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SEASONAL ADJUSTMENT AND MULTIPLE TIME SERIES ANALYSIS

Kenneth F. Wallis
University of Warwick

INTRODUCTION

Despite the expenditure of enormous amounts of energy
(and computer time) in the search for a solution, the
seasonal adjustment problem flourishes. Shortcomings in
existing methods of adjustment are continually perceived,
and new methods proposed [2; 3]. The official statistician
is concerned to provide a method of adjustment for series
taken one at a time, paying little attention to the context
in which the data are gathered, and often seems to feel
that the more automatic and mechanical the adjustment
procedure is, the better. The economist believes that
variables are related, whether a formal model to represent
the interrelationships is constructed or an informal exami-
nation of a number of series taken together is carried out
when the current economic situation is under study.
Never the twain shall meet! Thus, with the U.K. unem-
ployment series, adjustment methods break down, and
new methods are introduced by official statisticians at
dates that often coincide with the occurrence of labour
market phenomena that are, in turn, a subject of independ-
ent study by economists; when institutional arrangements
are changed, possible impacts on the seasonal components
of relevant variables and, hence, on the adjustment
methods employed seem not to be considered. While
statisticians seem unwilling to examine related series
together, the linear constant-parameter models, con-
structed by economists, seem unable to adequately capture
seasonal effects except by the use of proxy variables—
usually seasonal dummy variables, again a somewhat
automatic procedure. A different approach is presented
by the methods popularly known as Box-Jenkins methods
[1], in which a single time series is modeled as an
(possibly seasonal) autoregressive-integrated-moving-aver-
age (ARIMA) process.

This paper compares and contrasts these various ap-
proaches to the analysis of seasonal series, particularly in
a multiple time series context. The view taken is that
‘*seasonality in one economic variable is not necessarily
an isolated phenomenon but may be related to the
seasonality in other economic variables with which that
variable interacts’’ [13, p.19].

The second section is concerned with the consequences
of different treatments of seasonality, in turn, considering
univariate modeis, single-equation models, and systems of
equations; the third section contains two illustrative ex-
amples.

SEASONAL TIME SERIES: ANALYSIS AND
ADJUSTMENT

Univariate Analysis

We begin by briefly considering alternative approaches
to the modeling of a single seasonal time series. It is
assumed that the effect of a seasonal adjustment procedure
can be studied by considering the effect of a linear filter
on the series; thus, the adjusted series, y?, is obtained
from the original series y as y{'= 2 a;y,—;=a(L)y,, where L
is the lag operator. For the adjustment of current data the
filter a(L) is one sided, but a symmetric two-sided filter is
usually used for the adjustment of historical series, given
sufficient data.

A convenient starting point is the zero-mean stationary
process, generated by the linear relation

ML)y =0(L)e, M

where &(L) and &(L) are polynomials in L of degree p and
q, respectively, and {e]} is a white-noise error—the
ARMA (p, q) model. For nonstationary seasonal series,
Box and Jenkins [1] propose the class of model

HLYPLA(1-L)'(1-L")” y =8,+0(L)OLYe,  (2)

of order (p, d, q) X (P, D, Q),, where ®(L?) and 6(L*)
are polynomials of degree P and Q, respectively, in L&,
s. being the number of seasons per year. Such models can
certainly capture correlations between observations for
the same season in successive years, and it has been
assumed, as ‘‘would usually be reasonable’” [1, p.304],
that the polynomials ® and 6 are the same for each
season. In practice, the choice between a seasonal differ-
ence (1-L*) and a seasonal AR operator (1-®,L*) with
coefficient less than | for modeling a particular phenome-
non is not unambiguous when short series are analysed
[9]. However, the implications clearly differ if the model is
used for forecasting, because the use of (1-L*) implies that
a seasonal pattern with constant amplitude will be main-
tained in the forecasts, whereas a seasonal AR operator
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with 0<®,<1 implies that the seasonal pattern will gradu-
ally decay.

The effect of filtering is to replace the model (2) for the
y series by the following model for the y® series:

SWLIPLY-LY(1-L*)"yi=a(L)8,+a(L)B(L)O(L ),

Since the effect of a typical seasonal adjustment filter is
to reduce autocorrelation at lags s, 2s, 3s, ..., but to
induce small autocorrelation coefficients at nonseasonal
lags [13], a(L) might be expected to contain factors that
would approximately cancel with the seasonal factors in
the model, but such cancellations would not completely
account for the action .of the filter. Thus, the adjusted
series might be modelled in standard ARIMA fashion as

HL)(1-L)y¢=0,+a"(L)B(L)e,

where the effect of a’(L) is to increase the order of the
(nonseasonal) MA operator, although the associated coef-
ficients may be small in absolute value; alternatively. these
effects might be more effectively captured on the autore-
gressive side. Hence, in practice, it might be difficult to
say much about the underlying model for v, on the basis
of an analysis of y¢, although if both series have been
analysed, one might expect to find common elements in
the nonseasonal AR and MA operators for the two series.
The classical additive components model for an eco-
nomic time series assumes that the series contains trend
cycle, seasonal and irregular components, often taken to
be independent of one another, and the seasonal compo-
nent is variously modeled in a deterministic or stochastic
fashion. The simplest deterministic model is that of a
constant additive seasonal pattern, familiarly estimated in
econometrics by the use of seasonal dummy variables,
while a slowly changing seasonal pattern can be repre-
sented by dummy variables interactive with trend. The
stochastic model of Hannan [6] represents an alternative
approach to an evolving seasonal pattern, and a stochastic
components model can be obtained by selecting appropri-
ate members of the class (2) to represent each component,
as in Grether and Nerlove [5]: The sum of such independ-
ent components is again a member of the class (2).
However, this may not represent a fruitful approach in
practice, for the optimality of Grether and Nerlove's
optimal signal extraction approach to seasonal adjustment
rests, in part, on the assumption that the ARMA model
for each of the separate unobserved components is known.
A regular seasonal component can be removed from a
series by use of the operator (1-L?), but, in practice, this
presents further difficulties in estimating the model (2).
For example, if the process is generated by y,=n,+u,,
where 7, has the stochastic representation
&(L)(1-L)%n,=60(L)¢,, and, in the extreme case, the sea-
sonal component . is deterministic with w=g-,, then

dL)N-L)* y =8 )e+SLY1-L) p,

SECTION VI

and use of the seasonal differencing operator to remove
the seasonal component results in

SWL)N-LYH(1-L?) y =0(L)(1-L*) &=0'(L) €

The resulting MA operator has a root on the unit circle,
which causes considerable difficulties for the usual statis-
tical estimation and inference procedures. Such problems
can be avoided by the use of seasonal variables within
the time series model. In the present example, this is
accomplished by including s seasonal means in the AR-
IMA (p,d,q) model, as follows:

¢(L)(|—L)dy,=12 0,4+0(L) € €))
=1

Some examples of this approach are given in the subsec-
tion on an aggregate demand model.

Related Series

The implications of the use of seasonally adjusted data
in studying the relationship between a pair of series are
considered in [13]. (See also [12].) The argument is
presented in terms of linear filters, but a Monte Carlo
study, using artificial data adjusted by the Census Bureau
X-11 program, indicates that, at least for the cases
studied, the linear filter analysis provides a good guide to
the results of using the official nonlinear procedures. For
the distributed lag model

vi=Yoa;x,_+u,

various possibilities arise depending on whether y and/or
x exhibit seasonality.

