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Expectations at the Short End of the
Yield Curve: An Application
of Macaulay's Test Thomas Sargent

The recent interest in the expectations hypothesis and the term struc-
ture of interest rates has been marked by an abandonment of the search
for accurate forecasting' that characterized early empirical work on
the term structure. Economists have by and large followed David
Meiselman's [15] lead in accepting the proposition that even if expec-
tations prove to be inaccurate, they may still determine the yield struc-
ture. Thus, the literature's emphasis has shifted to attempting to explain
the process by which expectations are formed.2

This paper presents an inspection of the accuracy of the expectations
implicit in the yield curve using essentially the same approach followed
by Frederick Macaulay [13] in one of the earliest empirical studies of
the term structure. Our return to this approach is motivated by several
factors. First, existence of accurate forecasting provides a particularly
convincing type of evidence confirming the expectations hypothesis.
Second, as Kessel [12, p. 7] has noted, the reappearance of a seasonal
in money market rates in the 1950's provides a new body of data with
which to conduct tests along the lines of Macaulay's. Third, cross-
spectral analysis provides a set of tools well suited to performing the
required tests.

NOTE: The author thanks Melvin Hinich, Phillip Cagan, Gregory Chow,
Stanley Diller, and Jack Guttentag for helpful comments on an earlier draft of
this paper.

1 Kessel [12] is the most notable exception.
2 For example, see DeLeeuw [4], Malkiel [14}, Modigliani and Sutch [17],

Wood [21], Van Home [20], and Bierwag and Grove [1].
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MACAULAY'S TEST

The cornerstone of the expectations theory is the proposition that long
rates can be thought of as an average of current and anticipated short
rates. For bills, which yield no coupons and sell at a discount, the
following formula from Hicks [9] is appropriate:

= + + . . . (1 + 1, (1)

where is the yield to maturity on f-period bills at time t and t+jrit is
the rate the market expects to prevail on one-period bills in period
t + j. For interest rates in the usual ranges, the arithmetic average
approximation to equation (1),

Rng (Ru + £+irit +• (la)
can be used with small error.3 The formula implies that forecasts of
short rates are embedded in long rates, and it was this proposition which
Macaulay sought to verify. Macaulay compiled data on call and time
rates for the years 1890 through 1913, a period characterized by a
pronounced seasonal in money market rates. Since the seasonal was a
fairly regular one that speculators could incorporate into their expec-
tations, the longer-maturity time rates should have led call rates at
least at the seasonal component of oscillation. This followed when it
was noted that on the expectations hypothesis the time rate actually
had a forecast of the shorter-maturity call rate impounded within it.
Macaulay proceeded to estimate the seasonal component of each series
over the period 1890—1913, and he found that the time rate seasonal
did appear to lead the call rate seasonal. This he thought constituted
"evidence of definite and relatively successful forecasting" [13, p. 36].
However, he could find no evidence of successful forecasting at the
nonseasonal frequencies.

The nature of Macaulay's procedure, with its use of a decomposition
of time series by frequency and the search for a lead of one series over
another at particular frequencies, suggests that the tools of spectral

This can be seen by writing equation (1) as

ln(1 + = [ln(1 + R11) + . . . + ln(1 +
and noting that for small x, ln(1 + x) x.
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and cross-spectral analysis would be useful in conducting such a study.4
By examining the estimated spectral density function for each series,
it can easily be determined if an important seasonal component of
oscillation, the key necessary condition in Macaulay's experiment, exists
in the data. Then by inspecting the coherence coefficient, a measure
analogous to the R2 statistic of correlation analysis, the strength of
association between series at the relevant frequencies can be studied.
Provided that the coherence coefficient is sufficiently large, the phase
statistic, which gives an estimate of the average lead of one series over
another over a given frequency band, can be inspected for leads at the
relevant frequencies.5

In order to determine the consistency of results produced by spectral
methods with those obtained by Macaulay, spectral and cross-spectral
calculations were made for the period 1890—1913 using the monthly
data on call and time rates that Macaulay had studied. Forty-eight was
the maximal lag used in obtaining the spectral and cross-spectral esti-
mates from the covariograms.6 The results are reported in Charts 7-1
through 7-5. The estimated spectral densities, which are given in Charts
7-1 and 7-2, display sizable peaks at periodicities of twelve, six, and
three months, which correspond to the seasonal component of oscilla-
tion and its first and third harmonics. This means that a good deal of
the variance in the series is accounted for by oscillations in these fre-
quency bands, and thus it confirms the existence of a seasonal pattern
in each series.

