3.383
Do.do..--...---	William A. Smith	400	1.85	3.383
April 19058	September 1958.		1,900	1.48	3. 383
	August 1958....-	Ampruf Palnt. .-. - .-.....-	2,828	1.59	3. 383
October 1958.	March 1959.....	Allied Paint	430	1.56	3.396
Februery 1059.	June 1859........	Ampruf	700	1.69	3. 405
D0........	do.		3,868	1.44	3. 405

06-21-31 WPI Speo. 1047-60: Paint, Instde, white, flat, 1 st grade, gallon cans; 1.0.b. destination deHivered speodied area, or freight allowed or prepald on specifled amounts.
Table B-13.-Enamel, Class A (First Grade), Exterior and Interior White, in (1) Gallon Cans, Four to the Case, Delivered Various

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Bid opening } \\
& \text { date }
\end{aligned}
$$} \& \multirow[t]{2}{*}{Dellvery date} \& \multirow[t]{2}{*}{Destination} \& \multirow[t]{2}{*}{Number of bldder} \& \multirow[t]{2}{*}{Qubntity (gallons)} \& \multicolumn{3}{|l|}{Sellers' offered price (dollars per gallon, no time discounts taken)} \& \multicolumn{3}{|l|}{BLS price from opening to delivery}

\hline \& \& \& \& \& Low \& $\overline{\boldsymbol{X}}$ \& High \& Opening \& \bar{X} \& Delivery

\hline Dec. 19, 1956 \& 60 days...----...-- \& Read Valley, NJ.. \& 11 \& 37,532 \& \$1.94 \& $1 \$ 2.31$
2.74 \& 183.17
7.05

r \& $\begin{array}{r}2 \$ 4.986 \\ 4.980 \\ \hline\end{array}$ \& \$4.986 \& \$4.986

\hline Jan. 7, 1957 \& 120 days \& Read Valley, N.J...... \& 6 \& 3,696 \& 1.94 \& 2.07 \& 2.23
2.30
2.31 \& $\begin{array}{r}4.986 \\ \begin{array}{r}4.980\end{array} \\ \hline\end{array}$ \& 4.983 \& 4.980

\hline Mar. 19, 1957 \& Within 150 days... \& Massachusetts, Rhode Island, Virginis, South \& 8 \& 9,092 \& 2.15 \& 2.36 \& 2.90 \& 4.980 \& 5.023 \& 5.128

\hline June 17, 1957 \& Within 150 days... \& Virginla, South Carolina, Teras. \& 6 \& 4,800 \& 1.79 \& 2.22 \& 3.00 \& 5.029 \& 5.108 \& 5.128

\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{| $1 \overline{\mathrm{X}}$ and high disregarding the $\$ 7.05$ quote which is believed to be a nonprimary market quote. |
| :--- |
| ${ }^{2}$ Series has been spliced; no change in index. |
| 3 F.o.b. price quote. |}} \& \multicolumn{6}{|l|}{\multirow[t]{2}{*}{06-21-21 WPI Spec. 1954-57: Enamel, white or colors, first grade, gallon cans, manufacturer to retailer. F.o.b. factory, freight allowed on specified amounts. 1958: In case lots of 4 gallons to the case.}}

\hline \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Table B-14.-Gasoline, Minimum 86 Octane, Research Method, Gulf Coast, F.O.B. Refinery

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Bid opening date} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Number } \\
& \text { of } \\
& \text { bidders }
\end{aligned}
$$} \& \multirow[t]{2}{*}{Quantity (gallons)} \& \multicolumn{3}{|l|}{Sellers' offered price (dollars per gallon; no time discount)} \& BLS price for gulf coast 87 octane gasoline \& BLS price adjusted to approximate gulf coast 86 octane gasoline (-\$0.002)

\hline \& \& \& Low \& \bar{X} \& High \& Opening month \& Opening month

\hline Apr. 20, 1954 \& θ \& 113,400, 000 \& \$0.0974 \& \$0.1027 \& \$0.1150 \& \$0. 103 \& \$0. 101

\hline June 16, 1954 \& 8 \& 1,890,000 \& . 0950 \& . 0993 \& . 1024 \& . 103 \& . 101

\hline Nov. 6, 1954 \& 10 \& $\begin{array}{r}\text { 6,510, } \\ 121,000 \\ \hline\end{array}$ \& . 09333 \& . 0987 \& . 1033 \& . 105 \& . 103

\hline May 4,1955 \& 10 \& 18,060,000 \& . 0948 \& . 1009 \& . 1075 \& . 105 \& . 103

\hline Aug. 3,1955 \& 6 \& 1 4, 872,000 \& . 0992 \& . 1038 \& . 1100 \& . 105 \& . 103

\hline Oct. 25, 1855 \& 3 \& 10, 080,000 \& . 0844 \& . 0855 \& . 0875 \& . 105 \& . 103

\hline Apr. 25, 1956 \& 3 \& 2, 100,000

1
$10,080,000$ \& . 099 \& . 1047 \& . 11 \& . 105 \& . 103

\hline Oct. 0,1956 \& 10 \& $3,360,000$
1840,000 \& . 0985 \& . 1013 \& . 10495 \& . 105 \& . 103

\hline Oct. 30, 1956 \& 9 \& $1,480,000$
$110,080,000$ \& . 09585 \& . 0983 \& . 10485 \& . 105 \& . 103

\hline Dec. 12,1857 \& 1 \& -630, 000 \& . 09615 \& . 09815 \& . 09615 \& . 104 \& . 102

\hline Apr. 30, 1058 \& 8 \& $\left\{\begin{array}{r}38,430,000 \\ 10,080,000\end{array}\right.$ \& . 0949 \& . 1000 \& . 10625 \& . 096 \& . 094

\hline
\end{tabular}

[^14]Table B-15.-Pennsylvania Anthracite, Buckwheat No. 1, F.O.B. Car at Mine

Bid opening date	Perlod of contrbet	Months of price offer	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { biders } \end{aligned}$	Quantity (net tons)	Sellers' offered price (dollars per net ton, all discounts taken)			BLS prices during contract period		
					Low	$\overline{\boldsymbol{X}}$	High	Low	$\overline{\boldsymbol{X}}$	High
Apr. 16, 1951	July 1951 to June 1952.	July..---	9	8,000	\$7.70	\$7.83	\$7. 90		\$7.942	
Do.-195		August to June....	${ }^{9}$	8,000 8,400	7.73 749	7. 84	8. 00	\$7.963	7.963	\$7. 963
A pr. 14, 1952	July 1952 to June 1953	July to September	11	8,400 8,400	7.49 7.49	7.77 780	7.90 8.00	7.963 8.825	8.134 905	
Aug. 8, 1952	August to September 19	August to September	1	4,000	7.90	7.80	8.90	8.019	8.219	8. 819
Apr. 23, 1953	July 1953 to June 1954.	July to September.	10	9,000	8.41	9.63	10.15	10.169	10.215	10. 263
Do		October to June	10	9,000	8.41	9. 65	10. 40	9. 30	9.965	10. 205
May 18, 1954	July 1954 to June 1955	July to June.	11	9,000	6.84	7.70	8.90	8.864	9. 431	9.664
May 10, 1955	July 1955 to June 1956	--.do	12	10,500	5.05	5.75	7.00	8. 589	8.687	9.533
May 15, 1956	July 1956 to June 1957	do.	6	10,000	5.95	7.44	8.57	8.799	9.75	10.696
May 10, 1957	July 1957 to June 1958	August to September	5	8,000	9.65	10.06	10.29	10.031	10.196	10.360
Do.-do...	October---------	5	8,000	9.80	10. 29		10.808		
June 20.19	July 1958 to	November to June.-	8	8,000	9.90	10. 43	10.73	10.003	10.696	11.179
June D0,	----do.---...........	August to September	8	6,500	8.47 8.47	8.82	9.55 9.63	10.22 10.703	10.273	10.325 11.254
Do	do	April	8	6,500	8.47	9.05	9.63		10.241	
Apr. 16, 1959	July 1959 to June 1960	August to June	11	6,000	7.84	8.63	9.65	10.185	10.589	10.801

