This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: The Effect of Education on Efficiency in Consumption

Volume Author/Editor: Robert T. Michael

Volume Publisher: NBER

Volume ISBN: 0-87014-242-9

Volume URL: http://www.nber.org/books/mich72-1

Publication Date: 1972

Chapter Title: Appendix C

Chapter Author: Robert T. Michael

Chapter URL: http://www.nber.org/chapters/c3522

Chapter pages in book: (p. 113 - 129)

THE PURPOSE OF this appendix is to report on some of the modifications in the analysis of the 1960 BLS data discussed in Chapter 4. These cover (1) disaggregating the "goods" into two items for a total of three components of expenditures: services, perishables, and nonperishable goods; (2) dealing with zero expenditures for various market goods; (3) including a race variable in the Engel curves; (4) replacing the education variable with three education dummies; (5) using total current consumption expenditures as the income variable; and (6) considering the relationship between the estimated income elasticities and education coefficients.

1. PERISHABLES-NONPERISHABLES

The Engel curve was fitted to total expenditures for perishables (tobacco, food at home, and alcohol) and for nonperishables (housing, housefurnishings and equipment, clothing, reading and automobiles) with the double-log equation discussed in Chapter 4. The results are shown below (with t values in parentheses):

Item	ln Consumption	ln Education	Age	Family Size	Region	$ar{R}^2$
Perishables	0.711 (20.44)	-0.237 (-5.69)	-0.002 (-1.33)	0.101 (4.13)	-0.136 (-8.00)	. 97
Nonperishable	s 1.03 (49.68)	0.011 (0.45)	-0.004 (-4.15)	-0.004 (-0.27)	-0.011 (-1.06)	.99

Evidently, when perishable goods, nonperishable goods, and services are considered as three separate items, the luxury item (services) has a positive education effect, the necessity item (perishables) has a negative education effect, while the third item's income elasticity is not significantly different from unity (a t value of 1.45) and its education elasticity is not statistically different from zero. Thus, this grouping of total expenditures is qualitatively consistent with the neutrality model

114 Effect of Education on Efficiency in Consumption

of Chapter 2. Notice that the income elasticity of this more homogeneous goods item is approximately unity, and that neither family size nor the region dummy effect is significant. Notice, too, that age is again observed to affect the durables category.

2. ZERO VALUES

The problem caused by an observation containing zero expenditure for an item is a perplexing one. A zero expenditure for an observation is an extreme value in any of the scatter diagrams. Clearly the fit is improved if the observation is deleted, but in the process some information is lost. On the other hand, allowing a few extreme points to dictate a linear form for the regression seems an excessive adjustment. One alternative is to use some statistical technique other than least squares to estimate a relationship.¹ Another procedure is to replace the zeros by a small value, which is the procedure followed in this study—the zero expenditure per year is replaced in Chapter 4 by an expenditure of one dollar per year. The frequency with which the zero values occur for the dozen or so items discussed in Chapter 4 ranges from eleven observations (7 per cent) to none, as shown in the following table:

Item	Number of Zero Values	Item	Number of Zero Values
Education	11		
Tobacco	6	Automobiles	1
Alcohol	5	Utilities	1
Travel (not auto)	4	Housefurnishings	1
Food (away)	$\overline{2}$	Recreation	1
Food (home)	1	All others	0

However, it is clearly arbitrary what value is used to replace the zeros. To determine how sensitive the results were to the value used, regressions were rerun using 0.001 (one tenth of a cent per year). There were no appreciable effects on composite items that did not

¹ For example, probit analysis is one alternative. A comparison of results of Engel curve estimates from the 1960 BLS data using probit and least squares is the subject of Mei-chu Wang's dissertation "Problems in the Estimation of Indifference Surfaces Due to Non-Negativity Constraints," University of Rochester, 1967.

have a	0.001	as a	a final	depende	nt va	riabl	e. ² Th	e gre	atest ef	ffects	, of
course,	were	on t	the thr	ee items	with	the	most	zero	values	and	the
smallest	t avera	ge e	xpendi	tures:							

Item	ln Consumption	ln Education	Age	Family Size	Region	$ar{R}^{2}$
Education	1.766 (3.64)	0.542 (0.93)	-0.039 (-1.60)	$0.529 \\ (1.55)$	0.530 (2.24)	.68
Tobacco	(0.723) (5.32)	-0.852 (-5.24)	-0.034 (-5.08)	0.035	-0.044 (-0.66)	.70
Alcohol	1.666 (9.02)	(-3.76)	(-0.033) (-3.59)	-0.248 (-1.91)	-0.629 (-6.97)	.81

As expected, the use of a more extreme value reduced the \overline{R}^2 , increased some of the standard errors, and altered some of the coefficients.

The regressions were also run after the observations with zero values were removed. The number of observations for each of these regressions was 157 minus the corresponding number listed in the table above. The regression results using double logs are given in Table C.1 (A). These results more closely resemble those in the text (which set zeros equal to 1.0) than do the results that use zero $\cong 0.001$. Since the zeros are extreme values, the \overline{R}^2 is improved by omitting those values, as seen by comparing the \overline{R}^2 's in Table C.1 with those in Table 1.