The strength association between the two series at various com-
ponents of oscillation can be determined by inspecting the coherence
diagram, which appears in Chart 7-3. The coherence coefficient pro-
vides a measure of the proportion of the variance occurring in one series
over a given frequency band which is explained by the variations over
the same frequency band in another series. The coherence is bounded
by zero and one, like the R2 statistic to which it is analogous. Chart
7-3 shows that the call and time rates are highly correlated at the
seasonal component, the coherence attaining a value greater than .9

For previous applications of spectral techniques in studies of the term struc-
ture, see Fand [6], Granger and Rees [8], Dobell and Sargent [5], and Sargent
[19].

A comprehensive treatment of spectral analysis can be found in [7].
° The spectra and cross-spectra were calculated by using the standard co-

variance-cosine transformation procedures together with a Parzen window. The
calculations were performed by using the ALGOL procedure SPECTRUM, which
is available on the Carnegie Tech G-21 computer.
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CHART 7—1. Spectral Density of Call Rate, 1890—1913

Log of spectral density

CHART 7—2. Spectral Density of Time Rate, 1890—1913
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CHART 7—3. Coherence Between Time and Call Rate
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at the twelve-month periodicity. In addition, the coherence function
displays peaks in the vicinity of the harmonics of the seasonal.

Chart 7-4 reports the phase of the time rate with respect to the call
rate; when it is negative, it indicates that the time rate leads the call
rate, while if it is positive, the call rate leads. The graph confirms
Macaulay's finding that the time rate leads at the seasonal since the
phase statistic is negative at the twelve-month frequency band and its
first three harmonics. The results also confirm Macaulay's failure to
find evidence of successful forecasting at other low frequency corn-

CHART 7—4. Phase of Cross-Spectrum Between Call and Time Rates
Phase in radians
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CHART 7—5. Gain of Cross-Spectrum Between Time and Call Rates

Ga in
3
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0

ponents of oscillation, for at none of the nonseasonal frequencies is
there a negative phase shift coupled with a large coherence.7

The spectral results are thus consistent with Macaulay's findings in
every respect. However, we should note certain limitations inherent in
following Macaulay's procedure of comparing call and time rates. In
particular, a problem arises from the ambiguous nature of the maturity
of a call loan. While it is clear that its maturity was less than that of
time loans, it undoubtedly varied over time, and probably in a syste-
matic fashion with the level of rates. Given the pronounced season-
ality in rate levels, it is not unlikely that the maturity of call loans itself
displayed a seasonal component. Since the magnitude of the lead that
Macaulay's mechanism produces depends sensitively on the maturity
difference between call and time loans, such variations in the maturity
of call loans distort the time structure of the relationship between call
and time rates. This is a particularly serious problem with the har-
monics of the seasonal, since here the variations of the maturity of call
loans are likely to be large relative to the period of the oscillation, and
this produces quite serious distortions in any results we may obtain.8

Chart 7-5 reports the gain of the call rate with respect to the time rate over
each frequency band. The gain statistic is essentially the regression coefficient
b(wj) at each frequency for the model

yt(w,) = b(Wj)xg(w,),

where is the call rate at frequency wj and is the time rate at w1.
Notice the rise in the gain that occurs at the seasonal and its first several
harmonics. This pattern is consistent with Macaulay's comments about the
smaller amplitude of time rates at the seasonal frequency [13, p. 36].

For the period 1866—89, we performed a cross-spectral analysis on call rates
and the longer-maturity commercial paper rate series compiled by Macaulay. The

Period in months
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Fortunately, this problem does not arise for the data on U.S. Treasury
bill yields in the 1950's, which are the major concern of this study.
However, before we turn to these data, we must investigate the impli-
cations of Macaulay's hypothesis for the behavior of timing with
respect to the maturity difference between two bills.

THE TIME PATFERN UNDER ACCURATE FORECASTING

In this section we consider the implications of the extreme hypothesis
that the forward short rates impounded in the yield curve accurately
forecast the corresponding future spot rates. In our notation this hy-
pothesis is written

= (2)
In the appendix we explore the consequences of invoking the weaker
but still very severe hypothesis that the forward rates are unbiased
estimators of future spot rates, that is,

(2a)
where the t+ict's are independent, identically distributed random vari-
ables with mean zero and finite variance, which are distributed inde-
pendently of Suffice it to say that our proposition about the
timing of the relationship between and holds also when (2a)
is assumed.

