This PDF is a selection from an out-of-print volume from the National
Bureau of Economic Research

Volume Title: American Transportation in Prosperity and Depression
Volume Author/Editor: Thor Hultgren
Volume Publisher: NBER

Volume ISBN: 0-870-14086-8

Volume URL: http://www.nber.org/books/hult48-1
Publication Date: 1948

Chapter Title: Other Than Steam Railroad Transportation
Chapter Author: Thor Hultgren
Chapter URL: http://www.nber.org/chapters/c4620
Chapter pages in book: (p. 341-362)

Other Than Steam Railroad Transportation

So far we have confined our discussion of cycles in transportation to the railroad industry. For years long past, and for most aspects of the subject even in recent times, this was not a matter of choice. Continuous records such as we need have not, with a few exceptions, been kept for domestic waterborne commerce, pipe lines, or highway traffic. Aviation is a newcomer; commercial planes operated on only a minute scale at the beginning of the last business cycle to close before this inquiry was undertaken. What figures we do have for transport other than by steam railroads pertain mainly to the movement of traffic; data on employment, fuel consumption, movement and stocks of equipment, revenues, costs, and profits are scarce indeed. What we have to report about the other means of movement can be told in one chapter.

TRANSIT

Nature of the industry

Perhaps the most familiar of the other commercial kinds of transport is the transit industry, whose facilities city people use in traveling to and from work, shopping, going to the big downtown movie houses, making short visits to relatives and friends, and to some extent in the course of transacting business, such as collecting bills and delivering packages.

Before 1920 travel of this kind, after the early horse-car era, was provided for almost entirely by electrically operated cars running on tracks. But since then a progressively increasing portion has been accommodated in busses. The economic purposes the two means of transport serve are very similar. Often one company operates both kinds of vehicle, or operates trolley cars while a subsidiary operates busses. Bus companies and electric traction companies should be regarded for our purpose as comprising a single industry; the number of bus rides should be added to the number of car rides to measure its total performance.

The routes of many companies that operate transit facilities within cities extend beyond municipal limits. Some of these opera-
tions serve only to connect a city with its suburbs. Others connect two or more urban areas separated by open country. Some enterprises using busses, or rail cars, or perhaps a combination of the two, engage in interurban transport exclusively. Cyclical and other economic influences no doubt affect these three kinds of traffic differently. The occasions for interurban travel differ in nature from those for ordinary municipal travel. But unfortunately no consecutive nationwide statistics of passengers carried distinguish between intracity, suburban, and interurban riders. We are therefore obliged to study the three as a whole. Undoubtedly most of the business covered by the figures is intracity.

Chart 126
Transit Rides, United States, 1917-1940

Shaded periods are reference contractions.

Patronage and business conditions

In the four reference phases from 1920 to 1926 and in the two from 1932 to 1938, people curtailed their use of transit facilities when business was deteriorating and increased it when business was improving. Although patronage diminished in all three phases between 1926 and 1932, it fell off much more rapidly in 1929-32 than in 1927-29 (Chart 126). Although it rose in 1918-19, the advance was a trifle slower than in 1919-20 (Table 130). On the other hand, the decline in 1927-29 was, on the average, more rapid
than in 1926-27. With this exception, the number of rides conformed positively to the reference chronology from 1918 to 1938.

Table 130
Transit Rides, United States
Change per Year between Reference Peaks and Troughs, 1918-1929

$\begin{aligned} & \text { Reference } \\ & \text { date } \end{aligned}$	Level ofbusiness	$\begin{aligned} & \text { Years } \\ & \text { from } \\ & \text { prec. } \\ & \text { date } \end{aligned}$	$\begin{gathered} \text { Number of } \\ \text { ridest } \dagger \end{gathered}$	Change from preceding date		
				Total	Per year	
					$\begin{gathered} \text { Too } \\ \substack{\text { peak } \\ \text { from } \\ \text { trough }} \end{gathered}$	$\begin{gathered} \text { To } \\ \substack{\text { trough } \\ \text { from } \\ \text { peank }} \end{gathered}$
			(millions)			
1918	Peak		11,175			
1919	Trough	1	11,715	540		540
1920	Peak	1	12,277	562	562	
1921	Trough	1	11,536	-741		-741
1923	Peak	2	12,556	1,020	510	
1924	Trough		12,457	-99		-99
1926	Peak	2	12,799	342	171	
1927	Trough	1	12,704	-95		-95
1926	Peak		13,513			
1927	Trough	1	13,430	-83		-83
1929	Peak	2	13,073	-357	-178	

\dagger 1917-27, estimates for "revenue passengers carried by electric railways" plus "revenue passengers carried by motor buses", statement tentatively revised 1/8/41, transmitted with letter of July 21, 1941 from Edmund J. Murphy, Director of Information Service, American Transit Association. 1926-29 (1927-40 on Chart 126), electric railway estimates from same, plus estimates of 'total revenue passengers" (bus) from Bus Transportation, Feb. 1929, p. 59; Feb. 1931, pp. 54-5; Feb. 1933, pp. 88-9; Feb. 1934, pp. 42-3; Feb. 1936, pp. 64-5; Jan. 1938, pp. 52-3; Jan. 1939, p. 49; Jan. 1940, pp. 46-7; Jan. 1941, pp. 48-9.

