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5.1 Introduction

Since the seminal papers by Vasicek (1977) and Cox, Ingersoll, and Ross
(1985), there is a consensus in the finance literature that term structure mod-
els should respond to three requirements: absence of arbitrage opportuni-
ties and both econometric and numerical tractability. Models designed to
meet these criteria can be useful, for instance, in the pricing of fixed income
derivatives and in the assessment of the risks implied by fixed income port-
folios. More recently, however, a number of requirements have been added
to the modeling of the yield curve dynamics. Satisfactory models should
also (1) be able to identify the economic forces behind movements in the
yield curve, (2) take into account the way central banks implement their
monetary policies, and (3) have a macroeconomic framework consistent
with the stochastic discount factor implied by the model. In this chapter, we
present a model that fulfills all of the preceding requirements and, in addi-
tion, integrates learning dynamics within this macro-finance framework.

The model presented in this chapter builds on recent developments
(phases) in the affine term structure literature. The first phase is character-
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ized by the use of latent or unobservable factors, as defined in Duffie and
Kan (1996) and summarized in Dai and Singleton (2000). Although this
framework excludes arbitrage opportunities and is reasonably tractable,
the factors derived from such models do not have a direct economic mean-
ing and are simply labeled according to their effect on the yield curve (i.e.,
as a “level,” a “slope,” and a “curvature” factor).

The second phase involves the inclusion of macroeconomic variables as
factors in the standard affine term structure model. Ang and Piazzesi
(2003) show that such an inclusion improves the forecasting performance
of vector autoregression (VAR) models in which no-arbitrage restrictions
are imposed.1 Their model, nevertheless, still includes unobservable factors
without an explicit macroeconomic interpretation. Kozicki and Tinsley
(2001, 2002) indicate the importance of long-run inflation expectations in
modeling the yield curve and connect the level factor in affine term struc-
ture models to these long-run inflation expectations. This interpretation of
the level factor is confirmed by Dewachter and Lyrio (2006), who estimate
an affine term structure model based only on factors with a well-specified
macroeconomic interpretation. The mentioned papers do not attempt,
however, to propose a macroeconomic framework consistent with the pric-
ing kernel implied by their models.

The third and most recent phase in this line of research is marked by the
use of structural macro relations together with the standard affine term
structure model. The structural macro model replaces the unrestricted
VAR setup adopted in previous research and has commonly been based on
a New Keynesian framework. Hördahl, Tristani, and Vestin (2006) find
that the forecasting performance of such a model is comparable to that of
standard latent factor models. They are also able to explain part of the em-
pirical failure of the expectations hypothesis. A similar approach is
adopted by Rudebusch and Wu (2003). Bekaert, Cho, and Moreno (2006)
go one step further and impose consistency between the pricing kernel and
the macro model.

The success of macro-finance models is remarkable given the well-
documented dynamic inconsistencies between the long-run implications
of the macroeconomic models and the term structure of interest rates.2 In
particular, standard macroeconomic models fail to generate sufficient per-
sistence to account for the time variation at the long end of the yield curve.
The success of macro-finance models in fitting jointly the term structure
and the macroeconomic dynamics, in fact, crucially hinges on the intro-
duction of additional inert and latent factors with a macroeconomic inter-
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1. Other papers using this approach include Dewachter, Lyrio, and Maes (2006) and
Diebold, Rudebusch, and Aruoba (2006).

2. For instance, Gürkaynak, Sack, and Swanson (2005) and Ellingsen and Söderström
(2001) show that standard macroeconomic models cannot account for the sensitivity of long-
run forward rates to standard macroeconomic shocks.



pretation. For instance, Bekaert, Cho, and Moreno (2006), Dewachter and
Lyrio (2006), and Hördahl, Tristani, and Vestin (2006), among others, in-
troduce a time-varying (partly) exogenous implicit inflation target of the
central bank and show that it accounts for the time variation in long-
maturity yields.

The main goal of this chapter is to build and estimate macro-finance
models that generate these additional factors endogenously from a macro-
economic framework. To this end, we introduce learning into the frame-
work of standard macro-finance models. Extending macro-finance models
with learning dynamics seems a promising route to model jointly the
macroeconomic and term structure dynamics for two reasons. First, learn-
ing generates endogenously additional and potentially persistent factors in
the form of subjective expectations.3 Second, learning, especially constant
gain learning, introduces sufficient persistence in the perceived macroeco-
nomic dynamics to generate a level factor in the term structure of interest
rates. Such a level factor is crucial to account for the time variation in the
long end of the yield curve.4

Our approach connects the macro-finance models of the term structure
to the learning literature. Links between learning and the term structure of
interest rates are also actively analyzed in the learning literature. For ex-
ample, Cogley (2005) uses a time-varying Bayesian VAR to account for the
joint dynamics of macroeconomic variables and the term structure of in-
terest rates. Kozicki and Tinsley (2005) use a reduced-form VAR in macro-
economic and term structure variables and assume agents have imperfect
information with respect to the inflation target. They find that subjective
long-run inflation expectations are crucial in fitting movements in long-
maturity yields and inflation expectations and report a substantial differ-
ence between the central bank’s inflation target and the subjective expec-
tations of the inflation target. Orphanides and Williams (2005a) introduce
long-run inflation expectations in the structural macroeconomic models
by substituting expectations by and calibrating the learning parameters on
observed survey data.5 This chapter complements this recent and rapidly
growing literature. First, we do not rely on reduced-form VAR dynamics.
Instead, we use a standard New Keynesian model to describe the macro-
economic dimension and impose consistency of the pricing kernel for the
term structure and the macroeconomic dynamics. Second, following Sar-
gent and Williams (2005), we generate the subjective expectations based on
a learning technology that is optimal given the structural equations and the
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3. Milani (2007) finds that the persistence in the learning dynamics is sufficiently strong to
capture much of the inertia of the macroeconomic series.

4. Orphanides and Williams (2005a,b), using a calibrated learning model, show that learn-
ing affects the long end of the term structure.

5. Other papers using survey expectations as proxies for the theoretical expectations in-
clude Roberts (1997) and Rudebusch (2002).



priors of the agents. Third, we estimate jointly the deep parameters of the
structural equations and the learning parameters. The term structure of in-
terest rates and surveys of inflation expectations are included as additional
information variables in the measurement equation. We find that the pro-
posed model generates sufficiently volatile subjective long-run expecta-
tions of macroeconomic variables to account for most of the time variation
in long-maturity yields and surveys of inflation expectations. This is
achieved without reference to additional latent factors and, hence, offers
an alternative approach to the current macro-finance literature.

The remainder of the chapter is divided in four sections. In section 5.2,
we present the macroeconomic framework, which is based on a standard
New Keynesian macro model. We introduce imperfect information with
respect to the endpoints of macroeconomic variables, discuss the respec-
tive priors, and derive the optimal learning rule. The perceived and actual
laws of motion are derived together with the conditions for stability of the
macroeconomic dynamics. The perceived law of motion forms the basis to
generate the implied term structures of interest rates and inflation expec-
tations. The estimation methodology is presented in section 5.3. Both the
yield curve and surveys of inflation expectations are used as additional in-
formation variables to identify subjective expectations. In section 5.4, we
present the estimation results and compare the performance of the esti-
mated models in fitting the term structure of interest rates. We show that
macro-finance models, built on structural equations and learning, explain
a substantial part of the time variation of long-maturity yields and infla-
tion expectations. We conclude in section 5.5 by summarizing the main
findings of the chapter.

5.2 Macroeconomic Dynamics

We use the standard monetary three-equation New Keynesian frame-
work as presented in, for instance, Hördahl, Tristani, and Vestin (2006),
Bekaert, Cho, and Moreno (2006), and Cho and Moreno (2006). These
models can be considered as minimal versions of a fully structural model
(e.g., Christiano, Eichenbaum, and Evans 2005; Smets and Wouters 2003)
and commonly represent the benchmark model in the literature linking
macroeconomic dynamics and the term structure. We follow the standard
Euler equation procedure employed in the learning literature (Bullard and
Mitra 2002; Evans and Honkapohja 2001) and replace the rational expec-
tations operator by a subjective expectations operator.6 In the following
model, subjective expectations differ from rational expectations because
we assume that agents do not observe the inflation target of the central

194 Hans Dewachter and Marco Lyrio

6. An alternative micro-founded approach to learning has been developed by Preston
(2005). We leave this extension for future research.



bank nor the equilibrium output-neutral real interest rate. Finally, in sec-
tion 5.2.3 we solve for the macroeconomic dynamics, that is, the actual law
of motion. The solution is given in the form of a reduced VAR(I) model in
an extended state space.

5.2.1 Structural Equations

The structural model used is a parsimonious three-equation representa-
tion of the underlying macroeconomic structure, containing aggregate
supply (AS) and investment saving (IS) equations and a monetary policy
rule identifying the riskless nominal interest rate. To account for the per-
sistence in inflation, the output gap, and the policy rate, we add inflation
indexation, habit formation, and interest rate smoothing to the standard
model.

The design of the AS equation is motivated by the sticky price models
based on Calvo (1983). In line with the standard Calvo price-setting theory,
we assume a world where only a fraction of the firms updates prices at any
given date, while the nonoptimizing firms are assumed to use some rule of
thumb (indexation scheme) in adjusting their prices (e.g., Galí and Gertler
1999). This setting leads to a positive relation between (transitory) infla-
tion on the one hand and real marginal costs on the other. Specific as-
sumptions are made with respect to the marginal costs and the indexation
scheme of the nonoptimizing agents. First, we assume that marginal costs
are proportional to the output gap and an additional cost-push shock, ε�.
Second, nonoptimizing firms are assumed to adjust prices according to an
indexation scheme based on past inflation rates. The degree of indexation
is measured by the parameter ��, and the indexation scheme at time t is
given by �∗ � ��(�t– 1 – �∗) with �∗ the inflation target and �t – l the previ-
ous period inflation rate. Following these assumptions, the standard AS
curve is given by:

(1) �t � c� � ��, 1Et�t�1 � ��, 2�t�1 � κ� yt � ��ε�, t,

(2) c� � �1 � � ��∗,

��, 1 � , ��, 2 � ,

where ψ represents the discount factor, and κ� measures the sensitivity of
inflation to the output gap. Given the assumed proportionality between
marginal costs and output gap, κ� is a rescaled parameter of the sensitivity
of inflation to the real marginal cost. Endogenous inflation persistence,
��,2 	 0, arises as a consequence of the assumption that nonoptimizing
agents use past inflation in their indexation scheme. Finally, we impose
long-run neutrality of output with respect to inflation. Given the setup of

��



(1 � ψ��)

ψ



(1 � ψ��)

ψ



(1 � ψ��)

��



(1 � ψ��)
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the model, this amounts to setting the discount factor (ψ) to one. Long-run
neutrality is characterized by inflation parameters in the AS equation
adding up to one, implying that ��,1 � (1 – ��,2).

The IS curve is recovered from the Euler equation on private consump-
tion. Following the recent strand of literature incorporating external habit
formation in the utility function (e.g., Cho and Moreno 2006), and impos-
ing the standard market clearing condition, we obtain the following IS
equation:

(3) yt � �yEtyt�1 � (1 � �y)yt�1 � �(it � Et�t�1 � r) � �yεy, t,

where the parameters �y and � are functions of the utility parameters re-
lated to the agent’s level of relative risk aversion, �, and (external) habit for-
mation, h:7

(4) �y � , � � � .

Habit formation is introduced as a means to generate additional output
gap persistence. Without habits, that is, h � 0, the purely forward-looking
IS curve is recovered. The demand shock εy, t refers to (independent) shocks
in preferences.8 Equation (3) establishes the interpretation of r as an out-
put-neutral real interest rate. Other things equal, ex ante real interest rate
levels (it – Et�t�1) above r reduce output (and inflation), while for ex ante
real interest rates below r, output (and inflation) increases. Although we
could allow for time variation in this output-neutral real interest rate, we
restrain from doing so in order to avoid additional complexities in the esti-
mation arising from the fact that this variable is unobservable.

We close the model by specifying a monetary policy in terms of a Taylor
rule. Following Clarida, Galí, and Gertler (1999), we use a policy rule ac-
counting for both interest rate smoothing and idiosyncratic policy shocks,
εi,t. The monetary policy rate equation is given by:

(5) it � (1 � �i�1)i t
T � �i�1it � 1 � �iεi, t.

We model the central bank’s targeted interest rate, it
T, by means of a Taylor

rule in the output gap, yt, and inflation gap, �t – �∗:

1



� � h(� � 1)

�



� � h(� � 1)
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7. We assume the following utility function:

U (Ct) � (1 – �)–1Gt� �1– �

,

with Gt an independent stochastic preference factor and an external habit level, Ht, specified
as Ht � Ch

t–1. Note that in order to have a well-defined steady state, the habit persistence needs
to be restricted, 0  h  1, as explained in Fuhrer (2000).