If y is a seasonal series, then the implication of the
model is that this is caused either by x or u. Whether
seasonal filtering is required is determined by the behav-
iour of the disturbance term, since applying least squares
methods to filtered data can be regarded as equivalent to
an efficient generalized least squares procedure if the
autocorrelation structure of u, is approximately removed
by the filter. Whatever choice is made, the same procedure
should be applied to both y and x in order to avoid
distorting the distributed lag function. If the u series is
nonseasonal, the seasonality in y being entirely caused by
x, then what seems to be the obvious thing to do, namely
to filter or adjust both y and x, will, in fact, prove less
efficient than using the raw data; the more seasonal is the
x series, the less efficient are the estimates based on
adjusted data. When the x series is nonseasonal, the same
filter should, nevertheless, be used for both y and x to
preserve the structure of a(L); in this case, one would
expect some filtering to be applied, since the u series will
be seasonal, this being the cause of y’s seasonality. Note
that these arguments differ from that advanced by Box
and Jenkins [1] in the context of transfer function identifi-
cation procedures. They argue that if a prewhitening filter
for the x series has been identified and estimated, the
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same filter should be applied to the y series in order to
facilitate identification of the structure of a(L). Our own
argument falls more in the econometric tradition of seeking
efficient estimators for a given structure; nevertheless, the
requirement to use the same filter on both y and x is
common to the two approaches.

Of course, if the residual seasonality is deterministic,
then its explicit modeling, through dummy variables, is to
be preferred. A fixed pattern could be removed by
seasonal differencing, but the difficulties described in the
previous section could be expected to reappear.

The possibility that different components of the series
are differently related can be considered by writing x, as
the sum of nonseasonal and seasonal components

X=xP+x}
and the distributed lag relation as
ye=a,(Lx?+ay(L)xi+u,

This discussion is concerned with the special case
aL)=ayL). In practice, the detection of different rela-
tions for the two components seems difficult; it is seldom
that data are available in sufficient quantity to provide the
required resolution for the relevant frequency-domain
techniques. In the time domain, one might hope that the
seasonally adjusted series x* would provide a close ap-
proximation to x° so that x? and x-x% could be used in
place of x° and x2. Note that even if x¢ is very close to x°,
an attempt to estimate a,(L) by relating y to x¢ will be
subject to omitted variable bias, since, if x@ is obtained by
filtering, x® and x-x¢ are not orthogonal.

A further special case of interest occurs when a,(L)=0,
so that the seasonal component of x is genuinely noise. If
u is nonseasonal, this represents the opposite case to one
previously considered, since the observed x series exhibits
seasonality, but y does not. This case could surely be
detected by examining the separate series. It is of the
standard errors-in-variables form and again raises the
question of using x% as an approximation to x°, which
may reduce the biases in estimation based on x itself.
Evidence of some success with this approach is contained
in the simulation results in [13].

If a (possibly seasonal) ARIMA representation is postu-
lated for the x series, the nature of the implied ARIMA
representation for y can be readily deduced. Writing the
rational distributed lag or transfer function relation as

w(L)

=== x+
Ye S(L)x‘ u,

where w(L.) and 8(L) are of degree h and k, respectively,
and the models for x, and u, as

& (L) =0(L)e,,
bu(L)u=04(L)exy

L.

349

then on substituting and rearranging we obtain
d(L)(L)bu(L)y = (L)0AL)D(L)E+O(L)DAL)OL ),

Since €, and ¢, are independent, the right-hand side has a
simple moving average representation {4], hence we have

®u(L)y =0,L)ey

which is of order (p,.q,), where p,=k+p.+p,, assuming
no cancellation of factors, and q,=max(h+q.+p.
k+p:+q.). Note that if either ¢pAL) or ¢ (L) (or both)
contains the- factor (1-L?), then so does ¢,(L). Moreover,
if x possesses a deterministic component, so that the use
of the seasonal differencing operator (1-L?) produces the
difficulties referred to in the previous section when mod-
elling the x series, the same is true of y. Thus, if
x=&+m,, where w,=u,,, then the deterministic compo-
nent in y, is {w(L)8(L)}u,, and, on removing this by
applying the operator (1-L?), a unit root is induced in the
moving average operator. As argued in the previous
section, explicit modeling of such components is prefera-
ble.

Multiple Series and Final Equation Considerations

If the distributed lag relation of the previous section is
but one of a set of such relations between endogenous
and exogenous variables, then the final equation consider-
ations become relevant. (See [9; 14; 15].) The general
linear dynamic model, relating a vector of endogenous
variables y, to a vector of exogenous variables x,, is
written in structural form as

E(L)!r‘kl‘(L){r:El 4

where B(L) and I'(L) are matrices of polynomials in the
lag operator. The final equations are

[B(L)ly,=-bW)(L) x,+b(L) u, &)

where b(L) is the adjoint matrix and |B(L)| the determinant
of B(L). This gives a set of multiple-input transfer function
equations, each of which relates a given endogenous
variable to its own past values and to the exogenous
variables but to no other endogenous variable, current or
past. Assuming that there is no cancellation of common
factors across particular final equations, these have the
special characteristic that the autoregressive operator
IB(L)| is the same for each endogenous variable, equiva-
lently that the denominator polynomials in the rational
distributed lag models are all the same, unless the model
contains a recursive element.
To illustrate, consider the two-equation model

(Bt Bus®) (yu) o (7D O ) () =( )
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that is just-identified by Hatanaka's conditions [7). The
final equations are

{B“(L)B’-"-‘(L)_BI'-’(L)B: (L)} ( ;l',: )

=1 B LYyyn(l) BIQ(L)'YE;'(L)J ( XII) +‘ Wll)
BalLyy L) =B(L)Yy2AL) Xt Wy

with error terms given by
Wy =Bao L)t ;=B 1oL )2,
W == (L)t 1o+ By (L)

Seasonality in the endogenous variables may result from
seasonality in the exogenous variables (which may include
deterministic variables), in the disturbance terms, or from
a particular pattern of lag coefficients. Whatever the
nature of the generating mechanism and even if such a
mechanism is present in only one structural equation, the
final equations indicate that the question of whether an
endogenous variable is seasonal or not is answered in the
same way for each variable: whatever causes of seasonal-
ity are present in the model are present in both final
equations. The detailed structure of seasonality may differ
between y; and y,, since the right-hand sides of the two
final equations are not identical; in broad outline, the
patterns can be expected to be similar, and, of course. the
autoregressive coefficients are the same for each variable.
Departures from this general conclusion can result from
**coincidental situations’’ in Granger and Morris’ term [4];
for example, if the only seasonal effects in the model are
uy=Pu,,.+€, and By(L)=1-G’'L* with, coincidentally,
B'=®, then the final equation errors differ in their
seasonality, w,, having no autocorrelation at seasonal lags.

The model becomes recursive (in the more general
dynamic sense) if 8,,(L)=0. Then the AR operators differ
between the two variables, for B,(L) cancels across the
first final equation; equivalently, note that the first struc-
tural equation is already a final equation (which, of
course, still holds if x, is introduced with coefficient
v12(L)). The final equations are

BuL)y y=-yull)x+uy
BulL)B2oL)y 2=Bay(LYy11(L Yx 1~ 1(L)722(L)th tWoy

Seasonal effects generated in the first structural equation
again carry through to both y, and y,, but effects originat-
ing in the second equation do not feed back into y,, so
the seasonal implications for y; and y, may differ.