When these items were run linearly, the implied elasticities (analogous to those in Table 3) were as follows:

Item	Income	Education	Family Size	$ar{R}^2$
Education (expenditure)	2,721	1.389	-1.102	.695
Tobacco	0.527	-0.576	0.198	.818
Alcohol	1.457	-0.357	-0.401	.837
Food (away)	1.451	-0.012	-0.591	.899
Food (home)	0.526	-0.117	0.548	.950
Housefurnishings	1.031	0.038	0.233	.924

Mean Elasticities, Zero Values Omitted

These mean elasticities are again similar to those shown in the text which include the zero values (as zeros). Table C.1 (B) gives the

 2 For example, a household which spent zero for utilities and \$500.00 for shelter had as the dependent variable 501.00 versus 500.001, with no appreciable effect on the coefficients. This was also true for the goods-services dichotomy.

	Constant	(A Income Ela		h ln E)ª		
	ln Consumption	ln Education	Age	Family Size	Region	$\overline{R}{}^2$
Education	1.557 (7.08)	1.693 (6.30)	0.031 (2.75)	0.520 (3.36)	0.434 (4.09)	.878
Tobacco	0.756 (9.45)	-0.803 (-8.33)	(-0.034) (-8.39)	-0.012 (-0.21)	-0.009 (-0.22)	. 870
Alcohol	1.586 (13.78)	-0.463 (-3.31)	-0.019 (-3.26)	-0.198 (-2.44)	-0.550 (-9.74)	.910
Food (away)	(10.10) (1.196) (17.49)	0.250	0.004	(-0.074)	0.072 (2.17)	.941
Food (home)	0.676 (21.23)	-0.213 (-5.58)	-0.001 (-0.43)	0.108	-0.122 (-7.84)	. 970
Housefurnishings	1.011 (14.65) ^b	-0.092 (-1.12)	(-0.009) (-2.67)	0.139 (2.84)	0.127 (3.78)	. 946

TABLE C.1 Regression Equations With Zero Values Removed

	C	onstant I	ncome Ela	sticity (wi	th <i>E</i>)ª		
	ln Con- sumption	Educa- tion	Age	Family Size	Region	$(\bar{\epsilon}_E)$	$ar{R}^{2}$
Education	1.579	0.169	0.025	0.495	0.376	(1.705)	. 884
Tobacco	(7.72) 0.741	(7.06) -0.080	(2.56) -0.031	(3.50) 0.005	(3.60) 0.019	(-0.797)	. 879
Alcohol	(10.01) 1.609	(-9.24) -0.052	(-8.76) -0.019	(0.09) -0.213	(0.49) -0.530	(-0.518)	.914
Food (away)	(14.82)	(-4.06) 0.017	(-3.66) 0.001	(-2.83) -0.111	(-9.46) 0.070	(0.174)	. 940

(0.30)

0.000

(0.15)

-0.008

(-2.57)

(2.23)

-0.021

-0.006

(-5.94)

-2.39

0.113

0.153

(3.32)

(5.39)

(2.04)

0.115

7.40)

0.128

(3.76)

(-0.209)

(-0.062)

.970

.946

(D)

^B t values are in parentheses.

Food (home)

Housefurnish-

ings

(18.64)

(22.20)

0.670

0.994

 $(14.96)^{b}(-0.80)$

^b Coefficient not statistically different from one (the t values for testing the difference from unity are 0.16 for housefurnishings in (A) and -0.10 in (B)).

results obtained from entering the education variable linearly while excluding the zero value observations.

The results shown here suggest that relatively few important changes occur in the coefficients, their statistical significance, or the coefficient of determination as a consequence of removing the zero values rather than replacing them by a value of 1 (ln (1) = 0) in the log regressions, or leaving them in as zeros in the linear regressions. There are greater differences, however, if the zeros are replaced by some small value such as 0.001.

3. THE EFFECT OF RACE

Another environmental variable which could have an independent effect on consumption is race. Differences in the quality of schooling may appreciably affect the stock of human capital, and if such differences are systematically related to race, the race variable may act as a proxy for school quality and thereby affect expenditure patterns. Further, if different ethnic groups within the economy have significantly different environments, this could also have an effect on behavior. To determine whether race has a discernible independent and systematic effect on expenditure patterns, the percentage of nonwhite households in each cell was included in the Engel curves. This variable was included both as a replacement for the education variable and in addition to it. The results for the goods-services dichotomy are given below (with t values in parentheses).

Item	ln Consumption	ln Education	Per Cent Nonwhite	Age	Family Size	Region	$\bar{R^2}$
Goods	0.884 (59.94)		-0.001 (-0.98)	-0.001 (-2.06)	0.061 (7.48)	-0.045 (-5.71)	.995
Goods	0.920 (57.66)	-0.078 (-4.56)	(-0.001) (-1.82)	(-4.87)	(0.030) (2.90)	-0.040 (-5.25)	.996
Services		(1,00)	0.001	+0.000 (0.18)	-0.134 (-8.43)	0.105 (6.71)	.986
Services		0.200 (6.20)	0.002 (1.85)	0.006 (4.80)	-0.056 (-2.90)	0.091 (6.38)	. 989

The substitution of the race variable for the education level results in a poorer fit, reduced significance for several of the variables, and a movement away from one in income elasticity.³ Including the race variable in addition to education, on the other hand, improves the fit slightly and increases the significance of the education, age, and familysize coefficients. The race variable itself is also significant, and suggests that the larger the fraction of nonwhites, ceteris paribus, the larger the share of services in total expenditures.