To simplify the exposition, we use the arithmetic approximation to
Hicks' formula,

= + + . +g+n_irig)/÷in. (3)
Substituting (2) into (3), we have

Rng — + + + (4)
which says that on the accurate forecasting hypothesis, long rates are
arithmetic averages of current and subsequently observes short rates.

Inspection of (4) makes it clear that movements in will display
a lead over movements in R1. It is our objective to derive the actual
length of this lag. Before doing this, it may be helpful to set forth the

spectral densities confirmed that seasonals existed in both series and the coherence
coefficient was fairly high at the seasonal frequencies. However, while the com-
mercial paper rate led at the twelve-month frequency, it failed to lead at the
important harmonics of the seasonal.
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following heuristic argument which leads to the correct conclusion. Let
us rewrite expression (4) as

= + (4a)

By how much will lead We know by how many periods each of
the terms on the right hand side of (4a) leads leads by
zero periods, Rig+i leads by one period, and leads by
1 periods. Then, since is simply the average of I = 0, •

n — 1, the lead of over is simply the average of the leads of
/ = 0,. . . , n — 1, over Hence, we have

lead of over =
(lead of over + lead of over

+ + lead of over
or we have

lead of over = [0 + 1 + + — 1)] periods. (5)

This is the key result of this section. It holds for both assumptions
(2) and (2a). In the remainder of this section, and in the appendix,
we shall set out a more rigorous development of this relationship. The
continuity of the argument will not be badly interrupted if the reader
proceeds to the next section at this point.

In order to derive (5), our strategy is to evaluate the phase of the
cross-spectrum between long and short rates implied by equation (2).
Let us first rewrite (4) as the linear relationship

h. (6)

where h4 = 1/n for all i. Next we introduce the Fourier transforms of
and

A (w) = E

B (w) = E
H (w) = E

By the convolution theorem, (6) implies

B (w) = H (w) A (w), (7
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where H (w) is the transfer function. The spectral densities of RLt
and are given by the mathematical expectations of the squared
amplitude of their Fourier transforms. Letting be the spectrum
of f-period bills, we have

Si(w) = E IA(w)j2,
= E IB(w)12,

where E is the expectation operator. The cross-spectrum between
and is given by

= EA (w) B (w), (8)

where A (w) is the complex conjugate of A (w). Substituting (7) into
(8) we have

= EH(w) IA(w)12

= H(w) Si(w).
Hence, we have arg = arg H(w). Next we will express H(w)
as

H(w) = IH(w)I eia(w), (9)

where G(w) is the phase of the transfer function. G(w) is the expres-
sion we are interested in. From (6) we have

n—i

= (1 — —

Assuming for convenience that n is odd and defining m (n—i) /2,
we can write

H(w) eimw E
lc=—m

= (3/b + cos w• •+ cos mw),
which corresponds to expression (9) since the term in parentheses is
real. Thus, we have arg H(w) = G(w) = mw or

arg 11(w) = (10)

which is phase of the cross-spectrum. This is the expression we are
after. The amplitude of the transfer function is given by
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IH(w)I = 2 (1/2+ COS W + + cos mw)
= sin (n.w/2)

sin (w/2)

Since angular frequency w equals 2 jr/p where p is the length of the
period,

IH(w) = sin (n w/p)
sin (ir/p)

Clearly IH(w) = 0 for n = jp, / = 1, 2 That is, the ampli-
tude of the transfer function equals zero for n's that are integer
multiples of the periodicity being studied. At these frequencies, relation
(10) has no meaning. For, since the coherence is zero here, the phase
statistic is uniformly distributed on the interval

[irir
L 2'2

Relation (10) is a precise statement of Macaulay's proposition that
on the hypothesis of accurate forecasting, long rates lead spot short
rates. The lead relationship is of a simple "fixed-time" form, the phase
diagram increasing linearly in angular frequency w with slope (n — 1) /2.
Such a phase diagram implies that in time the length of the lead is
constant across all frequencies. To determine the length of the fixed-time
lag, we simply multiply (10), which gives the phase in radians, by
time periods per radian or 1/w. Then the time lag equals

[(n — 1)/21 w = (n — 1)/2 periods.