8. Note that only by linearly detrending output we obtain a one-to-one relation between the
shock in the IS equation and preference (demand) shocks. In general, the interpretation of εy

as a demand shock is at least partially flawed, given the fact that it might also contain shocks
to permanent output.

Ct


Ht



(6) it
T � r � Et�t � 1 � ��(�t � �∗) � �yyt,

where �∗ denotes the inflation target of the central bank. This policy rule
differs from the standard formulation of Taylor rules as we assign a weight
of one to the expected inflation term. By imposing this condition, we model
explicitly the idea that the central bank is actually targeting an ex ante real
interest rate in function of the macroeconomic state, that is, �t – �∗ and yt.

The model can be summarized in a standard matrix notation by defining
the state space by a vector of macroeconomic variables, Xt � [�t, yt, it ]� and
a vector of structural shocks, �t � [ε�,t, εy,t, εi,t ]�. Using a vector C and ma-
trices A, B, D, and S of appropriate dimensions, we write the structural
equations as:

(7) AXt � C � BEtXt�1 � DXt�1 � Sεt.

5.2.2 Perceived Law of Motion

The structural model (eq. [7]) is solved under two sets of expectations op-
erators. First, we solve the model under the assumption of rational expec-
tations. The rational expectations solution builds on perfect information
of agents with respect to the structural parameters and results in a time-
invariant structural VAR representation for the perceived law of motion.
Next, we relax the perfect information assumption and extend the per-
ceived law of motion by introducing uncertainty with respect to the end-
points of the macroeconomic variables. This alternative implies a per-
ceived law of motion described in terms of a VECM. Both versions can be
seen as special cases of a generic model for expectations, composed of (1)
a set of prior beliefs of the agents and (2) an optimal learning rule. In this
section, we first describe the priors of the generic model; subsequently, we
solve for the optimal learning rule under both rational expectations and
the extended set of beliefs. Finally, we discuss the implications of the per-
ceived law of motion for the term structure of interest rates and the term
structure of inflation expectations.

Priors and Learning

The beliefs of agents are summarized in terms of a generic model for the
macroeconomic dynamics. More specifically, denoting the perceived sto-
chastic trends by ζt

P and observable macroeconomic variables by Xt the
priors take the form:

(8) Xt � ξt
P � �P(Xt�1 � ξt

P) � �P εt

ξt
P � VPζt

P

ζt
P � ζP

t�1 � �ζυζ, t.

Macroeconomic dynamics can be decomposed into a transitory and per-
manent component. The permanent component of the dynamics is gener-
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ated by a set of stochastic trends ζt
P. The stochastic trends are generated by

a set of permanent shocks, υζ, t with standard deviation:

(9) �� �� �.

The stochastic trends determine a set of perceived stochastic endpoints ξt
P,

ξt
P � VPςt

P, identifying the long-run expectations of the macroeconomic
variables, Xt (see Kozicki and Tinsley 2001):

(10) ξt
P � lim

s → �
Et

PXt�s.

The perceived transitory dynamics, that is, dynamics relative to the long-
run expectations, are modeled in terms of a standard VAR(I) model. More
in particular, transitory dynamics are described by the matrix �P, model-
ing the inertia and interaction in the transitory dynamics, and �P the im-
pact matrix of the transitory shocks, εt. Finally, the priors can be restated
in extended state space X̃t � [X�

t, ξt
�P ] by defining �t � [ε�

t, υ�
ζ,t ]� as:

(11) X̃t � �̃PX̃t�1 � �̃P�t

or equivalently:

(12) � �� � � � �� � � � �.

In general, we assume that the stochastic endpoints are not observed.
Agents, therefore, face an inference problem for the stochastic endpoints
ξt

P, which is solved by means of a mean squared error (MSE) optimal
Kalman filter learning rule. Denoting the inferred values for the stochastic
endpoints by ξP

t|t, the learning algorithm becomes:

(13) ξP
t|t � ξP

t�1|t�1 � K(Xt � EP
t�1Xt),

where K is obtained as the steady-state solution to the Kalman filtering
equations:

(14) Kt � Pt|t�1(I � �P)�Ft
�1

Ft � (I � �P)Pt|t�1(I � �P)� � �P�P�

Pt�1|t � Pt|t�1 � Pt|t�1(I � �P)�Ft
�1(I � �P)Pt|t�1 � ΣζΣ�

ζ.

This perceived law of motion embeds various forms of expectational as-
sumptions. We distinguish between rational expectations and models in-
corporating imperfect information or credibility with respect to the infla-
tion target and output-neutral real interest rate.

εt

υζ,t

(I � �P)V �ζ

V �ζ

�P

0

Xt�1

ξP
t�1

(I � �P)

I

�P

0

Xt

ξt
P

0

0

�ζ,r

0

�ζ,y

0

�ζ,�

0

0
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Rational Expectations

Rational expectations are obtained as a specific case of the perceived law
of motion. More in particular, rational expectations generated by the pre-
ceding structural equations are recovered by two sets of informational as-
sumptions. First, agents believe in deterministic endpoints. Within the con-
text of the preceding structural model endpoints are deterministic, that is,
Σζ � 0, and are identified by solving the structural model for the steady
state. Under the restriction that in the long run no trade-off exists between
the output gap and the monetary policy, that is, ��,1 � (1 – ��,2), the steady
state of the model is determined by the level of the inflation target, �∗, the
steady state of the output gap, y∗ (fixed to zero), and the output-neutral
real interest rate level, r � r∗:

(15) ξt
P � lim

s→�
Et� �� V� ��� �� �,

where Et denotes the rational expectations operator. The mapping V is de-
termined by the structural equations. Under rational expectations, the in-
flation target determines the long-run inflation expectations. The long-run
expectations for the output gap are fixed at y∗ � 0, and the long-run ex-
pectations for the nominal interest rate are determined by the Fisher hy-
pothesis, linking the endpoint of the interest rate to the sum of the real in-
terest rate and inflation expectations. Next, rational expectations imply
that agents know the structural parameters, such that transitory dynamics,
that is, the matrices �P � �re and �P � �re are determined by the standard
rational expectations conditions:

(16) �re � (A � B�re)�1D

�re � (A � B�re)�1 S.

The perceived law of motion under rational expectations can be restated in
an extended state space as:9

(17) � ��� � � �� � � εt,

with initial condition ξ0
P

�re

0

Xt�1

ξP
t�1

(I � �re)

I

�re

0

Xt

ξt
P

�∗

y∗

r∗

0

0

1

0

1

0

1

0

1

�∗

y∗

r∗

�t�s

yt�s

it�s
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9. Note that the solution can also be written more concisely in structural VAR form as:

Xt � C re � � re Xt – 1 � Σ reεt,

with C re � (I – �re)ξt
re.



(18) ξ0
P �� �� �.

Finally, note that under rational expectations with deterministic endpoints
and perfect information, agents do not face an inference problem. This
perfect information assumption (i.e., Σζ � 0) generates a Kalman gain 
K � 0 (see eq. [14]). Rational expectations are, therefore, a limiting case of
the learning model.

Stochastic Endpoints and Learning

Next to rational expectations, we introduce an alternative set of priors
implying stochastic endpoints for the macroeconomic variables. Within
the context of the preceding structural model, stochastic endpoints ξt

P arise
as the consequence of perceived underlying stochastic trends in the econ-
omy, ζt

P � [�t

∗P, yt

∗P, rt

∗P], representing the vector containing the perceived
inflation target, �t

∗P, the perceived long-run output gap, yt

∗P (fixed to zero),
and the perceived long-run output-neutral real interest rate, rt

∗P. The size of
the perceived time variation in the stochastic trends is measured by Σζ. De-
noting the expectations operator under this set of priors by Et

P, it can be
verified that:

(19) lim
s→�

Et
PXt�s � ξt

P � Vζt
P

or equivalently

(20) lim
s→�

Et
P� �� V� ��� �� �.

The priors about the transitory dynamics, that is, the dynamics relative 
to the stochastic endpoints, are assumed to coincide with the ones implied
by the rational expectations model. This implies that the matrices �P and
�P are identical to their rational expectations equivalents: �P � �re and 
�P � �re. By equating the perceived transitory dynamics to those implied by
the rational expectations model, we obtain a perceived law of motion that
differs from the rational expectations solution only due to the introduction
of stochastic endpoints. The final perceived law of motion (PLM) can be
written in extended state space as:

(21) � �� � � � �� � � � �.
εt

υζ,t

(I � �P)V�ζ

V�ζ

�P

0

Xt�1

ξP
t�1

(I � �P)

I

�P

0

Xt

ξt
P

�t

∗P

yt

∗P

rt

∗P

0

0

1

0

1

0

1

0

1

�t

∗P

yt

∗P

rt

∗P

�t�s

yt�s

it�s

�∗

y∗

r∗

0

0

1

0

1

0

1

0

1
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Finally, under this prior, agents face an inference problem and, hence, re-
sort to learning the stochastic endpoints by means of a Kalman filter. The
optimal learning rule for this prior is within the class of stochastic gradient
rules with the gain defined by the Kalman filter. This gain depends on the
specificities of the prior, that is, the specific values for �ζ, �

P, and �P. As
in Orphanides and Williams (2005a), we assume that agents substitute the
unknown stochastic endpoints by the ones inferred by the learning rule.

The Term Structure of Interest Rates

Standard no-arbitrage conditions are used to generate bond prices con-
sistent with the perceived law of motion. Imposing no-arbitrage under the
PLM reflects the view that bond prices are set by the private sector and
should, therefore, be consistent with the perceived dynamics and informa-
tion set of these agents. Within the context of default-free, zero-coupon
bonds, no-arbitrage implies a pricing equation of the form:

(22) Pt(�) � Et
P [Mt�1Pt�1(� � 1)],

where EP denotes the subjective expectations operator generated by the
PLM (see eq. [11]), P(�) denotes the price of a default-free, zero-coupon
bond with maturity �, and Mt denotes the pricing kernel consistent with the
PLM. We follow Bekaert, Cho, and Moreno (2006) in using the utility
function implied by the macroeconomic framework to identify the prices
of risk. While this approach has the advantage of guaranteeing consistency
of the pricing kernel, it comes at the cost of loss of flexibility in modeling
the prices of risk.10 The (log) pricing kernel consistent with the PLM is the
homoskedastic (log) pricing kernel:

(23) mt�1 � �it � �2
m � Λ�t�1,

where the prices of risk, Λ, are determined by the structural parameters

(24) Λ � �ey�̃P � e��̃P � �yey,

where ex denotes a vector selecting the elements of the x-equation, that is,
ey selects the row of �̃P related to the y-equation. No-arbitrage restrictions
imposed on conditional Gaussian and linear state space dynamics gener-
ate exponentially affine bond pricing models (see, for instance, Ang and
Piazzesi 2003):

(25) P(�) � exp [a(�) � b(�)X̃t|t ],

1


2
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10. The standard approach in modeling the term structure is to assume a essentially affine
term structure representation. As shown by Duffee (2002), such representations do not re-
strict the prices of risk to be constant.



where X̃t|t denotes the inferred state vector, obtained by replacing ξt
P by its

inferred value ξP
t|t, X̃t|t � (X�t, ξt|t

P�)�. The factor loadings a(�) and b(�) can be
obtained by solving difference equations representing the set of nonlinear
restrictions imposed by the no-arbitrage conditions:

(26) a(�) � ��0� a(� � 1) � [b(� �1)]�̃PΛ�� b(� � 1)Σ̃PΣ̃P�b(� � 1)�

b(�) � b(� � 1)�̃P � ��1,

with �0 � 0, and �1 implicitly defined by the identity it � ��1X̃t|t. The system
has a particular solution given the initial conditions a(0) � 0 and b(0) � 0.

Exponentially affine bond price models lead to affine yield curve mod-
els. Defining the yield of a bond with maturity �1 by y (�1) � –ln[Pt(�1)]/�1

and the vector of yields spanning the term structure by Yt � [yt(�1), . . . ,
yt(�n)]�, the term structure can be written as an affine function of the ex-
tended state space variables:

(27) Yt � Ay � ByX̃t|t � υy,t,

where Ay and By denote matrices containing the maturity-specific factor
loadings for the yield curve {Ay � [–a(�1)/�1, . . . , –a(�n)/�n]� and By � [–b(�1)�/
�1, . . . , –b(�n)�/�n]�}, and υy,t contains maturity-specific measurement errors.