The multiple time series generalization of (1), considered
by Quenouille [10], gives the vector ARMA model, and,
if the exogenous variables of the model (4) possess
ARMA representations, the extended model describing
the generation of both endogenous and exogenous varia-
bles is a special case of the vector ARMA process, as
noted by Zellner and Palm [15):

(FO) 0\ (x\_(GWE
(.F(L) z_a(L)) (g:)_({I(L)ge) ©)

T sann. L R
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The block-triangular nature of the autoregressive matrix,
together with the requirement that the white-noise proc-
esses & and €., are uncorrelated for all ¢+ and &, ensures | Manuf
that the x variables can be treated as exogenous in the
structural form (4); for the present purpose, the structural The
disturbance term is assumed to have the MA representa- | invent
tion u=H(L)&,. On diagonalizing (6), a set of final equa- | (UO)
tions is obtained, comprising an ARMA equation for each | Janua
variable of the model. In effect, this generalizes the | availa
analysis of the closing paragraph of the subsection on | erable
related series and gives a set of seemingly unrelated | behay
ARMA models, again with the AR operator, in general, | Trive
common to all endogenous variables. This analysis implies | simpl
that, when constructing models of the pure time-series | seaso
kind for economic variables, the usual practice of consid- | ident:
ering variables one at a time, in separate univariate
analyses, is inappropriate. If the variables being studied,
for such purposes as statistical forecasting or seasonal | henc
adjustment, can be regarded as endogenous variables of and
some underlying structural model, then the ARMA models are
have cross correlated disturbances and AR coefficients iden
subject to restrictions and to take account of either factor as fi
would improve the efficiency of the statistical methods.
Procedures for specifying and jointly estimating such
models, including a test of the common AR restriction, Suc
are described in [14]. In practice, conflicts may arise

. L rela
between the above algebraic derivation and the results of .
statistical analysis, especially as far as the degree of the ‘thaf
common autoregressive polynomial is concerned. Thus,

- . . . cor
given that the highest order coefficients in B;(L) are .
individually significant in some appropriate structural esti- pn,‘

. . . rel:
mation procedure, the resulting |[B(L)| will be of substan- she
tially greater degree, and the highest order coefficients .
may not be significant when these are estimated, free of the
restrictions, from short economic time series, even in the
absence of cancellations or near cancellations. %:

With respect to seasonal effects, the considerations of P
the subsection on univariate analysis apply to the vector de
case, and, if seasonally adjusted data are employed, again di
the argument of the subsection on univariate analysis can 50
be generalized. As far as deterministic elements are m
concerned, note the assumption in (6) that the exogenous th
variables of the econometric model have purely stochastic si
ARMA representations. Certain exogenous variables, in
particular seasonal dummy variables, may not be well r
approximated in this manner and cannot be solved out in ;
moving from a structural form to a set of seemingly
unrelated ARMA models but must be retained explicitly
in the solution, yielding models of the basic ARMA form
but augmented by such deterministic effects. For example,
if all the elements of the vector x, are purely deterministic,
then the final equations (5) give an example of the mixed
deterministic-stochastic time series model under consider-
ation; if x, comprises the simple seasonal dummy varia-
bles, these final equations are a set of seemingly unrelated
ARMA models, with varying seasonal means, of the form
of (3). Examples of these various approaches are given in
the next section.
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EMPIRICAL EXAMPLES
Manufacturers’ Shipments, Inventories, and Orders

The first example uses monthly data on shipments (S,),
inventories (I), new orders (NO,), and unfilled orders
(UO)) for the U.S. durable goods manufacturing industry,
January 1958—September 1975, in billions of dollars,
available in both adjusted and unadjusted forms. Consid-
erable attention has been given to the subject of inventory
behaviour in applied econometrics (see, e.g., Rowley and
Trivedi [11, chs. 2, 6], but, for our present purposes, we
simply use the four series as an example of interrelated
seasonal series. In fact, the series are also related by the
identity

U01=UO¢_1+NO¢-S¢

hence, in joint estimation, one series must be dropped,
and our multiple time series results, given in the following,
are concerned with the series (S, I, NO,). A further
identity might also be used to define a production series,
as follows:

Pg=S¢+I‘—I¢..1

Such a derived series has not been analysed, but the
relation suggests that, in the relevant time series analyses,
it might be necessary to difference the I-series once more
than the other series in order to measure all variables in
comparable flow terms; however, a simple acceleration
principle view of inventory investment would postulate a
relation between Al and AS, suggesting that the series
should be treated equally.

We first describe the results of univariate analyses of
the individual series, broadly based on the Box-Jenkins
guidelines, but mainly concentrating an autoregressive
representations on grounds of computational convenience.
Particular attention is paid to the choice of appropriate
degrees of differencing, i.e., to the choice between a
difference or quasi-difference operator, in both the sea-
sonal and nonseasonal contexts. Estimation is by exact
maximum likelihood methods, which, in particular, avoid
the need to change the effective sample size as autoregres-
sive orders are changed.

Univariate analyses: unadjusted data—For the ship-
ments series we choose the following (2, 1, 0) x (2, 1, 0);,
model:

(1-0.06L +0.14L%)(1+0.49L'2+0.24L2*)AA,; S =€,
0.07) (0.07) (0.08) (0.08)

¢¢=0.635, 0(20)=13.00

(standard errors are given in parentheses, and Q(f)
denotes the portmanteau test statistic of model adequacy,
based on residual autocorrelations and tested as a x*
variate with f degrees of freedom). One nonseasonal
differencing operator is immediately suggested by an
examination of the autocorrelation function, and the choice

A AN ST e M
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of a seasonal differencing operator is supported by a
comparison with a (2, 1, 0) x (3, 0, 0),, model: In such
a model, ®(L-"?) has a root of 0.975, and a comparison
of likelihoods favours the model previously reported. This
has a pair of complex roots in both the nonseasonal and
the seasonal AR operators, implying damped oscillations
with periods of 4.23 (months) and 3.01 (years), respec-
tively.

The inventories series displays a less regular seasonal
pattern, and the question of the appropriate degree of
differencing solely concerns the choice of the value of d.
A4,2,0) x (2,0, 0),, model is estimated as follows:

(1+0.38L+0.11L2-0.18L3-0.14L4)(1-0.38L2-0.31L29)A%/,
0.07) (0.07) (0.07) (0.07) (0.07) (0.08)

=€, 62=0.082, Q(18)=22.68

The restriction implicit in the use of two differencing
operators can be tested by comparing with a
5, 1, 0) x (2, 0, 0),, model, and, in fact, a likelihood ratio
test rejects the restriction. Nevertheless, for reasons that
will be discussed, we retain the specification of d=2. On
adding a moving average component to this model, no
evidence of overdifferencing is found. The nonseasonal
AR operator contains a pair of complex roots with a
period of 3.28 months, while the seasonal AR operator
factors as (1-0.78L'2)(1+0.40L ).

The new orders series is modeled in similar form to the
shipments series as the following (3, 1, 0) X (2, 1, 0),,
process:

(1+0.08L +0.022.2-0.19L3)(1+0.50L2+0.24L24)AA;,NO,
(0.07) (0.07) (0.07) (0.08) (0.08)

=€, 02=1.27, 0(19)=21.07

Both AR operators contain a pair of complex roots,
implying damped oscillations with periods of 2.97 months
and 2.98 years, respectively, which compare closely with
the previous models.!