05-11-03 WPI Spec. 1951-60: PennsyIvania anthracite, buckwheat No. 1, f.o.b. car at mine.
Table B-16.-Pennsylvania Anthracite, Chestnut, F.O.B. Car at Mine

Bld opening dato	Period of contract	Months of price ofier	$\begin{array}{\|c} \text { Nummo } \\ \text { poor } \\ \text { biders } \end{array}$	$\begin{aligned} & \text { Quan- } \\ & \text { ont } \\ & \text { tote } \\ & \text { toiss } \end{aligned}$	Bellers' offered price (dolars per net ton,all discounts taken),			BLe price daringcontract period		
					Low	\bar{x}	High	Low	\bar{x}	High
	Juls	July.- AugustOctober to June July to Aug. 18-...-.October to June......	$\begin{aligned} & 11 \\ & 111 \\ & 112 \\ & 116 \\ & 106 \\ & 106 \end{aligned}$	7,000 $\substack{7,000 \\ 7 \\ i, 000 \\ i, 200 \\ i, 200 \\ i, 200 \\ i, 000}$	$\begin{gathered} 512.80 \\ \left.\begin{array}{c} 12.85 \\ 12.85 \\ 12.85 \end{array} \right\rvert\, \end{gathered}$	$\begin{gathered} 513.33 \\ \substack{13.35 \\ 13.49} \end{gathered}$				------
	do									
Do										14:119
					${ }_{\text {li }}$	12.40	${ }_{13.05}^{14.45}$	14.119	15.169	14.21
Aug. 8,1052	August 1952 to September July 1953 to June 1954........	ALusust to september.-.-.-.-								
Apx. 2301183.		July to September. October to Decembe\qquad			cile 11.34		14.80	15.3198	15.625	cis. 15.750
	-do									
May 18.1054	July 1954 to June 195 July 1955 to June 1956 July 1958 to June 1959		1512121213131313		$\begin{gathered} 11.39 \\ 9.20 \\ .9 .12 \\ 10.73 \\ 9.70 \\ 9.70 \\ 9.70 \\ 8.82 \end{gathered}$	$\begin{aligned} & 12.73 \\ & 10.74 \\ & 10.35 \\ & 11.57 \\ & 10.80 \\ & 11.80 \\ & 10.80 \\ & 10.28 \\ & 10.25 \end{aligned}$	(14.80			
May 10.1955										
June ${ }^{\text {20, }} \mathrm{O}$, 1988		August to epemb							隹	
	July 19099 to Junce 1960.-.--							i3.188	${ }_{14}^{13}$	14.

[^15]Table B-17.-Pennsylvania Anthracite, Pea, F.O.B. Car at Mine

Bid opening date	Period of contract		Months of price offer	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of bldders } \end{gathered}\right.$	Quantity(net tons)	Sellers' offered price (dollars per net ton, all d scounts taken)			BLS price during contract period			
			Low			\bar{X}	High	Low	$\overline{\boldsymbol{X}}$	High		
$\begin{aligned} & \text { Apr. 28, } 2953 . \\ & \text { May 18, } 1954 \\ & \text { May 10, } 1955 . \end{aligned}$	July 1953 to June 1954 July 1954 to June 1955 July 1955 to June 1956				12 9 10	400 150 50	$\$ 9.50$ 8.24 6.95	$\begin{array}{r} \$ 10.02 \\ 8.85 \\ 7.75 \end{array}$	$\begin{array}{r} \$ 10.69 \\ 10.66 \\ 8.47 \end{array}$	$\begin{array}{r} \$ 9.90 \\ 9.87 \\ 10.086 \end{array}$	$\begin{array}{r} \$ 11.514 \\ 10.44 \\ 10.287 \end{array}$	$\begin{array}{r} \$ 12.169 \\ 10.757 \\ 10.523 \end{array}$
05-11-02 WPI Spec. 1953-60: Pennsylvanis anthracite, pea, i.o.b. car at mine.												
Table B-18.-Bituminous Coal, Egg 5 to 7 Inches x 2 to 3 Inches, F.O.B. Car at Mine												
Bld opening date			Period of contract	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { biders } \end{gathered}$	$\begin{gathered} \text { Quan- } \\ \text { tity } \\ \text { (net ton) } \end{gathered}$	Sellers' oflered price (dollars per net ton, no time discount)			BLS price daring contract period			
			Low			\bar{X}	High	Low	\bar{X}	High ${ }^{\text {'d }}$		
Apr. $8,1851$.		July 1951 to June 1952 July 1952 to June 1953. November 1952 to June 1953 July 1953 to June 1954. July 1954 to June 1955. July 1955 to June 1956. July 1956 to June 1957. July 1957 to June 1958. November 1958 to June 1959 July 1950 to June 1960.		1171371256477	$\begin{aligned} & 3,600 \\ & 1,000 \\ & 3,200 \\ & 4,000 \\ & 3,600 \\ & 3,600 \\ & 3,600 \\ & 3,600 \\ & 1,500 \\ & 2,500 \end{aligned}$	$\begin{gathered} \$ 5.30 \\ 4.75 \\ \hline .75 \\ 4.65 \\ 4.09 \\ 4.09 \\ 6.60 \\ 4.00 \\ 4.65 \\ 4.65 \end{gathered}$	$\begin{gathered} \$ 5.61 \\ 5.30 \\ 6.57 \\ 6.09 \\ 4.82 \\ 4.87 \\ 6.17 \\ 6.95 \\ 5.16 \\ 5.13 \end{gathered}$	$\begin{aligned} & \$ 8.00 \\ & 5.75 \\ & 6.00 \\ & 6.80 \\ & 6.15 \\ & 6.50 \\ & 6.50 \\ & 6.50 \\ & 6.85 \\ & 6.80 \end{aligned}$				
Mar. $27,1952 \ldots$												
Mar. 31, 1953.				- $\$ 6.388$					186.419	150.440		
Apr. 30, 1954.				${ }_{6}^{6.37}$					6. 752	${ }_{7}^{6.81}$		
Mar. 29, 1855..				6. 6.788 795					6.954 7.320	7.233		
Apr. 4, 1956....				$\begin{array}{r}6.795 \\ \text { 1 } 7.095 \\ \hline\end{array}$					- 7.3819	-7.721		
Apr. 18, 1957...-				7.313					7.699	8.013		
Navar. 27, 1959.				7.300					7.730	7.953		