The Term Structure of Inflation Expectations

The representation of the term structure of inflation expectations is ob-
tained by iterating the PLM (eq. [11]) forward. It is straightforward to
show that the linearity of the PLM generates an affine representation for
the term structure of inflation expectations in the extended state space, X̃t|t.
The term structure of average inflation expectations is described by

(28) Et
P��(�) � ∑

��1

i�0

Et
P(�t�i ) � e�[as(�) � bs(�)X̃t|t],

where Et
P��(�) denotes the time t average inflation expectation over the hori-

zon �, e� denotes a vector selecting �t out of the vector X̃t|t, and ae(�), be(�),
as(�) and bs(�) are maturity-dependent functions generated by the system:

(29) ae (�) � 0, be(�) � be(� � 1)�̃P

as(�) � 

1

�

 ∑

��1

i�0

ae(i) � 0, and bs(�) � 

1

�

 ∑

��1

i�0

be(i)

solved under the initial conditions ae(0) � 0 and be(0) � I. Equation (28),
applied over varying horizons �, forms the model-implied term structure of
average inflation expectations. The term structure of inflation expecta-
tions, unlike the term structure of interest rates, is not observable. We use
surveys of average inflation expectations for different maturities as a proxy
for the term structure of inflation expectations. We relate these surveys,

1


�

1


2
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s(�), to the model-implied average inflation expectations by allowing for
idiosyncratic measurement errors, υs,t(�), in the survey responses:

(30) st(�) � e�as(�) � e�bs(�)X̃t|t � υs, t(�),

where st(�) denotes the time t survey response concerning the average in-
flation expectations over the horizon �. Finally, denoting the vector con-
taining a set of surveys of inflation expectations for different horizons 
by St � [st(�1), . . . , st(�m)]�, and defining As � 0 and Bs � [[e�bs(�1)]�, . . . ,
[e�bs(�m)]�]�, equation (30) can be restated as:

(31) St � As � BsX̃t|t � υs,t.

5.2.3 Actual Law of Motion

The actual law of motion (ALM), describing the observed dynamics of
macroeconomic variables, is obtained by substituting the subjective expec-
tations (eq. [11]) into the structural equations (eq. [7]). Because the subjec-
tive expectations are formed on the basis of the inferred stochastic end-
points, ξP

t|t and on observable macroeconomic data, the relevant space of
the ALM coincides with that of the PLM, that is, X̃t|t. Due to the simplic-
ity of the learning algorithm, the ALM can be solved in closed form. In the
appendix, we show that the ALM reduces to a standard VAR(I) in the ex-
tended state space:

(32) X̃t|t � C̃A � �̃AX̃t�1|t�1 � �̃Aεt,

with

(33) C̃A � � �
�̃A � � �
�̃A � � �,

and K� � (I – �P) K, A, B and S and �P determined by the parameters of
the structural equations, and K the constant gain matrix implied by the
agents’ priors. The closed form solution can be used to highlight some of
the properties of the ALM. First, subjective beliefs about the stochastic
endpoints, ξP

t|t, only affect the actual macroeconomic dynamics if an expec-
tation channel exists, that is, B � 0 in equation (7). One aspect in which
macroeconomic dynamics may be affected by subjective beliefs concerns
the modeling of persistence. Under rational expectations, persistence is

[A � B(�P � K�)]�1S

K [A � B(�P � K�)]�1S

[A � B(�P � K�)]�1B(I � K�)(I � �P)

I � K{I � [A � B(�P � K�)]�1B(I � K�)}(I � �P)

�P

0

[A � B(�P � K�)]�1C

K [A � B(�P � K�)]�1C
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driven by inflation indexation, habit persistence, and interest rate smooth-
ing affecting the roots of the �re � �P matrix. Learning introduces an ad-
ditional source of persistence in the form of the persistence in the subjec-
tive expectations, ξP

t|t. Persistence in the beliefs follows itself from the inertia
in the learning rule, that is, the updating procedure. Milani (2007) shows in
a different context that persistence due to learning is important and
(partly) takes over the role of inflation indexation and habit formation. In
the empirical section, we find similar results, especially for inflation per-
sistence and interest rate smoothing.

Second, the rational expectations model is nested within the learning
framework. By imposing the priors consistent with rational expectations,
that is, Σζ � 0 (implying K� � 0) and ξP

t|t � V [�∗, 0, r]�, it can be verified
that the ALM simplifies to the rational expectations reduced form, equa-
tion (17). Third, the nonstationarity of the PLM does not necessarily carry
over to the ALM. The eigenvalues of the matrix �̃A depend both on the
structural parameters contained in A, B, �P and on the learning parame-
ters K.11 Finally, if the ALM is stationary, the unconditional distribution of
the extended state space vector X̃t|t is identified. Conditional on the main-
tained assumption of normality of the structural shocks, εt, this distribu-
tion is given by:

(34) X̃t|t ~ N(EX̃t|t, �X̃),

with

E X̃t|t �� �
vec (�X) � (I � �̃A ⊗ �̃A)�1 vec (�̃A�̃A�).

Equation (34) represents the unconditional distribution for the extended
state under learning. This distribution is characterized by two properties.
First, as far as unconditional means are concerned, the ALM and the ra-
tional expectations model are observationally equivalent. The uncondi-
tional mean of the rational expectations model, that is, (I – �re)–1Cre, coin-
cides with the unconditional mean under the ALM for both the observable
macroeconomic variables (inflation, output gap, and policy rate) and the
perceived long-run expectations of the agents. The rational expectations
model thus serves as a benchmark in mean for the model under learning.
Second, in line with the literature on constant gain learning (e.g., Evans

(I � �re)�1Cre

(I � �re)�1Cre
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11. Note that the stationarity of the ALM is inconsistent with the nonstationarity of the
PLM under learning. This inconsistency arises from the fact that the ALM is solved under the
assumption of a time-invariant inflation target of the central bank. In the empirical section,
we allow for time variation in the central bank inflation target. More specifically, we allow for
the inflation target to be chairman-specific. This extension renders the ALM nonstationary
and partially reconciles the ALM and the PLM dynamics.



and Honkapohja 2001), the unconditional variance of the stochastic end-
points, ξP

t|t, is in general positive, implying nonconvergence of the stochas-
tic endpoints to the true values implied by the rational expectations equi-
librium, [�∗, 0, r � �∗]�.

5.3 Estimation Methodology

The actual law of motion for both macroeconomic variables and the in-
ferred stochastic endpoints is used to estimate both the structural and the
learning parameters. In order to identify the subjective beliefs, we use in-
formation variables directly related to the PLM, that is, the term structure
of interest rates and inflation expectations. In section 5.3.1, we discuss the
details of the estimation procedure. Subsequently, in section 5.3.2, we ex-
plain the different versions of the model that are estimated.

5.3.1 Maximum Likelihood Estimation

The model is estimated by means of log-likelihood in the extended state
space with the ALM dynamics serving as the transition equation:

(35) X̃t|t � C̃A � �̃AX̃t�1|t�1 � �̃Aεt

and a measurement equation, relating the extended state to observable eco-
nomic variables. The observable variables included in the measurement
equation consist of macroeconomic variables, Xt (inflation, output gap,
and policy rate), a sample of yields spanning the term structure of interest
rates, Yt (one-, two-, three-, four-, five-, and ten-year yields), and a sample
of the term structure of inflation expectations, proxied by survey data on in-
flation expectations, St (one- and ten-year average inflation expectations).12

The observable variables are collected in the vector Zt � [X�t, Y�t, S�t ]�. Using
the affine representation of each of these variables in the extended state
space, as discussed in section 5.2.2, the measurement equation becomes:

(36) Zt � Am � Bm X̃t|t � υz, t,

where υz,t denotes idiosyncratic measurement errors with variance-
covariance matrix �, and Am and Bm represent the derived affine represen-
tations of the respective subsets of observable variables Xt, Yt and St (Bx is
defined as Xt � BxX̃t|t, i.e., Bx � [I3 � 3, 03 � 3], Ay, As, By and Bs are defined in
equations [27] and [31], respectively):
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12. Survey expectations are increasingly used in the empirical literature. Roberts (1997)
shows that models including survey expectations can account for some of the (unexplained)
inflation inertia. Survey expectations are also starting to be used in the bond pricing litera-
ture. Kim and Orphanides (2005) use survey expectations on short-term interest rate move-
ments as an additional input in a otherwise standard Vasicek model. Also, Chun (2005) uses
several survey expectations as additional inputs in a two-factor term structure model. Finally,
Bekaert, Cho, and Moreno (2006) show the empirical relevance of surveys (on inflation) by
showing that surveys help to forecast inflation better than any rational expectations model.



Am �� �, Bm �� � and � �� �.

Prediction errors, Zt – EA
t–1Zt, and their corresponding log-likelihood value

l(Zt – EA
t–1Zt; �), where EA

t–1 denotes the expectations operator based on the
ALM, are functions of both the structural macroeconomic shocks and the
measurement errors:

(37) Zt � EA
t�1Zt � Bm(X̃t|t � EA

t�1 X̃t|t) � υz,t � Bm(�̃Aεt) � υz,t

l(Zt � EA
t�1Zt; �) � �


1

2

 |�Z| � 


1

2

 (Zt � EA

t�1Zt)��Z
�1(Zt � EA

t�1Zt)

�Z � Bm�̃A�̃A�B�m � �.

One contribution of this chapter is that the deep parameters of the struc-
tural equations and the parameters of the learning procedure are estimated
jointly based on a wide variety of information variables, that is, macroeco-
nomic variables, term structure variables, and surveys of inflation expecta-
tions.13 The parameters to be estimated are collected in the parameter vec-
tor �, containing the deep parameters of the structural equations (��, κ�, �,
h, r, �∗, ��, �y, �i – 1, ��, �y, �i), the learning parameters (priors on the
volatility of the stochastic trends �ζ,�, �ζ,r, and initial values ζ0|0), and the
variances of the measurement errors [diag(�)]:

(38) � � [��, κ�, �, h, r, �∗, ��, �y, �i�1, ��, 
�y, �i, �ζ, �, �ζ, r, ζ0|0, diag (�)].

Not all deep parameters and learning parameters are estimated. We follow
Hördahl, Tristani, and Vestin (2006) and Bekaert, Cho, and Moreno
(2006) by fixing the discount factor to one, ψ � 1. Also, throughout the es-
timation the prior on the uncertainty of the long-run value for the output
gap is restricted to zero, �ζ,y � 0. This restriction guarantees that the long-
run expected output gap is fixed to zero under the PLM. Furthermore, we
impose the theoretical constraints �ζ,�, �ζ,r � 0 and 0  h  1. Finally, pa-
rameter estimates are constrained to satisfy two conditions. First, param-
eter estimates must be consistent with the existence of a unique rational ex-
pectations solution. Second, under learning, parameter estimates should
imply eigenvalues of �̃A strictly smaller than one in absolute value in order

0

0

�s

0

�y

0

0

0

0

Bx

By

Bs

0

Ay

As
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13. Other research estimating learning parameters include Orphanides and Williams
(2005a) and Milani (2007). Orphanides and Williams (2005a) estimate the constant gain by
minimizing the distance between the model-implied inflation expectations and those reported
in the survey of professional forecasters. Milani (2007) estimates jointly, using Bayesian meth-
ods, the constant gain and the deep parameters of a structural macroeconomic model. We
complement their analyses by including more information in the measurement equation, no-
tably term structure of interest rates.



to guarantee stability of the ALM. The model is estimated using a 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

5.3.2 Estimated Versions of the Model

We estimate a total of eight models. Model versions differ depending on
(1) the type of information included in the measurement equation, (2) the
assumptions concerning the learning procedure, (3) the time variation in
the inflation target, and (4) the prices of risk. Four versions are based on
the baseline model presented in the previous section, two versions are ex-
tensions allowing for heterogeneity in the monetary policy, and the final
two versions allow for more flexibility in the prices of risk.

Regarding the information included in the measurement equation, we
distinguish between the macro and the general versions of the model. In
the macro version, we restrict the measurement equation to incorporate
only macroeconomic information, while in the general version, we include
all available information. The macro version of the model is motivated by
the concern that including term structure and survey information in the
measurement equation may bias the estimates of the deep and learning pa-
rameters in order to fit the term structure and the survey expectations. To
avoid this problem, a two-step procedure is employed. In the first step, the
deep and learning parameters are estimated while restricting the measure-
ment equation to contain only macroeconomic variables. In the second
step, we fix the parameter estimates for the deep and learning parameters
obtained in the first step and optimize the likelihood based on the full mea-
surement equation over the remaining parameters, diag(�). In the general
versions of the model, the estimation of all parameters is performed in one
step on the basis of the most general measurement equation.