As noted, the unfilled orders series is not included in
the joint estimations that will be reported, but, for the

! Moving average representations are suggested as alternatives in
some instances, particularly for the seasonal factor in the S, and NO,
models, where the seasonal AR operator has the appearance of the
first few terms of the expansion of (1-OL')"'. The corresponding
estimates are

(1-0.07L +0.15L*)AA 55 =(1-0.45L )¢, 62=0.648, Q(21)=13.30
(0.07) (0.07 0.07)

(1+0.08L +0.02L.2-0.19L3)AA ,,NO,=(1-0.58L ?)¢,,
(0.07) (0.07) (0.07) (0.07)

62=1.24, 0(20)=19.94

While the differences in goodness of fit are marginal, the principle of
parsimony [1] would lead to the above models being preferred.
However, at the time of writing, we have not developed a program
for exact maximum likelihood estimation of vector seasonal mixed
autoregressive-moving average models. and the joint estimates which
will be reported are confined to vector autoregressive models.
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sake of completeness, we describe our experience in
univariate analysis. However, models of the form consid-
ered above do not pass the diagnostic checks quite so
easily. For example, a (2, 1, 0) X (2, 0, 0),, model is

(1-0.64L -0.18L2)(1-0.26L'2-0.21L*)AU O ,=¢,,
0.07) (0.07) (0.07) (0.08)

62=0.612, 0(20)=32.82

The Q-statistic for this model slightly exceeds the 5-
percent critical value, but the main contributors are the
residual autocorrelations at lags 6, 17 and 22, which have
no ready interpretation. The seasonal AR operator factors
as (1-0.61L'?)(1+0.35L"2), which is of similar form to that
of the inventories series. The choice of d=1 is supported
by the roots of the nonseasonal AR operator, 0.85 and
-0.21, the former being significantly different from 1.

Univariate analyses: adjusted data—The nonseasonal
effects observed in the unadjusted shipments series were
relatively small, though significant; in the adjusted series,
these effects virtually disappear, thus,

(1-0.08L)A §¢=0.13+¢,, 2=0.39, Q(9)=8.01
0.07) .(0.04)

The random-walk-plus-trend interpretation of the series is
maintained when seasonal models are entertained, for no
evidence of any effect (such as an over adjustment)
calling for a seasonal factor is found.

For the adjusted inventories series we select the follow-
ing (2, 2, 0) model:

(14+0.45L+0.16L2%) A*I§=¢,, 62=0.067, Q(8)=11.73
0.07) (0.07)

In this case, the choice of d=2 is supported in a likelihood
ratio test against a (3, 1, 0) alternative, the AR operator of
the latter having a root of 0.95. The AR operator of the
preferred model has a pair of complex roots with period
2.91 months, which compares with a period of 3.28
months in the model for the unadjusted series.

The adjusted new orders series exhibits the features
discussed in the subsection on univariate analysis, namely
the introduction of small autocorrelations at lags that, on
the one hand, are nonseasonal but, on the other hand, are
not readily interpretable. Thus, we have the (5, 1, 0) model

(14+0.04L—0.14L2~0.24L3+0.10L*+0.20L5)ANO? =¢,,
0.07) (0.07) (0.07) (0.07) (0.07)

¢2=0.834, 0(15)=23.76

There are two pairs of complex roots in the AR operator:
One has a period of 3.05 months, which compares closely
to that obtained in modeling the unadjusted new orders
series. The second pair of complex roots implies damped
oscillations with a period of 12.23 months, which might
suggest a residual seasonal effect or possible overadjust-
ment, but, on estimating seasonal models, no significant
effects are observed.

The adjusted unfilled orders series, likewise, displays
small intermediate autocorrelations apparently introduced

SECTION vi

in spurious fashion by the adjustment filer. A (6, 1, ()
model is

(1-0.64L-0.37L2-0.04L3+0.26L4+ 0.21L%-0.24L®)AUO?
(0.07) (0.08) (0.08) (0.08) (0.08) (0.07)

=€, 02=0.462, 0 (14)=13.93

The roots of the AR operator are not very informative,
There is a real root of 0.87, which compares closely with
that estimated from unadjusted data, and a complex pair
with period 11.26 months, suggesting residual seasonality.
The remainder (real: —0.759; complex: Period 3.03) suggest
noise induced by the adjustment when compared with the
results based on unadjusted data for this variable, but
damped oscillations with a period of approximately 3
months appear relatively frequently in our analyses of the
other series.

It is clear that the seasonal adjustment procedure
removes more from the unadjusted series than is modeled
by the seasonal AR or differencing operators. A prior
indication of this can-be obtained by examining the
variances or standard deviations of the first differences of
the variables in adjusted or unadjusted form (and noting
the different behaviour of stock and flow variables). These
are presented in table 1, with the additional aim of
illuminating the residual variances of the models quoted
above—the smaller residual variances of the models for
the adjusted S, and NO, series clearly do not imply that
these models have superior explanatory power, once the
prefiltering of the data is borme in mind.

Joint estimation: unadjusted data—A modeling proce-
dure for the multiple time series model with diagonal
autoregressive matrix, which is interpreted as a multivar-
iate representation of the individual time series models for
the endogenous variables of an economic system, is
presented in [14]. The procedure starts from joint estima-
tion of models suggested by the univariate analyses and
includes a test of the common autoregressive polynomial
restriction. The argument of the previous section indicates
that this procedure should be applied to series that have
been treated equally, rather than to a mixture of adjusted
and unadjusted series, and this is now considered. Esti-
mation with the vector (S,, I;, NO) runs into difficuities,
the nature of which suggests that the inventory series
should be differenced once more than the shipments and
orders series. For the vector y,=(S, Al, NO)', the
following (2, 1, 0) X (4, 1, 0),, model is preferred in
likelihood ratio tests:

(140.08L +0.02L2)(140.55L1240.33L%4+0.08L38+0.12L )
(0.06) (0.06) (0.06) (0.08) (0.08) (0.07)

(140.31L +0.11L(1+0.70L+0.56L*+0.48L%+0.29L" | 44,y =€,
(0.08) (0.08)  (0.08) (0.10) (0.10) (0.09)

(1+0.18L +0.14L%)(1+0.57L'2+0.39L%+0.23L38+0.32L *)

(0.06) (0.06) ~ (0.06) (0.08) (0.08) (0.07)
. 0652 —0.033 0644
= 0.079 -0.013
- 1.250
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Table 1. STANDARD DEVIATIONS OF
ORIGINAL, DIFFERENCED, AND

RESIDUAL SERIES
Variable St lt NOt UOt

- Unadjusted data
Xy oovonoonnnnnnn. 8.91f 19.84 9.22 23.78
AXy oo 1.96 0.52 1.89 1.22
Amxt ............. 193} 4.16 2.88 9.73
T 0.89 .58 1.28 1.54
I S | 38 . -
Residual of model

reported. . . ........ .80 .29 1.13 0.78

Adjusted data

X 889| 2002 9.23| 24.00
XY ..o 063 046| 095 1.20
A%X3 | 28 - .
Residual of model

reported. .. ........ 62 .26 .91 0.68

- Entry represents zero.