Thus, the long rate leads the short by (n — 1) /2 periods across all
frequencies. This is the same result given by the heuristic argument
advanced at the beginning of this section. This is seen when it is noted
that it can be shown by induction that [0 + 1 + 2 + • • + (n —
1)]/n= (n— 1)/2.

Thus, we have established that the time lead of longs over shorts
is an arithmetic average of the indexes that show the number of
periods forward to which the forward rates in (3) apply. In the next
section, relation (10) is used to study the pattern of leads of long bill
rates over shorts in the U.S. Treasury bill market in the 1950's.
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MACAULAY'S TEST APPLIED TO U.S. TREASURY
BILL RATES

It has been demonstrated that the accurate forecasting version of
the expectations hypothesis implies that n-period rates lead one-period
rates by [0 + 1 +.

• + (n — 1 )]/n periods. As a function of
angular frequency w the hypothesized lead could be expressed as

= (11)

where b11 = [0 + 1 + • + (n — 1) ]/n periods; where w is ex-
pressed in radians per time period; and where is the phase of
the cross-spectrum between and In this section, our procedure
will be to estimate the phase diagram of the cross-spectrum between
n-period and one-period bills and then to use it to estimate It can
then be determined how closely the estimated ba's approximate the
values implied by the accurate forecasting hypothesis.

We will use relation (1) to explore the adequacy of the accurate
forecasting hypothesis in explaining the term structure of U.S. Treasury
bill rates in the 1950's. The data are 417 weekly observations on one-,
two-, . . . , thirteen-week bill rates for the period January 1953
through December 1960. With a few exceptions, the yield quotations
were made on Tuesdays. The lag between sale and delivery is two
working days, and consequently the rates correspond to bills delivered
on Thursdays. Since Treasury bills always mature on Thursdays, the
quotations are for bills with an integer number of weeks to maturity.9

We propose to test the accurate forecasting hypothesis by using the
phase of the estimated cross-spectrum between one-week and n-week
bills, n = 2, . . . , 13, to estimate the parameter of (11) for n = 2,
• . • , 13. For the purposes of empirical implementation, a stochastic
term must be added to the right side of equation (11). This term is
present for several reasons. First, it incorporates the possibility of an
error in the specification of (11). For example, accurate forecasting
may be possible, if at all, only with respect to certain frequencies of
oscillation, so that it is incorrect to specify that (11) holds across
all frequencies. The use of the estimated phase, which is itself a random
variable, provides another reason for including a stochastic tenn in

See Roll [18] for a further description of the data used here. Professor Roll
generously supplied the data for use in this study. We have used averages of
bid and ask yields.
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(11). This is the standard errors-in-variables cause for the presence
of a stochastic term.'° Of course, there is no reason to expect the
variance of the estimated phase to be constant across frequencies. This
will only occur if the true coherence is constant across all frequencies.
This suggests that we should incorporate the assumption of hetero-
scedastic disturbances in our specification of (11). Accordingly, we
assume

= + (ha1)

var (u1) = k var (ha2)
where uj is a random term with mean zero and finite variance and
where denotes the estimated phase of the cross-spectrum be-
tween n-week and one-week rates at frequency Equation (ha2)
states the assumption that the disturbance variance is proportional to
the variance of the estimated phase, k being the factor of proportionality.

Where the disturbances are heteroscedastic, least squares is an in-
efficient estimator. However, an estimator that is equivalent to Aitken's
efficient generalized least squares estimator is least squares applied to
the following equation:

= [w1/Vvar + (12)

On our__assumptions, the variance of the transformed disturbances
(w1) is a constant, which means that the inefficiency due

to the heteroscedasticity of the u4's can be eliminated by applying least
squares to the transformed equation (12). In the empirical work
below, we use an estimate of the asymptotic variance of each estimated
phase statistic to transform the variables as indicated in (12).

Spectral densities were estimated for each of the thirteen bill rate
series over the period January 1953 through December 196Q. One
hundred and four was the maximal lag used in the calculations. A typi-
cal spectral density for these series is the spectrum for the three-week
bill rate which is reported in Chart 7-6. The graph contains peaks at
the seventeen- and-one-third- and thirteen-week periodicities and at
several harmonics of these periodicities. Not surprisingly, similar
spectral shapes were estimated for the other twelve bill rates. The
spectral results thus tend to confirm the existence of the seasonal in

'° It should be noted that the error is in the dependent variable while the
independent variable is measured exactly. Errors in the dependent variable
induce no bias in the least squares estimator of b,. See Johnston [11, Chapter
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CHART 7—6. Spectrum of Three-Week Bill Rate

Log of spectral density

bill rates which Kessel [12] and Conard [3, Chapter 5] found to be
present in the 1950's.

