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The Expectations Component of
The Term Structure Stanley Diller

THE TERM STRUCTURE

The term structure of interest rates—the variation in rates in relation
to the term to maturity—involves one aspect of the general subject of
yield differentials on financial assets.

The markets for short- a.nd long-term securities are distinguished
by the supposedly greater substitutability of short-term securities for
money, the different economic roles associated with short- and long-
term borrowing, the preponderance of short-term securities in Federal
Reserve activities, and other faétors as well.

Some writers are inclined to emphasize the differences between the
short- and long-term markets largely on the basis of the differences
among the lenders at various segments of the maturity spectrum, as
well as differences in the purpose to which the loans are put. The
markets are sometimes described as largely independent segments in
which yields are determined by supply and demand conditions peculiar
to each segment. Yet, while some lending institutions may reveal pre-
ponderant interests in certain maturity segments because of the timing
of their liabilities, some part of their portfolios is typically permitted to
seek the most favorable yield-risk combinations regardless of maturity.
Many institutions, such as trust funds, are relatively free of maturity
constraints and can serve as the medium through which the markets
interact. Moreover, corporations often vary the maturity of their bor-

NoTE: This paper is based on a paper published in Economic Forecasts and
Expectations: Analysis of Forecasting Behavior and Performance, Jacob Mincer,
ed., New York, NBER, 1969.
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rowings in response to market conditions. Recent writers have tended,
therefore, to minimize institutional constraints and to emphasize instead
the fluidity among markets not only by maturity or quality or type of
financial assets but between financial and real assets as well.

This paper starts with a brief description of the expectations hypothe-
sis, which relates the term structure at some time to the expectations
at that time of the future interest rates. After describing an earlier test
of this hypothesis the paper introduces a model that fits this earlier work
into a more general context of autoregressive models and expectations.
Particular behavioral models are derived from a general autoregressive
model, and the relationship among them is explained. The forecasts
implicit, by hypothesis, in the term structure are decomposed into a
part attributable to autoregressive (or extrapolative) forecasting and
a part not so attributable. The components are related to variables
that might be reasonably used to forecast interest rates in an effort
to explain the sources of the implied forecasts. Finally, the accuracy
of the forecasts is measured and associated with the two components
of the forecast.

THE EXPECTATIONS THEORY

Hicks was one of the first to consider the relationship between short-
and long-term rates. His proposition is that under certain restrictive
assumptions the long-term rate is the geometric mean of the short-
term rates spanning the same term to maturity. The well-known form-
ula for the price or present value of a bond is given by equation (1).

Pv— 1 2
11 +R +R)2

where PV is the present value of the current market price of security,
is the coupon payments, P is the principal, and R is the

market yield. Alternatively, a long-term bond is equivalent to the auto-
matic reinvestment in a consecutive series of short-term bonds at rates
current at the time of reinvestment. The formula in this case is:

FyI— C1 C2 C3
— 1 + + (1 + + r2) + (1 + ri)(1 + r2)(1 + r3)

Cn+P
I(1 +ri) . . (1
a
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where is the one-period rate for the ith period. The are called
forward rates. In the event there are no coupon payments (i.e., all C
are 0), equating the two present value formulas is equivalent to equat-
ing the last terms of each:'

(1 = (1 +ri)(1 +T2) . . .

From the formulas of two maturities (n and n — 1) we can derive

—
1T (1 + —

where is the internal rate of return on a bond with n periods to
maturity. In these formulas, the forward rates, rj, are the short-period
rates pertaining to a future period and are determined by the differ-
ential between currently observed long rates of appropriate maturity.2

The substances of Hicks' hypothesis is that a forward rate is in fact
the short-period rate that is expected to prevail in that period and
that the long rates of different maturities adjust. in order to be con-
sistent with these expected rates. In addition, he hypothesized that
changes in the spot rate, i.e., r, or R,, stimulate expectations of sub-
sequent changes in r1 and, hence, in In this way variations in short-
term rates, R,, produce, via the expectation mechanism, variation in
long-term rates R, (i> 1). This hypothesis, often amended (as it was
by Hicks) to include the effect of differences in liquidity between long-
and short-term securities, has become known as the expectations hy-
pothesis.

/The expectations hypothesis is sometimes rejected on the grounds
of its alleged implausibility: investors, it is sometimes said, do not
attempt to forecast short-term rates far into the future. Properly viewed,
however, the expectations hypothesis does not imply implausibile
behavior.

The forward rates, which this study equates with forecasts, are not
the numbers to which investors directly respond; nor is it correct to

1 Neil Wallace has estimated the effects of ignoring these restrictions in com-
puting the internal rate of return, R. He concluded that these effects are small.
See "The Term Structure of Interest Rates and the Maturity Composition of the
Federal Debt," unpublished Ph.D. dissertation, University of Chicago, 1964, pp.
10—12.

While the example is based on adjacent (i.e., a one-period difference in term
to maturity) long rates, which together imply a one-period forward rate, the
long rates can be spaced arbitrarily to imply forward rates whose maturity equals
the difference in maturities between the long rates.
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regard them as consciously pinpointed forecasts made by the public
looking well into the future, though some individuals may form precise
forecasts. Deducing the forward rates from the combinations of long
rates and evaluating them as forecasts is an analytical device justified
by the hypothesis and the arithmetic of interest rates; the efficacy of
this method is independent of judgments of the plausibility of some
hypothetical forecasting mechanisms.

