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How Structural Are Structural Parameters? 

Jesus Fernandez- Villaverde, University of Pennsylvania, NBER, 

and CEPR 

Juan F. Rubio-Ramirez, Duke University and Federal Reserve Bank 

of Atlanta 

1 Introduction 

This paper studies the following problem: how stable over time are the 

so-called "structural parameters" of dynamic stochastic general equilib 
rium (DSGE) models? To answer this question, we estimate a medium 

scale DSGE model with real and nominal rigidities, using U.S. data. In 

our model, we allow for parameter drifting and rational expectations of 

the agents with respect to this drift. We document that there is strong 
evidence that parameters change within our sample. In particular, we 

illustrate variations in the parameters describing the monetary policy 
reaction function and in the parameters characterizing the pricing be 

havior of firms and households. Moreover, we show how the move 

ments in the pricing parameters 
are correlated with inflation. Thus, our 

results cast doubts on the empirical relevance of Calvo models. 

Our findings are important because DSGE models are at the core of 

modern macroeconomics. They promise to be a laboratory that re 

searchers can employ to match theory with reality, to design economic 

policy, and to evaluate welfare. The allure of DSGE models has captured 
the imagination of many, inside and outside academia. In universities, a 

multitude of economists implement DSGE models in their rich varieties 

and fashions. More remarkable still, a burgeoning number of policy 

making institutions are estimating DSGE models for policy analysis 
and forecasting. The Federal Reserve Board (Erceg, Guerrieri, and Gust 

2006), the European Central Bank (Christoffel, Coenen, and Warne 

2007), the Bank of Canada (Murchison and Rennison 2006), the Bank of 

Sweden (Adolfson, Laseen, Linde, and Villani 2005), and the Bank of 

Spain (Andres, Burriel and Estrada 2006) are at the leading edge of the 

tide, but a dozen other institutions are jumping on the bandwagon. In 
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addition, economists are accumulating experience with the good fore 

casting record of DSGE models, even when compared with judgmental 

predictions from staff economists (Christoffel, Coenen, and Warne, 

2007). 
At the center of DSGE models we have the "structural parameters" 

that define the preferences and technology of the economy. We call these 

parameters "structural" in the sense of Hurwicz (1962): they are invari 

ant to interventions, including shocks by nature. The structural charac 

ter of the parameters is responsible for much of the appeal of DSGE 

models. Since the parameters are fully interpretable from the perspec 
tive of economic theory and invariant to policy interventions, DSGE 

models avoid the Lucas critique and can be used to quantitatively eval 

uate policy. 
Our point of departure is that, at least at some level, it is hard to be 

lieve that the "structural parameters" of DSGE models are really struc 

tural, given the class of interventions we are interested in for policy anal 

ysis. Let us think, for instance, about technology. Most DSGE models 

specify a stable production function, perhaps subject to productivity 

growth. Except in a few papers (Young 2004), the features of the tech 

nology, like the elasticity of output to capital, are constant over time. But 

this constant elasticity is untenable in a world where technological 

change is purposeful. We can expect that changes in relative input prices 
will induce changes in the new technologies developed and that those 

may translate into different elasticities of output to inputs. Similar ar 

guments can be made along nearly every dimension of a modern DSGE 

model. 

The previous argument is not sufficient to dismiss the practice of esti 

mating DSGE models with constant parameter values. Simplifying as 

sumptions, like stable parameters, are required to make progress in eco 

nomics. However, as soon as we realize the possible changing nature of 

structural parameters, we weaken the justifications for inference exer 

cises underlying the program of DSGE modeling. The separation be 

tween what is "structural" and what is reduced form becomes much 

more 
ambiguous.1 

The possibility but not the necessity of parameter drifting motivates 

the main question of this paper: how much evidence of parameter drift 

ing in DSGE models is in the data? If the answer is that we find much 

support for drifting (where the metric to decide "much" needs to be dis 

cussed), we would have to reevaluate the usefulness of our estimation 

exercises, or at least modify them to account for parameter variation. 
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Moreover, parameter drifting may also be interpreted as a sign of model 

misspecification and, possibly, as a guide for improving our models. If 

the answer is negative?that is, if we find little parameter drifting?we 
would increase our confidence in DSGE models as a procedure to tackle 

relevant policy discussions. 

Beyond addressing our substantive question, this paper also develops 
new tools for the estimation of dynamic equilibrium models with pa 
rameter drifting. We show how the combination of perturbation meth 

ods and the particle filter allows the efficient estimation of this class of 

economies. Indeed, all the required computations can be performed on 

an average personal computer in a reasonable amount of time. We hope 
that those tools may be put to good use in other applications, not neces 

sarily in general equilibrium, that involve time-varying parameters in 

essential ways. 
Our main results are as follows. First, we offer compelling proof of 

changing parameters in the Fed's behavior. Monetary policy became ap 

preciably more aggressive in its stand against inflation after Volcker's 

appointment. This agrees with Clarida, Gali, and Gertler (2000), Lubick 

and Schorfheide (2004), Boivin (2006), and Rabanal (2007). Our contri 

bution is to rederive the result within a model where agents understand 

and act upon the fact that monetary policy changes over time. 

Second, we expose the instability of the parameters controlling the 

level of nominal rigidity and indexation of prices and wages. Those 

changes are strongly correlated with changes in inflation in an intuitive 

way: lower rigidities correlate with higher inflation and higher rigidities 
with lower inflation. Our finding suggests that a more thorough treat 

ment of nominal rigidities, possibly through state-dependent pricing 
models, may yield a high payoff. 

We want to be up front about the shortcomings of our exercise. First 

and foremost, we face the limitations of the data. With 184 quarterly ob 

servations of the U.S. economy, there is a tight bound on how much we 

can learn from the data (Ploberger and Phillips 2003, frame the problem 
of empirical limits for time series models precisely in terms of informa 

tion bounds). The main consequence of the limitations of the short 

sample size is relatively imprecise estimates. 

The second limitation, forcefully emphasized by Sims (2001), is that 
we do not allow for changing volatilities in the innovations of the model, 
which is itself a particular form of parameter drift. If the innovations in 

the U.S. data are heteroskedastic (as we report in Fernandez-Villaverde 
and Rubio-Ramirez 2007), the estimation may attempt to pick up the 
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changing variance by spurious changes in the structural parameters. At 

the same time, Cogley and Sargent (2005) defend that there is still vari 

ation in the parameters of a vector autoregression (VAR), even after con 

trolling for heteroskedasticity. We are currently working on an exten 

sion of the model with both parameter drifting and changing volatilities. 

We build upon an illustrious tradition of estimating models with pa 
rameter drifting. One classic reference is Cooley and Prescott (1976), 

where the authors studied the estimation of regression parameters that 
are subject to permanent and transitory shocks. Unfortunately, the tech 

niques in this tradition are within the context of the Cowles Commis 

sion's framework and, hence, are of little direct application to our inves 

tigation. 
Our paper is also linked with a growing body of research that shows 

signs of parameter drifting on dynamic models. Since the estimation of 

this class of models is a new undertaking, the evidence is scattered. One 

relevant literature estimates VARs with time-varying parameters and/ 
or stochastic volatility. Examples include Uhlig (1997), Bernanke and 

Mihov (1998), Cogley and Sargent (2005), Primiceri (2005), and Sims and 

Zha (2006). The consensus emerging from these papers is that there is 

evidence of time variation in the parameters of a VAR, although there is 
a dispute about whether the variation comes from changes in the au 

toregressive components or from stochastic volatility. This evidence, 

however, is only suggestive, since a DSGE model with constant param 
eters may be compatible with a time-varying VAR (Cogley and Sbor 

done 2006). 
A second group of studies has estimated equilibrium models with pa 

rameter variation, but it has been less ambitious in the extent of the fluc 

tuations studied. Fernandez-Villaverde and Rubio-Ramirez (2007) and 

Justiniano and Primiceri (2005) demonstrate the importance of stochastic 

volatility to account for U.S. data using a DSGE model. King (2006) works 

with a simple real business cycle (RBC) economy with parameter drift in 

four parameters. However, his approach relies on particular properties 
of his model and it is too cumbersome to be of general applicability. 
Canova (2005) estimates a small-scale New Keynesian model with pa 
rameter drifting but without the agents being aware of these changes in 

the parameters. He uncovers important movements in the parameters 
that enter into the Phillips curve and the Euler equations. Boivin (2006) 
estimates a parameter-drifting Taylor rule with real-time data. He cor 

roborates previous findings of changes in the rule coefficients obtained 

with final data. Benati (2006), elaborating on an argument by Woodford 
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(2006), questions the indexation mechanisms introduced in New Keyne 
sian models and shows that they are not structural to changes in mone 

tary policy rules. Oliner, Rudebusch, and Sichel (1996) find unstable pa 
rameters even investment models with more intricate representations of 

capital spending than those found in current DSGE models. Owyang and 

Ramey (2004) estimate regime-switching models of monetary policy and 

identify the evolving preferences of the monetary authority through 
their interaction with the structural parameters. 

There are also numerous papers that tell us about parameter drifting, 
albeit in an indirect way. A common practice when estimating models 

has been to divide the sample into two periods, usually before and after 

1979, and argue that there are significant differences in the inference re 

sults. One celebrated representative of this method is Clarida, Gali, and 

Gertler (2000), a paper we will discuss later. 

Finally, a literature that has connections with our analysis is the one 

that deals with DSGE models with a Markov-switching process in dif 

ferent aspects of the environment, like monetary or fiscal policy (Davig 
and Leeper 2006a and 2006b, Chung, Davig, and Leeper 2006, and 

Farmer, Waggoner, and Zha 2006). The stated motivation of these papers 
is that Markov switches help us understand the dynamics of the econ 

omy better. So far, none of these papers has produced an estimated 

model. 

The rest of the article is organized as follows. First, in section 2, we 

discuss different ways to think about parameter drifting in dynamic 

equilibrium models. In section 3, we develop two simple examples of 

parameter drift that motivate our investigation. Section 4 defines a 

medium-scale model of the U.S. economy and discusses how to intro 

duce this model to the data. Section 5 introduces parameter drifting and 

explains how to adapt the approach in section 4 to handle this situation. 

We report our results in section 6. Section 7 concludes. An appendix pro 
vides the interested reader with technical details. 

2 Parameter Drifting and Dynamic Equilibrium Models 

There are at least three ways to think about parameter drifting in an es 

timated DSGE model. The simplest approach, which we call the pure 
econometric interpretation, is to consider parameter drifting as a conven 

ient phenomenon to fit the data better or as the consequence of a capri 
cious nature that agents in the model neither understand nor forecast. 