Table B-19.-Coke Foundry, Byproduct, F.O.B. Foundry

Tabli: B-20_-Aluminum Alloy Sheet, No. 3003 (35), H-14, 0.064 Irches a 36 Inches 96 Inches, Delivered Various Destinations

Oontract date	Dellvery date	Company	$\left\lvert\, \begin{array}{\|l\|} \text { Quantity } \\ \text { (pounds) } \end{array}\right.$	Actual transaction price, (dollars pound, discount	$\underset{\substack{\text { BLIS } \\ \text { contract }}}{\text { prect }}$ price
January 1955.	Aprll 1955	Metimpex.	30,000	\$0. 308	\$0.367
September 1955..	December 1955.-	Alcos.	3,000	. 449	308
December 1955.-	March 1956...--	Metimpex-----	5,000	. 355	383
May 1956.---7--	July 1956-------	T. I. Alum., Ltd	5,600	. 38	. 408
November 1956.-	February 1057.--	Ath. Steel and Iron	18,000 3,600	.359 .427	. 427
January 1957...-	January 1957.---	---do	11,000	. 427	427
May 1957.-.-----	October 1957...-	Metimpex.	7,000	. 3704	427
May 1058-...-.--	October 1958....	--..-do	5,200	. 3436	429
August 1958----	January 1959...-	d	10,500	. 3564	443
November 1958.-	April 1959......-	do.	32,000	. 3175	. 443
June 1959	December 1959.-	Atl. Alum. and Met	15,000	. 3298	. 443

10-25-01 WPI Spec 1949-60: Aluminum sheat, 3003 (or 35), H-14 mill finish, hard alloy; 0.094 inches x 48 inches 144 feat, 30,000 -pound-base quantity, manufacturar to usar, f.o.b. shipping point, freight allowed.

Table B-21.-Aluminum Ingot, Primary, Grade 2, Commercial, F.O.B. Plant

Bid opening date	$\begin{gathered} \text { Delivery } \\ \text { date } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { bidders } \end{aligned}$	Quantity (pounds)	Bellers' offered price (per pound, no time discount)			BLS price at opening and delivery date	
				Low	\bar{X}	High	Opening	Dellvery
Dec. 31, 1963	75 days	8	30, 000	\$0.1875	\$0. 1963	\$0.2013	\$0.215	\$0. 215
Jan. 28, 1955....	30 days...	1	22,401	. 225	. 225	. 225	. 227	. 232
May 25, 1955.	30 days..	4	17,320	. 2045	. 2321	. 2735	. 232	. 232
March 15, 1956	90 days..	1	30, 000	. 2284	. 2284	. 2284	. 244	. 259
May 28, 1956..	100 dsys.	2	50, 000	. 2434	. 2458	. 2481	. 259	. 271

WPI Spec. 1947-60: Aluminum ingot, 30 pounds, 99 percent plus, base price, 10,000 pounds and over, f.o.b. shipping point, freight allowed.

Thble B-22.-Brass Bar, Free Turning, Commercial, Half Hard Round, 1/2-Inch aia. o.72s Pound per Foot, Delivered Various Destinations

Contract date	Delivery date	Company	$\left\lvert\, \begin{gathered} \text { Quantity } \\ \text { pounds) } \end{gathered}\right.$	Actual transaotion price per lb., no time discount)	BLS price as of contract and delivery date	
					Contract	Dellvery
February 1952.	June 1952	American Brass Co.	1,000	\$0.3258	(1)	(1)
April 1952...-.	July 1952.	Mueller Brass Co...	14,500	. 328	(1)	13
June 1952--..--	October 1952...	---.do----..--------	6, 200	. 3238	1	${ }^{1}$
January 1953....	April 1953......	Revere Copper-------	2,500	. 3330	(1)	3)
March 1953.	April 1953.	Titan Metal Manu- facturing.	2,000	. 3345	(1)	
January 1954......	April 1954	----do-.-............	1,800	. 3442	\$0. 349	\$0.349
March 1954-....-	July 1954.-	do	2,000	. 3375	. 349	. 349
August 1954-----	October 1954	do	7,000	. 3275	.349	. 351
January 1955.-.-	January 1955	Rovere Copper.	2,000	. 336	. 339	. 339
August 1955-...-	Boptember 1955...-	Mueller Brass.	5,000	. 3705	. 395	. 427
April 1956--	June 1958........	Revere Copper-	200	. 4425	. 484	. 485
February 1957....	July 1957......----	Scoville Manufactur-	1,400	. 3712	388	. 328
May 1957..	June 1957	Chase Brass.	2,280	. 3464	. 349	. 848
June 1958.	September 1958.	Bridgeport Brass.	4,000	. 2833	. 293	290
August 1958.-...--	November 1958...	Cbase Brass......	4, 000	.2408	. 290	.300
September 1959..-	March 1960..-	Mueller Brass.	3,700	. 3145	. 330	. 817

${ }^{1}$ Commodity first introduced in 1954.

 8,000 to 10,000 pounds, manuficturor to distributors warehoum; Lo,b. mill, ireight allowed of prepelde

Table B-23(a).-Steel, Sheet, Medium, Black, 0.125 Inch (10 Gage) a 48 Incheo $\infty 120$ Inches, 204 Pounds per Sheet, F.O.B. Mill

Contraot date	Dellvery date	Company	Quantity (pounds)	Actual transaction price, (dollars per 100 pounds)			$\begin{gathered} \text { BLS } \\ \text { price } \\ \text { at con- } \\ \text { traot } \\ \text { dete } \end{gathered}$
				Unad-	Adjust ment 11	$\left\|\begin{array}{l} \text { Adjust- } \\ \text { ment } 24 \end{array}\right\|$	
February 1049	August 1949.	Armco	145,000	\$4. 20	\$3.15		
April 1949.	October 1949.	Bethlehem	140,000	4.30	3.25		3. 60
December 1949.	January 1950..	Alan Wood.	20.000	4.20	3.15		3. 60
--.D0.-	February 1950...-	Bethlehem	180,000	4.10	3.05		33. 60
November 1950.	February 1951.--	Armco.--	20,400	4.75	3. 70		3. 70
December 1950.	February 1950.-	Bethlehem	40, 800	4.82	3.77		3. 95
January 1961.	March 1951....--	United States Steel..	81,410	4.72	3. 67		3. 95
-Do.--	January 1952..--	Bethlehem-........	112, 200	5. 02	3. 97		3. 85
\cdots	December 1951.-	United States Steal.-	56, 100	4.825	3. 775		3. 35
April 1951..	September 1951-.	do	530,000	4. 70	3. 65		3. 95
March 1952	September 1952--	..d0.---...-......	188.000	4.72	3. 67		3. 35
Moy 1952--1053-.	October 1952....	Arm	230, 000	4.90 4.88	3.85 3.83		3 4.125
December 1952.	- ${ }^{\text {d do. }}$	Bethlehem	25,000	5. 03	3.88		14.125
8optomber 1953..-	February 1954.--	Uniter States Steel.-	60.000	5. 75	4.70		4.765
--.-D0......	March 1954	Bethlehem --- ----	160.000	5. 575	4.525		4.765
jūly 195i	February 1954-...	United States Steel--	20.196 40.000	- ${ }_{\text {c }}^{5.625}$	14.578 14.75	\$3.888	4.768
August 1954	-..do.	Jones \& Laughilin.--	20.000	45.00	${ }^{4} 3.95$	3.17	4.88
August 1956	October 1956....	Republic Steel.....-	380.640	${ }^{6} 6.95$	${ }^{5} 5.90$	6.02	5. 695
October 1956.	March 1957	-jones io Laughion	158, 208	${ }_{4}^{46.95}$	4. 5.90 4 5	6. 02	5.695
February 1958...	April 1958.	Bethlehem.-.-...	206,880	${ }^{4} 8.32$	4. 6.65 8.	4.77 5.39	6. 6. 192

is1.05 adjustment for quallty and marking costs as suggested by the Navy, based on sellers' price.
1 Price excluding average transportation charge.