The results for the thirteen separate items are given in Tables C.2 and C.3. Replacing the education variable with the race variable generally reduces the \overline{R}^2 and shifts the income elasticity away from one. Including both education and the nonwhite percentage generally

⁸ This is as one would expect with the new variable as a poorer proxy for nonmarket efficiency, since the income variable picks up some of the consumption income effect.

E	xpenditure Functio	TA ns With Race Var	TABLE C.2 Variable Replacing H	TABLE C.2 Expenditure Functions With Race Variable Replacing Education, 1960 BLS Data ^a	S Data ^a	
Dependent V ariable	ln Consumption	Per Cent Nonwhite	Age	Family Size	Region	$ar{R}^{2}$
Food (home)	0.5957	0.0032	0.0062	0.1952	-0.1571	.937
Food (away)			$(\frac{4}{1}, \frac{100}{100})$	-0.1775	(-0.39) 0.0951 (3.39)	.924
Tobacco	(17.20) 0.5019	(-0.54) 0.0132	-0.0093	(-4.20) 0.2810 (5.65)	(2.32) -0.1284	.788
Alcohol	(4.95) 1.5384	(3.28) 0.0153 (2.13)	(67.2-)	(3.03) -0.0588 (20, 67)	(-2.33) -0.6822 (-10.27)	.895
Shelter	(12.47) 0.8128 (93.62)		-0.0017	(-0.87) -0.1251 (-6.10)	(-10.2) -0.1265 (-6.38)	. 960
Household operations	(22.00) 1.3158 (31.84)	(-2.99) 0.0018 (1.11)	(-1.39) -0.0025 (-1.83)	(-10.13) -0.2329 (-10.27)	(-0.30) 0.1866 (8.39)	.971
Housefurnishings and equipment	1.0472	0.061	-0.0065	0.1537	0.0830	.939
Clothing	(14.04) 1.2782 (21.44)	$\begin{pmatrix} 2 & 14 \\ 0 & 0046 \\ 0 & 0046 \\ 0 & 00 \end{pmatrix}$		(3.32) 0.0595 (9.67)	(2.10) 0.0821 (3.75)	.983
Personal care	(31.44) 0.9379 (95.30)	(2.89) 0.0042 (9.86)		0.0276	(9.19) 0.1313 (6.60)	.974
Medical care	0.8224		0.0072	0.0075	0.0427	.888
Leisure	(10.14) 1.3375	(-0.03) -0.0026	-0.0114			.976
Education	$\binom{20.44}{2.4120}$		(-0.74) -0.0254 (-2.10)	(-2.70) -0.1348 (-1.03)	(-1.33) 0.4939 (3.86)	.851
Travel	(10.10) 1.1607 (14.83)	(0.09) (0.09)	(-6.00)	$\begin{pmatrix} -1.00\\ 0.1497\\ (3.49) \end{pmatrix}$	0.0560 (1.33)	.951

118

Effect of Education on Efficiency in Consumption

^a t values are in parentheses.

	Η
	3
	1960 BLS I
	8
	19
	'n
	tio
	ICB
	d Edu
	Ηp
	aņ
TABLE C.3	le
сэ.	riabl
Ĩ	ar
AF	i> n
Fi	BC
	th Race
	Vith
	×
	ns
	Junctions
	nci
	Fu
	P.
	-

	Expenditur	ce Functions Wi	th Race Variable	le and Educatio	Expenditure Functions With Race Variable and Education, 1960 BLS Data	ւն ⁸	
In Consumption	ption	In Education	Per Cent Nonwhite	Age	Family Size	Region	\bar{R}^{1}
0.66	95	-0.1607	0.0023	0.0013	0.1317	-0.1455	.940
1.21	89	0.2027	-0.0005	0.0024	-0.0974	0.0805	.926
0.85	17	(2.18) -0.7611	(-0.15)	(0.62) -0.0328	(1,1,1)	(1.90) -0.0735	.839
(8.30 1.77 1.77	62	(-6.94) -0.5172	(2.49) 0.0124	(-7.29) -0.0228	(-0.30) -0.2632	(-1.52) -0.6449	.902
12.9/ 12.0	-42	(-3.51) 0.2120 (5.00)	(2.59) -0.0032	(-3.78) 0.0048	(-3.01) -0.0413	(-9.30) -0.1418 (-7.50)	.966
1.1623 (28, 76)	-8	(0.00) 0.3339 (7.68)	(-2.50) 0.0037 (2.62)	(1, 34) 0.0077 (4.34)	(-1.01) -0.1009 (-3.91)	$\begin{pmatrix} -1.39\\ 0.1625\\ (8.48) \end{pmatrix}$	626.
1.050	66	-0.0275	0.0059		0.1429	0.0850	.939
1.277	80	(10.007	0.0046	-0.0047	0.0598		.983
0.986	1	(0.01) -0.1048	(2.84) 0.0036 (9.45)		(1.39) -0.0138 (0.50)	(0.03) 0.1389	.974
0.812	2	(-2.32) 0.0223	-0.0014		(-0.32) 0.0163 (0.25)	0.0411	.887
(11.24) 1.274	9	0.1368		-0.0072	-0.025		779.
1.70	22	(2.21) 1.5314 (7.70)	(16.0-)	(-2.00) 0.0217	$\begin{pmatrix} -0.01 \\ 0.4703 \\ 0.4703 \\ 0.6 \end{pmatrix}$	$\begin{pmatrix} -1.69 \\ 0.3835 \\ (2.96) \\ $.877
(0.00) 1.3574 (16.10)	74	(5.73) -0.4279 (-4.72)	(0.99) - 0.0021 (-0.72)	(1.98) -0.0289 (-7.78)	(2.30) - 0.0193 - 0.036	$\begin{pmatrix} 0.2.20\\ 0.0869\\ (2.17) \end{pmatrix}$.957
^a t values are in parentheses.							