Despite its simplicity, this interpretation violates the spirit of rational 
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expectations: not having free parameters that the researcher can play 
with. Consequently, we will not investigate this case further. 

The second way to think about parameter drifting is as a characteris 

tic of the environment that the agents understand and act upon. Let us 

come back to our example of the production function. Imagine that the 

aggregate technology is given by a Cobb-Douglas function Yt 
= 

AK? 

L,1_a', where output Yt is produced with capital Kt and labor Lt given a 

technology level A and share parameter ar The only difference with the 

standard environment is that at is indexed by time (neither the realism 

nor the empirical justification of our example is crucial for the argument, 

although we could argue in favor of both features). Let us also assume 

that at evolves over time as a random walk with reflecting boundaries at 

0 and 1, to ensure that the production function satisfies the usual prop 
erties. We could imagine that such drift comes about because the new 

technologies developed have a random requirement of capital. The so 

lution of the agents' problems are decision rules that have as one of their 

arguments the current ar Why? First, because at determines current 

prices. Second, because at helps to forecast future values at+j and hence 

to predict future prices. This interpretation is our favorite one, and it will 

frame our reading of the results in section 6. 

The final perspective about parameter drifting is as a telltale of model 

misspecification. This point, raised by Cooley (1971) and Rosenberg 

(1968), is particularly cogent when estimating DSGE models. These 

models are complex constructions. To make them useful for policy pur 

poses, researchers add many mechanisms that affect the dynamics of the 

economy: sticky prices and wages, adjustment costs, and so on. In addi 

tion, DSGE models require right parametric assumptions for the utility 

function, production function, adjustment costs, distribution of shocks, 

and so forth. If we seriously misspecified the model along at least one di 

mension, parameter drifting may appear as the only possibility left to 

the model to fit the data. Our example in section 3 illustrates this point 
in detail. We will exploit this possibility in our empirical results and as 

sess how the drift in the parameters determining the degree of nominal 

rigidity in the economy implies that time-dependent models of pricing 
decisions may be flawed. 

3 Two Examples 

In this section, we present two simple examples that generate parameter 

drifting in estimated DSGE models. We have chosen the examples to il 
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lustrate our points as clearly as possible, and not based on their rele 

vance or plausibility. However, the examples are not far-fetched: they 
deal with recurrent themes in the literature and are linked (albeit we 

do not explore this connection to its fullest) to relevant features of the 

economy. 

3.1 Parameter Drift as a Consequence of Changing Policies 

The first example deals with the changes in the elasticity of monetary 

policy to different variables. It is common to postulate that the monetary 

authority uses open market operations to set the short-run nominal in 

terest rate Rt according to a Taylor rule: 

Rt (Rt-i\lR\(nt\Hy^1-^ / 

7f-hr)l(n)(?)J 
"<*? > 

The variable II represents the target levels of inflation of the monetary 

authority, R the steady-state gross return of capital, yt is output, and yt a 

measure of target output. The term emt is a random shock distributed ac 

cording to Jf(0,1). 
In an influential contribution, Clarida, Gali, and Gertler (2000) at 

tracted the attention of economists to changes in the elasticity parameter 

7n before and after Volcker's appointment as Fed chairman in 1979. They 
document, with a slightly different specification of the Taylor rule, that 

7n more than doubles after 1979. This finding has been corroborated in 

many studies and found resilient to modifications in the empirical spec 
ification (Lubick and Schorfheide 2004). The division of the sample be 

tween the time before and after 1979 has also been exploited by Boivin 

and Giannoni (2006), who find that the point estimates of the structural 

parameters also substantially vary between the two periods. 

Changes in the policy coefficients are one particular example of pa 
rameter drift. They can be the consequence of the shifting priorities of 

the policymakers or, as emphasized by Sargent (1999), of changes in the 

perception of the effectiveness of monetary policy. Once we recognize 
that there is evidence of the parameter 7n drifting over time, it is natural 

to assume that agents are aware of the changes and act upon them. Such 
an environment may capture some of the insights of Sims (1980) about 

the difference between a change in policy regime (in our Taylor rule, a 

change in the way the interest rate is determined) and the evolution of 

the policy within one regime, which could be represented in our context 
as the drift of the parameters of the rule. 
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3.2 Parameter Drift as a Telltale of Model Misspecification 

Our second example revisits several of the themes in Browning, Hansen, 
and Heckman (1999). We explore the consequences for inference of an 

econometrician estimating a model with infinitely lived agents when 

the data are actually generated by an overlapping-generations model. 

We show how our estimate of the discount factor will be a function of the 

true discount factor, the elasticity of output to capital, and the changing 

age distribution of the population. This example is relevant because 

variations in the age structure of the U.S. population have been contin 

uous due to shifts in fertility and mortality. 

3.2.1 An Artificial World We begin by creating a simple artificial 

world. In each period t, there are two generations of households alive, 

young and old. Each household maximizes the life utility 

logc; + pE,logc;+1 

where the superindex denotes that the household was born in period t, 

the subindex the period in which it consumes, and Et is the conditional 

expectations operator. The discount factor, p, captures the preference for 

current consumption. We pick a log utility function to simplify the alge 
bra that follows. 

Households work when young and get a wage wt for a unit of time 

that they supply inelastically. Households live off their savings when 

they are old. The period budget constraints are c\ + st 
= 

wt and c\+1 
= 

Rt+1st, where st is the household savings and Rt+1 the gross return on cap 

ital. From the first order condition of households, we have that c\ 
= 

[1/(1 + P)H and c\ 
= [0/(1 + p)]wr 

In each period, a number nt of new households is born. For the mo 

ment, we will assume only that lt is the realization of some random pro 
cess. Nothing of substance for our argument is lost by assuming that the 

size of the new generation is exogenous. 
The production side of the economy is defined by a Cobb-Douglas 

function, yt 
= 

k^l)-*, where kt is the total amount of capital in the econ 

omy and lt the total amount of labor. If we assume total depreciation in 

the economy, again to simplify the algebra, and impose the condition lt 
= 

nt, we get by competitive pricing wt 
= 

(1 
- 

a)/^/"-" and Rt 
= 

afcj^n J-". 
All that remains is some accounting. Total consumption in the econ 

omy in period t, Ct, is equal to the consumption of the old generation 

plus the consumption of the young generation. The old consume all of 
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their income, which is equal to the capital income of the economy, Rtkt 
= 

akfn]-". The young consume a fraction [1/(1 + P)] of their income, 
which is equal to the labor income of the economy wtlt 

= 
(1 

- 
a)fc"nf1_a. 

Then total consumption is: 

1 + a(3 
' 1 + (3 

* l 

By the aggregate resource constraint, investment (or, equivalently, cap 
ital in period t + 1) is 

(1 
- 

a)P 
t = k = -_?r L< t+1 1 + a(3 

Lt 

Finally, we find per capita consumption cvtc as: 

Q 
CPC = -i * 

nt + *t-i 

3.2.2 An Econometrician Let us now suppose that we have an 

econometrician who aims to estimate a model with a representative in 

finitely lived agent and T observations generated from our economy. To 

do so, the econometrician postulates that the agent has a utility function: 

? r t 

maxE,?p* 11(1+7*) logcf 

where yt is the (random) growth rate of the population between periods 
t -1 and t: 

nt + 
nt_x 

1 + 7 
= 

nt-l 
+ 

nt-2 

and 70 
= 0. This utility function is the same as in the canonical presenta 

tion of the RBC model in Cooley and Prescott (1995) except that the 

growth rate of the population is stochastic instead of constant. The pro 
duction side of the economy is the same as before, yt 

= 
k^l]~a. Thus, the 

only difference between the artificial world we have created and the 

model the econometrician estimates is that, instead of having two gen 
erations alive in each moment, the econometrician estimates a model 

with a representative agent. 
What are the consequences on the estimated parameters? Imagine 

that the econometrician knows a and that the depreciation factor is 1. 

Then, a simple procedure to estimate the only remaining unknown pa 
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rameter in the world, the discount factor p, is to build the population 
moment: 

^W 
+ 

TU^r W W+i 

and substitute the expectation by the sample mean: 

_Vr-i_ 

. _ r-i z"-? 
&tc 

Pt~ i ; r^7 

We study how this expression evolves over time. First, note that, by 

substituting the expressions found before, we get: 

a+ ) R>^ - (n'+i+ n')2 a 1 + p 1 
7l+1 

c?+l nt + nt_x 1-a 3 C( 

Then: 

. !_a i Ia(?. + 
^ 3r 

= 
3-~ a 1 + 3 

yT_1("t+l 
+ ",)2 1 

We want to work on the previous expression. First, we substitute ag 

gregate consumption for its value in terms of capital and labor: 

Vt-i 
1 

1 1-a ^"o^^^-^fc^p 
BT 

= B-?? T 1 + P ex (nt+1 + ntf 1 
^t==0 

nt +nf_1 fcfnj"a 

The only remaining endogenous element in this equation is kt. To elimi 

nate it, we recursively substitute kt_{ to find: 

T(l-a)p '"VCL-cOP VI 

Then: 

Vt nt+nt_l IT _ /(l-a)P Wl 1-a 

1 1-a ^"^Fin?_T A 1 + *p <T_7 PI o =o-i-y=-\-f_j.?i HT 
Kl+p a _ (nt+, + n)2 IT ? /(l-a)p UI V? 

^=0 (n, + 
n,_1)nJ-alL 

'_1 
\ 1 + <*P / J J 
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which delivers a PT, which is biased and drifts over time according to the 

evolution of the population. This expression is composed of three parts. 
First, the true parameter, p, second the deterministic bias, 

1 1 -a 

1 + P a 

and finally the term involving the nts and kQ, which fluctuates over time. 

Without further structure on population growth over time, it is diffi 

cult to say much about PT. In the simple case where yt 
= 

7 is constant, as 

T ?> 00, the only factor dominating is: 

Pr-P-r^-1?^d+7)-2 (1) 1 + P a 

To explore the behavior of PT in the general case where 7, varies, we 

simulate the model and estimate the parameter recursively with data 

from an economy with a = 0.3 and p 
= 0.96. The growth rates of popu 

lation are 2,4,3,1,2, and 5 percent each for 50 periods (i.e., for period 1 

to 50, growth rate is 2 percent, for period 51 to 100, the growth rate is 4 

percent and so forth). We plot our results in figure 2.1, where we see the 

evolution over time of PT and how it inherits the properties of yt. To fa 

cilitate comparison with (1), we superimpose the value of (1) that would 

1.14i-.-1-.- i 
| -Estimate of p 

-Long-run Limit 
1.12- r-11-' 

1.1=_, 
j L-, 

1.06- L_| | 

1.04- 
!__: 

1.02'-'-'-'-'-' 
0 50 100 150 200 250 300 

Figure 2.1 

Estimate of 0 versus long-run limit 
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be implied if the growth rate in a period stayed constant over time. The 

graph shows how PT converges to (1) within each block of 50 periods. 