The ATA bus figures include only rides on busses of street railway and former street railway companies and their subsidiaries or affiliates. Neither the railway nor the bus data include rides authorized by pay or free transfers.

The BT estimates pertain to the entire motor bus industry. They include rides authorized by pay transfers but data in the Census of Electrical Industries, 1937, Street railways and trolley-bus and motorbus operations, pp. 32-33, suggest that these are less than 2 percent of all bus rides.

The preceding conclusion pertains to the country as a whole. In New York City for which we have monthly data the relation has been less consistent. The business contractions of 1929-33 and 1937-38, and the intervening expansion, it is true, have readily visible equivalents in the number of rides. Between 1908 and 1929, however, there are no clear-cut specific cycles (Chart

Chart 127
Transit Rides, New York City, July 1907-December 1941

Table 131
Transit Rides, New York City
Change per Month between Reference Peaks and Troughs, 1908-1929

Reference date	Level of business	Months from prec. date	$\underset{\substack{\text { Number } \\ \text { rides } \\ \\ \text { an }}}{ }$	Change from preceding date			Conformity suggested ${ }^{\text {b }}$
				Total	Per month		
					$\begin{gathered} \text { To } \\ \text { peak } \\ \text { from } \\ \text { trough } \end{gathered}$	$\underset{\substack{\text { trough } \\ \text { from } \\ \text { peak }}}{\text { To }}$	
			(millions)				
June 1908	Trough		112.8				
Jan. 1910	Peak	19	123.5	10.7	0.56		
Jan. 1912	Trough	24	137.3	13.8		0.58	Inverse
Jan. 1913	Peak	12	142.8	5.5	0.46		Inverse
Dec. 1914	Trough	23	144.2	1.4		0.1	Positive
Aug. 1918	Peak	44	158.6	14.4	0.3		Positive
Apr. 1919	Trough	8	176.7	18.1		2.3	Inverse
Jan. 1920	Peak	9	191.2	14.5	1.6		Inverse
Sept. 1921	Trough	20	207.0	15.8		0.8	Positive
May 1923	Peak	20	218.3	11.3	0.6		Inverse
July 1924	Trough	14	224.1	5.8		0.4	Positive
Oct. 1926	Peak	27	236.8	12.7	0.5		Positive
Dec. 1927	Trough	14	245.7	8.9		0.6	Inverse
June 1929	Peak	18	251.8	6.1	0.3		Inverse

${ }^{\text {a }}$ Excluding bus rides. Three-month average; reference date is middle month.
${ }^{\text {b }}$ By comparison with preceding rate; e.g., 0.58 with 0.56 .

Table 132

Street Car and Rapid Transit Rides, New York City
Change per Year between Reference Peaks and Troughs, 1900-1910

Reference date (year ended June 30)	1900	1901	1903	1904	1907	1908	1910
Levei of business	Peak	Trowgh	Peaiz	Prowgh	Deak	Trougis	peaik
Years from nreceding		1			3	1	$?$
Rides (millions)							
Number	847	881	1,001	1,066	1,315	1,354	1,488
Change from preceding date Motr!		$\therefore *$				3	
Yer year							
To peak from trough			60				67
To trough from peak		34		65	.	39	

Table 133
Transit Rides, United States, and Railroad Revenue Ton-miles
Percentage Change between Specific Peak and Trough Years

Transit Rides								
Date of turn	1920	1921	1923	1924	1926	1933	1937	1938
Level	Peak	Trough	Peak	Trough	Peak	Trough	Peak	Trough
Number (millions)	12,277	11,536	12,536	12,457	12,799	8,962	10,842	10,573
\% change from preceding date	\cdots	-6	9	-1	3		21	-2
Ton-miles								
Date of turn	1920	1921	1923	1924	1926	1932	1937	1938
Level	Peak	Trough	Peak	Trough	Peak	Trough	Peak	Trough
\% change from preceding date \dagger	...	-25	35	-6	14		54	-20

\dagger From Table 6.
127). ${ }^{1}$ Indeed the number did not even conform well in this period. Five comparisons count toward positive, 7 toward inverse conformity, with little net result (Table 131). On the other hand, annual data from 1900 to 1910 suggest positive conformity in 4 of 5 instances (Table 132). This is surprising, for we usually expect monthly figures to register business disturbances more sensitively. Making all the comparisons of adjoining phases from 1900 to 1938 that we can, using annual data whenever monthly statistics are not available for both phases, we find that 12 suggest positive, 8 inverse conformity.