We estimate both rational expectations and learning versions of the
model. The learning versions of the model include four additional param-
eters describing the priors of the agents, �ζ,�, �ζ,r, and the starting values
for the stochastic trends, ζ0|0. The distinction between rational expectations
and learning models identifies the contribution of learning to the overall 
fit of the respective series. The four baseline models can be summarized as
follows:

• Rational Expectations Macro: The rational expectations version is es-
timated using a two-step procedure ensuring that the deep parameters
are based only on macroeconomic information.

• Rational Expectations I: The rational expectations version is estimated
using a one-step procedure based on the general measurement equa-
tion.

• Learning Macro: The learning version is estimated using a two-step
procedure ensuring that the deep parameters are based only on macro-
economic information.
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• Learning I: The learning version is estimated using a one-step proce-
dure based on the general measurement equation.

In addition to the four baseline models, we estimate two extensions to al-
low for heterogeneity in the monetary policy rule and in the agents’ priors.
The heterogeneity is modeled by means of chairman-specific policy rules
and priors.14 Specifically, the time-invariant policy rule parameters �*, ��,
�y and �i–1 of the baseline models are replaced by chairman-specific pa-
rameters �j

∗, ��,j, �y,j and �i–1,j, where j denotes the presiding chairman.15

The heterogeneity in priors is modeled analogously by replacing the learn-
ing parameters �ζ,� and �ζ,r by their chairman-specific equivalents, �ζ,�,j

and �ζ,r,j. We estimate both the rational expectations version of this model,
labeled Rational Expectations II, and the learning version of the model, 
labeled Learning II. The model versions Rational Expectations I and
Learning I, implying time-invariant policy rules and beliefs, are nested in
the respective extensions and, hence, identify the contribution of allowing
for policy heterogeneity in the overall fit.16 Finally, the last two models,
Rational Expectations III and Learning III, extend the models Rational
Expectations II and Learning II by allowing for time variation in the prices
of risk. In these versions, we disregard consistency of the princing kernel
with the IS curve and posit an affine function for the prices of risk: Λt � Λ0

� Λ1X̃t|t.
17

5.4 Estimation Results

5.4.1 Data

We estimate the proposed models using quarterly data for the United
States. The data covers the period from 1963:Q4 until 2003:Q4 (161 quar-
terly observations). The data set contains three series of macroeconomic

208 Hans Dewachter and Marco Lyrio

14. This procedure differs from other research that allows for time variation in the inflation
target. For instance, Dewachter and Lyrio (2006), Kozicki and Tinsley (2005), and Hördahl,
Tristani, and Vestin (2006) allow for variation in the inflation target of the central bank by
modeling the inflation target as a inert autoregressive process. This approach results in quite
variable inflation target dynamics. In contrast, this chapter allows for discrete jumps in the in-
flation target at prespecified dates. Beyond these dates, the inflation target is constant.

15. The chairmen included in the analysis are Martin (1951–1970), Burns (1970–1978),
Miller (1978–1979), Volcker (1979–1987), and Greenspan (1987–2006). We divide the Volcker
period in two subperiods in order to account for the well-documented change in monetary
policy that took place during this term, that is, the change from monetary targeting to a more
convential monetary policy. The first Volcker period ends in 1982:Q3.

16. For an analysis of regime changes on monetary policy, see Schorfheide (2005) or Sims
and Zha (2006). Both papers make use of Markov switching techniques identifying the regime
breaks endogeneously. We, in contrast, fix the dates of the breaks to the moments of a change
in the Fed chairman.

17. Note that allowing for time-varying prices of risk adds 42 parameters to be estimated.
In order to keep the estimation tractable, we restrict Λ1 to be diagonal.



observations: quarter-by-quarter inflation (based on the gross domestic
product [GDP] deflator and collected from the National Income and Prod-
uct Accounts), the output gap (constructed as the log of GDP minus the
log of the natural output level, based on Congressional Budget Office
data), and the Federal funds rate, representing the policy rate. Next to the
macroeconomic variables, the data set includes six yields with maturities of
one, two, three, four, five, and ten years. The data for yields up to five years
are from the Center for Research in Security Prices (CRSP) database.18 The
ten-year yields were obtained from the Federal Reserve. Finally, we also
use survey data on short- and long-run inflation expectations. More specif-
ically, we include the one- and ten-year average inflation forecast, as re-
ported by the Federal Reserve Bank of Philadelphia in the Survey of Pro-
fessional Forecasters.

Table 5.1 presents descriptive statistics on the data set described in the
preceding, which are depicted in figure 5.1. These statistics point to the
usual observations: the average term structure is upward sloping; the
volatility of yields decreases with maturity; normality is rejected for all se-
ries (based on Jarque-Bera [JB] statistics); and all variables display signifi-
cant inertia, with a first-order autocorrelation coefficient typically higher
than 0.90. Inflation displays a somewhat lower inertia, that is, an autocor-
relation coefficient of 0.76.

Table 5.1 also presents the correlation structure of the data. Three data
features can be highlighted. First, the yields are extremely correlated across
the maturity spectrum. This points to the well-known fact that a limited
number of factors account for the comovement of the yields. Second, there
is a strong correlation between the term structure and the macroeconomic
variables, with significant positive correlations between inflation and the
term structure and significant negative correlations between the term
structure and the output gap. These correlation patterns are an indication
of common factors driving macroeconomic and yield curve dynamics. Fi-
nally, we observe a substantial and positive correlation between the surveys
of inflation expectations and both the macroeconomic variables (especially
inflation and the Federal funds rate) and the yield curve. Again, this sug-
gests that the factors affecting the yield curve and macroeconomic vari-
ables also drive movements in the surveys of inflation expectations.

5.4.2 Parameter Estimates

Tables 5.2–5.4 report the estimation results for the rational expectations
versions of the model. Our estimates for the macro model (table 5.2) are
broadly in line with the literature. We observe a mild domination of the 
forward looking terms for both the AS and IS curves (��,1 � 0.524 and 
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18. We thank Geert Bekaert, Seonghoon Cho, and Antonio Moreno for sharing the 
data set.
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�y � 0.509, respectively). The deviation from the purely forward-looking
model (��,1 � 1 and �y � 1) is explained by the relatively high values for the
inflation indexation parameter, ��, and the habit persistence, h, estimated
at 0.908 and 1, respectively. Both estimates for the inflation sensitivity to
the output gap, κ�, and the output gap sensitivity to the real interest rate,
�, are small, 0.00055 and –0.019, respectively. Although these values are
smaller than the ones typically used in calibration-based studies, they are
commonly found in empirical studies using generalized method of mo-
ments (GMM) or full information maximum likelihood (FIMI) methods.
Our estimates imply an active monetary policy rule. The ex ante real inter-
est rate reacts positively to both inflation and the output gap, �� � 0.674
and �y � 0.569. Significant interest rate smoothing is also observed in the
policy rule (�i–1 � 0.862). As often found in the literature, some of the esti-
mated parameters are not statistically significant. Similar results have been
reported, for instance, by Cho and Moreno (2006).

Table 5.2 Parameter estimates: Rational Expectations Macro and Rational
Expectations I

�t � ��,1Et�t � 1 � (1 – ��,1)�t – 1 � κ�yt � ��ε�,t

yt � �yEtyt � 1 � (1 – �y)yt – 1 � �(it – Et�t � 1 – r) � �yεy,t

it � (1 – �i – 1) [r � Et�t � 1 � ��(�t – �∗) � �yyt] � �i – 1it – 1 � �iεi,t

Rat. Exp. Macro Rat. Exp. I

�-eq. ��,1 0.524** (0.019) 0.527** (0.007)
κ�(�102) 0.055 (0.278) 0.582** (0.236)

y-eq. �y 0.509** (0.013) 0.580** (0.018)
� –0.019* (0.011) –0.012** (0.005)

i-eq. �i – 1 0.862** (0.036) 0.934** (0.004)
�� 0.674* (0.356) 0.100 (0.165)
�y 0.569 (0.504) 0.010 (0.172)
r 0.025** (0.010) 0.028** (0.002)
�∗ 0.032** (0.011) 0.044** (0.002)

SD �� 0.0063** (0.0004) 0.0069** (0.0004)
�y 0.0043** (0.0003) 0.0070** (0.0009)
�i 0.0133** (0.0004) 0.0134** (0.0005)

Struct �� 0.908** (0.069) 0.895** (0.025)
h 1.000 — 0.738** (0.055)
�(�10–2) 0.274 (0.170) 0.496** (0.201)

Notes: SD � standard deviation; Struct � structural parameters. Maximum likelihood esti-
mates with standard errors in parentheses. Dash indicates standard deviation was not com-
puted.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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Extending the standard macro model by (1) including yield curve and in-
flation survey data in the measurement equation (Rational Expectations I,
II, and III); (2) allowing for chairman-specific monetary policy (Rational
Expectations II and III); and (3) introducing time variation in the prices of
risk (Rational Expectations III) affects the parameter estimates signifi-
cantly. First, the estimated persistence decreases, as shown by the decrease
in the indexation parameter ��, which takes a value of 0.67 and 0.57 in the
Rational Expectations II and III models, respectively, and by the decrease
in the habit persistence, h, for the Rational Expectations I, II, and III mod-
els to 0.738, 0.721, and 0.750, respectively. As a result of the drop in the 
indexation or the habit persistence, the forward-looking components 

Table 5.3 Parameter estimates: Rational Expectations II

�t � ��,1Et�t � 1 � (1 – ��,1)�t – 1 � κ�yt � ��ε�,t

yt � �yEtyt � 1 � (1 – �y)yt – 1 � �(it – Et�t � 1 – r) � �yεy,t

it � (1 – �i – 1) [r � Et�t � 1 � ��(�t – �∗) � �yyt] � �i – 1it – 1 � �iεi,t

Rational Expectations II

�-eq. ��,1 0.598** (0.010)
κ�(�102) 0.627** (0.256)

y-eq. �y 0.589** (0.018)
� –0.020** (0.008)
r 0.029** (0.002)

Martins Burns Miller

i-eq. �i – 1 0.863** (0.033) 0.612** (0.032) 0.782** (0.515)
�� 0.745 (0.537) 0.244** (0.109) 0.374 (1.605)
�y 0.397 (0.425) 0.735** (0.181) 1.131 (2.044)
�* 0.018** (0.003) 0.038** (0.002) 0.055** (0.012)

Volcker (a) Volcker (b) Greenspan

i-eq. �i – 1 0.840** (0.009) 0.959** (0.022) 0.951** (0.011)
�� 0.541** (0.212) 2.301 (2.091) 1.676** (0.847)
�y 0.531** (0.222) –1.189** (0.505) 1.674** (0.717)
�* 0.082** (0.002) 0.052** (0.001) 0.032** (0.001)

SD �� 0.0071** (0.0004)
�y 0.0069** (0.0008)
�i 0.0194** (0.0017)

Struct �� 0.673** (0.029)
h 0.721** (0.052)
�(�10–2) 0.294** (0.115)

Note: See table 5.2 notes.
**Significant at the 5 percent level.



(��,1 and �y) in the AS and IS equation increase. The estimates of mone-
tary policy rule indicate for all versions of the model that (1) monetary pol-
icy is relatively inert, and (2) the Taylor principle is satisfied because the ex
ante real interest rate tends to increase with both the inflation gap and the
output gap. Nevertheless, the estimated inflation and output gap responses
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Table 5.4 Parameter estimates: Rational Expectations III

�t � ��,1Et�t � 1 � (1 – ��,1)�t – 1 � κ�yt � ��ε�,t

yt � �yEtyt � 1 � (1 – �y)yt – 1 � �(it – Et�t � 1 – r) � �yεy,t

it � (1 – �i – 1) [r � Et�t � 1 � ��(�t – �*) � �yyt] � �i – 1it – 1 � �iεi,t

Rational Expectations III

�-eq. ��,1 0.638** (0.017)
κ�(�102) 0.925* (0.549)

y-eq. �y 0.582** (0.013)
� –0.025** (0.012)
r 0.020** (0.006)

Martins Burns Miller

i-eq. �i – 1 0.845** (0.029) 0.482** (0.041) 0.654** (0.289)
�� 0.511 (0.681) 0.176 (0.170) 0.233 (1.391)
�y 0.363 (0.346) 0.516** (0.248) 0.846 (0.991)
�* 0.018** (0.005) 0.047** (0.002) 0.060** (0.006)

Volcker (a) Volcker (b) Greenspan

i-eq. �i – 1 0.779** (0.029) 0.943** (0.034) 0.928** (0.026)
�� 0.317 (0.308) 1.657 (1.759) 1.338 (0.949)
�y 0.395* (0.221) –0.239 (0.396) 1.092 (0.692)
�* 0.078** (0.003) 0.049** (0.002) 0.032** (0.001)

SD �� 0.0081** (0.0006)
�y 0.0053** (0.0004)
�i 0.0136** (0.0008)

Struct �� 0.567** (0.042)
h 0.750** (0.044)
�(�10–2) 0.233** (0.107)

Prices of risk Λ0,� –0.974 (0.612)
Λ0,y –0.271 (0.389)
Λ0,i 0.045 (0.136)
Λ1,�,� 0.067 (7.131)
Λ1,y,y –0.573 (14.905)
Λ1,i,i 3.010 (2.152)

Notes: See table 5.2 notes.
**Significant at the 5 percent level.
*Significant at the 10 percent level.



vary across the alternative versions of the model. Based on the results in
table 5.3 and 5.4, we find, as do Clarida, Galí, and Gertler (2000), a strong
increase in the responsiveness to the inflation gap during the Volcker and
Greenspan periods.