4 The Baseline Model 

We will structure our investigation around a baseline New Keynesian 
business cycle model. We pick this model because it is the paradigmatic 

representative of the DSGE economies estimated by practitioners. Since 

(Fernandez-Villaverde 2005) we have gone on the record on other occa 

sions, criticizing the problems of this framework, we do not feel obliged 
to repeat those shortcomings here. Suffice it to say as a motivation that 

given the level of interest by policymaking institutions in this model, it 

is difficult to see a more appropriate vessel for our exploration. 
The New Keynesian model is well known (see the book-length de 

scription in Woodford 2003). Consequently, we will be brief in our pres 
entation and will omit some of the technical aspects. On the other hand, 

for concreteness, we need to discuss the model at a certain level of de 

tail. The interested reader can access the entire description of the model 

at a complementary technical appendix posted at www.econ.upenri 

.edu/~jesusfv/benchmark_DSGE.pdf. In this section, to clarify our 

ideas, we will introduce the model without changes in the parameters. 
In section 5, we will introduce the parameter change over time. 

4.1 Households 

The basic structure of the economy is as follows. A representative house 

hold consumes, saves, holds real money balances, supplies labor, and 

sets its own wages subject to a demand curve and Calvo's pricing. The 

final output is manufactured by a competitive final-good producer, 
which uses as inputs a continuum of intermediate goods manufactured 

by monopolistic competitors. The intermediate-good producers rent 

capital and labor to manufacture their good. Also, the intermediate 

good producers face the constraint that they can only change prices fol 

lowing a Calvo's rule. Finally, there is a monetary authority that fixes the 

one-period nominal interest rate through open market operations with 

public debt. Long-run growth is induced by the presence of two unit 

roots, one in the level of neutral technology and one in the investment 

specific technology. These stochastic trends will allow us to estimate the 

model with the raw, undetrended data. 

We have a continuum of households in the economy indexed by;. The 
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households maximize the following lifetime utility function, which is 

separable in consumption, cjt, real money balances, mjt/pt, 
and hours 

worked, ljt: 

h Z P'd, tog(c;, 
- 

hcjt_,) 
+ v logM 

j 

" 

^7^ 

where P is the discount factor, h controls habit persistence, % is the in 

verse of Frisch labor supply elasticity, dt is a shock to intertemporal pref 
erence with the law of motion: 

log dt 
= 

pd log dt_t + (jdedrt where zdJt 
~ 

Jt(0,1), 

and <pt is a labor supply shock with the law of motion: 

tog ft 
= 

P9 tog cp,_i + 
<W where e9#, 

~ >f (0,1). 

Households trade on the whole set of Arrow-Debreu securities, con 

tingent on idiosyncratic and aggregate events. Our notation a.t+1 indi 

cates the amount of those securities that pay one unit of consumption in 

event 
wjt+lt purchased by household/ at time t at (real) price qjt+u. 

To 

save on notation, we drop the explicit dependence on the event. House 

holds also hold an amount, bjt, 
of government bonds that pay a nominal 

gross interest rate of Rt and invest xt. Then, the/ 
- th household's budget 

constraint is: 

mit K+i c 
rt rt 

= 
Wjtht 

+ 
lrt?jt 

- 
K^jtWjt-i 

+ ~ + Rt-i-^ + 
fy 

+ Tt + Ff 

where z^ is the real wage, rt the real rental price of capital, ujt 
> 0 the in 

tensity of use of capital, \L~l<l>(ujt) 
is the physical cost of ujt 

in resource 

terms, |n, is an investment-specific technological shock (to be described 

momentarily), Tt is a lump-sum transfer, and F, is the profits of the firms 

in the economy. We assume that <J>(1) 
= 

0, <&' and <?>" > 0. 

Investment xjt induces a law of motion for capital: 

*, 
= 

(l-8)Vi + * 
1~V(-^A 

xj* 

where 8 is the depreciation rate and V(-) is a quadratic adjustment cost 

function such that V(AX) 
= 

0, where Ax is the growth rate of investment 

along the balance growth path. Note that we index capital by the time its 
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level is decided. The investment-specific technological shock follows an 

autoregressive process: 

jl, 
= 

fVi exP(\ 
+ 

zM) where zM 
= 

a^ and ?M 
- 

X(0,1) 

The first order conditions with respect to 
cjt, bjt, ujt, kjt, 

and xjt 
are: 

dt(cjt 
- 

hc^Y1 
- 

b$ltdt+1(cjt+1 
- 

hep)'1 
= 

\;? 

rt 
= 

ix-'c&'Cu,,), 

% 
= 

PM-j^-K1 
- 

8Hm + r?+iVi 
~ 

Cw.%)] L and 

L \ *;t-l / \ Xjt-l / Xjt-1 J 

where A.., is the Lagrangian multiplier associated with the budget con 

straint and qjt is the marginal Tobin's Q, the Lagrangian multiplier asso 

ciated with the investment adjustment constraint normalized by \jt. 
The first order condition with respect to labor and wages is more in 

volved. The labor employed by intermediate-good producers is sup 

plied by a representative, competitive firm that hires the labor supplied 

by each household/. The labor supplier aggregates the differentiated la 

bor of households with the production function: 

l* = 
\\^-^dj\ 

, (2) 

where y\ controls the elasticity of substitution among different types of 

labor and ldt is the aggregate labor demand. 

The labor "packer" maximizes profits subject to the production func 

tion (2), taking as given all differentiated labor wages wjt and the wage 

wt. From this maximization problem we get: 
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Then, to find the aggregated wage, we again use the zero profit condi 

tion wtldt 
= 

IJ wjtljtdj 
to deliver: 

(A \i/(i-m) 
wt = 

^ wjr^djj 
Households set their wages following a Calvo's setting. In each pe 

riod, a fraction 1 - 6W of households reoptimize their wages. All other 

households can only partially index their wages by past inflation. In 

dexation is controlled by the parameter \w e (0,1). This implies that if 

the household cannot change its wage for t periods, its normalized wage 
after t periods is nj=1(n**^y n,+s)w;;.f. 

Since we assume complete markets and separable utility in labor (see 

Erceg, Henderson, and Levin, 2000), we will concentrate on a symmet 
ric equilibrium where c-t 

= 
ct, ujt 

= 
ut, kjt_x 

? 
kt, xjt 

= 
xt, Xjt 

= 
Xt, qjt 

= 
qt, 

and w*t 
= w*. In anticipation of that equilibrium, and after a fair amount 

of manipulation, we arrive at the recursive equations: 

n - 1 / 11*- \!-JW* \ri-l 

and: 

that determine the evolution of wages. 
Then, in every period, a fraction 1 - dw of households set wf as their 

wage, while the remaining fraction dw partially index their price by past 
inflation. Consequently, the real wage index evolves: 

4.2 The Final-Good Producer 

There is one final good produced using intermediate goods with the fol 

lowing production function: 

(A \e/(e-l) 

(ytmdi\ 
, (4) 

where e controls the elasticity of substitution. 

Final-good producers are perfectly competitive and maximize profits 



98 Fernandez-Villaverde and Rubio-Ramirez 

subject to the production function (4), taking as given all intermediate 

goods' prices pit and the final good price pr Repeating the same steps as 

for wages, we obtain the demand functions for each intermediate good: 

where ydt is the aggregate demand and the zero profit condition ptydt 
= 

\\pityitdi to deliver: 

/V 1 :,.V/(1~e) 
Pt 

= 
\\oPl'edi\ 

4.3 Intermediate-Good Producers 

There is a continuum of intermediate-good producers. Each intermedi 

ate-good producer i has access to a technology represented by a pro 
duction function: 

where kit_x is the capital rented by the firm, ldit is the amount of the 

"packed" labor input rented by the firm, the parameter <J> corresponds 
to the fixed cost of production, and where At follows: 

At 
= 

At_x exp(A^ 
+ 

zAt) wherezAtt 
= 

vAzAt 
and eAt 

~ 
Jt(0,1). 

The fixed cost <f> is scaled by the variable zt 
= 

A]/{1~<l)iL<?/il~a). We can 

think of zt as a weighted index of the two technology levels At and jx,, 
where the weight is the share of capital in the production function. The 

product 4>z, guarantees that economic profits are roughly equal to zero 

in the steady state. Also, we rule out the entry and exit of intermediate 

good producers. Note that zt evolves over time as zt 
= 

zM exp(A2 + zzt) 
where zzt 

= 
(zAt + 

azM)/(l 
- 

a) and A2 
= 

(AA + aA 
J/(l 

- 
a). We will see 

in the following that Az is the mean growth rate of the economy. 

Intermediate-good producers solve a two-stage problem. First, given 

wt and rt, they rent ldt and kit_x in perfectly competitive factor markets in 

order to minimize real costs, which implies a marginal cost of: 

The marginal cost does not depend on i: all firms receive the same 

shocks and rent inputs at the same price. 
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Second, intermediate-good producers choose the price that maxi 

mizes discounted real profits under the same pricing scheme as house 

holds. In each period, a fraction 1 - 
dp 

of firms reoptimize their prices. All 

other firms can only index their prices by past inflation. Indexation is 

controlled by the parameter x g (0,1), where x 
= 0 is no indexation and 

X 
= 1 is total indexation. 

The problem of the firms is then: 

max 
Etjr(pe,)^[(ri ^s-A~ 

~ 
mct+\ytt+r Pit T=0 \ |_W Pt + T ) 

subject to 

\S 
= 1 Pt + T/ 

where the marginal value of a dollar to the household is treated as ex 

ogenous by the firm. Since there are complete markets in securities, this 

marginal value is constant across households and, consequently, Xt+r/\ 
is the correct valuation on future profits. 

We write the solution of the problem in terms of two recursive equa 
tions in g) and g2: 

g) = \mctyd + ped 
j^- J 

g]+1 

where eg] 
= 

(e 
- 

l)g2 and n* = 
pf/pr 

Given Calvo's pricing, the price index evolves: 

pxr 
= 

%(^uy~zp)-i + (i 
- 

%)pr~e 

or, dividing by p]~e, 

1=9'(ir) 
+o-vn 

4.4 The Government 

The government sets the nominal interest rates according to the Taylor 
rule: 
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yd 

r -(-rj L(nj lv/ J 
exp<'' <5) 

through open market operations that are financed with lump-sum 
transfers Tt to ensure that the government budget is balanced period by 

period. The variable II represents the target levels of inflation (equal to 

inflation in the steady state), R is the steady-state gross return of capital, 
and 

Kyd 
the steady-state gross growth rate of ydt. With a bit of abuse of 

language, we will refer to the term 
(yd/yd_^/Ayd 

as the growth gap. The 

term mt is a random shock to monetary policy that follows mt 
= 

cimemt 
where emt is distributed according to N(0,1). We introduce the previous 

period interest rate, Rt, to match the smooth profile of the interest rate 

over time observed in the United States. 