Table 134
Transit Rides, New York City, and Revenue Ton-miles
Percentage Change between Specific Peak and Trough Months, 1929-1938

Transit Rides				
Date of turn	July	Oct.	Apr.	July
	1929	1932	1937	1938
Level	Peak	Trough	Peak	Trough
Numbera (millions)	267.0	224.9	256.1	247.4
\% change from preceding date	\ldots	-16	14	-3

Revenue Ton-miles				
Date of turn	Aug.	July	Apr.	May
	1929	1932	1937	1938
Level	Peak	Trough	Peak	Trough
\% change from preceding date ${ }^{\text {b }}$	\ldots	-55	93	-31

${ }^{\text {a }}$ Three-month average; date of turn is middle month.
${ }^{\mathrm{b}}$ From Table 6.
Cyclical variation small
When specific fluctuations in the number of rides did occur, they were rather mild, much less severe, for example, than those in freight traffic (Tables 133, 134). Even in the great contraction

[^0]1929-32, when ton-miles decreased 55 percent, riding in New York subways, street cars, and busses diminished only 16 percent.

Chart 128
Domestic Disappearance of Gasoline, August 1917-December 1928, and of • Motor Fuel, January 1929-December 1938

HIGHWAY TRAFFIC

Reflection of business conditions recent

There are no sufficiently continuous statistics of any kind for the commercial motor freight industry: the enterprises that carry the goods of others for hire on streets and roads. We can, however, form some notion of cyclical variation in the collective highway operations of all classes of users-private motorists, firms hauling their own goods, commercial carriers of property and personsfrom the data on domestic disappearance (approximately, consumption) of motor fuel. From 1917 to 1931 there is little evidence of such variation. No specific cycles are discernible (Chart 128). ${ }^{2}$ From 1918 to 1929 disappearance of fuel did not even conform to cycles in the economy at large; three comparisons count one way, four, the other (Table 135). But the great contraction of 1929-33

[^1]made a clear impress: for a long time (two years) in the form of a mere flattening of the curve, but eventually in an actual decline. And the two subsequent reference phases have obvious analogues in fuel consumption.

Table 135
Domestic Disappearance of Gasoline or Motor Fuel Change per Month between Reference Peaks and Troughs, 1918-1938

Reference date	Level ofbusiness	$\begin{gathered} \text { Months } \\ \text { fromer } \\ \text { proc. } \\ \text { date } \end{gathered}$	Disappearance ${ }^{\text {a }}$	Change from preceding date			Conformity suggested ${ }^{\text {b }}$
				Total	Per month		
					$\begin{gathered} \text { To } \\ \substack{\text { poak } \\ \text { from } \\ \text { trough }} \end{gathered}$	$\underset{\substack { \text { Trough } \\ \begin{subarray}{c}{\text { trough } \\ \text { from } \\ \text { peak }{ \text { Trough } \\ \begin{subarray} { c } { \text { trough } \\ \text { from } \\ \text { peak } } }\end{subarray}}{ }$	
			(millions of barrels)				
Aug. 1918	Peak		6.20				
Apr. 1919	Trough	8	6.35	0.15		. 02	
Jan. 1920	Peak	9	8.01	1.66	. 18		Positive
Sept. 1921	Trough	20	9.33	1.32		. 07	Positive
May 1923	Peak	20	12.24	2.91	. 15		Positive
July 1924	Trough	14	15.74	3.50		. 25	Inverse
Oct. 1926	Peak	27	21.95	6.21	. 23		Inverse
Dec. 1927	Trough	14	25.42	3.47 25	Inverse
Oct. 1926	Peak	27	22.14				
Dec. 1927	Trough	14	25.72	3.58		. 26	
June 1929	Peak	18	31.26	5.54	. 14		Inverse
Mar. 1933	Trough	45	29.99	-1.27		-. 03	Positive
May 1937	Peak	50	43.19	13.20	. 26		Positive
May 1938	Trough	12	43.01	-0.18		-. 02	Positive

${ }^{2}$ Three-month average; reference date is middle month. Original data from U.S. Bureau of Mines: Petroleum Refining Statistics, Bulletin 367, pp. 19, 222; Mineral Resources and Minerals Yearbook Statistical Appendix, various issues; Economic Paper 20, p. 10. Gasoline, 1918-27 section; motor fuel, 1926-38. Called 'domestic demand' in source.
${ }^{\mathrm{b}}$ By comparison with preceding rate; e.g., .18 with .02 .