Without actually specifying forecasts of rates ad infinitum, investors
can react to yield differentials and adjust the maturity of their hold-
ings in accordance with their expectations of rates. Regardless of the
certainty of their convictions, investors are continually required to
decide on combinations of yield and maturity on the basis of limited
information, vague expectations, and publicized market attitudes. De-
ciding between the purchase of a long- and short-term security does not
require a point forecast of a one-year rate twenty years out even
though the aggregate of such decisions leads to a yield structure that
corresponds with one that point forecasts could produce. In a period
of high rates, for example, an investor may well decide to purchase
a long-term bond—whether for the capital gain expected when rates
ultimately fall or merely to receive a high yield for a long period.
Summed over many investors, this thinking would depress long-term
yields and produce apparent forecasts of declining rates. The investors
who purchase the long-term bond implicitly forecast, at a minimum,
that short-term rates will not rise or stay high. Among this group are
those who think a decline in rates is imminent and others who think
rates will fall only after an inflation subsides, perhaps ten years out.
The weight of these opinions will mold the yield curve. While few
if any investors will distinguish their 14-year forecast from their 15-year
forecast, the availability of the two maturities forces a choice, and the
resulting yields will reflect the frequency distribution of investors of
various horizons. If by accident the yields become out of line, a sufficient
number of investors, indifferent between the two maturities, will set
them right. This arbitrage along the yield curve is facilitated by the
investors' ability to borrow for the purpose of buying or short-selling
securities, as well as by the ability of issuers to vary their maturities
to correct imbalances among yields.

Investigations of implied market forecasts—whether interest rates,
stock or commodity prices, foreign exchange rates, or personal incomes,
profits, and any other economic variables—pertain to the weight of
market forces, which are themselves the aggregate of individual and
group decisions, rather than personal motivation or institutional
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anomalies. While these market forces are personified for expositional
convenience, and motivations are established for hypothetical decision
makers, the efficacy of the analysis is predicated on its ability to
predict behavior and not on the plausibility of its expositional devices.

To test the expectations hypothesis it is necessary to treat the forward
rates inferred from the term structure of long rates as forecasts. A
well-known test by Meiselman3 is based on an evaluation of the conse-
quences of using the forward rates in a model that has on other
occasions successfully described changes in forecasts. Meiselman
reasoned that if forward rates are forecasts they would be reviewed
as new information came to light. Thus, he supposed that errors in
forecas.ting would lead to revisions of forecasts. He used the error-
learning model, which describes the effect of the currently observed
error of a prior forecast on the current revision of prior forecasts of
some future period,

— = a + — grg_i) + u, (2)

where is the forecast made in I of the rate expected in period
I + n; is the spot rate in period t; and u is a random term.

Meiselman used Durand's Basic Yields4 on corporate securities to
compute the forward rates for the test. These data permit the compu-
tation of ten consecutive one-period forward rates for each observation
period, which in turn permit eight regressions of equation (2), i.e.,
n = 1, 8. He found that while each of the eight regression coefficients
were significantly different from zero, their magnitude and statistical
significance declined as the span of forecast, n, increased. Meiselman
regarded these results to be consistent with the hypothesis that the
forward rates are forecasts. He argued that the coefficients should fall
with increasing span of forecasts since forecasts of increasing span
became increasingly remote from the current error, and revisions of
this rate were therefore less dependent on the current error.

EXTRAPOLATIVE FORECASTING
Meiselman's error-learning model describes a specific technique of
forecasting. Mincer has shown that it is actually a rearrangement of

David Meiselman, The Term Structure of interest Rates, Englewood Cliffs,
1962, Chapter II.

'David Durand, Basic Yields of Corporate Bonds, 1900—1942, New York,
NBER, 1943. The complete set of data is listed in the National Industrial Con-
ference Board's Economic Almanac 1967—1 968, p. 416.
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terms of an autoregressive model,5 which allows us to view the forecast
as dependent on prior values of the forecast and the actual variable.
In this way we can interpret some characteristics of the expectations
implied in Meiselman's results. Mincer relates the forecasts of a given
span to the forecast or actual values of each prior period. For example,
a one-period forecast is related to the current actual value and each
of the prior actual values; a two-span forecast to the one-span forecast
of the prior period, then to the current actual value, and finally to all
prior actual values—as in the following equation:

= A + + +•• +
+ +. . + (3)

where is the forecast made in t referring to t + n, is the
actual value of the series i periods in the past, and E is the random
term. This model extrapolates a weighted average of current and past
values, substituting extrapolated for actual values between I and
I + n 1 for forecasts of t + n. In addition to the extrapolative, or
autoregressive, component there is an autonomous component, E, of
the forecast. Equations (4) and (5) describe the forecasts made in t
and t — I, respectively, referring to t + 1.

= A + + +. .+
B1 + B2A + + + (5)

In (5), since is unknown at the time of forecast, t — 1, the extrapo-
lated value, is substituted. Subtracting (5) from (4) yields:

— = B1(A — —1-- — 1+1E1_1), (6)

where the last term on the right is a random term. Equation (6) is
identical to Meiselman's error-learning model.