4.5 Aggregation 

First, we begin with the aggregate demand: 

yf 
= 

ct + xt + p.,"1 *(uf)fc,_r 

Then, using the production function for intermediate-good producers, 
the fact that all the firms pick the same capital-labor ratio, and market 

clearing in the output and input markets, we find the aggregate demand 

must be equal to aggregate supply: 

y' 
=-^ 

where 

--&' 
is the aggregate loss of efficiency induced by price dispersion. By the 

properties of the index under Calvo's pricing: 

1)f 
= 

8i^"V1 

+ (i-e;)nr. 

Finally, we integrate labor demand over all households; to obtain: 

!>-w:(^)>?. 
where lt is the aggregate labor supply of households. Hence if we define 
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we get: 

and: 

(W, , njs \-n 

if if") 
vr-i + a - 

ej(nr*)-" 

4.6 Equilibrium 

A definition of equilibrium in this economy is standard and the equa 
tions that characterize it are determined by the first order conditions of 

the household, the first order conditions of the firms, the Taylor rule of 

the government, and market clearing. 
To undertake our quantitative analysis, we must approximate the 

equilibrium dynamics of the economy. Ours is a large model (even 
the version without parameter drifting has 19 state variables). More 

over, we will need to solve the model repeatedly during our estimation 

process. We have argued elsewhere (Fernandez-Villaverde, Rubio 

Ramirez, and Santos 2006) that there is much to be gained from a non 

linear estimation of the model, both in terms of accuracy and in terms of 

identification. This is particularly true if we want to allow the agents in 

the economy to ensure themselves against future changes in the param 
eters of the model. Hence, we require a nonlinear solution method that 

is fast and accurate. In previous work (Aruoba, Fernandez-Villaverde, 
and Rubio-Ramirez 2006), we have found that a second order perturba 
tion around the deterministic steady state of the model fulfills the pre 

vious desiderata. 

But before solving the model, we clear up some technical issues. First, 
because of technological change, most of the variables are growing in 

average. To achieve the right accuracy in the computation, we make the 

variables stationary and solve the model in the transformed variables. 

Hence, we define ct 
= 

ct/zt, Xt 
= 

Xtzt, ft 
= 

rt\x,t, qt 
= 

qt\xt, xt 
= 

xjzt, wt 
= 

wjzt, wf 
= 

w*/zt, kt 
= 

kt/zt\it, and yd 
= 

ydt/zr Also note that Ac 
= 

Ax 
= 

Aw 
= 

Aw* 
= 

kyd 
= 

A2. Second, we choose functional forms for $( ) and 

V(-). For O(m) we pick $(m) 
= 

^(u 
- 

1) + (02/2)(w 
- 

l)2. We normalize 
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u = 1 in the steady state. Hence, f = 
<S>'(1) 

= 
^ and O(l) 

= 0. The in 

vestment adjustment cost function is V(xt/xt_1) 
= 

(K/2)[(xt/xt_1) 
- A J2. 

Then, along the balanced growth path, V(AX) 
= 

V'(AX) 
= 0. 

We will perform our perturbation in logs. For each variable vart, we 

define vart 
= 

log vart 
- 

log var, as the log deviation with respect to the 

steady state. Then, the states of the model St are given by: 

(iit_v jbx_v g)_v g2t_v kt_v At_v pu, et_v v*_v vtv \' f = 
U i a a ft a 

\\t-VJl-V Xt-V A-t-1' ^t-V 2M-1; ^t-V $t-V ZA,t-l J 

and the exogenous shocks are et 
= 

(e^, zdt, e^t, zAt, ?mt).' 

As a first step, we parameterize the matrix of variances-covariances of 

the exogenous shocks as fl(x) 
= 

x^X where ft(l) 
= Cl is a diagonal ma 

trix. However, nothing really depends on that assumption, and we 

could handle an arbitrary matrix of variances-covariances. Then, we 

take a perturbation solution around the deterministic steady state of the 

model, that is, x 
- 0. 

From the output of the perturbation, we build the law of motion for 

the states: 

st+1 
= 

*js;, e;y + 
\(sft, 

z't)%2(s\, e;y + *s3, (6) 

where % is a 1 X 24 vector and % is a 24 X 24 matrix. Theterm %(S't, 

e[)f constitutes the linear solution of the model, (S't, zft)%2(Sft, eft)r is the 

quadratic component, and ^s3 is a 1 X 24 vector of constants added by 
the second order approximation that corrects for precautionary behav 

ior. Some of the entries of the matrices % will be zero. 

From the same output, we find the law of motion for the observables 

W = 
(A log ̂ \ A log yt, A log lt, log n? log R,)'. 

Now, define St 
= 

(S't, S't_x, e^). We keep track of the past states, S't_u be 

cause some of the observables in the following measurement equation 
will appear in first differences. Then, we write to the observation equa 
tion: 

^T = 
W, e;y 

+1 
(s;, e't)%2(S't, e;y + *o3 (7) 

where V0l and ^o3l X 48 vectors and %2 is a 48 X 48 matrix. 

While the law of motion for states is unique (or at least equivalent to 

a class of different states, all of which have the same implications for the 
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dynamics of the model), the observation equation depends on what we 

assume the researcher actually observes. In our case, we have chosen the 

first differences of the relative price of investment, output, hours, infla 

tion, and the federal funds rate. Unfortunately, we do not know much 

about the right choice of observables and how they may affect our esti 

mation results (for one of the few articles on this topic, see Boivin and 

Giannoni 2006). 

4.7 The Likelihood Function 

Equations (6) and (7) constitute the state space representation of our 

model. One convenient property of this representation is that we can ex 

ploit it to evaluate the likelihood of a DSGE model, an otherwise chal 

lenging task. The likelihood, ??( YT; ^P), is the probability that the model 

assigns to a sequence of realizations of the observable YT given param 
eter values: 

^ = 
(P, h, v, #, 8, x\, e, a, <(>, 0W, Xw, %, XP, $2/ 7r/ V 7n> n/K* Aa/ ft*/ ftp/ 

Note that 0: is not included in W because it is a function of the other pa 
rameters in the economy to ensure that f = 

4>r With ??( YT; ty), we can 

estimate W by maximizing the likelihood or by combining it with a prior 

density for the model parameter to form a posterior distribution. 

How do we evaluate the likelihood !?(YT; \P)? Given the Markov 

structure of our state space representation, we begin by factorizing the 

likelihood function as: 

T 

?{YT; V) = 
J] ^(Vr IY'-1; ?). 
t=i 

Then, conditioning on the states: 

?(YT; ?) = 
/ X(YX | S0; V)dS0 U / 2(Vt I Sf; V)p(St | V1; V)dSt (8) 

li we know St, computing ?(Yt I St; Mf) is relatively easy. Conditional 
on St, the measurement equation (7) is a change of variables from et to 

W. Hence, we can apply the change-of-variable formula to evaluate the 

required probabilities. Similarly, if we know S0, we can employ (6) and 

the measurement equation (7) to compute S?(Yt | S0; ty). Consequently, 

knowledge of the sequence (p(St | Y'"1; <*'))/l1 and of p(S0; Mf) allows us to 
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find i?(YT; ̂ ). Evaluating (or at least drawing from) p(S0> ̂ ) is usually 

straightforward, although often costly (Santos and Peralta-Alva 2005). 
The difficulty is to characterize the sequence of conditional distributions 

[p(St | Y'-1; V)]J=1 and to compute the integrals in (8). 
An algorithm for doing so (but not the only one; see the technical ap 

pendix to Fernandez-Villaverde and Rubio-Ramirez 2007, for alterna 

tives and references) is to use a simulation technique known as the par 
ticle filter. Fernandez-Villaverde and Rubio-Ramirez (2005 and 2007) 

have shown that the particle filter can be successfully applied to the es 

timation of nonlinear and/or nonnormal DSGE models. The particle fil 

ter is a sequential Monte Carlo method that replaces the [p(SjY'_1; 

W)]J=1 by an empirical distribution of draws generated by simulation. 

The bit of magic in the particle filter is that the simulation is generated 

through a procedure known as sequential importance resampling (SIR). 

Sequential importance resampling guarantees that the Monte Carlo 

method achieves sufficient accuracy in a reasonable amount of time, 

something that cannot be achieved without resampling (Arulampalam, 

Maskell, Gordon, and Clapp 2002). The appendix describes in further 

detail the working of the particle filter. 

4.8 A Bayesian Approach 

We will confront our model with the data using Bayesian methods. The 

Bayesian paradigm is a powerful and flexible perspective for the esti 

mation of DSGE models (see the survey by An and Schorfheide 2006). 

First, Bayesian analysis is a coherent approach to inference based on a 

clear set of axioms. Second, the Bayesian approach handles in a natural 

way misspecification and lack of identification, both serious concerns in 

the estimation of DSGE models (Canova and Sala 2006). Moreover, it has 

desirable small-sample and asymptotic properties, even when evalu 

ated by classical criteria (Fernandez-Villaverde and Rubio-Ramirez 

2004). Third, priors are a flexible procedure to introduce presample in 

formation and to reduce the dimensionality problem associated with the 

number of parameters. This property will be especially attractive in our 

application, since parameter drifting will increase the practical number 

of dimensions of our model. 

The Bayesian approach combines the likelihood of the model ??(YT; W) 

with a prior density for the parameters p(^) to form a posterior 

p(^IYT)oc?g(YT;^)p(^). 
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The posterior summarizes the uncertainty regarding the parameters, 
and it can be used for point estimation. For example, under a quadratic 
loss function, our point estimates will be the mean of the posterior. 

Since the posterior is also difficult to characterize, we generate draws 

from it using a Metropolis-Hastings algorithm. We use the resulting 

empirical distribution to obtain point estimates, variances, and so on. 

We describe this algorithm in the appendix. 

5 Parameter Drifting 

Now we are ready to deal with parameter drifting. Since the extension 

to other cases of parameter variation is rather straightforward, we pres 
ent only one example of drift within our model. 