The null hypothesis of a diagonal ¥ matrix, or inde-
pendent series, is rejected in a likelihood ratio test, the
dominant feature being the correlation of 0.71 between the
shipments and new orders -residuals. On imposing the
restriction of a common AR operator, we obtain the
estimates

(1+0.20L +0.08L.2)(1 +0.61L12+0.43L.24+0.27L36+0.25L %)
(0.04) (0.04) (0.05) (0.06) (0.06) (0.05)

The likelihood ratio test statistic for the hypothesis of a
common autoregression has a value of 25.78, and, on
testing this as a 2 variate with 12 degrees of freedom, the
hypothesis is rejected. Despite the similarities in the
implicit dynamics of the separate AR operators, which all
have complex roots implying damped oscillations with
similar periods (nonseasonal: Respectively, 3.36, 3.05, and
3.46 months; seasonal: Respectively, 2.66, 2.46, and 2.59
years and 5.36, 4.95, and 5.62 years) an inspection of the
coefficients suggests the treatment of seasonality in the
inventories series as the main source of difficulty. The
univariate model for I, has D=0, and the application of
Ay, in joint estimation must then be compensated in the
AR coefficients. Starting with the univariate seasonal AR
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operator, we calculate
(1-0.38L12-0.31L%%/(1-L")
=(1-0.38L12~0.31L2)(1 +L2+L24+ L%+ )
—(140.62L12+0.31L%+0.31L%+0.31L%+ . .)

which is reflected in the joint estimation for this series
when seasonally differenced. Clearly, it is necessary to
consider different treatments of seasonality within the
multiple time series model, since the underlying generating
mechanism is not transmitted in the same way to all
variables of this system.

Joint estimation: adjusted data—The tendency of the
adjustment procedure to induce autocorrelations at inter-
mediate lags seems to be emphasized in joint estimation,
because the following (7, 1, 0) model is preferred in like-
lihood ratio tests as a representation for the vector
yi=(S¢, Alf, NOg)":

1+0.08L -0.09L?-0.07L3+0.06L*+0.17L3+0.00L8+0.11L?
(0.06) (0.06) (0.06) (0°06) (0.06) (0.10) (0.06)

140.38L +0.09L2-0.08L3-0.04L*+0.03L3-0.06 L®-0.15L"
(0.07) (0.08) (0.08) (0.08) (0.08) (0.08) (0.07)

14+0.18L+0.03L2~0.12L3+0.10L*+0.24 L5+0.07L®+0.19L7
(0.06) (0.06) (0.06) (0.06) (0.06) (0.03) (0.06)

. | 0.404 -0.021 0.38
S= 0.066 0.010
- 0.851

Ay =¢

Although the separate variances of the shipments and
orders residuals are slightly increased from their single-
series values, the generalized variance shows an overall
reduction, a substantial correlation (0.66) between the
residuals of these two series being again observed. On
imposing the restriction of a common AR operator, we
estimate

(1+0.19L-0.0422-0.113+0.06L¢+0.17L%+0.03L¢+0.07L%)
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

The likelihood ratio statistic for testing the hypothesis of a
common AR operator has the value of 36.48; as a x?
variate with 14 degrees of freedom, this is significant at the
l1-percent level, and the final form restriction must be
rejected. The use of seasonally adjusted data is clearly not
a panacea for the problems described in the previous

paragraph.

An Aggregate Demand Model

Our second example is concerned with the endogenous
variables of a dynamic model of aggregate demand in the
United Kingdom, constructed by Hendry [8] as a vehicle
for an investigation of the performance of alternative
econometric estimation and specification methods. The
data are quarterly constant-price series, in millions of
pounds, for 1957 III-1967 IV (42 observations). The seven
variables considered are consumers’ expenditure on dura-
ble goods (Cd) and on all other goods and services (Cn),
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gross domestic fixed capital formation (/), inventory in-
vestment (Iv), imports (M), personal disposable income
(Yd), and gross domestic product (Y). Hendry uses
seasonally unadjusted data, and these have also been used
by Prothero and Wallis [9] to investigate the performance
of the Box-Jenkins methodology when applied to short
seasonal macroeconomic series. They consider the univar-
iate model selection problem and, after taking final equa-
tion considerations into account, choose representations of
order (p, 0, 0) x (P, 1, 0), for comparison with Hendry’s
model—the values of p range from 0 to 2, five of the series
having p=1, while the values of P range from 1 to 4.
When models based on seasonally differenced data con-
taining a seasonal MA element are considered, a moving
average coefficient tending to 1 often arises, hence, the
alternative of quarterly seasonal means to represent a
fixed seasonal pattern within the time series models should
also be entertained. Since the data are also available in
seasonally adjusted form, a further comparison is possible.
The amount of variation in the series removed by the
various operations, and that remaining to be explained by
a time series model, is indicated in table 2, the first five
rows being based on results reported in [9, tables 1-7].

Unadjusted data, quarterly means—The sixth row of
the table indicates that the use of four quarterly means in
place of a seasonal differencing operator achieves greater
‘‘explanatory power’’, moreover for three series the resid-
ual variance is already smaller than that of the previous
autoregressive representation. On considering various
ARMA models, it is immediately clear that the problems
of unit roots in the MA operators previously found when
working with seasonally differenced data now disappear,

Table 2. STANDARD DEVIATIONS OF
VARIABLES AND RESIDUALS

Variable Cd| Cn l Wl M{vYvdl Y
Unadjusted data
Xpoooonvnnnn 9313742141 74| 179]517| 606
A)(t .......... 58{267| 56| 90| 60| 178} 246
BgXpe o vvevivnn 53} 40} 70] 79} 65]127] 118
AA4Xt ......... 45| 38| 55 80| 69117 101
Residual of
(p00)x(P10)y .| 37| 28| 38 47| 40 96 83
AX‘, quarterly
means ........ 41| 30| 37| 59| 48| 92 79
Adjusted data
X2 89(334|212| 56178 |505| se9
BX3 ... 32) 24| 36| 50| 43| 73| 70
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in accordance with the discussion in the subsection on
univariate analysis. In fact relatively few additional effects
are observed, and AR representations are generally pre-
ferred, as follows:

(1_0.405L<)ACd,=29,,_,+e,, 62=1399, Q(15)=6.18
(0.15)

(1+o.30€,)Acn,=zé,_,+e,, 62=801, Q(15) =7.51
(0.15)

(I+02SLIAL, = Fusve, 1=1263, Q(15)=7.54

(1+0.5a‘)AIV = 230J+€b
0.13)

3=2358, Q(15)=10.23

(1+0.39L)AM (= 38, /+€, 63=1930, Q(15)=8.36

0.14)

- (14+0.25L +0.31L.2+0.33L3)AYd,= 38, ,+€,,
0.15) (0.14) (0.14)
o2=6886, Q(13)=5.10

(1?8.?%)AY,=29.,J+5,, 2=5344, Q(15)=6.50

Six of the reported models contain only a single AR
coefficient, the exception being Yd; the /-series has no
significant autocorrelation, but the strongest effect, at lag
8, is retained in this model for comparative purposes.

‘Adjusted data—An examination of the correlograms of
the adjusted series, and of the last two rows of the above
table, immediately points to the need for a differencing
operator. Once this has been applied, however, little
remains to be modeled, and, for five of the series, no
improvement can be achieved by either AR or MA
elements.