By extending this formula to later maturities we can derive the B's
from the coefficients in Meiselman's regressions. For the target t + 2
the equations are,

= A + + + +. . .'+ (7)
= A + + + +. .+ (8)

Subtracting (8) from (7) yields:

— t+2Fg_j) — £+lFt_l) -1— B2(A —
+ — (9)

6 See Jacob Mincer, "Models of Adoptive Forecasting," in Economic Forecasts
and Expectations, op. cit.
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The difference equation for t + 3 is

— = — 4— —
+ B3(A — + — (10)

It is clear that the revision variables on the right of (9) and (10) are
themselves functions of the current error of forecast. Substituting (6)
into (9) yields:

— = — SF11)] + —

+ — e÷2E1_1)

= (B12 + B2)(A — + — (11)

Substituting (6) and (9) into (10) yields:

— = — + —

+ B3(A £ — gFe_i) + —

= (B13 + B1B2 + —

+ — (12)

The weights, B1, that appear in (6), (11), and (12) are identical
to those in the extrapolative forecasting equation, (3). Therefore, each
of the eight regression coefficients, M1, that Meiselman estimated with
the error-learning model (2) (n = 1, 8) are estimates of the corre-
sponding combinations of in the difference equations above. The M1,
estimated by simple regression (2), provide convenient estimates of
the B1, obtainable alternatively from multiple regression (3). The rela-
tionship between the two sets of weights is

M1=B1
M2=B12-f-B2
M3 = + 2B1B2 + B3 (13)

and generally,

= B5, where M0= 1.
5=1

It is enough to estimate either set of weights to obtain estimates of the
other.

The study estimated both the and B1 directly, the former by
duplicating Meiselman's procedure and the latter by a method described
below. In addition, using (13), it derived either set from the other and
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compared the direct and indirect estimates of both sets of weights. Since
the sets are empirically estimated stochastic variables, their relationships
do not correspond exactly with their algebraically derived relationships.
The estimates and statistical tests of their equivalence are shown for
illustrative purposes only.

To compare the direct and indirect estimates of either set of weights,
a procedure is required to directly estimate the It is, of course,
possible to directly estimate (3) for each value of n, the span of fore-
cast. Alternatively, since the in principle, are identical for each n,
it is convenient to pooi the data into one regression involving all spans
of •forecast, each value of the dependent variable associated with the
appropriate prior forecasts and actual values. Table 8-1 lists the direct
estimates of and together with the indirect estimates of each from
the other, as well as estimates of the significance of the differences
between the two sets of estimates.

Columns 1 and 2 are reestimations of Meiselman's reported results
with the error-learning model (equation 2). Column 3 combines the
directly estimated of equation (3) in accordance with equation (13).
While the standard error for the direct estimates are reported, it is
very difficult to estimate the standard errors of the indirect estimates
of since they involve extensive algebraic manipulation of a stochastic
series. While inclusion of an estimate of this error would increase the
standard error of the differences between the two estimates of this
effect could be offset by a positive covariance between the two estimates
of M,.° Since there is no easy way to evaluate the relative strengths of
these opposing influences on the standard error of the differences, it is
difficult to estimate the direction of the bias of the results reported in
column 4. These considerations aside, the two sets of estimates of
are fairly close.

The two estimates of B1 are similar, although the problem just alluded
to prevents a conclusive evaluation of the significance of the differences
in the two sets of estimates. In both sets, B1 is large and there is a
sharp decline to B2 followed by a gradual decline. Sampling fluctuation
in the direct estimates and the sensitivity of the indirect estimates to
sampling fluctuation in the estimated prevent a smooth pattern in
the but the one just described is a reasonable approximation.

C The well-kno'wn formula for the standard error of the difference between two
estimates, A and B, is SA + S8 — 2CA.B, where S signifies standard error and C
is covariance. A positive covariance lowers the standard error of the difference.



g)

TA
B

LE
 8

-1
. D

ire
ct

 a
nd

 In
di

re
ct

 E
st

im
at

es
 o

f t
he

 E
rr

or
-L

ea
rn

in
g 

co
ef

fic
ie

nt
s,

an
d 

th
e 

Fo
re

ca
st

in
g 

W
ei

gh
ts

,
an

d
Es

tim
at

es
 o

f t
he

 S
ig

;n
ifl

ca
nc

e 
of

 th
e 

D
iff

er
en

ce
s B

et
w

ee
n 

th
e 

D
ire

ct
 a

nd
 In

di
re

ct
 E

st
im

at
es

, A
nn

ua
l D

at
a,

 1
90

1—
54

St
an

da
rd

St
an

da
rd

Sp
an

D
ire

ct
Er

rO
r o

f
In

di
re

ct
t V

al
ue

D
ire

ct
Er

ro
r o

f
In

di
re

ct
t V

al
ue

of
Es

tim
at

e
D

ire
ct

Es
tim

at
e

of
Es

tim
at

e
D

ire
ct

Es
tim

at
e

of
Fo

re
ca

st
of

 M
1

Es
tim

at
e

of
 M

1
D

iff
er

en
ce

of
Es

tim
at

e
of

 B
•

D
iff

er
en

ce
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)

1
.7

02
9

.0
31

2
.7

45
7

1.
37

18
.7

45
7

.0
19

9
.7

02
9

2.
15

07
2

.5
25

6
.0

41
9

.6
10

9
2.