Tables 5.5 to 5.7 report the estimation results for the versions where
learning is introduced. The central parameters in the analysis, distinguish-
ing learning models from rational expectations models, are the standard
deviations of the perceived stochastic trends ζt

P, �ζ,�, and �ζ,r.
19 Our esti-

mates for these parameters are statistically significant, indicating a rejec-
tion of rational expectations models. This finding holds irrespective of the
version of the learning model and indicates the importance of the learning
specification in modeling the joint dynamics of the macroeconomic vari-
ables, the yield curve, and the survey expectations. One interpretation of
the parameters �ζ,� and �ζ,r is in terms of the perceived uncertainty with
respect to the endpoints of the macroeconomic state. The estimates of the
parameters �ζ,� and �ζ,r in the Learning II and III versions of the model in-
dicate substantial time variation in the uncertainty with respect to the in-
flation and real interest rate endpoints. Interestingly, we find uncertainty
for both inflation and real interest rate endpoint to be significantly lower
during the Greenspan term than under previous chairmen. The introduc-
tion of learning dynamics affects significantly the estimates of the deep
parameters relative to those obtained for the rational expectations coun-
terparts. First, across learning models, we find that the forward-looking
component in the AS equation (��,1) increases substantially and signifi-
cantly relative to the rational expectations versions of the model. This in-
crease is explained by the decrease in the inflation indexation parameter.20

The interest rate smoothing parameter drops significantly to values on
average around 0.8 in the learning cases, which are more in line with Rude-
busch (2002). A second effect of learning is the increase in the inflation sen-
sitivity to the output gap. We estimate κ� levels of 0.05, 0.012, and 0.009 in
the Learning I, II, and III models, respectively. Finally, note that one prob-
lematic feature of the estimation across learning specifications is the iden-
tification of the inflation targets, �j

∗, and the real interest rate r, which pres-
ent large standard errors. This drop in significance can be attributed to the
fact that the stochastic endpoints take over the role of these parameters in
the expectation formation process.

Figures 5.2 to 5.4 plot the macro variables and their endpoints for each
model. Endpoints, representing long-run (subjective) expectations, are de-

Learning, Macroeconomic Dynamics, and Interest Rates 215

19. Note that the parameter �ζ,y was fixed to zero for consistency with the assumption of
long-run neutrality of output (see section 5.2).

20. The decrease in the inflation indexation as a consequence of the introduction of learn-
ing is also found in other studies. For instance, Milani (2007), introducing constant gain
learning in a New Keynesian macroeconomic model, finds an even stronger effect, with the
inflation indexation parameter close to zero after the introduction of learning.



terministic in the rational expectations models and stochastic in the learn-
ing cases. As figure 5.2 shows, in the presence of learning long-run inflation
expectations are time varying and therefore different from the constant
central bank’s inflation target (around 3 to 4 percent per year). These end-
points are also remarkably similar across model specifications. Allowing
for chairman-specific policy rules (models II and III) leads to significantly
different inflation targets across rational expectations and learning models.
In the Rational Expectations models II and III, the estimated inflation tar-
gets show a gradual increase over the seventies until the end of the Volcker
experiment, subsequently decreasing over time (around 5 percent in the
second Volcker period and 3.2 percent in the Greenspan term). This grad-
ual decline in inflation targets seems unrealistic given the strong deflationary

216 Hans Dewachter and Marco Lyrio

Table 5.5 Parameter estimates: Learning Macro and Learning I

�t � ��,1Et�t � 1 � (1 – ��,1)�t – 1 � κ�yt � ��ε�,t

yt � �yEtyt � 1 � (1 – �y)yt – 1 � �(it – Et�t � 1 – r) � �yεy,t

it � (1 – �i – 1) [r � Et�t � 1 � ��(�t – �*) � �yyt] � �i – 1it – 1 � �iεi,t

Learning Macro Learning I

�-eq. ��,1 0.672** (0.056) 0.759** (0.023)
κ�(�102) 0.431 (0.504) 4.912 (3.184)

y-eq. �y 0.504** (0.028) 0.541** (0.007)
� –0.008 (0.023) –0.038** (0.016)

i-eq. �i – 1 0.833** (0.039) 0.671** (0.009)
�� 0.401 (0.300) 0.149 (0.097)
�y 0.504 (0.416) 0.363** (0.046)
r 0.028 (0.265) 0.030 (0.053)
�* 0.031 (0.669) 0.036 (0.360)

SD �� 0.0062** (0.0005) 0.0087** (0.0006)
�y 0.0043** (0.0003) 0.0050** (0.0003)
�i 0.0132** (0.0004) 0.0126** (0.0004)

Struct �� 0.489** (0.123) 0.318** (0.039)
h 1.000 — 0.913** (0.036)
�(�10–2) 0.618 (1.778) 0.142** (0.058)

Learning �ζ,� 0.044** (0.013) 0.015** (0.001)
�ζ,y 0.000 — 0.000 —
�ζ,r 0.043 (0.141) 0.023** (0.001)

Initial points ξ0,� 0.018 (0.022) 0.012** (0.005)
ξ0,y 0.000 — 0.000 —
ξ0,i 0.014 (0.022) 0.042** (0.004)

Notes: See table 5.2 notes.
**Significant at the 5 percent level.



Table 5.6 Parameter estimates: Learning II

�t � ��,1Et�t � 1 � (1 – ��,1)�t – 1 � κ�yt � ��ε�,t

yt � �yEtyt � 1 � (1 – �y)yt – 1 � �(it – Et�t � 1 – r) � �yεy,t

it � (1 – �i – 1) [r � Et�t � 1 � ��(�t – �*) � �yyt] � �i – 1it – 1 � �iεi,t

Learning II

�-eq. ��,1 0.728** (0.027)
κ�(�102) 1.182** (0.323)

y-eq. �y 0.528** (0.008)
� –0.022** (0.008)
r 0.026 (0.100)

Martins Burns Miller

i-eq. �t – 1 0.804** (0.046) 0.268** (0.047) 0.637** (0.388)
�� 0.406 (1.150) 0.161 (0.111) 0.244 (1.014)
�y 0.012 (0.293) 0.513** (0.060) 0.310 (0.315)
�* 0.028 (0.265) 0.087 (0.621) 0.053 (0.478)

Learning �ζ,� 0.018** (0.003) 0.014** (0.002) 0.019** (0.006)
�ζ,y 0.000 — 0.000 — 0.000 —
�ζ,r 0.007 (0.008) 0.016** (0.002) 0.019 (0.040)

Volcker (a) Volcker (b) Greenspan

i-eq. �i – 1 0.185** (0.049) 0.795** (0.022) 0.850** (0.018)
�� 0.564** (0.095) 0.353 (0.290) 0.405 (0.630)
�y 0.109 (0.079) 0.369** (0.122) 0.224 (0.210)
�* 0.003 (0.177) 0.010 (0.285) 0.025 (0.266)

Learning �ζ,� 0.004 (0.004) 0.018** (0.002) 0.008** (0.002)
�ζ,y 0.000 — 0.000 — 0.000 —
�ζ,r 0.031** (0.002) 0.049** (0.003) 0.016** (0.002)

SD �� 0.0088** (0.0006)
�y 0.0048** (0.0004)
�i 0.0105** (0.0006)

Struct �� 0.374** (0.051)
h 0.935** (0.035)
�(�10–2) 0.235** (0.079)

Initial points ξ0,� 0.009 (0.008)
ξ0,y 0.000 —
ξ0,i 0.033** (0.004)

Notes: See table 5.2 notes.
**Significant at the 5 percent level.



Table 5.7 Parameter estimates: Learning III

Learning III

�-eq. ��,1 0.702** (0.023)
κ�(�102) 0.883** (0.417)

y-eq. �y 0.523** (0.016)
� –0.023** (0.010)
r 0.016 (0.094)

Martins Burns Miller

i-eq. �i – 1 0.735** (0.088) 0.198** (0.077) 0.352 (0.932)
�� 0.394 (0.628) 0.124 (0.129) 0.925 (0.765)
�y 0.032 (0.239) 0.350** (0.068) 0.223 (0.858)
�* 0.015 (0.258) 0.041 (0.753) 0.067 (0.106)

Learning �ζ,� 0.018** (0.004) 0.013** (0.002) 0.019** (0.006)
�ζ,y 0.000 — 0.000 — 0.000 —
�ζ,r 0.005 (0.009) 0.013** (0.003) 0.013 (0.074)

Volcker (a) Volcker (b) Greenspan

i-eq. �i – 1 0.284** (0.047) 0.796** (0.033) 0.846** (0.024)
�� 0.659** (0.223) 0.275 (0.366) 0.558 (0.601)
�y 0.042 (0.174) 0.198 (0.145) 0.040 (0.176)
�* 0.002 (0.148) 0.009 (0.376) 0.016 (0.189)

Learning �ζ,� 0.005 (0.005) 0.018** (0.002) 0.009** (0.002)
�ζ,y 0.000 — 0.000 — 0.000 —
�ζ,r 0.027** (0.003) 0.054** (0.006) 0.008** (0.002)

SD �� 0.0087** (0.0007)
�y 0.0045** (0.0004)
�i 0.0117** (0.0010)

Struct �� 0.424** (0.047)
h 0.956** (0.073)
�(�10–2) 0.223** (0.0947)

Initial points ξ0,� 0.009 (0.012)
ξ0,y 0.000 —
ξ0,i 0.033** (0.007)

Prices of risk Λ0,� 0.156 (0.256)

Λ0,y 0.132 (0.227)
Λ0,i –0.235** (0.104)
Λ1,�,� 0.145 (3.750)
Λ1,y,y –2.667 (5.194)
Λ1,i,i 2.197** (0.972)
Λ1,ξ�,ξ�

–0.937 (4.538)
Λ1,ξy,ξy

0.000 —
Λ1,ξi,ξi

0.029 (1.068)

Notes: See table 5.2 notes.
**Significant at the 5 percent level.
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policy conducted by Volcker.21 Under learning, the estimated chairman-
specific inflation targets seem more in line with the historical record of 
U.S. monetary policy. Estimates of time-varying inflation targets, in line
with our results, can be found in Kozicki and Tinsley (2005) and Milani
(2007).

Figure 5.3 shows the differences between the long-run real interest rate
expectations under learning and the values implied by rational expecta-
tions models. This difference is less pronounced than in the inflation case
and is also similar across learning models. Figure 5.4 presents equivalent
graphs for the long-run expectations regarding the short-run policy rate.
We observe again sizable differences between the implied rational expecta-
tions endpoints and the subjective long-run expectations under learning.
The variability in the long-run expectation for the nominal interest rate is
dominated by variation in the inflation endpoint.

5.4.3 Comparing Learning and Rational Expectations Models

Bayesian Information Criterion (BIC) and Likelihood Decomposition

We use the Bayesian Information Criterion (BIC) for an overall evalua-
tion of the performance across models. Although this criterion does not
constitute a formal statistical test, it takes into account (1) the use of differ-
ent procedures in the estimation of the models (i.e., Macro and general ver-
sions) and (2) the fact that, although rational expectations and learning
models are nested, standard likelihood ratio tests are not appropriate as the
parameter restrictions of the rational expectations models are on the
boundary of the admissible parameter space, that is, �ζ,� � 0 and �ζ,r � 0.
Next to the BIC, we also compare the performance of the different models
through a likelihood decomposition, showing the contribution of the
macro variables, the yield curve, and the surveys of inflation expectations.