- Price quoted for 11 gage; however, 10 gage had the same list price.
${ }^{4}$ Prioe includes an average delivered transportation cost added by the Government.
10-14-46 WPI Spec. 1948-63: Sheet, hot rolled, carbon steel, 11 gage, 36 inches to 48 Inches wide, 10 feet long, base quantity, f.o.b. produclig polnts, Pittsburgh area.
1053-60: 10 gage $\times 48$ Inches x 120 inches, sheared edge, base chemistry, commercial quallty, base quantity, mill to user, i.o.b. mill.

Table B-23(b).-Steel Sheet, Hot Rolled, Grade M, 0.125 Inch (10 Gage) at 48 Inches $\infty 120$ Inches, F.O.B. IItl

Bid opening date	Delivery date	Num ber of bldders	Quan- tity, pound pounds	Sellers' offered price (dollars per 100 pouhds, all discounts taken)			BLS price, opening to dellivery date		
				Low	$\overline{\boldsymbol{X}}$	High	$\left.\begin{gathered} \text { Open- } \\ \text { ing } \end{gathered} \right\rvert\,$	$\bar{\chi}$	$\begin{gathered} \text { Do- } \\ \text { livery } \end{gathered}$
July 12, 1954	October 1954.		40,000	\$4. 83	\$4. 66	1 54.73-57. 52	\$4. 88	\$4. 88	54. 88
8ept. 10, 1984-...---	January 1955...	3	300, 324	4. 19	4. 70	: 5.25	4.87	4. 878	4.88
Apr. 4, 1955-........	A pril 1955-...--			4.14	4. 68	${ }^{2} 5.40-15.89$	4.87		4.87
Apr. 12, 1955..	July 1055....	3	40,000	4.30	4. 63	4. $4.83-5.40$	4.87	4.939	5. 145

[^16]
[F.o.b. mill]

Bid opening date	Dellvery date	Num-ber of bldders	$\begin{gathered} \text { Quan- } \\ \text { itty } \\ \text { (pounds) } \end{gathered}$	Sellors' offered price (dollars per 100 pounds, discounts takon)			BLS price opening to delivery date		
				Low	\bar{X}	Higb	$\begin{aligned} & \text { Open- } \\ & \text { Ing } \end{aligned}$	\bar{X}	Delivery
May 23, 1955....--	July 1955.	18,2	22,032	\$4.35	8147	\%1.60	84. 675	\$4.765	\$4. 950
May 9, 1955.......	August 1958.	2	36,720	4.35	4.46	4. 58	4. 675	4.813	4.950
June 22, 1955...---	July 1955.-.....-	2	51, 408	4.45	4.48	4.50	4. 675	4.813	4.85
June 20, 1857...	November 1957..	2	70, 822	5. 82	6. 43	E. 64	5. 00	6. 108	6. 15

1 Includes Goodstein Iron \& Steel quotation supplying Bethlehem Steel from Sparrows Point, Md.
10-14-26 WPI-Spec. 1953-59: Plates, carbon steel, 0.250 Inch $\times 72$ inches $\times 240$ inches, ASTM specification A7, base quantity, mill to user, f.o.b. mill.

Table B-25.-Plywood, Douglas Fir, Exterior Type, Grade A-O, \% Inch 48 Inches 96 inches, 9 Ply, Ontreated
[F.o.b. mill]

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Contract date} \& \multirow[b]{2}{*}{Dellvery date} \& \multirow[b]{2}{*}{Company} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Quan- } \\
\& \text { (1tyy } \\
\& \text { (eet) }
\end{aligned}
\]} \& \multicolumn{3}{|l|}{Actual transaction price} \& \multirow[b]{2}{*}{BL8 price at dato} \\
\hline \& \& \& \& \[
\begin{gathered}
\text { Dollars } \\
\text { perr } \\
\text { board }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Dollars } \\
\text { per } \\
1,000 \\
\text { feet }
\end{gathered}
\] \& Austed \& \\
\hline January 1052.. \& February 1952. \& North Robblins Ply- \& 58, 880 \& \$3.60 \& \$112.50 \& \& \$114.41 \\
\hline August 1952. \& September 19 \& Weycrbaeuser. \& 47,328 \& 3. 62 \& 113.13 \& \& 120. 094 \\
\hline Novernber 1952 \& December 1952 \& do. \& 26,752 \& 3. 30 \& 103. 13 \& \& 109. 637 \\
\hline January 1953 \& February 1953 \& \& 22, 400 \& 8. 68 \& 114.38 \& \& 116. 252 \\
\hline Novernber 1953..... \& December 1953 \& Shaefers Woerner \& 35, 200 \& \begin{tabular}{l}
3.42 \\
3.33 \\
\hline
\end{tabular} \& 106.88 \& \& 1108.443 \\
\hline \& \& Weyerhaeuser \& 115, 200 \& 3.33 \& 104.06 \& \& 108.443 \\
\hline February 1954 \& March \& \& 87, 680 \& 3. 88 \& 108. 75 \& \& 114.890 \\
\hline May 1954 \& June 1954 \& Weyerhaeuser \& 27, 120 \& 3. \({ }^{\text {3. }} 28\) \& 111.86
101.88 \& \& 114.390
109.063 \\
\hline December 1954 \& December 1954. \& North Robbins. \& 16, 000 \& 13.82 \& 2119.38 \& \& 114.390 \\
\hline January 1855. \& March 1955 \& Aetna Plywood. \& 24,000 \& 13.84 \& 3120.00 \& \$108.69 \& 114. 390 \\
\hline August 1955 \& September 1955 \& Arcata Plywood.-.- \& 44.800 \& :3.86 \& \({ }^{3}{ }^{12} 120.63\) \& 109.31 \& \({ }_{115.671}^{115.671}\) \\
\hline Noveraber \({ }^{\text {February }} 1956\) \& Decernber 1956
A prill 1956.... \& Northwest Door---.-- \& 26,688 \& -1.13 \& 3129.06

122 \& 111.19 \& 123.217

\hline Mry 1956... \& July 1956. \& .-.-do..- \& 64,000 \& 13.58 \& ${ }^{2} 111.88$ \& 116. 91 \& 112.178

\hline August 195 \& October \& \& 18, 200 \& \& ${ }^{1} 99.69$ \& ${ }_{87}^{99} 7$ \& 101.721

\hline Do. \& \& Weyerbseuser....-.- \& 16.000 \& 13.14 \& ${ }^{1} 88.13$ \& 87.64 \& ${ }^{101.721}$