ACd}= 8.17+€,, 6%=1006, 0(10)=5.95

(4.95)
ACn?=26.63 +¢,, 63=566, 0(10)=6.99
(3.71)
Al3=15.61+¢,, 62=1318, Q(10)=6.54
(5.67)
(1+0.45L)AIve=¢,, G2=2017, Q(9)=6.80
(.14)
(1+0.32L)AM = 18.36+¢,, G2=1645, 0(9)=6.46
(.15) (6.70)
AYd9=39.48 +¢,, G2=5335, Q(10)=5.23

(11.41)

AY9=41.61 +¢, 2=4843, Q(10)=10.46
(10.87)

In no case is any seasonal AR or MA operator called for,

either to supplement the adjustment or to correct for

overadjustment.
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Joint estimation—The final analyses are concerned with
joint estimation of models suggested by the univariate
dnalyses. For the unadjusted data, we first consider the
joint estimation of the (p, 0, 0) X (P, 1, 0), models selected
in [9]. The results are as follows:

-

—(1-0.63L)(l+0.45L‘+0.38L“)
0.14)  (0.22) (0.19)

(1-0.42L)(1+0.54L4+0.17L"*)
0.13)  (0.16) (0.16)

(1-0.53L)(1+0.61L4+0.52L.#+0.18L '*)
0.11)  (0.13) (0.12) (0.13)

(1-0.25L-0.15L%)(1 +0.81L 4+0.56L 4 +0.44L %)
(0.11) (0.10) (0.11) (0.12) (0.11)

(1+0.66L4+0.53L%+0.29L3+0.18L %)
0.17) (0.24) (0.23) (0.17)

(1-0.45L)(1+0.34L%)
©0.13)  (0.18)

(1-0.52L)(1+0.57L4+0.31L")
©.11)  (0.19) (0.13)

L .
Compared with the earlier results, the nonseasonal AR
coefficients are generally reduced in magnitude, while a
number of the higher order coefficients become nonsignifi-
cant. The joint model has not been revised to take this
into account. The residual standard deviations are, respec-
tively, 37, 30, 40, 52, 51, 99, and 88, which are all greater
than the corresponding values in separate estimation. Of
course, the generalized variance is decreased—there are
substantial residual cross-correlations, and the hypothesis
that the residual covariance matrix is diagonal is decisively
rejected. The residual correlation matrix is

A,y,=5.,+€,

1 0274 0.074 -0.134 0.061 0.396 0.084

1 0442 0478 0.554 0.590 0.529

1 0.308 0.448 0.344 0.608

1 0.684 0.313 0.697

1 0448 0.376

1 0439

L 1

-

Joint estimation of the models based on first differences
and including seasonal means, with an amendment of the
specification for Al,, gives the following results:

1-0.20L¢
©.19)

1+0.39L
(0.15)

1+0.33L
0.13)

1+0.49L
(0.10)

1+0.49L
©.11)

(1+0.33L +0.28L.2+0.40L%)
(0.13) (0.12) (0.14)

1+0.50L
0.12)

he -

Ay=3% éu.l ‘e
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The coefficient in the Cd equation becomes nonsignificant.
As in the previous case, the residual variances (respec-
tively, 1481, 807, 1445, 2383, 1949, 6957, and 5426) show
slight increases, but the hypothesis of uncorrelated resid-
uals is rejected in a likelihood ratio test. The residual
correlation matrix is

I -0.006 0.189 -0.245 0.150 0.258 0.098
I 0.203 0419 0.334 0.328 0.375
1 0.228 0339 0451 0.632
1 0.569 0.135 0.515
1 0.110 0.280
1 0.426
I

Estimating a model for the adjusted series with a simple
first-order specification for all variables gives

[ 1-0.08L ]
(0.13)

14+0.27L
©.11)

1+0.25L
(0.14)

1+0.34L
0.11)

1+0.46L
(0.10)

1+0.20L
0.14)

A)"? =éo+€¢

14+0.27L
(0.10)

In this case, joint estimation produces additional significant
coefficients, and, with the exception of the first coefficient
that is nonsignificant, these are remarkably similar. The
residual variances are, respectively, 1013, 574, 1710, 2051,
1674, 5327, and 4517, which show slight increases except
for the last two variables. Again, the generalized variance
is significantly reduced, and the residual correlation matrix
is

—

1 0619 -0.040 -0.020 0.086 0.542 0.284
1 0.282 0.201  0.387 0.588 0.554
1 0.185 0363 0.124 0.545
1 0.678 0.066 0.506
I 0.264 0.255
| 0.243
1

Comparing with the first residual correlation matrix, we
see that with the exception of five coefficients mainly
concerned with the Cd variable the correlations are
reduced when adjusted data are employed—not only is
the scope for time series model building reduced by the
adjustment procedure, but the interrelationships are appar-
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ently weakened. Also, in moving from the first to the

second case, a reduction in correlation coefficients is, in
general, observed.

Conclusions

Tentative conclusions based on these examples can be
stated briefly:

1. The use of deterministic seasonal variables in place
of seasonal differencing operators in time series

T ———“
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models can be recommended.

. However, such variables cast no light on the interre-

latedness of seasonal variations in related series, and

explicit modeling of seasonal effects to capture this
is still required.

. The use of seasonally adjusted data as a substitute

for a solution to this problem has nothing to com-
mend it.
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COMMENTS ON “SEASONAL ADJUSTMENT AND MULTIPLE TIME SERIES ANALYSIS” BY
KENNETH F. WALLIS

Charles R. Nelson
University of Washington

It's a pleasure to discuss Ken Wallis’ paper on seasonal
adjustment and analysis of multiple time series, since my
own thoughts on the subject have, to a great extent, been
stimulated by his earlier work [4] on the subject and by
many enjoyable discussions with him while I was a visitor
at the London School of Economics. This paper succes-
sively takes up the implications of seasonal adjustment for
univariate analysis, distributed lag relations, and the final
equations for the endogenous variables of a linear dynamic
simultaneous equation system. lllustrative examples draw
on adjusted and unadjusted data for the U.S. durable
goods manufacturing industry and U.K. aggregate income
and expenditures.

The discussion of univariate analysis emphasizes the
necessary cancellation that occurs between the seasonal
parts of a multiplicative seasonal ARIMA process and a
filter that successfully deseasonalizes the series. This
would suggest that the design of seasonal adjustment
procedures should focus on effecting this cancellation
rather than on discovering one all-purpose filter. The
obvious filter, as | have suggested elsewhere [2, pp. 174—
175], is the one that just cancels the seasonal factors of
the process, namely their inverse. The advantage of these
filters is that they do not introduce new autocorrelation
structure into the adjusted series, nor do they induce the
negative seasonality, so characteristic of series adjusted
by methods, such as X~11. The main drawback of my
procedure is that the traditional notion of additive seasonal
and nonseasonal components no longer applies. This
objection is probably more conceptual than practical,
since, at least for aggregate economic indicators, the
actual numerical magnitudes have real meaning; economy-
watchers are interested in the relative magnitude of the
nonseasonal change in the series. For example, consider
the process z,=(1-6L) (1-AL5‘«,. Associated with this
process are the nonseasonal process y,=(1-6L), and the
seasonal process s,=(1-AL%)u,. Note that z is not the sum
of y and s, the variance of z is larger than the sum of the
variances of y and s, and (z-y) does not display seasonal-
ity. In many situations, it may suffice to report u,, the
unanticipated change in the series, since many consumers
of economic data are concerned essentially with whether
economic conditions have improved or deteriorated. Re-
ports in the Wall Street Journal of economic statistics
that have no specific meaning to most readers are often
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accompanied by the helpful comment that the reported
number was better or worse than what had been antici-
pated by informed observers.