The results are presented in table 5.8. According to the BIC, learning
models outperform their rational expectations counterparts. More
strongly, Learning I models outperform any of the estimated rational ex-
pectations models. According to this criterion, Learning III models pres-
ent the best specification, incorporating learning dynamics, heterogeneity
in monetary policy rules and priors, and time variation in the prices of
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21. One explanation for the observed time series of inflation targets is that inflation targets
adapt so as to fit the surveys of inflation expectations. Because under rational expectations
long-run expectations coincide with the inflation targets, inflation targets need to track the
survey of inflation expectations. Some evidence in favor of this interpretation can be found in
table 5.8. Comparing the macro part of the likelihood, one observes a drop from the Rational
Expectations I to the Rational Expectations II model, indicating that allowing for chairman-
specific inflation targets worsened the macroeconomic fit. This drop in likelihood is more than
compensated by the increase in likelihood in the term structure of interest rates and survey
parts of the likelihood.
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risk.22 The likelihood decomposition shows that the superior performance
of learning models is accounted for in each of its components. There seems
to be, however, a trade off in fitting those components. From a macro per-
spective, the Learning Macro model presents the best performance (12.08
as average log-likelihood). From a yield curve and inflation expectations
perspective, the Learning III model provides the best fit. The inclusion of
this information in the measurement equation, therefore, slightly biases
the model toward fitting yield curve and survey data at the expense of the
macroeconomic part.

Prediction Errors

Table 5.9 presents summary statistics for the prediction errors of all vari-
ables in the alternative model specifications. In all cases, we find evidence
of model misspecification due to the significant means and autocorrelation
coefficients of the prediction errors. Therefore, none of the models is ac-
cepted as a completely satisfactory representation of the joint dynamics of
the macroeconomy, the yield curve, and surveys of inflation expectations.23

There is, however, a clear distinction between learning and rational expec-
tations models. In most cases, learning models outperform their rational
expectations counterpart. Introducing learning typically leads to an in-
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22. The findings of the BIC are confirmed by approximative likelihood ratio tests. We rees-
timated the learning models fixing the learning parameters to small values, �ζ,� � �ζ,r �
0.0001, and ζ0|0 � [�∗, 0, r]. Likelihood ratio (LR) tests performed using the latter models as
the null hypothesis reject the proxy models at 1 percent significance levels. Also, note that the
Rational Expectations I, II, and III and Learning I, II, and III are nested. Likelihood ratio
tests indicate that both the Learning I and II and the Rational Expectations I and II models
are rejected against the alternatives, Rational Expectations III and Learning III.

23. The rejection of the overall model is common in the macro-finance literature (e.g.,
Bekaert, Cho, and Moreno 2006 and Cho and Moreno 2006). In the pure finance literature,
it has also been shown to be difficult to find affine term structure representations that are not
rejected by the data.

Table 5.8 Likelihood decomposition

Components

Yield Inflation
Macroeconomy curve expectation Total BIC

Rational Expectations Macro 12.07 20.98 5.61 38.66 –76.70
Rational Expectations I 11.75 23.23 5.55 40.53 –80.42
Rational Expectations II 11.57 25.07 6.21 42.85 –84.44
Rational Expectations III 11.71 25.25 6.22 43.18 –85.00
Learning Macro 12.08 22.08 6.07 40.23 –79.72
Learning I 11.81 26.05 6.50 44.36 –87.97
Learning II 12.03 27.74 6.74 46.51 –91.32
Learning III 12.02 27.93 6.78 46.73 –91.50



Table 5.9 Summary statistics of prediction errors of macroeconomic variables, yield curve, and
survey of inflation expectations

� y i y1y y3y y5y y10y S1y S10y

A. Rational Expectations Macro

R2 0.77 0.91 0.83 0.71 0.49 0.35 0.21 0.75 0.36
Mean (%) 0.07 –0.04 0.05 0.02 0.66** 1.08** 1.64** 0.31** 0.51**
SD (%) 1.20 0.78 1.36 1.48 1.83 2.00 2.19 0.92 1.02
Auto –0.25** 0.21** –0.10 0.38** 0.75** 0.86** 0.93** 0.58** 0.97**

B. Rational Expectations I

R2 0.76 0.87 0.82 0.76 0.74 0.68 0.50 0.65 –0.08
Mean (%) –0.04 –0.35** –0.03 –0.25** –0.08 0.00 0.14 0.03 –0.10
SD (%) 1.21 0.94 1.38 1.34 1.32 1.41 1.74 1.08 1.22
Auto –0.20** 0.53** –0.12 0.19** 0.51** 0.72** 0.89** 0.74** 0.98**

C. Rational Expectations II

R2 0.74 0.84 0.83 0.82 0.84 0.83 0.79 0.75 0.72
Mean (%) 0.05 –0.36** –0.03 –0.25** –0.03 0.07 0.25 0.01 –0.08
SD (%) 1.27 1.04 1.34 1.16 1.03 1.03 1.12 0.91 0.62
Auto 0.09 0.63** –0.12 0.10 0.40** 0.59** 0.75** 0.80** 0.79**

D. Rational Expectations III

R2 0.74 0.85 0.83 0.84 0.84 0.82 0.78 0.74 0.76
Mean (%) 0.06 –0.27** 0.13 –0.15 0.03 0.10 0.23** –0.02 0.01
SD (%) 1.28 1.02 1.33 1.11 1.03 1.04 1.15 0.93 0.57
Auto 0.19 0.61** –0.06 0.10 0.42** 0.59** 0.74** 0.85** 0.81**

E. Learning Macro

R2 0.79 0.90 0.83 0.77 0.75 0.74 0.79 0.83 0.66
Mean (%) 0.00 –0.07 –0.01 –0.03 0.63** 1.20** 2.83** –0.02 0.29**
SD (%) 1.15 0.82 1.34 1.30 1.30 1.26 1.14 0.74 0.72
Auto –0.08 0.26** –0.10 0.22** 0.48** 0.57** 0.58** 0.72** 0.88**

F. Learning I

R2 0.70 0.89 0.83 0.84 0.86 0.88 0.88 0.88 0.66
Mean (%) 0.02 –0.22** –0.03 –0.24** –0.02 0.14** 0.52** –0.11** 0.10
SD (%) 1.36 0.88 1.34 1.09 0.96 0.87 0.84 0.64 0.68
Auto 0.42** 0.43** 0.07 0.24** 0.46** 0.52** 0.59** 0.85** 0.97**

G. Learning II

R2 0.72 0.89 0.87 0.88 0.90 0.91 0.92 0.90 0.81
Mean (%) 0.03 –0.19 0.04 –0.18** –0.14** –0.09 0.19** –0.09 0.04
SD (%) 1.32 0.84 1.18 0.96 0.82 0.75 0.70 0.59 0.51
Auto 0.36** 0.34** 0.11 0.21** 0.32** 0.38** 0.41** 0.83** 0.94**

H. Learning III

R2 0.72 0.90 0.86 0.87 0.90 0.91 0.91 0.89 0.83
Mean (%) 0.07 –0.16** 0.17 0.00 0.01 –0.03 0.05 –0.04 0.03
SD (%) 1.32 0.83 1.23 0.99 0.83 0.76 0.72 0.60 0.48
Auto 0.34** 0.31* 0.12 0.21** 0.30** 0.35** 0.38** 0.84** 0.94**

Notes: Mean � the sample average in percentage per year; SD � the standard deviation in percentage
per year; and Auto � the first order quarterly autocorrelation.
**Significant at the 5 percent level.
*Significant at the 10 percent level.



crease in the in-sample predictive power of all variables, except inflation,
and to a decrease in the standard deviation and the autocorrelation of the
prediction errors. The inclusion of chairman-specific policies seems to
have a considerable positive effect in the fit of the yield curve and surveys
of inflation expectations. For learning models, although the inclusion of
time-varying prices of risk decreases the mean of the forecast errors, over-
all, it does not seem to improve the results in a significant way.

5.4.4 Learning Dynamics, Inflation Expectations, and Bond Markets

Do macroeconomic models including learning fit the term structure of
interest rates and inflation expectations? To answer this question, we ana-
lyze the fitting errors of the respective models. As shown in table 5.10,
learning models with chairman-specific policy rules (Learning II and III)
explain 95 percent of the variation in the yield curve and more than 85 per-
cent of the variation in the surveys of inflation expectations. Furthermore,
the mean fitting errors for the yield curve are low, ranging from 6 to 20 ba-
sis points for the Learning II model, and from 2 to 8 basis points for the
Learning III model. These results are comparable to studies using latent
factor models (e.g., de Jong 2000). This can also be seen in figures 5.5 and
5.6, which show the fit for the one- and the ten-year yields across models.
The difference in performance across models is especially pronounced for
the ten-year yield. The performance across models regarding the fit of sur-
vey of ten-year average inflation expectations can be seen in figure 5.7. In
general terms, Learning II and III models fit both the yield curve and sur-
veys of inflation expectations relatively well.

To identify the contribution of learning in the mentioned performance,
we compare the Rational Expectations II and Learning II models (analo-
gous results are obtained for Rational Expectations III and Learning III
models). We observe an increase in fit due to learning between 4 percent
(one-year yield) and 14 percent (ten-year yield). Furthermore, we observe
a significant reduction in the remaining autocorrelation in the fitting er-
rors. To identify the contribution of chairman-specific monetary policy
rules and priors, we compare the Learning I and II models. Learning II
models show an increase in the explained variation in the yield curve be-
tween 2 and 4 percent and in the survey of inflation expectations between
1 and 14 percent. We observe also a general decrease in the remaining au-
tocorrelation in the fitting errors.

Why do learning models outperform their rational expectations counter-
parts? To answer this question, we analyze the affine term structure repre-
sentations of rational expectations and learning models. More specifically,
we look at the affine representations for the term structure of interest rates
and inflation expectations in a transformed state space, decomposing the
observed macroeconomic variables in perceived permanent and temporary
components. This decomposition is achieved by the rotation matrix T:
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Table 5.10 Summary statistics of fitting errors of yield curve and survey of 
inflation expectations

y1y y3y y5y y10y S1y S10y

A. Rational Expectations Macro

R2 0.84 0.54 0.38 0.23 0.70 0.38
Mean (%) –0.04 0.61** 1.04** 1.62** 0.26** 0.52**
SD (%) 1.10 1.75 1.96 2.16 1.00 1.01
Auto 0.64** 0.85** 0.91** 0.95** 0.57** 0.97**

B. Rational Expectations I

R2 0.87 0.78 0.70 0.52 0.65 –0.05
Mean (%) –0.22 –0.05 0.02 0.16 0.06 –0.08
SD (%) 0.97 1.22 1.37 1.70 1.07 1.20
Auto 0.51** 0.72** 0.82** 0.94** 0.66** 0.97**

C. Rational Expectations II

R2 0.91 0.88 0.85 0.81 0.82 0.73
Mean (%) –0.23** 0.01 0.11 0.27** 0.02 –0.08
SD (%) 0.83 0.90 0.95 1.07 0.78 0.61
Auto 0.43** 0.62** 0.72** 0.82** 0.75** 0.82**

D. Rational Expectations III

R2 0.92 0.89 0.86 0.81 0.79 0.77
Mean (%) –0.24** 0.00 0.10 0.23** 0.00 0.02
SD (%) 0.78 0.86 0.92 1.07 0.83 0.56
Auto 0.40** 0.60** 0.70** 0.80** 0.83** 0.83**

E. Learning Macro

R2 0.88 0.78 0.75 0.80 0.81 0.71
Mean (%) –0.02 0.66** 1.22** 2.85** 0.01 0.33**
SD (%) 0.96 1.21 1.24 1.12 0.80 0.69
Auto 0.53** 0.70** 0.74** 0.79** 0.70** 0.85**

F. Learning I

R2 0.93 0.91 0.91 0.91 0.91 0.71
Mean (%) –0.20** 0.02 0.17** 0.53** –0.07 0.14**
SD (%) 0.73 0.78 0.74 0.74 0.54 0.64
Auto 0.39** 0.56** 0.60** 0.71** 0.77** 0.96**

G. Learning II

R2 0.95 0.95 0.95 0.95 0.92 0.85
Mean (%) –0.16** –0.10** –0.06 0.20** –0.05 0.09
SD (%) 0.59 0.59 0.57 0.55 0.51 0.46
Auto 0.23** 0.33** 0.39** 0.52** 0.71** 0.92**

H. Learning III

R2 0.95 0.95 0.95 0.95 0.92 0.86
Mean (%) –0.08 –0.02 –0.05 0.03 0.00 0.07*
SD (%) 0.60 0.58 0.56 0.54 0.51 0.44
Auto 0.22** 0.31** 0.35** 0.49** 0.69** 0.92**

Note: See table 5.9 note.
**Significant at the 5 percent level.
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(39) T � � �,

which generates the decomposition:

(40) X̃T
t|t � � �� T � �.

The affine representation of the term structure of interest rates and infla-
tion expectations can be restated in this state space as:

(41) Yt � Ay � ByX̃t|t � υy, t � Ay �ByT�1TX̃t|t � υy,t

� Ay � By
T X̃T

t|t � υy, t

and

(42) St � As � BsX̃t|t � υs,t � As � BsT�1TX̃t|t � υs,t

� As � Bs
T X̃T

t|t � υs, t.