Motivated by the first example in section 3, we will investigate the sit 

uation where the Taylor rule is specified as: 

t'[-t) Un) UJ J 
exp(w,)- (9) 

Note the difference with the specification in (5): in the new equation the 

elasticities of the response of the interest rate (yRt, ym, 7 t) are indexed by 
time. 

We will postulate that the parameters follow an autoregressive model 

(AR[1]) in logs to ensure that the parameter is positive: 

log yRt 
= 

min[(l 
- 

pR)log 7^ + pK log 7^ + eRt, 0] (10) 

tog 7ro 
= 

(1~ Pn) log 7n + Pn log 7m-i + em (U) 

tog yyt 
= 

(1 
~ 

py) log yy 
+ 

Py tog yyt_, 
+ 

Eyt (12) 

where [zRt, Ent, eyJ 
are i.i.d. normal shocks and Q is a 3 X 3 matrix of co 

variances.2 We allow for arbitrary correlation in the innovations, since it 

is plausible that the reasons why the monetary authority becomes more 

(less) responsive to inflation are the same reasons it will become less 

(more) responsive to the growth gap. Also, we could generalize the 

changes in parameters by allowing changes in II or in the variance of mt 

(R and 
Kyd 

are not chosen by the monetary authority but they are im 

plied by the other parameters of the model and by II). Finally, we impose 
the stability condition that the smoothing coefficient yRt must be less 

than 1 in levels (or less than 0 in logs). 
Our specification of parameter drift emphasizes the continuity of the 
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change process, in opposition to the discrete changes in the parameters 

captured by a Markov-switching process (see Davig and Leeper 2006a 

and 2006b). We do not have a strong prior preference for one version or 

the other. We prefer our specification because it is parsimonious and 

easy to handle, and it captures phenomena such as the Fed's gradual 

learning about the behavior of the economy. 

According to our favorite interpretation of parameter drifting, we will 

assume that agents understand that policy evolves over time following 

equations (10)-(12). Consequently, they react to it and make their decisions 

based on the current values of yt and on the fact that yt will evolve over time. 

The drift of the parameters implies that the economy will travel 

through zones where the Taylor principle is not satisfied. However, this 

may not necessarily mean that the equilibrium is not unique. In the con 

text of Markov-regime changes in the coefficients of the Taylor rule, 

Davig and Leeper (2006b) have developed what they call the general 
ized Taylor principle. Davig and Leeper argue that a unique equilibrium 
survives if the Taylor rule is sufficiently active when the economy is in 

the active policy regime or if the expected length of time the economy 
will be in the nonactive policy regime is sufficiently small. To keep this 

paper focused, we will not dwell on generating results equivalent to 

Davig and Leeper's in our environment. Suffice it to say that one further 

advantage of the Bayesian approach is that we can handle restrictions on 

the parameter drifting with the use of the priors. For example, we can 

implement a reflecting boundary on (10) by putting a zero prior on the 

possibility of violating that boundary. Also, in our empirical analysis, 
we estimate 7n as being bigger than 1. This suggests that the Taylor prin 

ciple will be satisfied, at least on average. 
Our formulation of parameter drifting has one important drawback: 

we do not model explicitly why the parameters change over time. In sec 

tion 3, we discuss that changes in the policy parameters could be a re 

flection of changing political priorities or evolving perceptions about 

the effectiveness of policy. A more complete model would include ex 

plicit mechanisms through which we discipline the movement of the pa 
rameters over time. Many of those mechanisms can be incorporated into 

our framework, since we are rather flexible with the type of functional 

forms for the parameter drift that we can handle. 

The model in section 4 carries on except with the modification of (9) 
and the fact that all the conditional expectations now incorporate the 

process (10). Thus, the states of the model with parameter drifting are: 
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? 
I *h-i' t-i'8t-i'8t-i'*t-i'Rt-i'yt-i'ct-i'vt-i'vt-i' V 

' 
= 

I ? ? ? ~ ? 3 j 
' 

\\t-vh-v x-v *-t-v zt-v Zv.,t-i' "-t-v 9f-i/ zA,t-v ^Rt-v 7m-i/ 7yJ 

where we have included yRt, ym, and yyt 
as three additional states. We 

will follow the convention of separating drifting parameters from the 

other states with a semicolon (;) since they are an object of interest by 
themselves. Similarly, we apply the particle filter to evaluate the likeli 

hood of the model and the Metropolis-Hasting algorithm to simulate 

from the posterior. 

6 Empirical Analysis 

This section presents our empirical analysis. First, we report the point 
estimates of the model when we keep all parameters fixed over the 

sample. This estimation sets a natural benchmark for the rest of the 

study. Second, we discuss the results of an exercise where we allow 

the parameters of the Taylor rule of the monetary authority to change 
over time. Third, we analyze the evolution of the parameters that control 

the level of price and wage rigidities. In the interest of space we select 

these two exercises as particularly illustrative of the procedure we pro 

pose. However, we could have performed many other exercises within the 

framework of our methodology. 
We estimate the model using five time series for the United States: 

(1) the relative price of investment with respect to the price of con 

sumption, (2) real output per capita growth, (3) hours worked per 

capita, (4) the CPI, and (5) the federal funds rate. Our sample goes from 

1955:Q1 to 2000:Q4. We stop our sample at the end of 2000 because of the 

absence of good information on the relative price of investment after 

that time. To make the observed series compatible with the model, we 

compute both real output and real gross investment in consumption 
units. For that purpose, we use the relative price of investment defined 

as the ratio of an investment deflator and a deflator for consumption. 
The consumption deflator is constructed from the deflators of non 

durable goods and services reported in the national income and product 
accounts (NIPA). Since the NIPA investment deflators are poorly mea 

sured, we rely on the investment deflator constructed by Fisher (2006), 
a series that ends at 2000.-Q4. The appendix provides further informa 

tion on the construction of the data. 
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6.1 Point Estimation 

Before reporting results, we specify priors for the model's parameters. 
We adopt flat priors for all parameters. We impose boundary constraints 

only to make the priors proper and to rule out parameter values that are 

either incompatible with the model (i.e., a negative value for a variance, 
Calvo parameters outside the unit interval) or implausible (the response 
to inflation in the Taylor rule being bigger than 100). The looseness of 

such constraints is shown by the fact that the simulations performed in 

the following never travel even close to the bounds. Also, we fix four pa 

rameters, (v, $, 3>2,8). The parameter controlling money demand v is ir 

relevant for equilibrium dynamics because the government will supply 
as much money as required to implement the nominal interest rate de 

termined by the Taylor rule. We fix the parameter <\> to zero, since we do 

not have information on pure profits by firms (in the absence of entry/ 
exit of firms, there are no serious implications for equilibrium dynam 

ics). The parameter of the investment adjustment cost, <$>2, is set to 0.001, 

and depreciation, 8, to 0.0149 because they are difficult to identify. Our 

choice of 8 matches the capital-output ratio in the data (remember that 

in our model we have both physical depreciation, controlled by 8, and 

economic depreciation, induced by the change in the relative price of 

capital). 
Our choice of flat priors is motivated by the observation that, with this 

prior, the posterior is proportional to the likelihood function.3 Conse 

quently, our Bayesian results can be interpreted as a classical exercise 

where the mode of the likelihood function (the point estimate under an 

absolute value loss function for estimation) is the maximum likelihood 

estimate. Moreover, a researcher who prefers more informative priors 
can always reweight the draws from the posterior to accommodate his 

favorite priors (Geweke 1989).4 We repeated our estimation with an in 

formative prior without finding important differences in the results. 

Table 2.1 summarizes our results by reporting the mean and the stan 

dard deviation of the posterior.5 Most of our point estimates coincide 

with the typical findings of other estimation exercises and the standard 

deviations are small. Hence, we comment only on a few of them. We 

have a high degree of habit persistence?h is 0.88?and we have a Frisch 

elasticity of labor supply of 0.74 (1 /1.36), well within the bounds of find 

ings in the recent microeconomic literature (Browning, Hansen, and 

Heckman 1999). The estimates of elasticities of substitution e and n are 

around 8, implying average markups of around 14 percent. 
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Table 2.1 

Point estimates 

Point Point Point 

Parameter Estimate S.D. Parameter Estimate S.D. Parameter Estimate S.D. 

0 0.999 0.001 Wr 0790 0.012 
|^ 

0951 0.006 
h 0.877 0.009 yy 

0.190 0.056 p? 0.942 0.015 

i|i 8.942 0.045 \yu 1.260 0.075 a^ 0.101 0.006 

fi 1.359 0.004 n 1.008 3.6e-4 \<rA 0.007 0.002 

k 7.679 0.600 a 0.255 0.011 am 0.003 8.4e-5 

ew 0.451 0.0923 e 7.957 0.1593 ad 0.060 0.003 

Xw 0.849 0.1231 t) 7.965 0.2984 <r9 0.070 0.011 

6p 
0.907 0.012 

A^ 
0.010 2.86e-4 

Xp 0.151 0.100 \AA 0.0005 4.57e-4 

The Calvo parameter for price adjustment, 0p, 
is a relatively high 0.91, 

while the indexation level, xp/ is 0.15. It is tempting to compare our esti 

mates with the microeconomic evidence on the average duration of 

prices (Bils and Klenow 2004, or Nakamura and Steinsson 2006). How 

ever, the comparison is difficult because we have partial indexation: 

prices change every quarter for all producers, a fraction 
0p 

because pro 
ducers reoptimize and a fraction 1-0 because of indexation. The Calvo 

parameter for wage adjustment, Qw, is 0.45, while the indexation, xw, is 

0.85. Our point estimates imply stronger nominal rigidities in price than 

in wages, in line with Rabanal and Rubio-Ramirez (2005) or Gali and Ra 

banal (2004) but diverging from Smets and Wouters (2003), who have 

much more informative priors. 
The policy parameters (yR, yn, 7 , II) are quite standard. The Fed 

smooths the interest rate over time (7R is estimated to be 0.79), and re 

sponds actively to inflation (7R is 1.25) and weakly to the output growth 

gap (yy 
is 0.19). We estimate that the Fed has a target for quarterly infla 

tion of 0.78 percent (or around 3 percent yearly). 
The growth rates of the investment-specific technological change, A , 

and of the neutral technology, AA, imply that most of the growth in the 

U.S. economy (83 percent) is induced by improvements in the capital 

producing technology. This result corroborates the importance of mod 

elling biased technological change for understanding growth and fluc 

tuations that Greenwood, Herkowitz, and Krusell (1997 and 2000) have 
so forcefully defended. The estimated long-run growth rate of the econ 

omy, (AA + aA J/(l 
- 

a) is 0.4 percent per quarter, or 1.6 percent annu 
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ally, roughly the observed mean in the sample. Also, the standard devi 

ation c^ is much higher than vA. 
Our estimation serves different roles. First, it validates our model as a 

promising laboratory for our exercises with parameter drifting. Since in 

the benchmark case we obtain results compatible with the literature and 

with the basic growth properties of the U.S. economy, we know that the 

results with parameter drifting will indeed come from that feature of the 

estimation. Second, we use our point estimates to initialize the parame 
ters in the exercises with parameter drifting. 