improves the \overline{R}^2 , has little effect on the magnitude of the income or education coefficient, but tends to reduce their significance somewhat. There was no appreciable effect upon the relationship between these two elasticities. The education and race effects seem to be in opposite directions for these detailed items—in only one case (household operations) are their signs the same, with both statistically significant; however, the negative correlation is certainly not a strong one and these results are not inconsistent with a hypothesis of no relationship between the two variables. Likewise, there is no apparent relationship between the race variable and the income elasticity (with education held fixed), as seen from the following two-way diagram:

Income Elasticity

1	$\eta > 1$	$\eta \simeq 1$	$ \eta < 1$
(+)	Alcohol Household operations Clothing	Housefurnishings and equipment Personal care	Tobacco
(0)	Food (away) Leisure Education Travel		Food (home) Medical care
(-)			Housing

From these results, one concludes that there appears to be no systematic relationship between the effect on expenditures of this race variable and either income or education. This tentative conclusion, however, is subject to the qualification in footnote 16 of Chapter 4.

4. EDUCATION DUMMIES

Most of the regressions discussed so far have assumed that the effect of education on productivity and on the derived demand is proportionate at all levels of education—that the education coefficient is a constant elasticity. The procedure of using double logs also implies that small changes in the education level will have a distinguishable and continuous effect. To relax these conditions somewhat the $(\ln E)$ variable was replaced by three education dummy variables designed to examine the effect of broader changes in education—from grade

school to high school, from high school to college, et cetera—and to see if the relative effects diminish or increase as education rises.

The four education classes were grade school (0 through 8 years), high school (8-12), college (13-16), and postgraduate (17+), and the three dummies were defined to show the *marginal* effects of each category. Thus, E_1 shows the effect of having a high school education relative to having only grade school training, E_2 shows the effect of college relative to high school, and E_3 shows the effect of postgraduate work relative to college. The effect of, say, college relative to grade school would be $(E_1 + E_2)$, and so forth. The results for the goodsservices dichotomy are as follows (with t values in parentheses):

	Ite	em .
Explanatory Variable	Goods	Services
In Consumption	0.930 (75.54)	1,137 (49.04)
E_1 E_2 E_3	-0.034(-3.26)	0.079 (4.05)
E_2	-0.034(-4.05)	0.080 (5.03)
E_{3}	-0.007(-0.47)	0.017 (0.60)
Age	-0.003(-4.53)	0.005 (3.91)
Family size	0.026 (2.99)	-0.058(-3.48)
Region	-0.040(-5.76)	0.089 (6.85)
Region R ²	.996	.989

The effect of this substitution of three dummies for $\ln E$ is seen by comparing these equations with those in Chapter 4. There is no important change in the magnitude, sign, or significance of the coefficients of the four other variables. For the education effect itself, the regressions suggest that the magnitude of the effect is quite similar for high school relative to grade school and college relative to high school, while the effect of additional education is small. Similarly, the significance of the first two dummies is roughly the same. In neither case is the postgraduate dummy significant. In all cases the sign is consistent with the neutrality model.

The same regression was run for the thirteen detailed expenditure items. These results are given in Table C.4. Again, the use of the dummies seems to have had little effect on the other variables' coefficients—no significant coefficient changed in sign. The \overline{R}^2 is generally increased by the use of the dummies despite the introduction of two additional independent variables; leisure and housefurnishings are the only exceptions.