Figure 5.8 shows the transformed yield curve loadings for each of the
models.24 We identify one slope factor driving the yield spread, represented
by the perceived transitory interest rate component, and two curvature fac-
tors, that is, the perceived output gap and the perceived inflation gap. The
curvature factors affect primarily but marginally the intermediate maturity
yields. We also obtain a level factor, exerting its influence equally over the
entire yield curve. This factor is driven only by changes in the perceived
stochastic endpoint for the policy rate. While both rational expectations
and learning models share a level factor in the transformed state space, the
implications of this factor differ across models. Rational expectations
models imply a deterministic endpoint for the policy rate, that is, ξi,t � r �
�∗.25 The level factor is, therefore, constant and cannot explain the time
variation in long-maturity yields. Learning models generate endogenous
stochastic endpoints for the policy rate, which seem to be sufficient
ly volatile to account for the time variation in the long end of the yield
curve.

Xt

ξP
t|t

Xt � ξP
t|t

ξP
t|t

�I3

I3

I3

0

230 Hans Dewachter and Marco Lyrio

24. Note that in the versions II and III of both rational expectations and learning models,
yield curve and inflation expectations loadings also depend on the policy rule parameters.
Given that we identify six policy regimes, we have six sets of loadings. For reasons of brevity,
we only present the loadings implied by the Greenspan policy rules.

25. Note that to the extent that one allows for time-varying inflation targets within the ra-
tional expectations framework, one can generate exogenously volatility in the endpoints. This
is the approach followed in the standard macro-finance literature. The Rational Expectations
II and III panels in figures 5.2 and 5.4 are examples of this approach. The main advantage of
learning is that there is no need to refer to exogenous shocks (i.e., in the inflation target) to ac-
count for the time variation in the long end of the yield curve. The stochastic endpoints are
generated endogenously in the model.
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5.5 Conclusions

In this chapter we built and estimated a macroeconomic model including
learning. Learning was introduced in the model by assuming that agents do
not believe in time-invariant inflation targets nor in constant equilibrium real
rates. Given these priors, the optimal learning rule was derived in terms of a
Kalman gain updating rule. We estimated the model including in the mea-
surement equation, next to the standard macroeconomic variables, bond
yields, and surveys of inflation expectations. The structural and learning pa-
rameters were estimated jointly. The findings of the chapter can be summa-
rized as follows. First, including learning improves the fit of the model inde-
pendently of the type of information included in the measurement equation.
Although learning models improve on the rational expectations models,
they are not fully satisfactory. Autocorrelation in the errors was found to be
significant. Finally, we found that introducing learning in a standard New
Keynesian model generated sufficiently volatile stochastic endpoints to fit
the variation in long-maturity yields and in surveys of inflation expecta-
tions. The learning model, therefore, complements the current macro-
finance literature linking macroeconomic and term structure dynamics.

Appendix

ALM Dynamics

In this appendix, we derive a closed form solution for the actual law of
motion (ALM). The derivation follows the standard approach in the learn-
ing literature by substituting subjective expectations, that is, the PLM, into
the structural equations. The structural equations are described in equa-
tion (7), which is repeated here as:

(43) AXt � C � BEtXt�1 � DXt�1 � Sεt,

while the PLM is described by means of a vector error correction model
(VECM) in the inferred stochastic endpoints:

(44) Xt � (I � �P)ξP
t|t � �PXt�1 � �Pεt

and a learning rule based on the Kalman filter updating rule:

(45) ξP
t|t � ξP

t�1|t�1 � K(Xt � EP
t�1Xt).

Deriving the Actual Law of Motion

A first step in obtaining the actual law of motion (ALM) consists of de-
riving the expectations implied by the PLM, equations (44) and (45). Un-
der the PLM, the one-step ahead prediction, EP

t Xt � 1, is given by:
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(46) Et
PXt�1 � (I � �P)Et

PξP
t�1|t�1 � �PXt.

Under the PLM dynamics, the stochastic endpoints ξP
t|t are random walks,

that is, EP
t–1(Xt – EP

t–1Xt) � 0, such that Et
PξP

t�1|t�1 � ξP
t|t. The one-step ahead

expectations are given by:

(47) Et
PXt � 1 � (I � �P)ξP

t|t � �PXt.

Substituting the learning rule, equation (45), for ξP
t|t, we obtain a descrip-

tion for the expectations as:

(48) Et
PXt�1 � (I � �P)[ξP

t�1|t�1 � K(Xt � EP
t�1Xt)] � �PXt

or equivalently, by lagging equation (47) one period giving a closed form
expression for EP

t–1Xt � (I – �P)ξP
t–1|t–1 � �PXt–1:

(49) Et
PXt�1 � (I � �P){ξP

t�1|t�1 � K[Xt � (I � �P)ξP
t�1|t�1 � �PXt�1]} 

� �PXt.

This expression can also be written as:

(50) Et
PXt�1 � [I � (I � �P)K](I � �P)ξP

t�1|t�1

� [�P � (I � �P)K ]Xt � (I � �P)K�PXt�1.

Denoting the matrix (I – �P)K by K�, we obtain the final expression for the
one-step ahead expectation as:

(51) Et
PXt�1 � (I � K�)(I � �P)ξP

t�1|t�1 � (�P � K�)Xt � K��PXt�1.

The second step in deriving the ALM dynamics consists of inserting the
subjective expectations, equation (51), into the structural equations, that
is, equation (43):

(52) AXt � C � B[(I � K�)(I � �P)ξP
t�1|t�1 � (�P � K�)Xt � K��PXt�1] 

� DXt�1 � Sεt.

Solving for Xt, we obtain:

(53) Xt � [A � B(�P � K�)]–1C � [A � B(�P � K�)]–1

�B(I � K�)(I � �P)ξP
t�1|t�1[A � B(�P � K�)]–1(D � BK��P)Xt–1

� [A � B(�P � K�)]–1Sεt.

Note that if the rational expectations solution is unique, and if �P � �re,
the expression [A � B(�P � K�)]–1(D � BK��P) equals �P, which allows
us to rewrite the preceding dynamics as:

(54) Xt � [A � B(�P � K�)]–1C � [A � B(�P � K�)]–1B(I � K�)

� (I � �P)ξP
t�1|t�1�

PXt–1 � [A � B(�P � K�)]–1Sεt.
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Equation (54) describes the actual law of motion for the observable macro-
economic variables as a function of the previous state, Xt–1, the inferred sto-
chastic endpoints, ξP

t�1|t�1, and the structural shocks, εt. This description is
only a partial description of the ALM because the dynamics of the sto-
chastic endpoints are not taken into account. In order to obtain a complete
characterization of the ALM, we add the learning rule, that is, equation
(45). The joint dynamics of the observable macroeconomic variables, Xt,
and the inferred stochastic endpoints, ξP

t|t is given by:

� � � �� � �
� � � � �
� � �εt,

where the dynamics for ξP
t|t are given by equation (45). Finally, premultiply-

ing by

(55) � �–1

� � �
yields a complete description of the ALM:

� �� � �

� � � � �
� � �εt.

This ALM is represented in extended state space, X̃t|t � [X�t, ξt|t
P�]� by

(56) X̃t|t � C̃A � �̃A X̃t–1|t–1 � �̃Aεt,

with

[A – B(�P � K�)]–1S

K [A – B(�P � K�)]–1S

Xt–1

ξP
t–1|t–1

[A – B(�P � K�)]–1B(I – K�)(I – �P)

I – K{I – [A – B(�P � K�)]–1B(I – K�)}(I – �P)

�P

0

[A – B(�P � K�)]–1C

K [A – B(�P � K�)]–1C

Xt

ξP
t|t

0

I

I

K

0

I

I

–K

[A – B(�P � K�)]–1S

0

Xt–1

ξP
t–1|t–1

[A – B(�P � K�)]–1B(I – K�)(I – �P)

[I – K(I – �P)]

�P

–K�P

[A – B(�P � K�)]–1C

0

Xt

ξP
t|t

0

I

I

–K
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(57) C̃A � � �
�̃A � � �
�̃A � � �.

Properties of the Actual Law of Motion

Based on the final representation of the ALM as stated in equation (56),
some properties of the ALM can be described in more detail. A first prop-
erty is that the unconditional mean of the ALM coincides with the uncon-
ditional mean of the rational expectations model. Denoting the expecta-
tions operators under rational expectations and under the ALM by,
respectively, Ere and EA, the equivalence between unconditional expecta-
tions can be formalized as:

(58) EAXt � EreXt � (I – �re)–1Cre,

EAξP
t|t � EreXt � (I – �re)–1Cre.

We show this property by showing that Xt � (I – �re)–1C re � ξt|t is a steady
state under the ALM. In the derivation we make extensive use of the prop-
erties of the rational expectations solution. More specifically, the uncondi-
tional mean for Xt based on the rational expectations model is given by:

(59) Ere(Xt) � (I – �re)–1Cre,

where the values for �re and Cre satisfy the rational expectations conditions:

(60) Cre � (A – B �re)–1C � (A – B �re)–1BCre

�re � (A – B �re)–1 D

Σre � (A – B �re)–1S.

We now show that the unconditional mean of Xt under the ALM, denoted
by Et

AXt coincides with the unconditional mean of the rational expecta-
tions model:

(61) Et
AXt � EreXt � (I – �re)–1Cre.

In order to show this equivalence, we show that the point Xt � (I – �re)–1Cre

and ξt|t � (I – �re)–1Cre are a steady state for the ALM. Substituting this
particular point in the ALM, we obtain that this point is a steady state if it
solves:

[A – B (�P � K�)]–1S

K[A – B(�P � K�)]–1S

[A – B(�P � K�)]–1B(I – K�)(I – �P)

I – K{I – [A – B(�P � K�)]–1B(I – K�)}(I – �P)

�P

0

[A – B(�P � K�)]–C

K[A – B(�P � K�)]–1C
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(I � �re)�1Cre � [A � B(�P � K�)]�1C ��P(I � �re)�1Cre

� [A � B(�P � K�)]�1B(I � K�)(I � �P)(I � �re)�1Cre.

Noting that �re � �P we can rewrite the equation by subtracting from both
sides �P(I – �re)–1C re, resulting in the equality:

(I � �P)(I � �re)�1Cre � [A � B(�P � K�)]�1C

� [A � B(�P � K�)]�1B(I � K�)(I � �P)(I � �re)�1Cre.

Premultiplying by [A – B(�P � K�)]–1,

[A � B(�P � K�)]Cre � C � B(I � K�)Cre.

Finally, this condition holds whenever a rational expectations equilibrium
exists, that is, adding BK�Cre to both sides, the preceding condition reduces
to the rational expectations condition for C re:

(A � B�P)Cre � C � BCre.

The preceding derivation thus implies that if a rational expectations equi-
librium exists, then the unconditional expectations of the rational expec-
tations equilibrium coincides with the steady state of the ALM. If we as-
sume, moreover, that all of the eigenvalues of �̃A are strictly smaller than 1
in absolute value, the steady state of the ALM is attracting and defines the
unconditional mean of the observable variables Xt. The second equality,
that is, EAξP

t|t � (I – �re)–1C re, can be shown analogously.
A second property is the unconditional normality of the extended state

vector X̃t|t under the ALM. Assuming a standard normal distribution for
the structural shocks, εt, it is well known that the linearity of the state space
dynamics and the assumed stability of the ALM (all eigenvalues of �̃A are
assumed to be strictly smaller than 1) implies that the unconditional dis-
tribution for X̃t|t is:

X̃t|t ~ N(EAX̃t|t, �X̃),

with

EAX̃t|t � ι2�1 ⊗ (I � �re)�1Cre

vec(�X̃) � (I � �̃A ⊗ �̃A)�1vec(Σ̃AΣ̃A�).
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Comment Jordi Galí

The present chapter by Dewachter and Lyrio is part of a small but growing
literature that seeks to understand the yield curve and its evolution over
time by combining two different modeling approaches: the arbitrage-free
relations familiar from the finance literature and the dynamic general equi-
librium approach of modern macroeconomic theory. Dewachter and
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Lyrio’s specific objective (and that of other recent papers cited by the au-
thors) is to reconcile the observed behavior of the term structure with a
fully articulated model of inflation, monetary policy, and economic activ-
ity. As discussed by Dewachter and Lyrio, an important requirement in or-
der to achieve that objective is the introduction of a “level factor,” that is,
variations in long-term expectations of short-term rates, that can account
for the high volatility of the long-term yield. The main novelty of the pres-
ent Dewachter and Lyrio chapter lies in the endogenous modelling of that
level factor, whose variations result from the evolving perceptions by
private agents on the endpoint short-term rate (or, more precisely, its two
components: the real rate and inflation), brought about by the assumed
learning dynamics.