Use of vehicles far more stable than their production

The aggregate number of miles all care and truole womo drivom. presumably fluctuated in somewhat the same way as their consumption of gasoline. There must have been a striking contrast between the amount of use vehicles received and their production.
 tions (Table 136); it declined even during the contractions in which use increased. This was true of the production of commercial vehicles also. When, after 1929, specific variations in
utilization did finally appear, they were much slighter than those in production. The figures for fuel consumption are $-11,46$, and -3 percent (Table 137). The corresponding figures for the output of passenger cars are $-78,306$, and -60 ; of motor trucks, -79 , 403 , and -57 .

Table 136
Production of Passenger Cars and Motor Trucks
Percentage Change between Specific Peaks and Troughs, 1913-1938

Level of production	Passenger cars			Motor trucks		
	Date of level	Produced ${ }^{\text {a }}$ (thousands)	$\begin{aligned} & \text { \% change } \\ & \text { from } \\ & \text { prec. date } \end{aligned}$	Date of level	Produced ${ }^{\text {a }}$ (thousands)	\% change from prec. date
Trough	Sept. 1913	30		Sept. 1914	1.8	
Peak	Nov. 1917	151	403	July 1918	21.2	1,078
Trough	Oct. 1918	35	-77	Nov. 1918	17.4	-18
Peak	Jan. 1920	190	443	Jan. 1920	35.2	102
Trough	Jan. 1921	86	-55	Jan. 1921	13.0	-63
Peak	Dec. 1923	363	322	June 1923	38.2	194
Trough	June 1924	216	-40	Sept. 1923 ${ }^{\text {b }}$	31.4	-18
Peak	Dec. 1925	390	81	Sept. 1925	49.4	57
Trough	Nov. 1927	182	-53	Nov. 1927	34.6	-30
Peak	Jan. 1929	411	126	June 1929	77.6	124
Trough	Oct. 1932	89	-78	July 1932	16.6	-79
Peak	Aug. 1937	361	306	Aug. 1937	83.5	403
Trough	Aug. 1938	143	-60	Apr. 1938	35.5	-57

[^2]Table 137
Percentage Change in Domestic Disappearance of Motor Fuel between
Its Own Peaks and Troughs, 1931-1938

Date of turn	July	April	July	May
	1931	1933	1937	1938
Level	Peak	Trough	Peak	Trough
Amount \dagger (million barrels)	34.02	30.33	44.26	43.01
\% change from preceding date	\ldots	-11	46	-3

\dagger Three-month average; date of turn is middle month. For source see Table 135.
The sharp contractions in production had little effect on the stock of vehicles in use. The number of passenger cars registered at the end of the year increased without interruption from 1895
to 1929, as did the number of trucks from 1904 to 1930. Cyclical fluctuations in registration did occur later, but in amplitude they resembled the changes in the consumption of gasoline more nearly than those in the production of vehicles (Table 138).

Table 138
Motor Vehicle Registration
Percentage Change between Its Own Year-end Peaks and Troughs, 1929-1938

$\begin{gathered} \text { Date } \\ \text { (Dec. } 31 \text {) } \end{gathered}$	Level of registration	Number registered \dagger (000)	$\%$ change from preceding date
Passenger cars			
1929	Peak	23,122	
1933	Trough	20,644	-11
1937	Peak	25,450	23
1938	Trough	25,262	-1
Trucks			
1930	Peak	3,486	
1932	Trough	3,229	-7
1937	Peak	4,255	32
1938	Trough	4,224	-1

\dagger Automobile Manufacturers Association, Automobile Facts and Figures, 1944-45, p. 50. Reported or estimated data in this source go back to 1895 (cars) and 1904 (trucks).

The unbroken growth of registrations during the reference phases before 1929-32 helps to explain the continuous rise of aggregate gasoline consumption in those phases. The latter rise does not necessarily mean that individual operators of motor vehicles typically increased their use of gasoline even when business conditions were becoming worse. Since the number of vehicles and presumably the number of owners grew, consumption by new owners and by multiple-vehicle owners who added to their fleets may have outweighed a decline in the quantity used by those who, at most, retained or replaced the cars and trucks they had at the beginning of business contraction. The majority of owners, it would seem, did curtail their use of gasoline in 1920-21 and 192324 , when consumption per vehicle diminished (Table 139). However, the specific contractions in the quantity per vehicle, and the specific expansions too, were very mild during the entire period 1921-38.

Table 139

Percentage Change in Domestic Disappearance of Motor Fuel per Motor Vehicle Registered between Its Own Peaks and Troughs, 1919-1938

Date	1919	1920	1921	1923	1924	1931	1932	1937	1938
Disappearance per vehicle Level	Trough	Peak	Trough	Peak	Trough	Peak	Trough	Peak	Trough
Amount (barrels)	11.93	12.05	10.92	11.47	11.32	15.40	14.97	17.95	17.67
\% change from preceding date	\cdots	1	-9	5	-5	\dagger	-3	20	-2

Domestic 'demand' for gasoline, 1919-24, and motor fuel, 1931-38 (Bureau of Mines, Mineral Resources and Minerals Yearbook, various issues), divided by average of motor vehicles registered at beginning and end of year (Automobile Facts and Figures data). \dagger No specific contraction corresponding to the reference phase 1926-27.