	Variablesª
	Dummy V.
E C.4	h Education
TABLE C	With
	Functions
	Expenditure

122

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccc} ptiom & E_1 \\ 839 & 0.1178 \\ 834 & 0.0389 \\ 834 & 0.0389 \\ 230 & -0.0389 \\ 230 & -0.0242 \\ 210 & (-0.93) \\ 242 & -0.0458 \\ 242 & -0.$	$\begin{array}{c} E_{2}\\ E_{2}\\ 0.1450\\ -0.0398\\ -0.0398\\ -0.0398\\ -0.0398\\ -0.0398\\ -0.0398\\ -0.0398\\ -0.0318\\ -0.007\\ (2.65)\\ 0.0104\\ 0.0104\end{array}$	$\begin{array}{c} E_3 \\ \hline & 0.0837 \\ 0.0837 \\ -0.1272 \\ -0.1272 \\ -0.1272 \\ -0.1219 \\ -0.1219 \\ -0.1219 \\ 0.0345 \\ (0.61) \\ 0.2502 \end{array}$	$\begin{array}{c} Age \\ 0.0054 \\ (3.20) \\ -0.0029 \\ (-1.39) \\ -0.0084 \\ (-4.72) \\ 0.0055 \\ (1.74) \end{array}$	$\begin{array}{c} Family\\Size\\-0.0983\\(-4.62)\end{array}$	Region 0.1587 (9.56)	\bar{R}^2 .982
berations in gs		$\begin{array}{c} 0.1450\\ 0.1450\\ (7.16)\\ -0.0398\\ (-1.61)\\ (-1.61)\\ (-3.42)\\ 0.1007\\ (2.65)\\ 0.0104\end{array}$	$\begin{array}{c} 0.0837\\ (2.27)\\ -0.1272\\ (-2.83)\\ -0.1325\\ (-2.83)\\ -0.1325\\ (-3.41)\\ -0.1219\\ (-1.76)\\ (-1.76)\\ (0.61)\\ 0.0345\end{array}$	$\begin{array}{c} 0.0054 \\ (3.20) \\ -0.0029 \\ (-1.39) \\ -0.0084 \\ (-4.72) \\ (1.74) \\ (1.74) \end{array}$	-0.0983 (-4.62)	$\begin{array}{c} 0.1587\\ (9.56) \end{array}$.982
ස 		$\begin{array}{c} -0.0398\\ (-1.61)\\ -0.0731\\ -0.0731\\ (-3.42)\\ 0.1007\\ (2.65)\\ 0.0104\end{array}$	$\begin{array}{c} -0.1272 \\ (-2.83) \\ -0.1325 \\ -0.1325 \\ (-3.41) \\ (-3.41) \\ (-1.76) \\ (0.61) \\ 0.2502 \end{array}$	$\begin{array}{c} -0.0029 \\ (-1.39) \\ -0.0084 \\ (-4.72) \\ 0.0055 \\ (1.74) \end{array}$		(^^· ^	
ය. 		$\begin{pmatrix} -1.01\\ -0.0731\\ (-3.42)\\ 0.1007\\ (2.65)\\ 0.0104 \end{pmatrix}$	$\begin{array}{c} (-2.53) \\ -2.1325 \\ -0.1325 \\ -0.1326 \\ -0.1326 \\ -0.1326 \\ (-1.76) \\ 0.0345 \\ 0.0345 \\ 0.0345 \\ 0.2502 \end{array}$	$\begin{pmatrix} -1.39\\ -0.0084\\ (-4.72)\\ 0.0055\\ (1.74) \end{pmatrix}$	0.0774	0.1181	.983
ස . ප		$\begin{pmatrix} -3.42 \\ 0.1007 \\ (2.65) \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.0104 \\ 0.001 \\ 0.00$	$\begin{pmatrix} -3.41 \\ -0.1219 \\ -0.1219 \\ (-1.76) \\ 0.0345 \\ (0.61) \\ 0.2502 \end{pmatrix}$	(-4.72) 0.0055 (1.74)	(20, 30)	$\begin{pmatrix} 0.53 \\ 0.1752 \\ 0.1752 \\ 0.00 \end{pmatrix}$.977
ස .ସ		(2.05) 0.0104	(-1.70) 0.0345 (0.61) 0.2502	(1.74)	(-0.05) 0.0056	(9.99) 0.0255	.892
ස . ප			0.2502	-0.0075	(0.14) -0.0484	(0.82) - 0.0641	.976
ස . ප		0.7381	(1 06)	0.001	0.3507	(-2.30) 0.3278 (9.00)	.884
ස .ସ		(0.00) -0.1432 (-2.96)	-0.0502	-0.0304	-0.0306	0.1016 0.1016 0.001	.960
80 		-0.0629	-0.0556	0.0023	0.1522	-0.1217	.940
sguidsim		-0.089	(-1.10) -0.0833	0.0043	(0.20) -0.1227	(-0.37) 0.0819	.928
sguidsin		-0.2330		-0.0263	0.0877	0.8238	.845
nishings		(-4.33) -0.2259 (-3.05)	(-3.51) -0.2867 (-2.13)	(-3.50) -0.0165 (-2.67)	(1.33) - 0.1604 (-2.06)	(0.04) -0.5352 (-8.80)	.902
uipment 0.		0.0243			0.1641	0.1187	.938
Shelter (14.19) 0.7916 (24.81)	$\begin{array}{cccc} & & & & & & \\ 16 & & & & 0.0565 \\ 1 & & & & (3.11) \end{array}$	(0.04) 0.0740 (3.44)	(1.43)	(-2.41) 0.0033 (0.12)	(3.47) -0.0915 (-4.38)	(3.21) - 0.1722 (-9.69)	.964

^a t values are in parentheses.