02
86

.0
54

8
.0

24
8

.0
31

8
0.

92
74

3
.4

O
34

.0
46

6
.5

31
2

2.
74

46
.0

34
7

.0
24

0
.0

11
4

0.
97

08
4

.3
26

3
.0

48
6

.3
64

1
0.

77
98

—
.0

91
4

.0
19

2
.0

18
0

—
5.

69
79

5
.0

45
9

.2
86

4
0.

20
48

.0
52

2
.0

24
3

.0
16

5
1.

46
91

6
.2

34
8

.0
41

4
.2

54
6

0.
47

58
.0

05
1

.0
25

8
.0

04
2

0.
03

49
7

.2
36

7
.O

38
9

•.2
47

7
0.

27
51

.0
41

2
.0

25
8

.0
40

1
0.

04
26

8
.2

08
9

.0
40

1
.2

20
9

0.
31

67
—

.0
16

8
.0

26
0

—
.0

11
6

—
0.

20
00

N
O

TE
: A

ll 
es

tim
at

es
 a

re
 b

as
ed

 o
n 

th
e 

D
ur

an
d 

da
ta

. C
ol

. I
 d

up
lic

at
es

 M
ei

se
lm

an
's 

es
tim

at
es

 o
f e

qu
at

io
n 

(2
); 

co
l. 

2 
Ji

tts
 th

e 
st

an
da

rd
er

ro
r o

f t
he

se
 e

st
im

at
es

; c
ol

. 3
 e

st
im

at
es

fr
om

in
 c

ot
. 5

 u
si

ng
 e

qu
at

io
n 

(1
3)

; c
ol

. 4
 a

pp
ro

xi
m

at
es

 th
e 

si
gn

ifi
ca

nc
e 

of
 d

iff
er

en
ce

be
tw

ee
n 

co
ls

.
1 

an
d 

3 
us

in
g 

co
t. 

2 
as

 th
e 

es
tim

at
e 

of
 th

e 
st

an
da

rd
 e

rr
or

 o
f d

iff
er

en
ce

; c
oL

 S
 e

st
im

at
es

 th
e 

co
ef

fic
ie

nt
s o

f e
qu

at
io

n 
(3

)
us

in
g 

po
ol

ed
 d

at
a 

fo
r a

ll 
sp

an
s o

f i
nt

er
es

t; 
co

l. 
6 

lis
ts

 st
an

da
rd

 e
rr

or
s o

f t
he

se
 e

st
im

at
es

; c
ol

. 7
 e

st
im

at
es

fr
om

 M
1 

in
 c

ol
. 1

 u
si

ng
eq

ua
tio

n 
(1

3)
; c

ol
. 8

 a
pp

ro
xi

m
at

es
 th

e 
si

gn
ifi

ca
nc

e 
of

 th
e 

di
ff

er
en

ce
 b

et
w

ee
n 

co
ls

. S
 a

nd
 7

 u
si

ng
 c

ol
. 6

 a
s t

he
 e

st
im

at
e 

of
 th

e 
st

an
da

rd
er

ro
r o

f d
iff

er
en

ce
.



422 Essays on Interest Rates

THE RETURN-TO-NORMALITY HYPOTHESIS

Since the forecasting equation (3) is formulated as a general autore-
gressive model, its weights, B1, tell us a lot about how expectations are
formed. We can compare various hypotheses with the empirical esti-
mates. One widely used model hypothesizes a return-to-normality
mechanism, whereby forecasts of a series move in the direction of the
normal value of the series.7 This hypothesis is one explanation for the
often observed inverse relationship between the slope of a yield curve
and the level of rates. Typically, yield curves incline at low levels of
rates and decline at high levels.8 According to the return-to-normality
hypothesis, when short-term rates are high they are expected to decline;
hence, long-term rates decrease with increasing maturity, and the yield
curve declines. The reverse holds for low levels of short-term rates.

Algebraically the return-to-normality hypothesis amounts to the
following:

— = K < 0, (14)

where — t+iFt) is the change expected at t of the target value,
in this case, the one-period spot rate, from t + 1 to t + 2; is the tar-
get, or spot, rate at t; is the normal rate at t; and K is negative to
reflect the inverse relationship between the expected change and the
deviation of the spot from the normal rate.

Assuming for the moment that the normal rate does not change,
the following regression form gives estimates of K in (14),

— = a + KAg + V, it = 1,8. (15)

The phrase "move in the direction of" distinguishes the forecasts or expected
values from the normal value, which generally connotes a long-term tendency
rather than a particular point. It should, therefore, vary less than a forecast and,
correspondingly, incorporate a greater span of the past variation of the series,
to which it should attach more uniformly distributed weights in place of the
decaying weights of a point forecast.