In the next two subsections, we will report our findings when we al 

low one parameter to vary at a time. We do this for convenience. First, 

allowing several parameters to move simultaneously makes the com 

putation and estimation of the model much more costly. Second, the in 

formation in the sample is limited and it is difficult to obtain stable esti 

mates otherwise. Third, especially in our second exercise, our objective 
is not so much to have the richest possible model to fit the data well but 

to show that as soon as parameters are allowed to change over time, 

strong signs of misspecification appear. We will continue the explo 
ration of joint moves of parameters in the near future. 

6.2 Evolution of Policy Parameters 

Our first exercise studies the evolution of the policy parameters in the 

Taylor rule. This investigation evaluates how much evidence there is in 

the data of a changing monetary policy over time. As we discussed in 

section 3, the literature has extensively debated the topic (e.g., Clarida, 

Gali, and Gertler 2000, Cogney and Sargent 2001, Lubick and Schorf 

heide 2004, Sims and Zha 2006, Boivin 2006). However, the empirical 
methods applied so far are unsatisfactory because they rely either on 

divisions of the sample that do not let the agents in the model forecast 

the changes in policy or on the estimation of reduced forms. 

Arguably the most interesting parameter is 7m_a, since this parameter 
controls how aggressively the monetary authority responds to inflation. 

In addition, 7m_a is intimately linked with the issue of multiplicity of 

equilibria and the possibility of monetary policy being a source of insta 

bility. Figure 2.2 plots our point estimate of the evolution of ynt_1 over 

time plus the two standard deviations interval to gauge the uncertainty 

present in the estimation. We report the smoothed values of ynt_x using 
the whole sample (Godsill, Doucet, and West 2004). We find it con 

venient, for expositional purposes, to eliminate some of the quarter-to 
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Evolution of Response to Inflation 

quarter variation of the parameter. To accomplish this goal, in figure 2.3 

we graph the trend of the change of the parameter where we compute 
the trend using a Hodrick-Prescott filter. We emphasize that this trend is 

only a device to read the graph more clearly and lacks a formal statisti 

cal interpretation. 
In both figures 2.2 and 2.3,7m-1 starts low, slightly above 1 during the 

1950s, 1960s, and early 1970s, with periods when it was even below 1. 

However, in the mid-1970s, and especially after Volcker's appointment 
as chairman of the Board of Governors, 7m_1 soared. The response to in 

flation reached its peak in the early 1980s, where it was as high as 6 in 

one quarter. After that maximization, 7m_1 slowly decreases during the 

1990s, perhaps reflecting the Fed's more permissive attitude to accom 

modate the strong productivity growth associated with the Internet 

boom. 

Since our model has parameter drifting, it is not straightforward to 

compare these numbers with estimates obtained in fixed-parameter 
models. However, we clearly confirm the findings of Clarida, Gali, and 

Gertler (2000), Lubick and Schorfheide (2004), and Boivin (2006)?that 

monetary policy has become much more active in the last 25 years. Our 
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HP-Trend Evolution of Response to Inflation 

finding is also consistent with the results of figure 12 in Cogley and Sar 

gent (2001), where they trace the evolution of the activism coefficient as 

measured by a parameter-drifting VAR. 

Another parameter of importance is the inflation target of the mone 

tary authority, II. Histories like those in Taylor (1998), Sargent (1999), or 

Primiceri (2006) explain that the inflation target may have changed over 

time as a reflection of the Fed's varying beliefs about the trade-off be 

tween unemployment and inflation. Figure 2.4 plots the evolution of the 

target over time plus the two standard deviation interval. From the start 

of the sample until the early 1970s and, later, for the 1990s, II hovers 

around 1.004, or, in annual terms, around 1.6 percent. This number is 

close to the informal target or comfort zone that, according to many 

commentators, describes the Fed's behavior. During the intermediate 

years, the inflation target increases, reflecting perhaps the views the Fed 

had about the possibility of exploiting the Phillips curve or illustrating 
the information lags regarding the changing features of the economy 

emphasized by Orphanides (2002). We find intriguing the similarity of 

figure 2.4 to Romer and Romer's (2002) hypothesis, based on narrative 

accounts and internal Greenbook forecasts of the Fed, that monetary 
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Evolution of inflation target 

policy in the United States has gone through a long cycle of moderation, 

aggressiveness, and renewed temperance. 
Our estimates of the evolution of the inflation target provide a reality 

check on our procedure. In figure 2.5, we plot the inflation target versus 

realized inflation. If the estimation is working properly, part of the vari 

ation in the inflation target needs to be accounted for, in a purely me 

chanical fashion, by changes in inflation. That is precisely what we ob 

serve: as inflation increases and then falls during the late 1960s and 

1970s, the target inflation estimated goes up and down. 

Note, however, that the inflation target fluctuates roughly between 40 

and 50 percent less than inflation. Particularly during the 1970s, the in 

flation target is well below actual inflation. This difference is accounted 

in two ways. First, by the form of our Taylor rule. We assume that one 

input into the rule is the growth gap between the growth of output ydJ 

yf_1 and the long-run growth rate of the economy Ayd. 
The 1970s were 

years of very low growth in comparison with 
Ayd.6 Thus, our model in 

terprets the behavior of the Fed as lowering the interest rates as a re 

sponse to low output growth in exchange for higher inflation. Second, 
our model backs up large negative technology shocks in the 1970s that 
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Inflation Target versus Inflation 

push inflation above the target level. Hence, an alternative way to think 

about this result is that our model suggests that the big rise in inflation 

during the 1970s had less to do with changes in the inflation target than 

with a series of unfavorable aggregate shocks. 

We summarize our results. First, the Fed's response toward inflation 

became more aggressive in the late 1970s and early 1980s and has stayed 

high since then, with perhaps a small decline. Second, the inflation tar 

get was relaxed in the 1970s, but not enough to account for the high in 

flation of that decade. We trust our results not only because they come 

from the estimation of a coherent DSGE model, but also because they are 

consistent with the findings of the existing literature that uses alterna 

tive estimation procedures, with narrative accounts of monetary policy, 
and with the reality check explained previously. 

6.3 Evolution of Price and Wage Rigidities 

A key set of parameters in our model are those determining the extent of 

price and wage rigidities, (8p/ xp, 0W, x J- These four parameters gener 
ate the nominal rigidity in the economy required to match the impulse 
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response functions documented by VARs (Christiano, Eichenbaum, and 

Evans 2005). 
Given their importance in the model, it is unfortunate that these pa 

rameters have only a tenuous link with microeconomic foundations. 

Even if the Calvo adjustment probabilities are the reduced form of a con 

vex adjustment cost model, the environment that produces this reduced 

form has changed over the years in our sample. We have gone from pe 
riods of high inflation and low response of the monetary authority to ris 

ing prices to periods of much lower inflation and a more aggressive at 

titude by the Fed toward inflation. Moreover, the U.S. economy has 

experienced a notable level of deregulation, increasing competition in 

internal markets from international trade, and lower unionization rates. 

The justification of the indexation parameters or their relation to the 

Calvo adjustment probabilities is even less clear. Why do agents index 

their prices and wages? And if they do, to which quantity? Past infla 

tion? Current inflation? Steady-state inflation? Wage inflation? Conse 

quently, it is natural to examine the possibility that the parameters (0p, 

XPf 0a,/ Xw) drift over time, both as a measure of how strong nominal 

rigidities have been in each different moment and as a tool to assess the 

extent of possible misspecification of the model along this dimension. 

As in the case of policy parameters, we specify an AR(1) as the law of 

motion for the parameters: 

log %t 
= 

min[(l 
- 

p6p)log 9p 
+ 

p6p log 0^ 
+ 

eQpt, 0] 

log xpt 
= 

min[(l 
- 

pjlog xp 
+ Px log xpt-i 

+ 
?*?*' ?1 

tog 6^ 
= 

min[(l 
- 

Pe Jlog Qw + pQw log 0^ + eQwt, 0] 

tog Xwt 
= 

mint(l 
~ 

PeJtog Xw + 
Px tog Xwt-i zxwt> 0] 

where 
(eM, eXpt, eewt/ exwt) 

are i.i.d. normal shocks and where we take the 

minimum of the value of the parameter induced by the autoregressive 

component and 0 to be sure that the two standard deviation interval and 

figure 2.6 its HP-trend (again, with the HP-trend of the CPI superim 

posed). Indexation evolves in an opposite way to price duration: it starts 

low in the 1950s and 1960s but raises very strongly during the late 1960s. 

Then, it drops dramatically in the mid-1970s and stays low over the next 

20 years (except for a temporary increase in the early 1980s). In the last 

part of the sample, during the 1990s, \pt steadily drops. The drop in in 

dexation in the second half of the 1970s may be accounted for by firms 
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HP-Trend Price Indexation vs. HP-Trend Inflation 

switching to more often optimal price adjustments and less automatic 

pricing rules. Firms were perhaps induced by the volatile inflation of 

those years, which made partial indexation a costly option. Mechani 

cally, our estimation finds less indexation because inflation is less per 
sistent in the 1970s. 

We find it illuminating to combine the evolution of the Calvo parameter 
0 , and of indexation xpt We do so in figure 2.7 (for their levels) and in fig 
ure 2.8 (for their HP-trends). The comparison of both parameters shows 

that periods of high price rigidities are also periods of low indexation. The 

converse is true as well, except for the mid-1970s. This result points out 

that adding indexation as an ad hoc procedure to increase the level of in 

flation inertia may hide important dynamics in price adjustments. 
We repeat our two experiments for wages. Figure 2.9 (in levels) and 

figure 2.10 (in HP-trends, with inflation superimposed) plot the evolu 

tion of the average duration of the spell before workers reoptimize 

wages, 1(/1 
- 

Qwt), in quarter terms. In this case the evidence is more dif 

ficult to interpret, with a big spike in the second half of the 1980s, which 

is probably due to sampling uncertainty. However, it is still the case that 

during the 1970s, as inflation went up, wage rigidity went down, and as 

inflation was tamed in the early 1980s, wages again became more rigid. 