Effect of Education on Efficiency in Consumption

Turning to a qualitative comparison of the three education coefficients in relation to the income elasticity and the neutrality model, the findings for the thirteen regressions are summarized as follows:

Education Class	Number of Items Qualitatively Consistent With the Neutrality Model
High school dummy (E_1)	10
College dummy (E_2)	6
Postgraduate dummy (E_3)	8
College-grade school $(E_1 + E_2)$	8
Postgraduate-grade school $(E_1 + E_2 + E_3)$	9

The effects of education vis-à-vis the neutrality model appear to be stronger at lower levels of education, but there does not appear to be any systematic change in the magnitude of the education effect from one schooling dummy to another. Comparing these regressions with those in the text, the improvement in the \bar{R}^2 , which is slight in most cases (with the exception of tobacco), must be weighed against the convenience of the double-log form, from which the constant education elasticities allow us to estimate the elasticity of consumption income.

5. TOTAL CURRENT CONSUMPTION EXPENDITURE

As was mentioned briefly in Chapter 4 in connection with the goodsservices dichotomy, the total consumption expenditure item includes both durable goods and the somewhat unsatisfactory shelter expenditure (which includes rent paid but excludes both mortgage principal repayment and a return on owner's equity). The shelter variable was redefined in terms of rental payments and the independent variable Cwas replaced by C^* , defined as (C — housefurnishings — automobile expenditures — shelter + rental variable). The simple correlation matrix of the independent variables in the two cases is given in Table C.5 below ((A) contains 157 observations and (B) only 148, since the rental variable is not defined for cells with no renters).

Table C.6 shows the results of substituting C^* for C in regressions on the same set of dependent variables. Since C^* includes the rental item as defined in the text, the percentage of households in the cell which rent their homes was also added as an explanatory variable. In only two cases did that variable have a t value greater than 2.0, and those two are reported here:

Item	${\displaystyle \underset{C^{*}}{^{\ln}}}$	ln Education	Age	Family Size	Region	Per Cent Renters	Ē۶
Medical care	0.829 (12.03)	-0.091 (-1.10)	-0.004 (-1.07)	-0.006 (-1.18)	0.035 (1.08)	-0.496 (-3.25)	. 896
Utilities	0.409 (6.69)	0.011 (0.14)	0.002 (0.46)	0.009 (1.99)	-0.133 (-4.70)	-0.555 (-4.10)	.868

A comparison of Table C.6 with Table 1 again reveals no statistically significant coefficients changing signs. Most of the \overline{R}^{2} 's are higher in Table C.6 (notably tobacco), while the \overline{R}^{2} 's of the durable items are lower; only the housing regression seems appreciably affected by the use of this new consumption variable, undoubtedly due to the different definitions of the housing variable.

TABLE C.5

Simple Correlation Matrix (A) **Total Consumption Expenditure** ln ln Education Region Consumption Family Size -0.7300.035 -0.698 -0.633 Age In Education -0.2340.2280.588 0.227 Region 0.074 In Consumption 0.815 **(B) Total Current Consumption Expenditure** Per Cent In Education Region $\ln C^*$ Family Size Renters -0:638 -0.7330.035 0.671 0.153 Age In Education -0.2350.596 0.2320.099 0.270 0.072 Region -0.023 ln Č* 0.790 0.619 Family size 0.667

The regressions were also run with the $(\ln C^*) \cdot (\ln E)$ and $(\ln C^*) \cdot (A)$ interaction effects, both with and without the percentage of renters as an additional variable. Table C.7 indicates the implied elasticities for each item from the "best fit" of the four regression forms. Of the constant elasticity estimates in Table C.6, nine of the fourteen education coefficients are consistent with the neutrality

			• •			
Dependent Variable	$\ln C^*$	ln Education	Age	Family Size ^b	Region	$\overline{R}{}^2$
Food (home)	0.6884 (14.05)	-0.2114 (-3.71)	-0.0021 (-0.88)	0.0145 (4.51)	-0.1120 (-4.90)	. 9430
Food (away)	1.2468 (15.05)	0.1857	-0.0032 (-0.80)	-0.0059 (-1.09)	0.1026	.9287
Tobacco	0.8225	-0.8600 (-7.70)	-0.0370 (-7.92)	0.0002	0.0115 (0.26)	.8493
Alcohol	1.7623 (13.42)	-0.6880 (-4.51)	-0.0320 (-5.01)	-0.0223 (-2.59)	-0.5150 (-8.41)	.9069
Housing	0.8735 (19.17)	0.1522 (2.88)	0.0010	-0.0137 (-4.60)	-0.1738 (-8.18)	.9505
Household		• •			• •	
operations	1.1591 (31.99)	0.2739 (6.51)	0.0023 (1.29)	-0.0061 (-2.56)	0.2108 (12.47)	.9822
Housefurnishings	(01:00)	(0.01)	((,	,	
and equipment	0.9820 (11.44)°	-0.0696 (-0.70)	-0.0121 (-2.89)	0.0209 (3.71)	0.1337	.9317
Clothing	1.2703	-0.0805	-0.0116	0.0098	0.1383	.9826
Personal care	(27.62) 0.9748 (22.68)°	(-1.51) -0.1661 (-3.33)	(-5.21) -0.0153 (-7.29)	(3.25) 0.0018 (0.65)	(6.45) 0.1791 (8.93)	.9722
Medical care	$(12.08)^{\circ}$ 0.8674 $(12.37)^{\circ}$	(-0.0042) (-0.05)	(-7.29) 0.0038 (1.11)	(0.03) 0.0027 (0.58)	(8.93) 0.0498 (1.52)	.8887
Leisure	$(12.37)^{\circ}$ 1.3444 (22.16)	(-0.03) 0.1023 (1.45)	-0.0135 (-4.57)	0.0002	(1.52) -0.0309 (-1.09)	. 9733
Education	(22.10) 1.5926 (6.44)	(1.43) 1.4814 (5.16)	(-4.57) 0.0146 (1,22)	0.0574 (3.54)	(-1.03) 0.4580 (3.97)	.8731
Travel	(0.44) 1.3680 (14.62)	(0.10) -0.4428 (-4.08)	(1.22) -0.0361 (-7.92)	0.0036	(3.97) 0.0843 (1.93)	.9451
Utilities	(14.62) 0.4519 (7.12)	(-4.08) 0.1082 (1.47)	(-7.92) 0.0109 (3.53)	(0.59) 0.0190 (4.58)	(1.93) -0.1163 (-3.93)	.8534