8 This observation is true except at the very short end of the curves, which
almost always inclines. This short-period incline combined with an over-all
declining yield curve results in the familiar humped yield curve typical of periods
of high interest rates. See Reuben Kessel, The Cyclical Variation of the Term
Structure of Interest Rates, New York, NBER, 1964, p. 25; reprinted as Chapter
6 of this book.
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TABLE 8-2. Statistics Computed From the Regression of the Expected
Change of Future Spot Rates on the Level of the Current One-Period Spot
Rate, Durand Data, Annual Observations, 1900—54

Span of
Forecast K

(1)
t Value of K

(2)

Constant
Term

(3)

t
Con

Value of
stant Term

(4)
R2 (adj)

(5)

rt+i t — R
t —.1627 —7.2109 .6437 7.8584 .4904

r
t+2 t —

rt+i t —.1264 —11.8510 .4909 12.6817 .7246
r

t+3 t —
r

t+2 t —.0997 —17.0387 .3878 18.2505 .8452
r

t+4 t —
r

t+3 t —.0741 —12.7946 .2948 14.0311 .7543
r

(+5 t —
r

t+4 r —.0737 —8.2939 .3071 9.5246 .5612
r

t+6 t —
r

t+5 t —.0475 —7.8774 .1964 8.9637 .5353
r

(+7 t —
r

t+6 t —.0332 —6.1131 .1382 7.0177 .4070
r

t+8 r —
rt+7 —.0361 —8.0801 .1511 9.3173 .5481

r
(+9 t —

rt+8 t —.0250 —4.1018 .0981 4.4308 .2299

NOTE: The regressions were of the form t+nrt — = Q + Rf +

V is a random term.° The results of estimating (15) are listed
in Table 8-2. These estimates of K are in each case significantly nega-
tive, confirming the widely recognized relationship described above. The
use of in place of — in (15) implies the following relation:

a = a' +
where a is the constant term in (15) and a' is the constant term in the
event — is used in place of On the hypothesis that a' = 0,
an estimate of the constant normal rate is obtained from the ratio a/K,

Other writers have used the level of rates to estimate the normality effect or
else have assigned some arbitrary value or small group of values to the normal
value. See, for example, James Van Home, "Interest Rate Risk and the Term
Structure of Interest Rates," Journal of Political Economy, 1965, p. 349. Van
Home adds a variable he calls "deviation of actual from accustomed level" to
Meiselman's formulation of the error-learning model and he divides his sample
period into two subperiods. "For each . . . [sub] period . . an arithmetic
average of the beginning forward rate levels is calculated. This average may be
thought to represent the accustomed level for the [sub] period. The deviation is
simply the difference of the actual forward rate level from the accustomed
level. . .
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that is, the constant term divided by the regression coefficient. For each
n, the estimate is approximately 4 per cent. This number is an estimate
of the normal rate.

Just as the decline in the error-learning model coefficients, was
equivalent to a particular pattern of weights in the extrapolative equation
(3), so the negative K in (14), interpreted here as indicating an. ex-
pected return to normality, also implies a particular pattern of weights
in (3).'°

To derive this pattern, define of (14) as
= + +. .+ (16)

Substituting (16) into (14) yields

— = KAg — K (E (17)

where and were defined in equations (4) and (7) above,
respectively, the first in terms of the and the second in terms of

and the Substituting (4) into (7) yields
= (B12 + + (B1B2 + B3)Ag_1

+E (B1BI + (18)

Subtracting (4) from (18) gives

— = [(B1.2 + B2) — B1]A

+E + — (19)
2

From (13) it is clear that the expression [(B12 + B2) — B1] in (19),
equal to K in (17), is actually M2 — M1. In general, the proportion, K,
of the deviation of the current rate from the normal rate, which is
expected to be offset between t + n — 1 and t + n, is exactly equal to
MN — MN_i. The more rapid the decline in the sooner are future
rates expected to overtake the normal rate.. The difference in the
listed in column 1 of Table 8-1 show the rate of movement toward
normality for the particular data used. According to. these estimates

10 Mincer, op. cit., designates the pattern that produces a declining and
and a negative K as convex. He distinguishes .this pattern, which is consistent
with many different combinations of weights, from concave and exponential
patterns.
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approximately half the difference between current and normal rates
is expected to be removed over the eight year period.

The rate of movement declines with span of forecast. Other convex
patterns of B, would imply different rates of movement toward nor-
mality. In the case of exponential weights, where M4 = there
would be no movement toward normality, and in the case of a concave
pattern of where M, < expected rates would move away from
normality.1'

Another implication of the convex pattern of where
(and actually an alternate exposition of the relations described above),
is that as the span of forecast, n, increases, the weight attached to
declines, and the remaining weights both rise and approach equality.
In other words, the longer the span of forecast, the lower the weight
given to current experience and the greater the weight given to the past.
In effect, the longest term forecast approaches the normal rate.

THE RELATIONSHIP AMONG EXTRAPOLATIVE MODELS

The principal conclusion of the above analysis is that three widely used
forecasting models, the extrapolative, the error-learning, and the return-
to-normality models, are actually three variants of a general extrapola-
tive formula. There are, in principle, as many models as there are
combinations of weights from an autoregression, although the word
"model" is ordinarily used only when the particular combination of
weights is consistent with a plausible behavioral hypothesis. There is
a difference, however, between the specification of the model and the
parameters that are estimated for it. While the error-learning model
is a particular form of the extrapolative model, its application to a given
set of data need not result in declining revision coefficients (as the span
of forecast increases) and therefore in a particular pattern of implied
extrapolative weights. Similarly, while the return-to-normality hypothesis
is consistent with the extrapolative model, there is no logical necessity
that K be negative. The model is a transformation of the extrapolative
models, while the hypothesis that K is negative is subject to empirical
test. A negative K is implied by error-learning coefficients that decline
with forecast span.