Figures 2.11 and 2.12 draw the evolution of wage indexation. Here, in 
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comparison, the clarity of the result is embarrassing: wage indexation is 

nearly the perfect mirror of inflation. As we did for prices, we interpret 
this finding as the natural consequence of workers switching to more of 

ten wage reoptimizations that make indexation less of an interesting 
rule in times of high inflation.8 Less wage indexation is what the model 

needs to capture the higher volatility of inflation in the data. 

For completeness, we finish our graphical display with figures 2.13 to 

2.18, where we plot the evolution of the different parameters controlling 
nominal rigidities against other. Because of space constraints, we refrain 

from further discussion of the plots. However, the reader can appreciate 
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that the similarity in the evolution of the parameters over time solidifies 

our confidence that we are uncovering a systematic pattern of relation 

ships between nominal rigidities and inflation. 

We consider our findings to be strong proof of the changing nature 

of the nominal rigidities in the economy and of a strong indication of 

model misspecification along the dimension of price and wage adjust 
ment. Calvo's price adjustment cannot capture the evolution of the pa 
rameters are less than 1 in levels (they will always be more than 0 be 

cause we are taking logs). 
We first report the experiment where we let 

8^, 
the Calvo parameter of 
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price changes, evolve over time. We find it more informative (and more 

directly comparable to the micro evidence) to report the average dura 

tion of the spell before the producers reoptimize, 1(/1 
- 

Qpt), 
in quarter 

terms. Figure 2.19 plots that duration while figure 2.20 plots the Hodrick 

and Prescott (HP)-trend and, for comparison purposes, the HP-trend of 

the consumer price index (CPI). In this figure, as in all the rest of the fig 
ures of the paper where we plot two different variables, we follow the 

convention that the continuous line represents the parameter on the left 

y-axis and the discontinuous one the parameter on the right y-axis.7 

Figures 2.19 and 2.20 reveal a clear pattern: average duration was high 
in the late 1950s, dropped quickly in the 1960s, and only started to pick 

up in the late 1970s, continuing with an upward trend until today. Inter 

estingly enough, the changes in the average duration of the spell before 

the producers reoptimize are strongly correlated with changes in infla 

tion. In figure 2.20 we see how times of increasing trend inflation (late 

1960s, 1970s) are times of falling average duration and vice versa: how 

times of decreasing trend inflation (the 1980s and the 1990s) are times of 

increasing average duration. 

Our second experiment regarding price rigidities is with \pt, the pa 
rameter that controls price indexation. Figure 2.21 plots the evolution of 
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the parameter over the sample plus the fundamentals that determine the 

pricing decisions of firms and households. Our results underscore that 

this problem is relevant empirically. Also, they suggest that the evidence 

in Klenow and Kryvtsov (2005)?that the intensive margin of price 

changes accounts for 95 percent of the monthly variance of inflator? 

may be a product of the sample period (1988-2003), where the low level 

of inflation limits identification because it eliminates the source of vari 

ation of the data. Indeed, in our figures 2.7 and 2.8, if we look at the pe 
riod 1988-2000, we observe less variation in the pricing parameters. 

There are at least two possible sources for this misspecification of the 

pricing mechanism of the model that could rationalize our findings. 
First, time-varying price and wage rigidity parameters may be revealing 
a problem of omitted variables. For example, a change in the probability 
of price adjustment translates into a different slope of the (implicit) 

Phillips curve in our model and thus, into a variation of inflation. How 

ever, in the data, there are other shocks that affect inflation, like the price 
of energy, the price of commodities, or exchange rate fluctuations. Since 

we do not include these shocks, we may be capturing the changing in 

fluence of these sources of inflation through variations in the Calvo pa 
rameters.9 

The second source of misspecification may be the time-dependent 
structure of pricing (either a la Calvo as in the model we have presented 
or a la Taylor). Thus, we can read our results as favoring models of 

state-dependent pricing (Caballero and Engel 1999, Caplin and Leahy 
1991 and 1997), since those have an endogenously changing duration 

of prices and wages. The extra analytical difficulty implied by state 

dependent models (Dotsey, King, and Wolman 1999) may be a price we 

are forced to pay. Another strand of the literature that may consider our 

results interesting is the one that deals with sticky information (Mankiw 

and Reiss 2002, and Sims 2002). Higher inflation increases the incentives 

to gather information and, hence, it is likely to imply more frequent 

price and wage adjustments. 

Finally, our findings have relevant implications for optimal policy de 

sign. First, if we interpret the evolution of parameters like 0 , as exoge 

nously given, it may be something that the monetary authority may con 

dition its behavior on (we do not enter into a discussion of how it would 

estimate them in real time, we only raise this as a theoretical possibility). 

Second, if we real our results as showing that the measured amount of 

price rigidities are endogenous to monetary policy, optimal design be 

comes tougher than in the basic Ramsey exercises. 
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7 Conclusion 

How structural are the structural parameters of DSGE models? Less so 

than we often claim. Our analysis indicates that there are large varia 

tions in the estimated values of several of the key parameters of a bench 

mark medium-scale macroeconomic model during our sample period. 
We document changes in the response of the monetary authority to in 

flation and in the inflation target that confirm previous findings by other 

researchers. In particular, we report a move by the Fed toward a much 

more aggressive stand against raising prices in the late 1970s. Also, we 

find that changes in the inflation target account, at most, for 40 to 50 per 
cent of the increase in inflation in the 1970s. Our results are remarkable 

because they are derived in a context where agents understand that pol 

icy evolves over time and respond to that evolution. 

We uncover that the parameters controlling nominal rigidities drift in 

a substantial way, and more important, are strongly correlated with in 

flation. These findings cast serious doubts on the usefulness of models 

based on Calvo pricing and invite deeper investigations of state 

dependent pricing models. 

We do not want our work to be interpreted as a sweeping criticism of 

the estimation of DSGE models, because it is not. The literature has 

made impressive progress over the last years and has contributed much 

to improving our understanding of aggregate fluctuations and the ef 

fects of economic policy. We ourselves have been engaged in this re 

search agenda and plan to continue doing so. We hope, instead, that our 

paper will be read as an invitation to further estimation of DSGE mod 

els with parameter drifting. This avenue is promising, both as a mecha 

nism for incorporating richer dynamics and as a diagnostic tool for de 

tecting gross misspecifications. 
In fact, as our discussants have rightly pointed out, much remains to 

be done. We have only scratched the surface of the problem of estimat 

ing DSGE models with parameter drifting. We have not explored the 

model when we have different sources of variations in the parameters at 

the same time or when there is stochastic volatility in the shocks. Also, 
we have not studied the consequences of drifting parameters for the dy 
namics of the business cycle or for the impulse-response functions of the 

model. Finally, we have not evaluated different specifications of param 
eter drift or analyzed the possible reasons for parameter drifting in de 

tail. 

Our skepticism about the structural nature of most structural param 
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eters is not a call to perform reduced-form exercises. Along with Tom 

Sargent and Mark Watson (Fernandez-Villaverde and Rubio-Ramirez 

2007), we have singled out some of the problems of estimating reduced 

form models. But there are many other papers emphasizing the weak 

nesses of reduced-form inference. The fundamental point is that every 

empirical procedure has strengths and limitations. As Hurwicz (1962) 
warned us many years ago, just because we name something "struc 

tural/7 we should not believe we have taken the theoretical high ground. 
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Endnotes 

1. Indeed, Hurwicz (1962) himself emphasized the contingency of the definition of struc 

tural parameters: "the concept of structure is relative to the domain of modifications antici 

pated"; "If two individuals differ with regard to modifications they are willing to consider, 

they will probably differ with regard to the relations accepted as structural," and "this rel 

ativity of the concept of structure is due to the fact that it represents not a property of the ma 

terial system under observation, but rather a property of the anticipations of those asking for 

predictions concerning the state of the system" (p. 238; italics in the original). 

2. The autoregressive coefficients (pR, pm, p ) and the matrix Q become in this formulation 

the new structural parameters. We are also skeptical about their true structural nature, but 

to avoid the infinite regression problem, we will ignore our doubts for the moment. 

3. There is a small qualifier: the bounded support of the priors. We can fix this small dif 

ference by thinking about those bounds as frontiers of admissible parameter values in a 

classical perspective. 

4. We do not argue that our flat priors are uninformative. After a reparameterization of 

the model, a flat prior may become highly curved. Moreover, if we wanted to use the 

model for other purposes like forecasting or to compare it with, for example, a VAR, we 

would need to elicit our priors more carefully. 
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5. A word of caution here: the estimates of the standard deviation with the particle filter 

are relatively unstable (Fernandez-Villaverde and Rubio-Ramirez 2007, and Dejong, 

Dharmarajan, Liesenfeld, and Richard 2007). Computational constraints preclude us from 

running a simulation sufficiently long to fully avoid this problem. 

6. This observation may have motivated a model where 
Ayd changes over time, but such 

models are, as argued by Bansal and Yaron (2004), quite difficult to estimate in small 

samples. 

7. We do not plot the standard deviations interval for the average price duration (nor later 

for the average wage duration) because the transformation 1(/1 
- 

Qpt) generates implausi 

bly large upper bounds as soon as the simulation of 
Qpt 

travels close to 1. The standard de 

viations interval for 
Qpt show, however, that the parameter itself is estimated without too 

much uncertainty. 

8. During the early 1970s, there was a raise in the prevalence of cost-of-living allowance 

(COLA) escalators in collective bargaining agreements (Hendricks and Kahn 1985). This 

observation could be used to undermine our result. However, even at their peak, COLAs 

only covered 6 million workers, a small percentage of the labor force. Moreover, it is diffi 

cult to map COLAs from the 1970s into our model, since they had many contingent rules 

that make them quite different from the naive indexation rules that we use. In fact, it could 

even be possible to think about a state-contingent COLA as an implicit form of reopti 
mization. 

9. Similarly, part of the variation in the Calvo parameters may be accounted for by 

markup shocks, which play an important role in models like Smets and Wouters' (2003). 

However, it is difficult to see which type of markup shocks will have the level of persist 
ence that we observe in the movements of the Calvo parameters that we estimate. 
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8. Appendix 

This appendix offers further details about the technical aspects of the pa 

per. First, we discuss some general computational aspects and elaborate 

on the solution of the model. Second, we describe the particle filter that 

evaluates the likelihood function of the model. Third, we comment on 

the estimation procedure. Fourth, we close with the details of the con 

struction of the data. 

8.1 Computation of the Model 

The most important feature of the algorithm to be described below to 

solve and estimate the model is that it can be implemented on a good 

desktop computer. We coded all programs for the perturbation of the 

model and the particle filter in Fortran 95 and compiled them in Intel 

Visual Fortran 9.1 to run on Windows-based machines (except some 

Mathematica programs to generate analytic derivatives). We use a Xeon 

Processor 5160 EMT64 at 3.00 GHz with 16 GB of RAM. 