Cross-spectra were calculated for each of the longer rates against
the one-week bill rate. For periodicities greater than thirteen weeks,
the coherence and phase of these cross-spectra are reported in Table
7-1. The estimated phase statistics recorded in this table are the basic
data to be used in the regressions described above. The estimated
coherence, which is shown in parentheses beneath the estimated phase,
is also important for it permits us to estimate an asymptotic variance
for the phase statistic each frequency. The asymptotic variance of
phase is approximately given by

(r/2s)[lfcoh(w1) — 1], (13)
where r is the maximal lag, s is the number of observations, and

is the coherence at frequency we." By substituting the esti
"See Hinich and Clay [10].
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mated coherence into (13), an estimate of the asymptotic variance of
the phase is derived. This is the procedure we have used to estimate
the variances which appear in equation (1 1a2).

For the frequency bands listed in Table 7-1, least squares estimates
of the parameter in (1 la) are reported in Table 7-2. For all cross-
spectra, n = 2, 3, . . . , 13, > 0, so that the phase statistics indi-
cate that the longer rate leads the one-week bill in each instance, as
predicted by the accurate forecasting version of the expectations
hypothesis. In addition, L.> for n = 3, . . . , 8, which is also

TABLE 7-2. Regression of Phase Statistics on Angular Frequency, All
Frequencies

n DW

2 .1651
(.0203)

.2231 .4814

3 .3033
(.0270)

.3550 .7984

4 .5192
(.0370)

.5793 .8235

5 .7424
(.0500)

.7481 .8653
.

6 .9107
(.0692)

.7689 .8550

7 .9435
(.0913)

.7230 .6988

8 .9536
(.1130)

.6740 .6794

9 .8747
(.1279)

.5854 .7500

10 .6583
(.1537)

.3590 .6065

11 .4805
(.1720)

.2150 . .5677

12 .3725
(.1804)

.1382 .5362

13 .2457
(.2019)

.0594 .5022

NOTE: Estimated standard errors are in parentheses. All frequency bands from
periods of 108 to 13 weeks are included in the regressions. DW is the Durbin-Watson
statistic.

= w

s/va' s/var
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predicted by the accurate forecasting hypothesis. However, this relation-
ship breaks down for n = 9, . . . , 13. In addition, even for n < 8,
the estimated are much smaller than those predicted by the accurate
forecasting hypothesis. The estimated are never much more than
one-third of the number (n — 1) /2, which they should equal by
hypothesis. Thus, while the time leads are generally in the proper
direction, they are much smaller than those predicted by the accurate
forecasting hypothesis.

Of course, the foregoing evidence is based on an examination of the
phase statistics for all frequency bands with periods greater than or
equal to thirteen weeks. We have therefore posed the accurate fore-
casting test in a harsher form than did Macaulay, who expected evi-
dence of accurate forecasting only at periodicities that occurred with
some regularity, primarily the seasonal and business cycle components
of oscillation. An examination of the residuals in the regressions
summarized in Table 7-2 indicates that expectations tend to be more
accurate at the seasonal components of oscillation. In most cases, the
residuals at periodicities of fifty-two, seventeen and one-third, and
thirteen weeks are positive, indicating that the leads of the long rate
over the one-week rates are longer at the seasonal frequencies. To
pursue this a bit farther, regression (12) was run only using data for
the fifty-two, twenty-six, seventeen and one-third, and thirteen-week
periodicities. The results, which are reported in Table 7-3, indicate
that for each n, the estimated is larger than the corresponding element
in Table 7-2. This indicates that forecasts tended to be more accurate
at the seasonal frequencies. However, the magnitude of the increment
in accuracy is quite small, so that even these estimates of the ba's are
very much smaller than those predicted by the accurate forecasting
hypothesis. This result is in contrast to Macaulay's finding that the
quality of forecasts was very much better at the seasonal frequencies
than at the other frequencies.