Table 140
Petroleum Production; Crude and Refined Oil Moved by Pipe Lines Reporting to the ICC; 1925-1940

	Production ${ }^{\text {a }}$	Originated ${ }^{\text {b }}$	Transported ${ }^{\text {c }}$
	Millions of barrels		
1925	764		831
1926	771		836
1927	901		989
1928	901		1,053
1929	1,007P		1,156
1930	898		1,172P
1931	851	505	987 T
1932	785T	533	1,121
1933	906	567	1,189
1934	908	593	1,214
1935	997	767	
1936	1,100	807	
1937	1,279P	948P	
1938	1,214T	858 T	
1939	1,265	873	
1940	1,353	958	
	Percent	om specific pe	c trough
1929-32	-22		
1930-31			-16
1937-38	-5	-9	

P or T indicates specific peak or trough.

- Bureau of Mines, Minerals Yearbook, 1937, p. 1,009; 1940, p. 941.
${ }^{\text {b }}$ Each barrel reported only by first line to handle it. ICC Bureau of Transport Economics and Statistics, A Review of Statistics of Oil Pipe Lines, 1921-1941, (Statement 4280, mimeographed, 1942), p. 40. Not available before 1931.
${ }^{-}$A barrel transported consecutively by two lines would be counted twice. Data from Statistics of Railways. Not available before 1925; figures after 1934 apparently not comparable.

PIPE LINES
The cyciical history of pipe line traffic, in the brief period through which wide unce it, resemisies inat of petroleum production, which tended to increase its relative importance in the national economy during expansion and contraction alike (Table 140). Neither showed any diminntion enorecnonrinor to the we....... contraction of y26-27, aithough outpü faitied to rise from 19\%4 to 1928. In comparison with total rail and waterborne traffic, both declined only moderately in the initial phase of the great depression (cf. Table 141). In 1937 each attained a level far above its
previous peak. ${ }^{3}$ The decreases in 1937-38 were again relatively small.

Cbart 129
Tons Carried by Water, Selected Domestic Trades, 1920-1943

Shaded periods are reference contractions.

WATER TRANSPORT

The two major kinds of domestic'waterborne traffic-movement on the Great Lakes and coastwise shipments-present something of a contrast (Chart 129, Table 141). Iron ore is usually a large part of Lake tonnage. As one might expect from the instability of steel production, ore shipments passed through violent cyclical fluctuations, conforming closely to the reference chronology. Although other commodities the output of which is more stable are carried in large quantities, percentage variations in Great Lakes tonnage as a whole exceeded those in the corresponding national totals, including coastwise traffic. Ton-miles of movement on the Lakes likewise fluctuated violently, and since they account for a very large part of ton-miles on all inland waterways, so did the latter (Chart 130). ${ }^{4}$

[^3]Table 141
Tons Carried by Water, Selected Trades and Domestic Total; and Tons Originated by Railroads; Percentage Change between Specific Peak and Trough Years; 1920-1938

	Great Lakes		Coastwise ${ }^{\text {a }}$		Total domestic waterborne ${ }^{\text {c, e }}$ (5)	Railroads (6)	Ratios	
	Iron ore ${ }^{\text {b }}$ (1)	Total ${ }^{c}$ (2)	Petroleum and products ${ }^{\text {d }}$ (3)	Total ${ }^{\text {c }}$ (4)			(1) to (2) (7)	(3) to (4) (8)
	Millions of tons						Percent	
1920	65.6*	98.4*		47.3*	286.2*	1363*	67	
1921	25.0*	58.6 *		45.2*	239.3 *	1018*	43	
1922	47.7	80.6		63.5	276.1	1112	59	
1923	66.1*	110.3*		88.7*	380.3*	1388*	60	
1924	47.7*	93. ${ }^{*}$		88.6*	352.1*	1287*	51	
1925	60.6	111.6	19.7	105.1	374.9	1351	54	19
1926	65.6*	116.5*	23.8	108.0	409.2	1440*	56	22
1927	$57.2 *$	113.9*	27.2*	121.0*	$412.0{ }^{*}$ *	1373	50	22
1928	60.5	119.3	25.6*	121.0*f	412.4 **)	1371*	51	21
1929	73.0 *	135.8*	28.3*	125.0*	456.3*	1419*	54	23
1930	52.2	109.8	28.0	117.8	406.2	1220	48	24
1931	26.3	71.8		113.9	356.1	945	37	
1932	4.0*	$39.5 *$		94.4*	272.1*	679*	10	
1933	24.2	68.6		110.3	324.6	733	35	
1934	24.9	71.6		113.2	336.4	802	35	
1935	31.8	83.5	44.5	115.4	371.7	832	38	39
1936	50.2	115.1	51.1	132.4	435.6	1012	44	39
1937	70.1*	134.8*	56.5*	149.4*	468.7*	1075*	52	38
1938	21.6*	72.8*	54.3 *	138.5*	361.7*	820*	30	39
1939	50.5	113.3	60.0	150.9	456.7	955	45	40
	Percent change during specific phases							
1920-21	-62	-40		-4	-16	-25		
1921-23	164	88		96	59	36		
1923-24	-28	-16		$-0{ }^{\text {g }}$	-7	-7		
1924-26	38	25		37 ${ }^{\text {b }}$	$17^{\text {h,i }}$	12		
1926-27	-13	-2	$-6^{\mathbf{j}}$	$-0^{\mathrm{g}, \mathrm{j}}$	0g.i.j	-5^{k}		
1927-29	28	19	111	3^{1}	$11^{\text {i,1 }}$	41		
1929-32	-95	-71		-24	-40	-52		
1932-37	1652	241		58	72	58		
1937-38	-69	-46	-4	-7	-23	-24		