See Mincer, op. cit.
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AUTONOMOUS FORECASTING

There is more to forecasts, of course, than is implied in the extrapola-
tive procedure. Variation in contemporaneous variables may also
influence forecasts. Merely correlating these variables with the forecasts,
however, would not reveal the extent of this influence. To the extent
these contemporaneously correlated variables are themselves autore-
gressive, they impart an autoregressive component to the forecasts. For
this reason part of the observed autoregressiveness of the forecasts may
arise from the influence on them of variables that are themselves auto-
regressive. Whether there exists an autoregressive component of the
forecasts independent of that which is imposed by the autoregressive
component of functionally related variables is virtually impossible to
determine.

It is possible, however, by partitioning the forecasts into ãutoregres-
sive and random components, to divide the total relation between the
forecasts and the other variable into the parts due to either component.
One way to effect this partition is to regress the forward rates on the
current and past spot rates and interpret the residuals of the regression
as estimates of the random component of the forecasts.'2 An observed
relationship between these residuals and other current economic van-
ables would indicate that part of the forecast was based on current
developments in the market, not entirely of the past.

The regression form used to distinguish the two components of the
forecast is

= a + b1A + b2A + + e-7 + (20)
where is the forecast made at t referring to t + n, is the
spot lagged i periods, and is the residual term (the estimate
of the random component of the forecasts). The lag terms are arbi-

12 Another way is to compute a moving average of the current and past spot
rate using the weights described above. In principle, a third way is to specify
a model that predicts the autonomous (with respect to time, not to other
variables) component and leaves a residual estimate of the autoregressive com-
ponent. In the absence of a definitive method, it is most practical to exhaust
one component and let the stated existence of the other component depend on
rejecting the null hypothesis of its absence. The likelihood that forecasters
utilized nonextrapolative information, given the rejection of the null hypothesis
that they did not, is strengthened by the knowledge that part of the stated
autoregressive component likely includes the autoregressive effects of con-
temporaneously related variables.
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trarily limited to seven to conserve data. The computed value from
the regression, t + is the estimate of the extrapolative component
of the forecasts and the residual term, of the random or non-
extrapolative component.

Equation (20) was fit for spans of one, two, three, and four quarters
to Treasury bill yields.13 The coefficients of determination are listed
in column 2 of Table 8-3 and show a close relationship. In spite of

TABLE 8-3. Partitioned Relationship Between the Index of Industrial
Production and the Forward Rates, Treasury Data, Quarterly Observations,
1 949—64

Span of
Forecast

(1) (2) (3)

t Value of
bF*
(4) (5)

t Value of
b1

(6) (7)

1 .7159 .9543 .8866 21.8365 .0078 .6909 .9667
2 .7806 .9314 .8075 15.9938 .1049 2.6743 .9564
3 .8107 .9177 .7343 12.9808 .1947 3.8404 .9480
4 .8176 .8814 .4705 7.3615 .2394 4.3817 .9003

NOTE: R2 is the coefficient of determination, I is the index of industrial
production, F is the forward rate, and F* is the extrapolative component.

this strong measure of autoregressiveness the question remains whether
there is any relationship between the residuals and other variables that
may influence forecasting of interest rates. For present purposes we
use the FRB's index of industrial production as a proxy for such
other influences.

Column 1 of Table 8-3 lists the coefficients of determination be-
tween the forward rates and the production index. Equation (21)
measures the effect on the forecast of the extrapolatiye component
(computed from equation 20), the concurrent production index,
I, and the random component.

7? — I 7?*\ i— a t j —r 21 y
Columns 3 through 7 list the relevant statistics for these regressions.

Most of the correlation between the forward rates and the index
of industrial production is captured by the extrapolative component

13 The data are read from the yield curve for the middle month of each
quarter. The yield curves appear in the Treasury Bulletin. The sample period
used is 1946—64.
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of the forecasts. That is, includes most of R2F,J. But there is a
net relation between F and I that is independent of F*. Column 5
of Table 8-3 indicates that the correlation between I and the autono-
mous component of the forecasts increases with the span of forecast and,
except for the first span, is statistically significant. Alternatively, when
the relation between the forecasts and current and past spot rates is
adjusted for the influence of I, the coefficients of determination (column
3) are smaller than the simple coefficients, listed in column 2. This result
highlights the difficulty noted earlier of interpreting the estimated amount
of autoregressiveness; the autoregressiveness of I contributes to that of F.

The forecasts of interest rates appear to rely progressively more on
autonomous variables, like I, as the span of forecast increases. Conse-
quently, the ability to explain the forecasts does not decline with
increasing span of forecast as rapidly as the declining R2s of equation
(20) suggest.