I do not mean to imply, by this discussion, that'|
regard the multiplicative model, posited by Box and
Jenkins [1], to be entirely satisfactory as a representation

" of seasonal time series. Cases in which the multiplicative

specification does notiseem to be borme out by the data
are not uncommon, and, in these cases, an additive
decomposition will be ‘more appropriate, e.g., in the case
2=(1-8L-ALS)u,. Other constraints in the Box-Jenkins
model should also come in for further scrutiny. It is
certainly plausible that coefficient parameters and disturb-
ance variance are a function of seasonal period, and
models that are flexible in these dimensions should be
investigated.

The ramifications of seasonal adjustment for distributed
lag models are well summarized by Wallis, drawing in
part on his earlier work [4] on the problem. Wallis
mentions models that assume different responses to sea-
sonal and nonseasonal variation in an independent variable
and the difficulty in practice of isolating these different
effects. The hypothesis that the effects should be different
often stems, I think, from the notion that seasonal
variation is predictable and, therefore, will not involve as
strong a reaction on the part of economic agents, while
nonseasonal variation is largely unanticipated and, thus,
will cause plans to be altered. A more meaningful-distinc-
tion could be drawn between anticipated and unanticipated
variation, since there will be unanticipated changes in
seasonal pattern, as well as in nonseasonal movements, if
seasonality is statistically evolutionary.

Wallis points out that the final equation analysis of
linear dynamic systems implies that the autoregressive
aspect of seasonality would be common to all endogenous
vaniables and suggests that this may explain the success of
X-11 when applied to a wide range of series. I would
agree that this is quite suggestive but would only point
out that the same restriction does not hold on the moving
average side. Seasonality of a moving average nature
need not be shared by all the endogenous variables, and,
therefore, the same seasonal adjustment procedure may
not be appropriate to all the endogenous variables.

The implication of final equation analysis that all endog-
enous variables will, in general, share the same AR
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polynomial. both seasonal and nonseasonal, is one that
receives considerable attention in Wallis’ empirical work.
The rejection of the hypothesis that this restriction holds
for U.S. durable goods manufacturing shipments, invento-
ries, and new orders adds to the accumulating evidence
(see [S: 6]) that the common AR property is difficult to
confirm in practice. Some of the reasons for this are
illustrated by the present example. One reason is that it is
often difficult to distinguish, in practice, between AR and

" MA structure. The seasonal AR polynomial estimated for

the shipments data, for example, would be difficult to
distinguish from the inverse of (1-0.5L'?) and similarly for
the new orders model. The nonseasonal AR polynomial
estimated for inventories, both adjusted and unadjusted,
is roughly the inverse of (1-0.4L). It may be too much to
expect that identification procedures will separate AR and
MA structure sufficiently to permit testing of the AR
restriction. A second reason for not confirming the AR
restriction would be that it does not, in fact, hold in the
underlying system because of lack of simultaneity, a
possibility noted by Wallis. In the present context, it
would not be implausible that feedbacks from shipments
and inventories to new orders would be virtually nil. The
AR restriction may also break down if some variables in
the system are strongly dependent on expectations. It is
not difficult to show that the long-horizon expectation of
an ARIMA process will be a random walk {3]. Many
economic variables are. of course, strongly dependent on
expectations, e.g., inventories and new orders where

e e LR L/ L LS T AR TORL. 1
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supplies and purchaser attempt to anticipate future require-
ments. One would expect that changes in these variables
would display little autocorrelation of a nonseasonal na-
ture, and this would indeed seem-to be the case for
durable goods new orders and inventories (taking into
account that the model presented is for the second
differences of inventories), adjusted and unadjusted, as
well as for the aggregate U.K. inventory series. Regardless
of the reasons for the rejection of the AR restriction, it is
clear, as Wallis emphasizes, that seasonal adjustment is
not the solution to this problem, nor should it be expected
to be.

Analysis of the U.K. aggregate data focuses on the
choice between the Box-Jenkins multiplicative. model and
a model with shifting seasonal means as the preferred
representation for unadjusted data. Wallis concludes, ten-
tatively, that the latter is to be preferred to the former,
presumably on the basis of a better fit. The standard
deviations of residuals are substantially lower for two of
the seven variables but substantially higher for another
when several dummies replace seasonal differencing and
seasonal AR parameters. If seasonality is, in fact, evolu-
tionary, as I suspect it is, then the comparison should
shift in favor of the stochastic representation if the sample
period were lengthened beyond 1957-67. It would also be
interesting to see whether stochastic models that are not
strictly multiplicative would offer any significant improve-
ment over either the multiplicative or dummy variable
models.
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COMMENTS ON “SEASONAL ADJUSTMENT AND MULTIPLE TIME SERIES ANALYSIS” BY
KENNETH F. WALLIS

Thomas Sargent
University of Minnesota

Kenneth Wallis’s paper is quite good. Since, in most
cases, I see no reason to disagree with the positions that
he has taken in the paper on various technical statistical
matters, I have decided to try to expand a little on a
theme addressed in. Wallis’s introduction: the relation of
the official statistician’s views on seasonal adjustment to
those of the economist interested in estimating structures.
In particular, what rationale can there be for recommend-
ing that economists use seasonally adjusted data?' Equiv-
alently, what reasons are there for supposing that different
time-domain models relate variables at different frequen-
cies? The economist’s ancient hunch that the response of
y to x is somehow different depending on whether
seasonal, cyclical, or trend variations in x are involved is
not sufficient reason. For a single time-domain, distributed
lag linking y and x is sufficiently flexible to imply very
different responses of y (gain and phase) with respect to
different frequency components of x.

Wallis and Sims have set down a neat statistical model
that can be used to rationalize the use of seasonally
adjusted data. Their model, essentially an error in varia-
bles model, is

¥e=b (L )xy+by(L)xy+u,

X=X+ Xy ) (n

where Ex Xy =Ex,uU=Exyu,=0 for all t, s; y, xy, Xz,
and u, are jointly stationary, purely linearly indeterministic
processes, and b,(L) and b,(L) are one-sided polynomials
in the lag operator L. Here x, is an indeterministic
seasonal process, i.e., a process with a spectrum having
most of its power at the seasonals. In this model, if one is
really interested in estimating b,(L), it makes sense to use
seasonally adjusted data.

However, we seem to lack a plausible economic model
that is capable of generating a statistical model like (1).

' As Wallis and Sims have pointed out. if in the model y,=b(L)x+u,
(u process orthogonal to x process), u has a seasonal, then use of
symmetrically seasonally adjusted data can be viewed as a way of
approximating generalized least squares, thus, providing some ration-
ale for seasonal adjustment in one case. Of course, by using the
Hannan efficient estimator with the unadjusted data, one could
always do at least as well asymptotically as with the adjusted data.