* Indicates specific peak or trough, (*) end or resumption of rapid growth.
- Includes intercoastal.
${ }^{\text {b }}$ Lake Carriers Association, Annual Report, various issues.
- Chief of Engineers, War Department, Annual Report, 1944, Part 2, Commercial statistics . . for . . 1912, p. 5.
d Originai fgares in berrels from Teriff Commission, Repori 00, Second Series, 1932, pp. 98-101, and Burcau of Mines, Monthly Petroleum Statement, Feb. 1936,
 for years in which not shown. Converted to tons on basis of following factors for tons per barrei: Crude petroleum 0.149 , gasoline 0.1295 , kerosene 0.142 , gas oil and distillate fuel oils 0.152 , residual fuel or road oils 0.1655 , lubricating oils 0.1575 , asphalt and road oils 0.182 , miscellaneous oils 0.1 ẫ, Fontors arepnt that

F'etroleum F'acts and figures, 1941, p. 28.

- 'Grand adjusted total' in source minus imports and exports at coast and Great Lakes ports.
${ }^{\text {t }}$ Slight decline in total coastwise concealed by rounding figures.
${ }_{\mathrm{g}}$ Change of less than 0.5 percent.
${ }^{\text {h }}$ 1924-27.
${ }^{i}$ Percentage change during period of rapid or slow growth.
j 1927-28. ${ }^{\text {k 1926-28. }}$
${ }^{1}$ 1928-29.

Petroleum and its derivatives are an important component of coastwise traffic, although not as important as ore on the Lakes. This oil tonnage, like the volume flowing through pipe lines, reflected the growing relative importance of petroleum in the economy. The analogue of the 1926-27 reference contraction was mild and belated. The contraction in 1937-38 was small. The 1937 peak greatly overtopped 1929 (ore and total Lake traffic failed to regain their 1929 levels). All these features were duplicated in total coastwise tonnage. The 1920-21, 1923-24, and 192932 contractions were also mild in comparison with those in the national waterborne total. Peaks before 1937 regularly surpassed their predecessors.

Chart 130
Ton-miles on Great Lakes and on All Inland Waterways, 1925-1943

Fluctuations in total domestic waterborne commerce, which corresponded fairly closely to the reference cycles (Chart 131), were not extremely large or small. They did not differ greatly from those in railway freight traffic (Table 141). In general, water tonnage grew by a larger percentage than rail tonnage in expansion, diminished less in contraction. The comparisons suggest that noncyclical influences (improvement of waterways, rapid growth in the production of oil and perhaps of other commodities especially suited to water transport, etc.) tended to stimulate
water relatively to rail movement in both kinds of phase. They do not indicate a difference in sensitivity to cyclical business disturbances. ${ }^{5}$

Chart 131
Tons Carried by Water, All Domestic Commerce, 1920-1943

Shaded periods are reference contractions.
Estimates of water traffic and employment by Harold Barger and J. M. Gould suggest that the productivity of labor engaged in water transport, like that of railroad labor, tends to rise with expansion and fall with contraction of traffic. ${ }^{6}$

For the nation as a whole water traffic statistics begin only in 1920. We do have figures going much farther back for the canals of New York, including the Erie (now the Barge) Canal, once of great importance. Specific cycles in this tonnage do not match the reference cycles very well (Chart 132). But the data conform

[^4]Table 142
Tons Carried on New York State Canals (thousands)
Change per Year between Reference Peaks and Troughs, 1838-1938