\hline Noveraber 1956 \& January 1957 \& Harbor Plywood...- \& 49,600 \& 12.948 \& ${ }^{1} 92.13$ \& 85.98 \& 92.215

\hline $$
\begin{aligned}
& \mathrm{DO}_{0} \\
& \mathrm{DO}
\end{aligned}
$$ \& ---.do-..-.-. \& Georgla-Pacific.-...- \& 12,800 \& ${ }^{2} 2.888$ \& - ${ }^{1} 882.13$ \& 79.98

79.98 \& 92.218

\hline February 1957....- \& April 1957 \& Roddiscraft \& 3,200 \& - 3.15 \& -98.44 \& 77.23 \& 101. 721

\hline May 1957...------- \& July 1957 \& Northwest Door \& 7,680 \& :3.08 \& 196. 25 \& 88.29 \& 101. 721

\hline Do. \& do \& Columbla Plywood.- \& 9,600 \& 13.14 \& 198. 13 \& 84.10 \& 101.721

\hline
\end{tabular}

[^17]Table B-26.—Plywood, Douglas Fir, Orade A-D, Interior, Ontreated, 1/4 Inch $\boldsymbol{1}$ 48 Inches as 96 Inches, 8 Ply
[F.o.b. mill]

Contract dsto	Dellvery date	Oompany	$\begin{aligned} & \text { Quan- } \\ & \text { Ifty } \\ & \text { (foet) } \end{aligned}$	Actual transaction price			$\underset{\text { price at }}{\text { BLS }}$ contract date
				$\begin{gathered} \text { Dollars } \\ \text { per } \\ \text { board } \end{gathered}$	$\begin{array}{\|l\|} \text { Dollars } \\ \text { per } \\ 1.000 \\ \text { feet } \end{array}$	$\underset{\text { Justed }}{ } \mathrm{Ad}^{1}$	
December 1951.	February 1	Ply-Bil	55, 232	\$2.08	865.00		871.30
May 1952......	May 1952--	Columbla Plywood.	26, 464	2.48	77.50		83.494
$\triangle u \mathrm{gust} 1952$.	Septomber 1952.	Dant \& Russell.....	42. 912	2.48	77.50		83.494
November ${ }^{\text {di }}$	December 1952-	Weyerhaeuser..-.---	18.784	2. 63	79.06		83.494
December 1952	January 1935.	Weycrhaeuser.......-	67, 200	2.32 2.50	72. 73		76.033
Apri 1953	June 1953.	Davidson Plywood..	18,400	2.82	88.13		85.660
Do.	May 1953.	Weyerhaeuser ---..-	31, 840	12.81	187.81		85. 660
May 1953	June 1953.	California Bullder.--	200.000	12.80	:87. 50		85. 560
November 1958	December 1953.	Weyerbneuser ---	28, 800	2. 34	73.13		74. 733
February 1954	March 1054	Dant \& Russell	${ }^{88} 000$	2.50	78. 13		${ }_{80}^{80.807}$
May 195	June 195	Anseortes	25.800	2.50 2.32	78. 73		80. 8077
		Weye.do..-.	62. 800	2.82 2.30	71.88		44. 733
July 1954	August 1954	do	32.000	12.65	: 82.81	\$75.31	79.863
November 1954	December 1954	North Robbins...--	32.000	12.69	: 84.06	${ }^{76.56}$	80.807
Do-	do.	Calliornla Plywood.	64, 000	:2.64	182.50	75.00	${ }^{80} 807$
January 195	March 1955	Arcats Plywood...-	32,000	2. 288	184.06	76. 56	80.807
April 1955	May 1953.	Calliornla Plywood.	80.000	:2.70	184.38	76.88	80.807
June 1955-	August 1955.	Northwest Door.-	6.400	32. 67	${ }^{2} 83.44$	75. 98	80.807
July 1935.	- -do	Arcata	33.600	32.70	: 84.38	76. 88	80.807
August 1955	September 1055	North Robblns	14, 400	${ }^{3} 2.72$: 85.00	77. 50	80.807
Do.	-do.	Arcata	19,200	2. 72	'85.00	77.50	80.807

1 Dellvered price.

1 Price exduding the average delivered transportation cost in applicable cases.
4 Price includes an average delivered transportation cost added by the Government
08-81-01 W PI Spec. 1851-58: Plywood, Douglas Ar, interior, grade A-D, 14- x 48- I 96-inch sheets, 8-ply, carlote or mived carlots, l.o.b. mill.

Tabli B-27.-Tape, Gummed Paper, 100 Percent Onbleached Sulfate, Kraft, Class 2, 5 Inches Wide, 600 Feet per Roll, 10 Rolls per Bundle, Dellvered Various Destinations

09-64-01 WPI Spec. 1947-60: Gummed sealing tape, Std. No. 2, 80-pound basis, 600 feet, 8 inches width, bursting strength $92-100$ percent, sulphate paper, animal glue, bundle of 103 -inch rolls, 800 bundle lote (5,000 rolls), i.o.b. mill, carload freight allowed.

Table B-28.-Tubes, Automobile, 6.70 © 15, First Line, Delivered in Oontinental United States

Bid opening date	Period of contract	Num- bidders	Sellers' offered price (dollars per tube, no time discount)			BLS inder during contract perlod		
			Low	\bar{X}	High	Low	\boldsymbol{X}	High
Apr. 26, 1956	July 11-Dec. 31, 1855	18	\$1.79	\$1.80	\$1.97	107.7	114.2	118.1
June 1, 1956.-.	June 12, 1956.........	12	1.79	1.79	1.79	118.1	120.3	121.2
Nov. 5, 1958.	Jan. 12, 1957-........-	20	1.79 1.79	1.796 1.793	1.89 1.85	122.0	122.0	122.0
Oct. 22, 1958.	Jan. 12, 1059...-.......	17	1.79	1.79	1.79	120.7	120.7	120.7
Apr. 15. 1959	Apr. 12, 1959..	14	1.79	1.79	1.79	120.7	120.7	120.7
Oct. 12, 1959........	Jan. 12, 1960.		1.79	1.79	1.79	120.7		

[^18] turer to wholesalar or dealer; f.o.b. factory, freight allowed on specifled weight.

Table B-29.-Batteries, Storage, Lead Acid, Passenger and Commerolal Vehicles, 1H, High, 6 Volt, Delivered Maryland, West Virginia, Virginia, District of Columbia

$\begin{aligned} & \text { Bid opening } \\ & \text { date } \end{aligned}$	Contract date	$\underset{\text { Quan- }}{\text { Quty }}$	Numbid. ders	Seller: offered price (dollars per battery; no time discount)			BLS index for period of contract		
				Low	\bar{X}	High	Low	\bar{X}	High
Feb. 2,1949	Aprll 1949 to March 1950.	${ }^{(2)}$	6	\$12. 61	\$13.88	$\left\lvert\, \begin{aligned} & \$ 16.32 \\ & 133.08 \end{aligned}\right.$	\$82. 03	\$101.7	\$114.9
Mar. 13, 1950	April 1950 to March 1851	(2)	14	27.84	210.01	${ }^{2} 14.95$	82.3	08. 78	107.0
Jan. 31, 1951	April 1951 to March 1952	(${ }^{(1)}$	6	9.52	12.76	15.56	107.0	111.08	113.7
${ }^{(3)}$	Aprll 1952 to March	(3)	3	12. 36	10. 42	15. 15	107.8	108.60	112.6
Jan. 27, 1953	April 1053 to March 1954	(2)	5	10.36	10.95	12.08	106.9	107.96	108.2
Feb. 1,1954	April 1054 to March	(3)	5	8.34	9.75	10.41	101.5	103.42	106. 2
Feb. 4, 1959	May 1959 to April 1960	(3)	6	7.60	8.78	10.50	121.1	126.88	129.4

1 Nonprimary market quotation.
${ }^{1}$ F.o.b. shipping point price.

- Open contract, lot sizes from March 1949.