The index of industrial production is merely one of many possible
indicators likely to affect the forecasts of interest rates. The observed
relationship does not imply that investors actually consulted this par-
ticular indicator. The determination of which indicators were actually
consulted is a statistical question only insofar as alternate hypotheses
are tested. The Dow Jones index of industrial stock prices (denoted by
S), for example, yields somewhat stronger results than the index of
industrial production. The results of this experiment are shown in Table
8-4. As in the case of the earlier experiment the relation between F and S
grows with increasing span. Without the contribution of S the extrapola-
tive component of F deteriorates much more rapidly than when its

TABLE 8-4. The Partitioned Relationship Between the Dow Jones Index of
Industrial Stock Prices and the Forward Rates, Treasury Data, Quarterly
Observations, 1949—64

Span of
Forecast

(1) (2) (3)

t Value of
bF*
(4) (5)

t Value of
bs
(6) (7)

1 .7861 .9543 .8532 18.8278 .0327 1.4359 .9675
2 .8595 .9314 .7215 12.5709 .1704 3.5399 .9596
3 .8892 .9177 .5921 9.4116 .2770 4.8339 .9533
4 .8889 .8814 .2356 4.3359 .3309 5.4918 .9123

NOTE: The form of this table is identical to that of Table 8-3 except for the
substitution of industrial stock prices, S, for industrial production, I.
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contribution is not isolated 3 compared with column 2). But
the strengthening relationship shown in column 1 as span of forecast
increases is due not only to the effect of S on F* but also to its autono-
mous effect, which grows to 33 per cent of the forecast by the fourth
span. There is little question but that a more eaborate attempt to specify
a model of interest rate forecasting would succeed in reducing further
the putative effect of extrapolative forecasting, which in the preceding
results appears dominant.

THE ACCURACY OF THE FORECASTS

To measure the accuracy of the forecasts, it is useful to separate the bias
from the random error of the forecasts.14 The distinction is particularly
important in the case of the forward rates since they may contain a non-
forecasting component that on the average makes the forward rate, when
viewed entirely as a forecast, too high. Many writers15 think that long-
term rates are on the average higher than short-term rates because
holders require a premium to compensate for the lower liquidity of
long-term bonds. If so, and if this nonforecasting component were not
isolated, the forward rates, which include the premia, would appear
to be less accurate forecasts than they are. However, only the mean
of the prernia would contribute to the measured bias; any variation
in the premia, as a result of variation in their determinants, would
accentuate the computed error of forecast.

It is useful to compare the mean square error of the forecasts with
a set of benchmark forecasts as well. A convenient benchmark forecast
is found by autoregressing the target value on its own past values,
which is the general form of the various naive models that are often
used in this connection. In the general form,

A1 +E. (22)

The so-called "no change" and "same change" models can be derived
by setting b1 and = 0 for i> 1 in the former case and b1 = 2,
b2 = —1, and = 0 for i> 2 in the latter case. Since in accordance

"See Mincer and Zarnowitz, "The Evaluation of Economic Forecasts," Eco-
nomic Forecasts and Expectations: Analysis of Forecasting Behavior and Per-
formance, Jacob Mincer (ed.), New York, NBER, 1969.

For example, see Reuben Kessel's article, Chapter 6 of this book.
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with (22) the degree of fit of the regression is the measure of accuracy,
the benchmark forecasts are the most stringent to use, since they are
specifically chosen to maximize the fit.

The total mean square error and the random error'° of the forecasts,
as a ratio to the benchmark, are given in Table 8-5. The ratios in
column 1 include the bias and are therefore higher than the correspond-
ing ratios in column 2. While for each span the total mean square
error is higher for the forecasts than for the benchmark, the former
approach the latter as the forecast span increases. The relative improve-
ment of the forecasts as the span increases is indicated in colunm 2
as well. These numbers are lower than the corresponding numbers in
column 1 because the bias term is removed. The relative improvement
with span lowers the random error of the forecasts below that of the
benchmark by the fourth span.

The improved relative accuracy of the forecasts as span increases
TABLE 8-5. Ratios of Mean Square Errors and of Their Random Com-
ponent of Forecasts Relative to Benchmark Forecasts, Treasury Data,
Quarterly Observations, 1949—64

Span of
Forecasts

Ratio o
Mean Square

(1)

f
Errors

Ratio of
Random Errors

(2)

1 1.1481 1.0854
2 1.4078 1.0701
3 1.2716 1.0341
4 1.0607 0.9607

NOTE: Column 1 gives the ratio of E(A —F) for the forecasts relative to the same
term for the autoregressive benchmark. A number greater than 1.0 implies the
forecasts have a higher total error than the benchmark forecasts have.

Column 2 gives the ratio of (1 — for the two sets of forecasts. This
term measures the random error, as distinct from the bias. The symbol refers to
the coefficient of determination in the regression of the target values, A, on the
forecasts, F; is the variance of A. Since the autoregressive benchmark is
computed to exclude a bias, the denominators of the ratios in columns 1 and 2 are
identical; for the benchmark the total and random errors are the same.

'° The random error is the component of the mean square error whose ex-
pected value is zero; that is, it excludes any bias. A formula for the random
error is

random error = (1 — TA,2)

where is the coefficient of determination in the regression of F on A, and
SA2 is the variance of A. See Jacob Mincer, op. cit.
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reveals the increasing importance of the autonomous component of the
forecasts with increasing span. Since the gross correlation between A
and F is a measure of the accuracy of the forecasts, the decomposition
of this correlation into partials for the extrapolative and autonomous
components of the forecasts helps show the sources of the forecasts'
accuracy and the changes in these sources with increasing span of
forecast. The partial correlations for equation (23), shown in Table
8-6, reveal the increasing importance of the autonomous component
with increasing span of forecast.