$\begin{aligned} & \text { Reference } \\ & \text { date } \end{aligned}$	Level of business	Years from prec. date	Excluding products of agriculture					Including products of agriculture				
			$\begin{gathered} \text { Tons } \\ \text { carried }^{\mathrm{a}} \end{gathered}$	Change from preceding date			Conformity suggested ${ }^{\text {b }}$	$\begin{gathered} \text { Tons } \\ \text { carried }^{\mathrm{a}} \end{gathered}$	Change from preceding date			Conformity suggested ${ }^{\text {b }}$
				Total	Per year				Total	Per year		
						To trough from peak				$\begin{gathered} \text { To } \\ \text { peak } \\ \text { from } \\ \text { trough } \end{gathered}$		
$1838{ }^{\text {- }}$	Trough		1,078					1,333		\ldots		\ldots
1839	Peak	1	1,170	92	92			1,436	103	103	\ldots	
1843	Trough	4	1,058	-112	. .	-28	Positive	1,513	77	. .	19	Positive
1845	Peak	2	1,422	364	182		Positive	1,978	465	232		Positive
1846	Trough	1	1,454	32	...	32	Positive	2,269	291		291	Inverse
1847	Peak	1	1,777	323	323		Positive	2,870	601	601		Positive
1848	Trough	1	1,882	105	...	105	Positive	2,796	-74		-74	Positive
1853	Peak	5	3,097	1,215	243		Positive	4,248	1,452	290		Positive
1855	Trough	2	2,975	-122		-61	Positive	4,023	-225	...	-112	Positive
1856	Peak	1	2,923	-52	-52	.	Positive	4,116	93	93		Positive
1858	Trough	2	2,385	-538	. .	-269	Positive	3,665	-451		-226	Positive
1860	Peak	2	2,967	582	291		Positive	4,650	985	492		Positive
1861	Trough	1	2,363	-. 604	. .	-604	Positive	4,508	-142	\ldots	-142	Positive
1864	Peak	3	3,280	917	306		Positive	4,853	345	115		Positive
1867	Trough	3	4,250	970	. .	323	Inverse	5,688	835		278	Inverse
1869	Peak	2	4,545	295	148		Inverse	5,859	171	86	.	Inverse
1870	Trough	1	4,865	320	. .	320	Inverse	6,174	315		315	Inverse
1873	Peak	3	4,614	-251	-84		Inverse	6,365	191	64		Inverse
1878	Trough	5	3,250	-1,364		-273	Positive	5,171	-1,194		-239	Positive
1882	Peak	4	4,294	1,044	261	.	Positive	5,467	296	74		Positive
1885	Trough	3	3,623	-671		-224	Positive	4,732	-735		-245	Positive

1887	${ }^{\text {ceak }}$	2	3,963	340	170		Positive	5,554	822	411		Positive
1888	'rough	1	3,765	-198		-198	Positive	4,943	-611		-611	Positive
1890	'cak	2	4,044	279	140		Positive	5,246	303	152		Positive
1891	"rough	1	3,392	-652		-652	Positive	4,563	-683		-683	Positive
1892	${ }^{\text {coak }}$	1	3,243	-149	-149		Positive	4,282	-281	-281		Positive
1884	Trough	2	2,470	-773		-386	Positive	3,883	-399		-200	Inverse
1895	'eak	1	2,856	380	386		Positive	3,500	-383	-383		Inverse
1896	?rough	1	2,578	-278		-278	Positive	3,715	215		215	Inverse
1899	${ }^{3} \mathrm{cak}$	3	3,065	487	162		Positive	3,686	-29	-10		Inverse
1909	?rough	1	2,834	-231		-231	Positive	3,346	-340		-340	Positive
1903	'eak	3	3,018	184	61		Positive	3,615	269	90		Positive
1904	Tough	1	2,711	-307		-307	Positive	3,139	-476		-476	Positive
1907	3 eak	3	2,802	91	30		Positive	3,408	269	90		Positive
1908	rough	1	2,602	-200		-200	Positive	3,052	-356		-356	Positive
1910	'eek	2	2,581	-21	-10		Positive	3,073	21	10		Positive
1911	'rough	-	2,742	161		161	Inverse	3,097	24		24	Inverse
1913	'eak	2	2,345	-397	-198		Inverse	2,602	-495	-248		Inverse
1914	'rough		1,863	-482		-482	Positive	2,081	-521		-521	Positive
1918	'eak	4	1,049	-814	-204	...	Positive	1,159	-922	-230		Positive
1919	'rough		1,054	5		5	Inverse	1,239	80	...	80	Inverse
1920	eak		1,195	141	141		Positive	1,421	182	182		Positive
1921	'rough		896	-299		-299	Positive	1,270	-151		-151	Positive
1923	eak	:	1,261	365	182		Positive	2,006	736	368		Positive
1924	'rowigh		1,199	-62		-62	Positive	2,032	26		26	Positive
1926	eak	3	1,470	271	136		Positive	2,369	337	168		Positive
1927	rcugh		1,809	239		239	Inverse	2,582	213		213	Inverse
1929	sak	3	1,944	235	118		Inverse	2,876	294	147		Inverse
1932	rough	3	2,386	442		147	Inverse	3,643	767		256	Inverse
1937	eak	is	4,631	2,245	449		Positive	5,010	1,367	273		Positive
1938	rough		3,631	-1,000		-1,000	Positive	4,709	-301		-301	Positive