11-78-01 WPI Spec. 1947-60: Storage battery, automotive type, 6 volts, 3 cells, 15 plates per cell, 95-105 amperes at 20 meter rate, wood separators, manufacturer to distributor, jobber or dealer; f.o.b. factory, or f.o.b. factory, treight prepaid.

Tabie B-30.—Linoleum, Oreen, 1/8 Inch $\boldsymbol{m}_{71 / 2}$ Inches Wide, Delivered Various Destinations

Contract date	Dellvery date	Company	Quantity (yards j)	Actual transaction price (dollars par yard ${ }^{2}$)	BLS Price Inder at contract date
August 1950	October 1852	Bonaflde Mills	1,300	\$1. 62	\$110.6
September 1952	November 1952.	Congoleum-Nair	2, 600	1.71	110.6
8eptember 1952	November 1952..	Armstrong Cork	3. 500	1. 89	110.6
November	April 1963.		80.750	1.492	110.6
November 1905-	January 1955.	Congoleum-Nairn	1,700	1.67	111.9
January 1955...	A pril 1955..	Bonafide Mills.	16,200	1.78	120.4
Do------	A pril 1955-	Contoleum-Nairn.	600	1.69	120.4
June 1955.	January 1955.	Bonafide Muls.-	9,000	1. 65	120.4
Do.-	October 1955	-.do.	5,000	1.51	120.1
January 1956.	A pril 1956..	Armstrong Cork	42. 700	1. 62	124.6
October 1956.	June 1957.	Bonsflde Mills.	11, 200	1. 60	127.2
Decamber 1956.	March 1959.	--...do..	5,259	1. 49	128.4
Do...-......	March 1957..	Armstrong Cork	3,500	1.61	128.4
Do..	March 1957.-	Congoleum-Nalrn.	24,700	1.57	128.4
January 1957-.--	A pril 1957.	Bonafile Mills.-	8. 148	1. 56	130.8
October 1957	January 1958.	---do .-.--	3,005	1. 76	125.6
June 1958.	January 1959.	Congoleum-Nairn	4,400	1. 60	128.6
October 1058.	January 1959		800	1. 73	128.6
November 1958.-.	May 1059	Bonafide Mills.	26,000	1.72	128.6
November 1959..-	April 1860...----	Congoleum-Nairn.	6,000	1.73	130.5

[^19]Table B-31.—Glass, Plate, Polished, Glazing Quality, $14-$ In., $25-50-F t^{2}{ }^{2}$ Size, Delivered to D.C. and Contiguous Areas

Bid opening date	Contract period	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { bidders } \end{aligned}$	$\begin{aligned} & \text { Quan- } \\ & \text { tity } \end{aligned}$	Sellers' offered price (dollars per foot2, no time discount)			BLS Index during contract period		
				Low	\bar{X}	High	Low	\bar{X}	High
July 11, 1949	August 1949 to February 1950	5, 17	${ }^{(2)}$	\$0.53. ${ }^{1} .54$	\$56.6, $\quad 1.57$	\$0.65, ${ }^{1} .65$	104.5	100. 5	104.5
Jan. 12, 1950	February to August 1950-...-...-	6, 17	(2)	. $53,1.52$. $88,1.68$	-65,1.70	104.5	111.52	112.7
(s)	August 1950 to Fehruary 1951......	F, 14	(2)	. 64.1 .52	-62, 61	-77. 1.80	112.7	118.63	12.0
June 28, 1951	August 1951 to February 1952-....-	6, 17	(2)	.60, 1.59	.66, 1.62	.75, 1.66	121.0	121.0	121.0 121.0
(3)	August 1953 to February 1954......		(2)	. 61	. 71	. 815	132.0	132.0	132.0
	Feliruary to August 1954.....-.	5	(2)	. 61	. 70	. 80	132.0	132.0	132.0
(3)	Fehruary to August 1955	3	(8)	. 68	. 72	. 75	132.0	133.57	137.5
(2) --7--7	August 1955 to Fehruary 1956....-	3	(2)	. 75	. 78	. 78	137.5	137.5	137.5
Jan. 11, 1956	February to A uqust 1956..-------	4	(2)	. 85	1.07	1.24	137.5	139. 84	145.7
(3)	August 1956 to February 1957......		(2)	. 80	. 8425	. 88	145.7	145.7	145.7
	February to A ugust 1957...-....-	4	(2)	. 76	. 81	. 89	145.7	145.7	145.7
June 8, 1957	August 19.57 to February 1958....--	5	(2)	. 71	-75	. 79	145.7	145. 7	145. 7
(3)	February to August 1958-9------	5	(2)	. 72	-74	$\begin{array}{r}.79 \\ \hline 8\end{array}$	145.0	145. 6	145. 7
(3).	August 1958 to February 1959......	4	(2)	. 72	. 77	. 85	144.3	144.4	145.0

[^20]Tabde B-32.-Golf Balls, Cadwell-Geer (or Equal), Top Grade, Processed Balata Cover, by the Dozen, Delivered East of the Mississippi