= + + (23)

TABLE 8.6. Selected Statistics From the Regression of Target Spot Rates
on the Extrapolative and Autonomous Components of the Forecasts,
Treasury Data, Quarterly Observations, 1 949—64

Partial Partial
Correlation Correlation
Coefficient t-Value Coefficient t-Value

Span of Squared of of Squared of of P2
Forecast

(1) (2) (3) (4)

(multiple)

(5)

1 .7898 13.7063 .0862 2.1715 .7856
2 .3165 4.8115 .0972 2.3195 .3378
3 .4555 6.4676 .0511 1.6410 .4499
4 .4143 5.9483 .1377 2.8256 .4431

NOTE: The general form of the regression is given in equation (23). The forecast
components were related to a four-term moving average of the quarterly spot rates to
make the forecasts and the targets comparable.

SUMMARY AND CONCLUSIONS

The evidence revealed in this study is consistent with the hypothesis
that expectations influence the term structure of rates. While the im-
portance of extrapolation in business forecasting is well known, statis-
tical verification of this fact tends to exaggerate the importance of
extrapolation. Even where the market or the individual utilizes knowl-
edge of contemporaneous relationships, the autoregressiveness of these
related variables redounds on the forecasts themselves. In spite of



432 Essays on Interest Rates

this exaggeration the data reveal some amount of nonextrapolative
forecasting, which contributes to the accuracy of the forecasts.

It is convenient to summarize the extrapolative cOmponent of the
forecasts, regardless of its source, with an equation that describes each
forecast as a linear combination of past forecasts and observed
values (that is, targets of earlier forecasts). The convenience stems
from the inferences that can be drawn from the pattern of weights in
the linear combination. The most obvious inferences concern the rela-
tive importance that attaches to earlier forecasts and observed values
in determining current forecasts. This study found, for example, that
the weight given to the last previous forecast (or observed value, in
the case of the one-span forecast) is relatively high but that subsequent
weights are much lower, although the rate of decline is small after the
decline from the first to the second. Further inferences stem from the
parameters of other extrapolative behavioral models that are implied
by the weights in the linear combination. So, for example, the error-
learning coefficients—the proportions of past errors that are used
to correct forecasts of later periods—fall off with increasing span of
forecast. This decline does not imply (but is consistent with) a decline
in the extrapolative component of longer span forecasts and less still
a lower forecasting content of more distant forward rates. On the con-
trary, the decline in the learning coefficients is implied by the widely
observed inverse relationship that exists between the direction of
expected change and the difference between the current level and its
long-run expectation. By algebraically relating the three models (ex-
trapolative, error-learning, and return-to-normality), the study was
able to estimate their parameters. While the three models imply dif-
ferent motivations for the forecasts, they are mutually consistent and
statistically indistinguishable.

Apart from analyzing the extrapolative component, the study esti-
mated its importance as the span of forecast changes. It found that
the autonomous (or nonextrapolative) component both explained a
larger fraction of the variation of longer-span forecasts and accounted
for a larger fraction of their accuracy. The second finding, concerning
accuracy, is important because it excludes the inference that the falling-
off of the extrapolative component signifies a falling-off of the fore-
casting component of the forward rates. It is consistent also with the
idea that autonomous forecasting is more useful for longer-term fore-
casts—or the obverse, that extrapolative forecasting becomes less use-
ful with increasing span of forecast.

The expectational mechanism described in this report, even if it
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were the only factor governing yield differentials of varying terms to
maturity, does not ensure that as of any given time the yield curve
depicts the market's forecasts. A sudden increase in the supply of a
particular maturity or a decision by one or more large financial insti-
tutions to alter the maturity of their portfolio would alter the shape
of the yield curve. But if the market's forecasts have not changed, rela-
tive bargains among certain maturities would emerge, and the demand
for these maturities would reinstate the original yield curve. Investors
may differ in their preference for different maturities for reasons such
as liquidity or hedging liabilities and will respond with different degrees
of alacrity to the temporary departure of the yield curve from the one
reflecting current expectations. Transaction costs may discourage or
delay total reinstatement.

This study did not investigate the influence of liquidity preference.
Short-term securities are generally thought to be more liquid because
of their broader markets, lower transaction costs, greater collateral
value, and less volatile price fluctuation. Not all investors, however,
value these qualities, and some prefer long-term bonds because they
stabilize income, obviate reinvestment, require less management, etc.
Most writers think the former group predominates in the market and
thus that, apart from the influence of expectations, short-term securities
yield less because of their (on balance) greater desirability. The result-
ing yield curve would incline unless the expectation of a decline in
rates dominated the liquidity effect. According to the liquidity hypoth-
esis, there is a spectrum of degrees of liquidity, inversely related to
term-to-maturity. A change in the structure of available maturities,
as a result, for example, of a major government refinancing, would
alter the aggregate liquidity of financial assets. If, for example, the
debt were lengthened and as a result over-all liquidity fell, the ensu-
ing demand for liquidity would lower the yields (bid up the prices) on
shorter-term securities and alter the term structure that is consistent
with a given pattern of expectations. This hypothesis, which includes
the effect of changes in the supply of money, is supplementary rather
than competitive with the expectations hypothesis. A more exhaustive
theory would include the effects of changes in the yield differentials
of debt and equity, changes in expected inflation, and many other
phenomena as well. These ideas have in common the proposition that
the market for securities and indeed for all assets may be usefully
viewed as a unit in which different investment concerns—yield, liquidity,
risk, taxes, etc.—are synthesized into an over-all price structure.