culture dec ceted by NEER. A more detailed classification beginning in 1919 indicates that they are mostly grains.
${ }^{6}$ By compr ison with p eceóng rate; e.g., -28 with 92 , or 19 with 103 .

Chart 132
Tons Carried, New York State Canals, 1837-1943

Chart 133
Passenger-miles, Domestic Airlines, July 1931-December 1941

Table 143
Passenger-miles, Domestic Airlines
Change per Month between Reference Peaks and Troughs, 1933-1938

Reference date	Mar.1933	May 1937	May 1938
Level of business	Trough	Peak	Trough
Months from preceding date	\ldots	50	12
Passenger-miles flown \dagger (millions)			
Number	11.64	38.27	44.39
Change from preceding date	\ldots	26.63	6.12
\quad Total	\ldots	0.53	$\ldots .$.
Per month To pak from trough To trough from peak	\ldots	\ldots	0.51

\dagger Three-month average; reference date is middle month. Non-revenue passengermiles inciuded.
positively to the reference chronology (Table 142). The relation is not very close, however; 34 comparisons rate positive, 15 inverse. The unopposed cases (34 minus 15) are only 39 percent of been large, and farm production is not associated as closeiy as industrial production with changes in business conditions. When we deduct products of agriculture from the total, the conformity
becomes closer. The number of unopposed cases (39 minus 10) becomes 59 percent of the total. ${ }^{7}$

AVIATION

Commercial air transport was in its infancy at the beginning of the 1933-38 business cycle. Between the initial and final trough the number of miles traveled by patrons of scheduled air services quadrupled; 1938 in turn looks small in comparison with later years (Chart 133). ${ }^{8}$ Obviously, the technology and relative cost position of the airlines, and the attractiveness of their service to travelers, were improving in both expansion and contraction. 'Traffic continued to increase in 1937-38. The rate of growth, however, was not as rapid as in 1932-37, although the difference is small (Table 143).

[^5]
[^0]: ${ }^{1}$ Data from annual reports of N. Y. State Public Service Commission for the First cated beiow. Suopway, eievated, and street car passengers included throughout. Bus passengers excluded, 1907-29 segment; included, 1927-41. Data for busses compiled by the NBER from reports of individual companies in files of the Transit Commission, January 1927-June 1935; taken from worksheets of the Commission, July-December 1935.

[^1]: ${ }_{2}$ Sources are as indicated in Table 135.

[^2]: ${ }^{\text {a }}$ From Survey of Current Business, June 1927, p. 22, and Automobiles (Bureau of Census, mimeographed) various issues. Three-month average; date of level is middle month.
 b June 1924 was almost as low.

[^3]: ${ }^{3}$ We have no directly comparable figures for traffic. Barrels originated are roughly half of barrels transported. About $600,000,000$ barrels must therefore have originated in 1930. For 1937 the figure is $948,000,000$.
 ${ }^{4}$ Data from Commercial Statistics, 1925-43. None before 1925. Inland excludes coastwise, for which no ton-mile data are available.

[^4]: ${ }^{5}$ None of the date reviewed tell ws amything abouic the fortunes of the commerciai water transport industry. A large part of the traffic, especially of ore and petroleum, secancer vose iron ore moving over the Great Lakes in the four months May to August 1944 shipped 11.9 percent of it in their own vessels and 37.0 percent in those of subsidiary and related companies. The oil industry poured 66.9 percent of its coast-

 affiliates. (C. S. Morgan, Problems in the Kegulation of Domestic Transportation by Water, Report in Ex Parte No. 165, published by the ICC, 1946, pp. 48, 61.)
 ${ }^{6}$ Their indexes of output, employment, and employment per unit (the inverse of productivity) are published in Solomon Fabricant, Labor Savings in American Industry, 1899-1939, NBER Occasional Paper 23, (Nov. 1945), p. 51.

[^5]: ${ }^{7}$ Most of the differences, with respect to the kind of conformity suggested, between tonnage including and tonnage excluding farm products were, however, confined to two short periods. One occurred in the 1840's, all four others in the 1890's.
 ${ }^{8}$ Data from Department of Commerce, Air Commerce Bulletin, and Civil Aeronautics Administration, Civil Aeronautics Journal.