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Bid opening date} \& \multirow[t]{2}{*}{Contract perlod} \& \multirow[t]{2}{*}{Number
of bidders} \& \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\substack{\text { Qunitity } \\
\text { (dozen) }}
\end{array}
\]} \& \multicolumn{3}{|l|}{Sellers' offered price (per doz., no time discount)} \& \multicolumn{3}{|l|}{BLS index during contract} \\
\hline \& \& \& \& Low \& \(\bar{X}\) \& High \& Low \& \(\bar{X}\) \& High \\
\hline \& Aug. 1, 1949 to Jan. 31, 1950......-- \& 7
7 \& (2) \& \$4.74 \& \$5.70 \& 56. \({ }_{\text {7 }}^{\text {722 }}\) \& 100.1
104.4 \& \({ }^{102.2} 104\) \& 104.4
106.0 \\
\hline (1) \& \& \({ }^{7}\) \& (2) \& 4.10 \& \& 6.84 \& \& 2109.7 \& 109.7 \\
\hline Fen 19,1951 \& March 19.51 to Auzust 1951--1-3-- \& - \(\begin{array}{r}5 \\ 4 \\ \hline\end{array}\) \& (2) \& \begin{tabular}{l}
4. 0.7 \\
4.45 \\
\hline
\end{tabular} \& 5.43 5 \& 7.27
6.00 \& 109.7
109.7 \& 109.7
110.8 \& 109.7
110.4 \\
\hline July 3, 1951-. \& March 1953 to Aufust 1953. \& \({ }_{6}\) \& (2) \& 4. 04 \& 5.46 \& 6.96 \& 110.4 \& \({ }^{112.85}\) \& 113.9 \\
\hline (1)---------- \& Scptemher 1953 to Fobrarary 1954-- \& \begin{tabular}{|}
7 \\
6 \\
\hline
\end{tabular} \& (2) \& \begin{tabular}{l}
3.81 \\
4.89 \\
\hline 8.8
\end{tabular} \& 5. \({ }^{5.05}\) \& 7. 7.58 \& 113.9
113.9 \& \begin{tabular}{l}
113.9 \\
118.23 \\
\hline 189
\end{tabular} \& \\
\hline (1) ---......-- \& \& - 6 \& (2) \& 5.23 \& 6.42 \& 7.43 \& 119.1 \& 119.1 \& 119.1 \\
\hline Jan. 4,1955 \& March 1955 to august 1955. \& -8898980 \& (2) \& \({ }_{5}^{5.000}\) \& ¢. 6.5 \& \& 119.1 \& 124.56 \& 119.1
127.3 \\
\hline \& March 1956 to August i956-- \& 9 \& (2) \& 5. 000 \& 5. 5 90 \& \& 127.3 \& 127.80 \& 130.9 \\
\hline July 2111957 -. \& September 1957 to February 1958-- \& 7 \& (2) \& 4.26 \& \({ }^{3} 4.95\) \& \begin{tabular}{l}
7.26 \\
78 \\
\hline 85
\end{tabular} \& 130.9 \& 130.9 \& 130.9 \\
\hline Jan. 23, 1958. \& March 1958 to August 1958. \& \& \& 4.17 \& 4. 21 \& 4.27 \& 133.9

130 \&	130.9
130.9	\& 130

130

\hline \& S.ptermher 19,48 to Penruary \& ${ }_{8}^{6}$ \& (2) \& 3. 98 \& 4.32 \& 6.77 \& 130.9 \& ${ }^{131.95}$ \& 137. ${ }^{13}$

\hline (1) ${ }^{\text {dune }} 10$ 10, \& \& 8 \& (2) \& 3.83 \& 4.61 \& 7.26 \& 137.2 \& 137.2 \& 137.2

\hline
\end{tabular}

Appendix C

Commodity	1951	1952	1953	1954	1955	1956	1957	1958	1959
B	81.70	\$1.60	\$1.64	${ }_{\text {(1) }} 187$	${ }_{\text {81. }}^{1.753}$	$\$ 1.762$ 1.798	\$1.799	\$1.875	(1) 81.88
0.	1.65	1.65	1.767	1. 850	1.850	1.850	1. 925	2.00	2.00
A.	9 ${ }^{84} 12.088$			${ }^{1} 120.176$	${ }^{83.853}$	${ }_{\text {(1) }}^{96.872}$	${ }_{\text {(1) }}^{99.894}$	${ }_{\text {(1) }}^{99} 991$	${ }^{103.08}$
O.	${ }^{1} 126.717$	${ }^{2} 132.267$	${ }^{2} 134.40$	-134. 40	: 134.40	${ }^{2} 134.40$	${ }^{1} 139.267$	${ }^{2} 149.00$	${ }^{2} 149.00$
B	(1)	(1)	(i)	(1)	(i)	(1) 00	(i)	(i)	
	25.00	25.00	25.667	27.00	27.667	29.000	30.667	31.00	31.00
Asetylene (dollars per 100 ft .):									
8	${ }^{2} 110.5$	$\mathrm{ill}_{112.5}^{\text {(1) }}$	${ }_{2} 113.0$: ${ }_{\text {213.08 }}$: $\begin{gathered}1.93 \\ 8113.0\end{gathered}$	- $\begin{array}{r}12.02 \\ 1117.3\end{array}$	$\begin{aligned} & 12.12 \\ & 120.7^{1.21} \end{aligned}$	$\begin{gathered} 9.18 \\ =124.18 \\ 124 \end{gathered}$	$\begin{array}{r} 2.50 \\ 8124.88 \end{array}$
$\stackrel{8}{8}$	${ }^{(1)} 08$	${ }^{(1)} 0717$	${ }^{(1)} 08$	${ }^{(1)} 08$	${ }^{(1)}$. 0450	. 0488	. 0438	0463
A	$.2702$. 2704	${ }^{(1)}{ }^{\text {(1) }}$ (${ }^{\text {a }}$	(i) ${ }^{2572}$	$\begin{aligned} & .2361 \\ & .558 \end{aligned}$	$\begin{array}{r} .2481 \\ \cdot .526 \\ \hline . \end{array}$. 2657	$\text { (i) }^{2337}$	
		$\text { : 105. } 9$	${ }^{1} 105.5$	${ }^{1} 105.3$	${ }^{2} 105.3$	${ }^{2} 109.3$	1111.9	: 114.3	2114.3
N									

[^0]: ${ }^{1}$ This is part of a study done as a Fellow of the Walgreen Foundation at the University of Chicago.

 - W. Fleetwood, Chronicon Preciosum (London, 1707).
 ${ }^{3}$ Dutot, Reflexions Politiques sur les Finances et le Commerce (Hague, 1738).
 \leq Irving Fisher, The Making of Index Numbers (Cambridge, 1922), p. 344.
 ""The Bureau is currently experimenting with several approaches to the problem of measuring the reliability of this index, but results. . will not be available for some time. However, experience with the index over a long period of time suggests that the index becomes increasingly reliable as the group of prices covered is larger." Bureau of Labor Statistics, Department of Labor, Techniques of Preparing Major BLS Statistical Series, Bulletin 1168, December 1954, p. 92.
 - The errors of the Bureau of Labor Statistics Wholesale Price Index "are probably the same as for the War Industries Board": (1) formula-"usually less than $1 / 4$ of 1% and at niost, say $1 / 2$ of 1% "; (2) assortment-"say, less than 1% "; (3) numbers of commodi-tles-"say, less than 1%; (4) data-"say, less than $1 / 10$ of 1%." Fisher, op. cit., pp. 342344.

[^1]: 7 "The reliability of an index number obviously depends upon the judgment and accuracy with which the original price quotations were collected. This field work is not only fundamental, it is also laborious, expensive, and perplexing beyond any other part of the whole investigation. Only those who have tried to gather from the original sources quotations for many commoditles over a long series of years appreciate the difficulties besetting the task. .. To judge from the literature about index numbers, one would think that the diffcuit and important problems concern methods of weighting and averaging. But those who are practically concerned with the whole process of making an index number from start to finish rate this office work lightly in comparison with the field work of getting the original data." BLS Bulletin 173, Indee Numbers of Wholesale Prices in the D.S. und Foreign Countries, Department of Labor, 1915, p. 27.
 ${ }^{8} \mathrm{BLS}$ Bulletin ${ }^{1168} \mathrm{pp}$. $82-83$; and H. W. R1ley, "The Price Inderes of the Bureau of Labor Statistics." s2nd Congress, 2nd Sexsion Compendium, The Relationship of Prices to Economic Stability and Growth, Mnrch 31, 1958, p. 114.

[^2]: - "Normal purchases of civilian goods by the Government (including the military departments), which are produced in the private sector, shall be included in the weight universe." BLS Memorandum, WPI Universe, Nov. 18, 1957.
 ${ }^{10}$ I define list price to be a seller's price which is either puhlicly announced through trade journals, associations, newssheets, or given in a price schedule circulated to a customer in advance of an actual transaction.