To indicate the problem, consider the following structure:
p=aEp ., +bm,+e€+s,, |a’<] )

where E,[x] is the linear least squares projection of x on
an information set available at time ¢, ¢, is a disturbance
process orthogonal to m at all lags, and s, is a seasonal
disturbance process, orthogonal to m and € at all lags.
Equation (2) can be interpreted as a rational expectations
version of a portfolio balance schedule like Cagan’s, with

_ p being the price level and m being the money supply. 1

use equation (2), because it is a simple example of a
decision rule in which agents’ expectations about the
future appear, a standard feature that, in a sense, can
give rise to different behavior at the seasonal and nonsea-
sonal frequencies. Assume that m, €, and s are jointly
covariance stationary and purely indeterministic processes
(which implies that their spectral densities vanish, at
most, at a set of frequencies of Lebesque measure zero,
so that s must have some power at nonseasonal frequen-
cies, while € has some power at seasonal frequencies).
The process m can be assumed to possess an indetermin-
istic seasonal in the sense of having spectral peaks at
seasonal frequencies.
A solution of the difference equation (2) is

p=b Y @’Emu+ Y aXE € 5+E 5049 3)
i=0 3=0

This equation determines the projection of p, on current,
past, and future m’s, as well as the projection of p, on
current and past m’s and past p's. Thus, letting agents’
information set at ¢ consist (at least) of past m’s and past
p's, we have, e.g., E,m,,;=v,(LYm,, so that

p.= [b)_:a"vj(L)Jmﬁ Y @(E € s+E 504y @)
=0

i=0

the first term of which is the projection of p, on current,
past, and future m’s, with future m’s bearing zero coeffi-
cients. This is a model in which agents, in a sense,
respond differently to seasonal and nonseasonal variation
in the money supply. Thus, to the extent that seasonal
variations in the money supply are more predictable than
nonseasonal variations, these seasonal variations ' will be
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more fully discounted in advance according to equation
(3). This will be reflected in the distributed lag weights in
(4) and in interesting behavior at the seasonal frequencies
of the Fourier transform of the lag weights. But, despite
the possibility that it is easier for agents to forecast
seasonal than nonseasonal movements in money, it still
remains true that p and m will be linked by the single one-
sided distributed lag (4). Our setup does not lead to a
statistical model of the Wallis-Sims form (1). And our
setup is quite a standard one that seems to capture the
key features of an important class of the decision rules,
e.g., investment, consumption, and portfolio balance
schedules, that are the subjects of econometric studies:
Those decision rules are usually viewed as the solution of
dynamic programing problems in which agents face exog-
enous stochastic processes that they have to forecast.
Their optimal forecasting rules are impounded into their
decision rule, as illustrated in (4). While there is a sense in
which agents respond to different frequency components
differently, it is not a sense that can be used to rationalize
using seasonally adjusted data.

Furthermore, this setup generates restrictions across the
parameters of the stochastic process for m (the v,(L)’s)
and the projection of p, on the m process, the usual kind
of cross-equation restrictions characteristic of rational
expectations models. If the model is true, these restrictions
are predicted to hold for the raw unadjusted data; how-
ever, those restrictions are predicted not to hold for
seasonally adjusted and even symmetrically adjusted data.
Therefore, the model should be tested by using unadjusted
data.

One setup that can generate separate time-domain
models holding at seasonal and nonseasonal frequencies
results if it is assumed that m, contains a deterministic
component. Let

m‘=d1+i¢, Eigd,;:O

for all ¢, s where d, is a deterministic component, i.e., one
that can be forecast arbitrarily well far into the future,
given only the past values of m;; i, is a purely indetermin-
istic process. The linear decomposition above is Wold’s
and characterizes any Covariance stationary process. We
now have

E my;=dij+h;(L)i,
where

Ei=h;(L)i,

The expression for the linear least squares forecast of i,
is unique; but E.d.,;=d.,; has an infinite number of
representations in terms of lagged values of d, or in terms
of lagged values of m,. Substituting any of these represen-
tations in this equation together with (3) leads to a version
of (4) in which separate linear models do connect the
deterministic and indeterministic parts of p ‘and m. Thus,
this signal extraction setup can rationalize the separate

SECTION V{}

treatment of a purely deterministic seasonal. But, we
have still not arrived at a rationalization for the Sims.
Wallis statistical model that describes purely indeterminis-
tic processes.

To indicate the kind of behavior that seems needed to
rationalize seasonal adjustment in purely indeterministic
models, let us drop the assumption that m is exogenous
in (2) and instead assume

m=w(L)s,-,+7, )

where w(L) is one sided on the present and past, and
where n; is now a nonseasonal exogenous process. |
assume that the authority somehow knows past values of
the seasonal noise s, and that it is able to choose w(L) so
as to offset expected movements in s,. In particular, the
authority sets w(L) so that

bw(L)s-y=-E -5, ©)
Under (5) and (6), equation (2) implies
p=aE,p,.,+bnt+e+(s—E s/

A solution of this difference equation is
Pt=bj2 a’E,n,+,+E,}:a’(e,+,+(s,+,—E,+,_1s,+,)) M
=0 i=0

The disturbance process in (7) is orthogonal to 7, at all
lags, so that if people’s information at time ¢ includes (at
least) current and past values of 7, then (7) determines
the projection of p, on the entire n process as a distributed
lag on 7 that is one sided on the present and past. Letting
Eme=wiL)n,, we have

p,=b[ ZajW;(l- )] 77(+E:Zaj(€(+j+(SHJ"EIH—ISHJ')) (8)
=0

=0

which is a projection equation and is, therefore, consist-
ently estimated by least squares. On the other hand,
equation (4), a version of which still holds, is not a
projection equation because of the dependence of the m
process on the s process via (5) and, thus, cannot, in
general, be consistently estimated by least squares.2 To
the extent that seasonally adjusting m permits the re-

% In particular, project m,,; against current and past m's results in
m;=hy(L)n,. Projecting both sides of (3), which still holds, against
current and past m's gives

Elpim, m,.,, ...1=b 3 a’hyL)m,
=0

‘*'2 WE[sisglmy my-y, . . .1
=0

In the current setup in which (5) holds. the second summation on the
right does not, in general, vanish, so that the first term does not equal
the projection of p, on the m process (or even the projection on
current and past m's. In general. in this setup, future m's will enter
the projection of p on the m process.
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searcher to recover 7, it would be preferable in this setup
to use the seasonally adjusted data and estimate (8).

This example is admittedly a strained one and works

by requiring the authority to feedback only on the seasonal

of the disturbance in portfolio balance. The example
is set up to lead to a breakdown of the exogeneity of m
mainly at the seasonal frequencies, a situation that can
approximately be corrected by using seasonally adjusted
data. But why would the authority ever choose to try to
offset only the seasonal part of disturbances to portfolio
balance? According to reasonable objective functions, it
would not.

The preceding matters reveal a close connection be-
tween attitudes about strict econometric exogeneity and
the proper handling of seasonality. If one were not
concerned with estimating relationships with strictly exog-

363

enous variables on the right side, there would have been
no reason for the models (1) to have been proposed. A
two-sided projection of y on the entire x process, together
with a moving average or autoregressive representation for
x, could then completely characterize the second-order
properties of the (y, x) process. But, economists are
appropriately concerned with estimating relations with
strictly exogenous right-hand processes; one reason the
model (1) seems to have been proposed was to rationalize
an apparently greater tendency for seasonally adjusted
data than unadjusted data to survive time series tests of
the null hypothesis of exogeneity. Such findings would not
be predicted by models like our (4) (unless the data were
asymmetrically seasonally adjusted, as Sims and Wallis
pointed out). If such findings represent a regularity, there
should be an economic model that can explain them.
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