TABLE C.6 Total Current Consumption Expenditure^a

b t values are in parentheses.

• Family size is in units different by a factor of 10 from previous results. • Not statistically different from one (the t values for testing the difference from unity are -0.21 for housefurnishings, -0.59 for personal care, and -1.89 for medical care.)

model; in Table C.7, ten are consistent. In comparing the best fit here with those in Table 4 (where comparisons are permissible), we find the major differences in those items which include the percentage of renters as an independent variable (notably medical care, personal care. housefurnishings, and housing), or in those items in which the linear form was the best fit in the text (i.e., tobacco). With all these differences taken into account, the use of C^* in place of C still does not appreciably change the overall expenditure patterns discussed in Chapter 4.

.		mption Exp m With Hig			
Item	Regression Form	a η*	ϵ_E	€F	$\bar{R^2}$
Food (home)	4.	0.6908	-0.1613	+0.5975	.9437
Food (away)	4.	1.2265	0.1822	-0.2249	. 9312
Tobacco	3.	0.6846	-0.7290	+0.1381	.8548
Alcohol	$\frac{2}{2}$.	1.8010	-0.6007	-0.4337	. 9081
Housing	$\hat{2}$.	0.8833	0.1743	-0.3695	.9507
Utilities	4.	0.3299	0.0620	+0.3084	.8700
Household operations	3.	1.1626	0.2546	-0.2442	. 9833
Housefurnishings	2.	0.9565	-0.1272	+0.4851	.9326
Clothing	4.	1.1399	0.0084	+0.3566	. 9855
Personal care	4.	0.7932	-0.0376	+0.1253	.9841
Medical care	4.	0.7896	-0.0884	-0.2474	.8963
Leisure	3.	1.3388	0.0897	-0.0321	.9731
Education	1.	1.5926	1.4814	+1.8440	.8731
Travel	4.	1.0933	-0.2918	+0.1028	.9570
Goods	4.	0.9376	-0.1096	+0.1285	.9941
Services	2.	1.1572	0.1275	-0.1381	.9887

TABLE C.7Expenditure Functions With Income Defined as Total Current
Consumption Expenditures
Form With Highest \overline{R}^2

^a Regression forms were: (1) constant elasticity; (2) constant elasticity with the per cent renters as an additional explanatory variable; (3) interaction form discussed in the text; and (4) interaction form with the per cent renters as an additional explanatory variable.

6. THE ELASTICITY OF CONSUMPTION INCOME

Chapters 4, 5, and 6 present several estimates of the relationship between the income and education elasticities. In this section several additional, comparable estimates are shown for other combinations of the Engel curves, all taken from the data in Chapter 4. The purpose here is to present further evidence on the degree of sensitivity in the estimates presented in the text.

Each Engel curve estimates the income elasticity η_i and the education elasticity ϵ_{iE} for a particular market good. The regression discussed in this section take these pairs of elasticities, (η_i, ϵ_{iE}) , as observations and regress ϵ_{iE} on η_i . The regression coefficient, b, obtained from fitting

$$\epsilon_{iE} = a + b\eta_i + u_i, \tag{C.1}$$

or

$$\epsilon_{iE} = b(\eta_i - 1) + u_i, \qquad (C.2)$$

is an estimate of the elasticity of consumption income ϵ_{Y_cE} as defined in Chapter 2, since equation (2.11) states that

$$\epsilon_{iE} = \epsilon_{Y_cE}(\eta_i - 1).$$

Equations (C.1) and (C.2) differ only when the relevant means of the variables ϵ_{iE} and $(\eta_i - 1)$ and not zero.⁴ Although for most of the sets of observations the means are not far from zero, all sets were run both weighted and unweighted for both equations (C.1) and (C.2).