In summary, the accurate forecasting hypothesis generally, though
not always, correctly predicts the direction of the lead-lag relation-
ship between bills of different maturities. Yet it rather decisively fails
to predict the magnitudes of those leads, under-predicting them by a
factor of at least two-thirds. Our comparison of the patterns at the
seasonal and nonseasonal frequencies provides support for Kessel's
earlier conclusions, although the differences among those frequencies
are not as sharp as those discovered by Macaulay in the data on time
and call rates.
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TABLE 7-3. Regression of Phase Statistics on Angular Frequency, Selected
Frequencies

n DW

2 .1749 .0029 2.0504
(.0423)

3 .3353 —.6023 2.3572
(.0543)

4 .5542 .09811 2.1232
(.0938)

5 .7984 .5875 1.8217
(.1342)

6 1.0146 .6854 1.6702
(.1823)

7 1.0707 .6339 1.6602
(.2398)

8 1.1082 .6074 1.6564
(.2818)

9 1.0491 .5485 1.7499
(.3006)

10 .8352 .3277 1.9281
(.3479)

11 .6497 .2250 2.0987
(.35 75)

12 .5360 .1631 2.1362
(.35 27)

13 .4197 .0702 2.1792
(.3935)

NOTE: Estimated standard errors are in parentheses. Only fifty-two, twenty-six,
seventeen-and-one-third, and thirteen-week frequencies are included in the regressions.
DW is the Durbin-Watson statistic.

= w

CONCLUSIONS

This paper has attempted to illustrate how the tools of spectral and
cross-spectral analysis might be used to implement tests of the expecta-
tions theory of the term structure along the lines suggested by
Macaulay. Like Macaulay's original work and a subsequent study by
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Kessel, we. have detected some elements of accuracy in the forecasts
impounded in the yield curve for Treasury bill rates in the 1950's.
But the empirical results of the last section cast rather serious doubt
on the utility of the very restrictive version of the expectations hypoth-
esis used in this study. As Kessel found, the qualitative implications of
the hypothesis are generally borne out: longer bill rates do lead one-
week bill rates, and the lead tends to increase with term to maturity.
Yet the data suggest that the lengths of the lags are much shorter than
predicted.

Perhaps these somewhat negative results are not surprising in view
of the severely strict nature of the requirement that we have imposed
on the yield curve in our statement of Macaulay's accurate forecasting
hypothesis. Thus, consider the following quite general equation that
we might posit to be governing the one-period spot rate,

R1€ = +ECk Ut_k,

where can be thought of as "deterministic" and where Ut iS a random
variable characterized by

= 0
(cr2t=s

=
We can appropriately assume that investors can predict the deterministic
component perfectly but that predictions of the component
are subject to error. For such an R process, the minimum mean
squared error forecast of Rt+, is given by

= dg+j Ck+ jUt_k.
k=O

The difference between and is given by
5—1

— = Ut+j_k
Ic=O

rather than zero as posited throughout this paper. Our procedure in
this paper, which is admittedly very extreme, amounts to assuming
that the variance of the u's is so small that the above expression can be
neglected. Since making that assumption seems to be a questionable
way of characterizing the evolution of the spot rate, it is not altogether
surprising that the implications of the extreme version of Macaulay's
hypothesis are not all borne out by the data.
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APPENDIX

In the second part of this paper, we suggested that it might be more
realistic to replace equation (2) with the assumption that forecasts
are unbiased, that is,

= + (2a)
where the t+5Et's are independent, identically distributed stochastic
terms with mean zero and

E' E
— =jandt = 8,

a) — jf j j or t s.

We also specify that the are distributed independently of
Then corresponding to (4) we have

= + + •• • + + + +
+

We define
U, = (,÷1E, + ,÷2E1, + +

Then we have

=E +
i=O

where h, = 1/n for all i and where U, is distributed independently of
the Ri,'s. We will show that relation (10) continues to hold when (2)
is replaced by (2a).

Defining V(w) as the Fourier transform of

V(w) = E

and defining A(w), B(w), and H(w) as in the text, we have
B(w) = H(w) A(w) + V(w).

The cross-spectrum between R1, and is then given by

= E A(w) B(w),
where A (w) is the complex conjugate of A (w). Then we have

= B A(w) [H(w) A(w) + V(w)]
= EH(w) IA(w)21 + B A(w) V(w)
= EH(w) IA(w)12,
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since E A (w) V(w) = 0 because and are distributed inde-
pendently. Hence,

= H(w) S1(w),

which is the same relation given in the text. It follows that

n—iarg Sin (w) =
2

as shown in the text.
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