The solution of the model is challenging because we have 19 state 

variables plus the drifting parameters that we allow in each empirical 
exercise. Moreover, we need to recompute the solution of the model for 

each new set of parameter values in the estimation. The only non-linear 

procedure that accomplishes this computation in a reasonable amount 

of time is perturbation (Aruoba, Fernandez-Villaverde, and Rubio 

Ramirez 2006). We implement our solution by perturbing the equilib 
rium conditions of the rescaled version of the model (i.e., the one where 

we have already eliminated the two unit roots) around the determinis 
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tic steady state. This means that the solution is locally accurate regard 
less of the level of technology in the economy. Also, note that the steady 
state will depend on the level of inflation targeted by the monetary au 

thority. 
We use Mathematica to compute the analytical derivatives and to gen 

erate Fortran 95 code with the corresponding analytical expression. Then, 
we load that output into a Fortran 95 code that evaluates the solution 

of the model for each parameter value as implied by the Metropolis 

Hastings algorithm to be described below. The solution will have the 

form: 

(s;+1,/;)' 
= 

r5l(s;,e;)' + 
|(s;/e;)rs2(s;,e;)' 

+ rs3 (13) 

where, recalling our notation, St are the states, et are the shocks, Jt is a 

vector of variables of interest in the model that are not states, and the TJs 
are matrices of the right size. With (13), and by selecting the appropriate 
rows, we build the state space representation: 

sf+1 
= 

%&, e;y + 
|(s;, 

e;)*s2(s;, e;y + %3 

w = 
vjs;, e;)' + 

|(s;, 
e't)%2(s't, e/y + %3 

where S, 
= 

(S't, S[_v e^) and W = 
(A log \l~\ A log yt, A log /? log Ylt, log 

R,)'. 

8.2 Description of the Particle Filter 

We provide now a short description of the particle filter. We will delib 

erately focus on the intuition of the procedure and we will gloss over 

many technical issues that are relevant for a successful application of the 

filter. We direct the interested reader to Fernandez-Villaverde and Ru 

bio-Ramirez (2007), where we discuss most of those issues in detail, and 

the articles in Doucet, de Freitas, and Gordon (2001), which present im 

proved sequential Monte Carlo algorithms, like Pitt and Shephard's 
(1999) auxiliary particle filter. 

As we described in the main text, given the Markov structure of our 

state space representation, we can factorize the likelihood function as: 

T i 

t=i 
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and obtain the factorization: 

?(YT; ?) = 
j ?(Ya | S0; V)dS0 U \ 2{\ I S,; V)p(St I Y"; V)dSt (14) 

t=2 

Consequently, if we had the sequence (p(St I Y'_1; yir))J=1 and p(S0; 'VP), we 

could evaluate the likelihood of the model. Santos and Peralta-Alva 

(2005) show conditions under which we can draw the numerical solu 

tion of the model to approximate p(S0; yir). The two difficulties of evalu 

ation (14) are then to characterize the sequence of conditional distribu 

tions[p(SJ Y'-1; ^)]J=1 and to compute the different integrals in the 

expression. 

The particle filter begins from the observation that, if somehow we 

can get N draws of the form 
[(s^.JJlJJlj 

from the sequence (p(St \ Yf_1; 

^))J=i, we can appeal to a law of large numbers and substitute the inte 

grals with a mean of the conditional likelihoods evaluated in the empir 
ical draws: 

XOT; ?) ? 1 
f 2>(% I s< |o; ?)? -J- ? <g(Y, I sj,,.,; <J>) 

where our notation for the draws indicates in the subindex the condi 

tioning set (i.e., t\t -1 means a draw at moment t conditional on infor 

mation until t -1) and the superindex denotes the index of the draw. The 

intuition of the procedure is that we substitute the exact but unknown 

sequence [p(St\ Yf_1; <lIr)]fs=1 by its empirical counterpart. 
How do we draw from [p(St \ Y'-1; ^)],T=1? The second key idea of the 

particle filter is that we can extend importance sampling (Geweke 1989) 
to a sequential environment. The following proposition, due in its orig 
inal form to Rubin (1988), formalizes the idea: 

Proposition 1. Let fsj|f_1JJl1 be a draw from p(St I Y'~2; V). Let the sequence 

[s\]y=1 be a draw with replacement from ls\\t_^=1 where the resampling proba 

bility is given by 

i= Jg(Yjs;u_i;^) q' 
iJli^Xls;,^;^)' 

Then (s,f)Jl1 is a draw from p(St | Y'; ?). 

The proposition 1 shows how to recursively use a draw (sjj^)^ from 

p(St | Y'"1; V) to get a draw (s\ u)^ from p(St I Y'; Mf). This result is crucial. 
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It allows us to incorporate the information in Yt to change our current es 

timate of St. This is why this step is known in filtering theory as update 
(the discerning reader has probably already realized that this update is 

nothing more than an application of Bayes' theorem). 
The resampling step is key for the success of the filter. A naive exten 

sion of Monte Carlo techniques will just draw a whole sequence of 

[(sJU-i)/ljr=i without stopping period by period to resample according 
to proposition 1. Unfortunately, this naive scheme diverges. The reason 

is that all the sequences become arbitrarily far away from the true se 

quence of states, which is a zero measure set and the sequence that is 

closer to the true states dominates all the remaining ones in weight. A 

simple simulation shows that the degeneracy appears even after very 
few steps. 

Given (s\ \ t)^=1, we draw N exogenous shocks, something quite simple, 
since the shocks in our model e|+1 

= 
(e'M+1, e^+1, e^+1, e^+1/ e^+1)' 

are 

normally distributed. Then, we apply the law of motion for states that 

relates the s\\t and the shocks e|+1 to generate (sj+1 \t)^Lv This step, known 

as forecast, put us back at the beginning of proposition 1, but with the 

difference that we have moved forward one period in our condi 

tioning. 
The following pseudocode summarizes the description of the algo 

rithm: 

Step 0, Initialization: Set t ~> 1. Sample N values (s[)|0)Jl1fromp(S0;^r). 

Step 1, Prediction: Sample N values (s\ | f_1)Jl1 using (sj_21t^)^, the law of 

motion for states and the distribution of shocks er 

Step 2, Filtering: Assign to each draw (sj,^) the weight q\ in proposi 
tion 1. 

Step 3, Sampling: Sample N times with replacement from (s\ \ ̂ _1)J11 using 
the probabilities (q\)^=v Call each draw (sj, t). If t < T set t ~> t + 1 and go 
to step 1. Otherwise stop. 

With the output of the algorithm, we just substitute into our formula 

^(Y^; ?) - 1 
f 2(X I ̂|0; ?) n ^ I 2(Y,I S}|t_i; M>) (15) 

and get an estimate of the likelihood of the model. Del Moral and Jacod 

(2002) and Kiinsch (2005) show weak conditions under which the right 
hand side of the previous equation is a consistent estimator of !?(YT; V) 
and a central limit theorem applies. 
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8.3 Estimation Procedure 

We mention in the main part of the text that the posterior of the model 

p(M'|YT)oc??(Yr;M')p(M') 

is difficult, if not impossible, to characterize. However, we can draw 

from it and build its empirical counterpart using a Metropolis-Hastings 

algorithm. The algorithm is as follows: 

Step 0, Initialization: Set i ~> 0 and an initial Mr. Solve the model for M*. 

and build the state space representation. Evaluate prior p(M^) and ap 

proximate ^(YT; MO with (15). Set i-> i + 1. 

Step 1, Proposal draw: Get a draw M'f from a proposal density q{yt_lf yf). 

Step 2, Solving the Model: Solve the model for M'f and build the new 

state space representation. 

Step 3, Evaluating the proposal: Evaluate p(Vf) and ^(YT; M'f) with 

(15). 

Step 4, Accept/Reject: Draw Xi 
~ 

U(0,1). If x, ^ [^(VT; ^*)p(^*)^w/ 

M'f )]/[^(YT; M'f_1)p(%1)(/(M'f, %_,)] set Mr = 
M'f, otherwise Mr - %v 

Step 5, Iteration: If i < M, set i~*i + 1 and go to step 1. Otherwise stop. 

This algorithm requires us to specify a proposal density q{-, ). We fol 

low the standard practice and choose a random walk proposal, M'f 
= 

M^ 
+ k ., Kf 

~ 
>f(0, XK), where ZK is a scaling matrix. This matrix is selected to 

get the appropriate acceptance ratio of proposals (Roberts, Gelman, and 

Gilks 1997). 
To reduce the "chatter" of the problem, we will keep the innovations 

in the particle filter (i.e., the draws from the exogenous shock distribu 

tions and the resampling probabilities) constant across different passes 
of the Metropolis-Hastings algorithm. As pointed out by McFadden 

(1989) and Pakes and Pollard (1989), this is required to achieve stochas 

tic equicontinuity, and even if the condition is not strictly necessary in a 

Bayesian framework, it reduces the numerical variance of the proce 
dure. 

8.4 Construction of Data 

As we mention in the text, we compute both real output and real gross 
investment in consumption units to make the observed series compat 
ible with the model. We define the relative price of investment as the ra 
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tio of the investment deflator and the deflator for consumption. The con 

sumption deflator is constructed from the deflators of nondurable 

goods and services reported in the NIPA. Since the NIPA investment de 

flators are poorly measured, we use the investment deflator constructed 

by Fisher (2006). For the real output per capita series, we first define 

nominal output as nominal consumption plus nominal gross invest 

ment. We define nominal consumption as the sum of personal con 

sumption expenditures on nondurable goods and services, national de 

fense consumption expenditures, federal nondefense consumption 

expenditures, and state and local government consumption expendi 
tures. We define nominal gross investment as the sum of personal con 

sumption expenditures on durable goods, national defense gross in 

vestment, federal government nondefense gross investment, state and 

local government gross investment, private nonresidential fixed invest 

ment, and private residential fixed investment. Per capita nominal out 

put is defined as the ratio between our nominal output series and the 

civilian noninstitutional population between 16 and 65. Since we need 

to measure real output per capita in consumption units, we deflate the 

series by the consumption deflator. For the real gross investment per 

capita series, we divide our above mentioned nominal gross investment 

series by the civilian noninstitutional population between 16 and 65 and 

the consumption deflator. Finally, the hours worked per capita series is 

constructed with the index of total number of hours worked in the busi 

ness sector and the civilian noninstitutional population between 16 and 

65. Since our model implies that hours worked per capita are between 0 

and 1, we normalize the observed series of hours worked per capita such 

that it is, on average, 0.33. 
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