A Simple Model of the Term Structure

In order to illustrate the basic point of the Dewachter and Lyrio chapter,
consider the following model of the term structure, generally referred to as
the expectations hypothesis (EH) model

(1) it
(n) � ∑

n�1

k�0

Et{it�k},

where it
(n) is the yield on an n-period bond, and it denotes the short-term

nominal rate on a (nominally) riskless one-period bond held between pe-
riod t and t � 1. Let me assume the following exogenous stationary process
for the short rate:

(2) it � i∗ � �(it�1 � i∗) � εt,

where i∗ is the unconditional mean of the short term rate, and � ∈ (0, 1).
Then, under rational expectations we have

(3) it
(n) � (1 � �n)i∗ � �nit,

where �n 	 (1/n)(1 – �n)/(1 – �).

An Empirical Puzzle

As equation (3) makes clear, the EH model implies a very tight relation
between short-term and long-term rates, one which is clearly violated in
U.S. data. In particular, the EH model implies that long-term rates should
be much less volatile than they actually are. To see this, note that applying
ordinary least squares (OLS) to equation (2) using quarterly data on the
three-month Treasury Bill (TB) rate over the sample period 1954:Q1 to
2005:Q4 yields an estimate �̂ � 0.96. The latter, in turn, implies a value 
�40 
 0.5, where n � 40 corresponding to a ten-year maturity. Hence, the

1


n

Learning, Macroeconomic Dynamics, and Interest Rates 239



model predicts that the yield on a ten-year bond should have a standard de-
viation roughly half the size the standard deviation of the TB rate. That
prediction is clearly rejected by the data: the ratio of standard deviations is
approximately 0.9 rather than 0.5. In other words, the long-term rate ap-
pears to be excessively volatile relative to the predictions of the EH model.

A Proposed Solution: Endpoint Learning

Let me define, following Dewachter and Lyrio, the perceived endpoint for
the short rate as the subjective long-run expectation

it

∗P 	 lim
k→�

Et
P{it�k},

where EP
t is the subjective expectations operator. Agents’ perceived law of

motion for that endpoint is assumed to be given by the random walk model

(4) it

∗P � i
∗P
t�1 � vt.

Deviations from the endpoint are assumed to follow a stationary AR(1)
process analogous to the rational expectations model described in the pre-
ceding:

it � it

∗P � �(it�1 � i
∗P
t�1) � εt

given that the perceived endpoint is not observed, agents estimate it using
the Kalman filter learning algorithm:

it|t

∗P � i
∗P
t�1|t�1 � K [it � EP

t�1(it)],

where K ∈ (0, 1).
Note that, while agents in this economy believe the endpoint for the

short-term rate to vary over time, we assume that the short-term rate fluc-
tuates around a constant mean value i∗ according to the process

it � i∗ � �(it�1 � i∗) � εt.

By combining the previous equations, one can show that, in equilibrium,
agents’ estimate of the endpoint follows the stationary AR(1) process

(5) it|t

∗P � i∗ � [1 � K(1 � �)](i∗P
t�1|t�1 � i∗) � K εt,

Finally, one can combine the previous equation with the EH model of
the term structure (1) to yield the following expression for the n-period
bond yield under learning:

it
(n) � ∑

n�1

k�0

Et
P{it�k}

� (1 � �n)it|t
∗P � �n it.

1


n
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A comparison of equation (6) to equation (3) makes clear that variations
in the estimated endpoint i∗P

t|t in the model under learning provide an addi-
tional source of volatility for long-term yields, and one whose relative im-
portance rises with the maturity on the bond (as �n is decreasing in n). Fur-
thermore, because the time series properties of i∗P

t|t depend on some
unobservables (e.g., the variance of υt in the preceding model—which
measures the extent of the departure from rational expectations), the
model with learning gives the researcher some room to improve on the fit
of its rational expectations counterpart.

Dewachter and Lyrio’s Contribution

The simple learning model of the previous subsection conveys the es-
sence of Dewachter and Lyrio’s proposed framework for understanding
the term structure dynamics. Needless to say, Dewachter and Lyrio’s
model is richer in several dimensions, some of which are likely to be im-
portant. First, and most noticeably, Dewachter and Lyrio’s model is a gen-
eral equilibrium one. Thus, and in contrast with the preceding framework,
the short-term rate does not follow an exogenous process but instead is de-
termined according to a Taylor-type rule that has the output gap and in-
flation as arguments. The output gap and inflation are, in turn, determined
(simultaneously with the short-term rate) by a hybrid New Keynesian
Phillips curve and a dynamic IS equation, which, in combination with the
interest rate rule, constitute the macro block of Dewachter and Lyrio’s
model.

Secondly, Dewachter and Lyrio use a pricing kernel consistent with the
macro model in order to derive an affine model for the yield curve. This is
in contrast with the simple (though pedagogically useful) expectations hy-
pothesis model shown in the preceding. As a result, the yields for different
maturities are not only a function of the current short-term rate and its
perceived endpoint, but also of inflation, the output gap, as well as agents’
current estimates of all those variables’ endpoints.

The different models estimated by Dewachter and Lyrio (four versions
of the rational expectations model and four of the learning model) and
their implied fit of the time series for bond yields of different maturities
lead a number of interesting insights, many of which are discussed in detail
in Dewachter and Lyrio’s chapter. Most importantly, given the chapter’s
objectives, and as summarized graphically by figure 5.6 in that chapter,
Dewachter and Lyrio’s findings point to a potentially large explanatory
role of learning dynamics as a source of the low frequency movement in
long-term yields. While the estimated versions of the rational expectations
(RE) model that allow for chairman-specific interest rate rules and time-
varying price of risk (RE II and RE III) do a much better job than the
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simple bare-bones RE model (RE macro), they fall well short of the learn-
ing model once term structure data are used to estimate the latter (as in
Learning I through III). Furthermore, much of the improvement in fit is
due to a “level factor” generated by variations in the estimated inflation
endpoint, which is reflected one for one in variations in the short-term rate
endpoint. That feature of Dewachter and Lyrio’s learning model is shown
to be largely consistent with the observed evolution of survey-based long-
term inflation expectations (which, in turn, display more variation than
any model with chairman-specific inflation targets—but no learning about
the latter—is bound to entail).

Of particular interest to monetary economists (even to those who may
not care so much about the term structure) are the implications for the es-
timated deep parameters of Dewachter and Lyrio’s “macro block” result-
ing from the need to fit the term structure data, as well as the allowance for
learning dynamics. Two findings are worth emphasizing. First, the impor-
tance of the backward-looking component of the hybrid New Keynesian
Phillips curve goes down substantially when learning dynamics are al-
lowed for. Second, the variances of the innovations in the perceived infla-
tion and real rate endpoints tend to be smaller under Greenspan than un-
der previous Fed chairmen, possibly suggesting an enhanced transparency
of monetary policy over the past two decades (because the true endpoints
are indeed constant during each chairman’s tenure).

Open Issues and Caveats

The present chapter by Dewachter and Lyrio constitutes an important
contribution to the macro-finance literature on term structure dynamics. It
is well written, and it contains a careful and extensive empirical analysis.
Naturally, the chapter leaves a number of issues unexplained. It also relies
on a number of assumptions that are not fully appealing. Let me turn to
those briefly.

Do We Need a Full-Fledged DSGE Model 
to Explain the Term Structure Dynamics?

A simpler alternative to the full-fledged macro model developed and an-
alyzed by Dewachter and Lyrio would consist of a partial equilibrium
model of the term structure (e.g., the affine model used by Dewachter and
Lyrio) that takes as given the joint process for the short-term rate it and the
price kernel mt.(e.g., a reduced form vector autoregression [VAR]). That
process could be augmented with a perceived law of motion for the short-
term endpoint, as well as with a learning algorithm similar to the one pro-
posed by Dewachter and Lyrio. The use of a full-fledged model may impose
unnecessary structure for the purpose at hand.

On the other hand, one can think of a possible justification for the dy-
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namic stochastic general equilibrium (DSGE) approach pursued in the
Dewachter and Lyrio chapter: to explore the macroeconomic implications
of versions of a framework whose structure (including the embedded end-
point learning model) and estimated parameters are successful at fitting
the term structure data. Among the questions one could ask based on that
framework are the following: How does endpoint learning affect the trans-
mission of monetary policy shocks? How does endpoint learning affect the
desirability of alternative monetary policy rules? These are interesting and
possibly important questions, but ones that fall beyond the scope of the
Dewachter and Lyrio chapter.

A Strong Departure from Rational Expectations

A persistent gap between the perceived dynamics for some macro vari-
ables (or driving forces) and the actual equilibrium dynamics is a natural
feature of models with constant-gain learning. Dewachter and Lyrio’s
framework is no exception in that regard. Yet, in Dewachter and Lyrio’s
model, the gap between the perceived law of motion and the actual law of
motion is particularly large. In particular, Dewachter and Lyrio’s assump-
tions imply that agents believe the law of motion for the inflation and real
rate endpoints corresponds to two independent random walks. By con-
trast, in all the equilibriums considered by Dewachter and Lyrio, the esti-
mated endpoints follow a stationary process, with an unconditional mean
that corresponds to the deterministic steady state of the rational expecta-
tions equilibrium. A similar gap emerges in the simple model of the term
structure analyzed in the preceding, as a comparison of equations (4) and
(5) reveals. In my opinion, a perceived law of motion that shares with the
actual law of motion the latter’s order of integration would seem to be
among the desiderata to be fulfilled by nonrational expectations models.

Two Competing Models

One can think of two alternative competing models that are likely to ac-
count for the observed behavior of bond yields equally well. The first class
of models, exemplified by the present chapter, takes the “true” inflation
and real rate endpoints to be constant, while letting agents learn about
those endpoints using some constant-gain learning algorithm. The second
class of models, exemplified by Hördahl, Tristani, and Vestin (2006),
among others, assumes rational expectations, combined with time-varying
endpoints for the real rate or inflation. The latter could, in turn, be justified
by changes in the central bank’s inflation target or changes in trend pro-
ductivity growth. Sorting out the empirical merits of both families of mod-
els is likely to be nontrivial and is a task that also falls beyond the scope of
Dewachter and Lyrio’s present chapter. Yet the use of information on sur-
vey-based long-run expectations, as done in the present chapter, may be
useful in achieving that objective.
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Discussion Summary

Hans Dewachter responded to Jordi Galí that the authors had estimated a
model of rational expectations and time-varying endpoints, but had found
their estimates to be implausible in several respects. For example, they had
found a considerable degree of variation in the inflation target, on the or-
der of 2 percent per year. One of the aims of this chapter was to avoid this.

John Y. Campbell suggested that it might be interesting to examine the
endpoints for the real rate and inflation separately. He found it plausible
that there was considerable variation in the case of inflation, but puz-
zling—although, in the light of long-term Treasury inflation-protected se-
curities (TIPS) rates, perhaps empirically plausible—that there should be
much variation in the case of the real rate. Second, he thought that allow-
ing for regime changes when a new chairman was appointed was a nice
idea, but that it seemed inconsistent with the assumption of constant gain
learning. Plausibly, there was more uncertainty following the appointment
of a new chairman. At such times, one might have expected to see more
volatility and higher risk premiums.

Glenn D. Rudebusch said that the aim of this literature was to unify the
macro and finance approaches. But he was unhappy at the assumption that
the price of risk was constant. In combination with homoskedasticity, this
assumption led to constant risk premiums in the model. He suggested that
the finance literature attributed some of the variation in the long bond rate
to changing risk premiums. In this sense, the chapter did not fall into the
mainstream macro-finance literature. Peter Westaway agreed that the
Bank of England had also found that much of the variation in long inter-
est rates could be attributed to a changing risk premium.

In response to Galí’s question of why a dynamic stochastic general equi-
librium (DSGE) model was needed, Thomas Laubach suggested that one
answer was that DGSE models offer the possibility of calibrating macro
parameters.

Michael Woodford agreed with Galí that the benchmark model should
assume rational expectations. Regarding the fact that the inflation target
has to move “too much” in an estimated rational expectations model, he
asked whether the authors were uncomfortable believing this themselves or
believing that other people could believe it.
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On the topic of different endpoints for the real rate and for inflation,
Brian Sack pointed out that for much of the last thirty years, the “level”
factor has been the dominant influence on movements of the yield curve
(that is, the yield curve has moved mostly in parallel). Over the last five
years, however, the “slope” factor has been much more important (that is,
the short end of the curve has moved, while the long end has remained
stable). A shift to more stable inflation expectations may explain this. Sack
also argued that the authors’ model should be confronted with the evi-
dence that macroeconomic forecasts respond strongly to data announce-
ments.
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