[^3]: iz "For about 9% of the reports covered by, the special questionnaire, minor changes, corrections, or clarifications were reported in the terms of sale, principally by the description of the lot slze to which the reported price applied and in the description of the delivery terms." BLiS, Wholesale Prices and Prioe Indeaes 1958, Bulletin 1257, p. 10.

 18 'Don't buy at discounts off a large sellers' published barge or cargo price. Big sellers are fed up with belng undercut this way. They will keep customers alive by methods that don't show up on the invoice." Platts Daily Oiloram, July 31, 1958.
 is One large Eastern chemical company, when faced with the imminent possibility of losIng a very large buyer of Synthetic Resin A2 to a competitor, established another product class, Synthetle Resin D1, which differed from the former in only two important aspectsprice and trade name.

[^4]: ${ }^{14}$ This is reported in the BLS's 1957 "Supplementary Inquiry on WPI Price Reports." "An interesting example of a pricing practice which has not been reflected in current indexes is a volume rebate system, under which a seller credits his customers at the end of a year with amounts which depend upon the customer's cumulative purchases during the year. Only at the end of the year is it possible to know the price reduction effected under such a system." BLS Bulletin 1257, p. 11.
 ${ }_{15}$ "Price discounting has been restricted to third parties, while crude sales to wholly owned affiliates have been maintalned at full posted prices. This system of selling crude to affliates at full posted prices has been essential in holding up these postings in the current weak market.' Petroleum Week, loc. cit.
 10 "Actual delivered prices paid by steel consumers deviate frequently from published delivered prices. .. Actual prices varied from 50 to 135% of April 1942 published delivered prices during the period covered, while published prices remained stable. . . . The BLS used certain base prices to represent steel mill products in its WPI. However, base prices alone are neither good measures of the price of steel nor adequate indicators of the relative prices of different steel products. .. Today, when extras are an important part of the price of steel, sometimes more important than the base price itself, base prices have lost much of their sensitivity as measures of steel prices. . . The extent of price concessions shown by this survey is probably understated. First. it is likely that certain big customers, not included in the study, receive large concessions, and second. the price series obtalned, with few exceptions, do not include those concessions which take the form of rebates based upon the volume of steel purchased during a given pertod." "Labor Department Examines Consumer's Prices of Steel Products," Iron Age, Vol. 157, April 25, 1946, p. 118.

[^5]: ${ }^{17}$ I am greatly indebted to the following organizations from which price data were collected: General Services Administration, General Stores Supply Office (U.S. Navy). Military Petroleum Supply Agency (U.S. Navy), Naval Fuel and Supply Offce, and Argonne National Laboratories.

[^6]: ${ }^{18}$ BLS Memorandum, WPI Universe. See footnote 9 above.
 19 Numerous companies in widely difierent industries have stated to government purchasing officers that lower prices could be offered provided prices were not publicly posted.

[^7]: ${ }^{20}$ The BLS specifications on quantity lots are not very precise. Many minimum lot sizes are given ($30,000 \mathrm{lbs}$ for aluminum sheet ; base quantity, 40,000 ibs., for steel sheet; car lots for calcium carbide; minimum, 20,000 bbl., for gasoline Gulf Coast, etc.), but in too many areas (all of processed foods, farm products, apparel, coal, drugs, hardboard, handtools, machinery and motive products, furniture and other household durables, etc.) lot sizes are seldom given. And even when minimum lot size ls given, no maximum number of lots (order quantity) is given.
 ${ }_{21}$ Such an example in steel is A. M. Castle, which is well known to be only a warehouser and not a producer. Unfortunately few such obvions cases exist.
 ${ }_{2}$ Note that the BLS publishes both a Wholesale Price Index for all commodities and Average Wholesale Prices for some commodities.
 ${ }_{2: 1}$ The designation "contract price" has been selected because price blds to the government are offers to contrict at a particular price and under a competitire bid system cannot be withdrawn after they are publicly stated.

[^8]: ${ }^{2}$ This second point is stated by George Stigler in "The Kinky Ollgopoly Demand Curve and Rigid Prices," Joturnal of Political Economy, Vol. LV, Oct. 1947, p. 442.

[^9]: ${ }^{1}$ This is the mean increase (decrease) between successive price observations (based on are only used for movements contrary to the data series and signify decrease (-) an ${ }^{3}$ The a, b desigaation specifes independently collected price series for the same 1 This is the number of monthsin which there is at least one price observation. Months
 In which more than one price observation occurs are represented by mean prices in all
 calculations.

[^10]: ${ }^{25}$ Now called Current Industrial Reports,

[^11]: ${ }^{3}$ F.o.b. plant prices.
 'Destination of shipment is approximately within 50 miles of listed city.
 :Price often Includes cost of drums.

[^12]: D Destination of shipment is approximately within 50 miles of listed eity.
 a Price often includes cost of drums.
 ${ }^{3}$ F.o.b. plant prices.

[^13]: 06-12-95 WPI Spec. 1077-60: Xylene (Xylol) petroleum, industrial, tankears, producer to frst buyer, f.o.b. works, Bayonne, N.J.; Friday price.

 - Oil \& Gas Journal, Annual Refinery Issue, lists only Esso Btandard Oil at Bayonne, N.J.

[^14]: 1 Special cold weather gasoline, same octane.
 05-51-02 WPI Spec. 1954-60: Gasoline, gulf coast, regular grade, 87 octane research, minimum of 20,000 barrels (840,000 gallons), refiner to other refiner, cxport agent, or tanker terminal operator, cargo lots, f.o.b. ship at gulf, Monday price.

[^15]: OS-11-01 WPI Spec. 1951-60: Pennsylvania anthracte, chestnut, f.o.b. car at mine.

[^16]: ${ }^{1}$ Doubtful whether Atlantic Steel \& Trading is considered in the primary market.
 2 Kaiser bld on only 19,723 pounds of steel for west coast delivery.
 : Kaiser bld.

 - Doubtiful whether A. M. Castle \& Co. Is considered in the primary market.

 10-14-48 WPI Spec. 1953-60: Sheets, hot rolied, carbon steel, 10 gage $\times 48$ taches wide $\times 120$ inches long, ahaared edge, cut length base chemistry, commercial quality, base packaging, base quantity, mill to user, l.o.b. mill.

[^17]: ${ }_{1}$ Dellvered prico.
 1 Price excluding the average delivered transportation cost in applicable cases.
 Price includes an average dellvered transportation cost calculated by the Government.
 08-31-02 W P1 Spec. 1947-58: Plywood, Douglas-if, extertor, A-O grade, 3 If Inch $x 88$ inchesx 06 Inches sheets, 3 -ply carlots, I.o.b. mill.

[^18]: 07-20-01 WPI Spea. 1954-60; Tube, automoblle, passanger and front tractor, 6.70×16, 1st IIne, Inanufaco

[^19]: 12-82-01 WPI Speo. 1947-60: Linoleum, Inlaid, standard gage, manufacturer to wholesaler or distributor, f.o.b. factory.

[^20]: F.ob. plant quote.
 Open contract, $\$ 50$ to
 On