Four additional sets of regressions across the Engel curves are discussed below. These will be denoted by the letters A, B, C, and D here to simplify the exposition. Set "A" includes fifteen constant elasticity Engel curves. The values of ϵ_{iE} and η_i are those given in Table 1 for the following items: food at home, food away, alcohol, housing, household operations, housefurnishings, clothing, personal care, leisure, education, and utilities. For the items tobacco and medical care, the estimates are slightly changed, the differences resulting from omitting the explanatory variables with t values of less than one; for the travel item, the expenditures were broken down into expenditures on automobiles and expenditures on other travel. The two elasticities, η_i and ϵ_{iE} , for these four items are, respectively, 0.758 and -0.819 for tobacco; 0.844 and 0.017 for medical care; 1.378 and -0.526 for automobiles; and 1.605 and -0.110 for travel other than by auto.

Set "B" for the same fifteen items replaces the constant elasticity form with the interaction form for six of the fifteen; the remaining eight are the same observations as in "A." The interaction effects for housing, automobiles, and other travel are given in the table of "best fits" (Table 4) in the text. For the remaining three—food at home, housefurnishings, and utilities—the interaction mean elasticities ($\bar{\eta}_i$ and $\bar{\epsilon}_{iE}$) are, respectively, 0.614 and -0.145, 0.961 and -0.045, and 0.430 and 0.130.

'Weighting by expenditures and summing over all goods, equation (C.1) becomes

$$\sum_{i} X_{i} \epsilon_{iE} = a \sum_{i} X_{i} + b \sum_{i} \eta_{i} X_{i} + \sum_{i} u_{i} X_{i}.$$

Dividing by the sum of the expenditures,

$$\overline{\epsilon}_E = a + b\overline{\eta} + \overline{u}$$

where the bar denotes a weighted mean. Since $\epsilon_s = 0$, $\bar{\eta} = 1$, and $\bar{u} = 0$, -a = b. So the weighted regression is also run as

$$\epsilon_{iE} = b(\eta_i - 1) + u_i.$$

Verbally, when weighted, the point of means of ϵ_{iE} and $(\eta_i - 1)$ is the origin.

	Acros
	Elasticities
LE C.8	Education
TABL	and
E4	Income
	Between

,

$eighted b = a + b_{11} + u_1$ eighted b = a $Unweighted b$ $a nweighted b$ $(-0.60) (-0.326 0.309)$ $(-0.60) (-0.70) (0.77)$ $(0.33) (-1.01) (0.77)$ $(0.33) (-1.01) (0.118)$ $(0.33) (-1.01) (0.125)$ $(0.31) (-1.08) (1.25)$ $(0.32) (-0.929) (0.881)$	Weighted *18 1.02 +0			oumbre contermini			Kegression	ron	
ϵ_{18} η_1 ϵ_{18} η_1 ϵ_{18} η_1 a b a b a b -0.03 1.02 $+0.02$ 1.11 -0.052 $+0.210$ 0.070 -0.161 -0.326 0.309 $+0.01$ 0.97 $+0.05$ 1.07 $+0.142$ $+0.310$ -0.107 0.086 -0.456 0.474 $+0.01$ 0.97 $+0.05$ 1.07 $+0.142$ $+0.326$ 0.330 0.492 $+0.01$ 0.96 $+0.05$ 1.07 $+0.143$ 0.320 0.492 0.492 -0.02 0.92 $+0.05$ 1.11 $+0.522$ $+0.473$ -0.571 0.629 -0.929 0.881	€iB 7i -0.03 1.02 +0	mueighted	(€i. Weiahted	eni) Unweighted	Weig	$\epsilon_{iE} = a + $ <i>inted</i>	$b_{\eta i} + u_i$ Unweig	-	$\epsilon_{iE} = \frac{b(\eta_i - 1)}{W eighted} + u_i$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		E 7/i	2	•	ø	q	a	q	<i>q</i> .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-0.052	+0.210	0.070	<u> </u>	-0.326	0.309	-0.117 (-0.44)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.97		+0.142	+0.310	-0.107		-0.456	0.474	0.112
0.92 + 0.05 1.11 + 0.522 + 0.473 - 0.571 0.629 - 0.929 0.881	0.96	, ,	+0.155	+0.326			-0.478	0.492	0.083
	0.92		+0.522			~ `	-0.929	0.881	0.496

Effect of Education on Efficiency in Consumption

Set "C" is the same as the fifteen items given in Table 4, except for the substitution of the tobacco and medical care observations from set "A" described above. Set "D" is a subset of set "A," containing only the nine nondurable items: food at home, food away, tobacco, alcohol, household operations, personal care, medical care, leisure, and education. This nondurables set was considered most likely to be free of the durables bias discussed in Appendix B.

Table C.8 summarizes the regressions—weighted and unweighted for these four sets of items. This evidence suggests again that the positive consumption income effect is considerably higher in the unweighted case, and much higher when estimated from only the nondurable items. Naturally, the results shown in the text most closely resemble those in set "C." If, in fact, the durables bias discussed in Appendix B is an important factor in these Engel curves, then the findings for set "D" may be the least biased, and this would suggest that the elasticity of real income with respect to education is somewhat larger than the value presented in Chapter 4. This finding for nondurables is qualitatively consistent with the conclusion reached at the end of Chapter 5; quantitatively the two sets of nondurables are not entirely comparable, and hence the magnitudes of the estimated coefficients differ.