This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Long-Range Economic Projection
Volume Author/Editor: Conference on Research in Income and Wealth

Volume Publisher: NBER

Volume ISBN: 0-691-04141-5

Volume URL: http://www.nber.org/books/unkn54-1
Publication Date: 1954

Chapter Title: Specific Industry Output Projections
Chapter Author: Harold J. Barnett
Chapter URL: http://www.nber.org/chapters/c2934
Chapter pages in book: (p. 191-232)

SPECIFIC INDUSTRY OUTPUT
 PROJECTIONS

HAROLDJ. BARNETT
RAND CORPORATION

A. ALTERNATIVE PROJECTIONS

Let us assume that the time is the beginning of 1947. We have just completed the first full-scale projections of industrial output employing an input-output matrix to calculate derived demand. Our article, which presents outputs by industries for 1950, has been sent to the publisher. ${ }^{1}$

In the projections we used a matrix about 40×40 in size consisting of 1939 input-output coefficients. An attempt was made ". . . to correct the 1939 input ratios for a few clearly discernible changes. . . . ${ }^{2}$ These adjustments were made partly on the basis of past trends, partly in consultation with experts. Clearly, changes in addition to these may occur by 1950; but there is no present basis for estimating even roughly their nature, direction, or magnitude." ${ }^{3}$

After consideration of population size, labor force, productivity changes by industries, and other variables, we estimated that 1950 gross national product (in 1939 prices) would be about 86 percent greater than that for 1939 if final demand represented a consumption model, and 79 percent greater if final demand represented an investment model. ${ }^{4}$ We inserted our alternative final demands in the revised matrix, solved the simultaneous equations, and,
Note: I am indebted to a major degree to Ronald Shephard, Russell Nichols, Andrew Marshall, Roland McKean, Sam Schurr, and Alice Hirsch. In addition I have benefited from useful comment from Joseph Kershaw, Marvin Hoffenberg, W. Evans, and E. M. Hoover.
${ }^{1}$ J. Cornfield, W. Evans, and M. Hoffenberg, "Full Employment Patterns, 1950," Monthly Labor Review, February and March 1947; reprinted in pamphlet form in 1947 with the same title by the Government Printing Office, Washington. Also Appendix A thereto (mimeographed, May 1946).

2 "These [were]:
"(1) A 25 percent reduction in unit coal consumption by railroads.
"(2) A 650 percent increase in unit diesel oil consumption by railroads.
"(3) A 20 percent increase in the amount of textile fiber per tire with 60 percent of the fiber supplied by cotton, 40 percent by synthetics.
"(4) A continuation of the prewar trend toward the substitution of synthetic fibers for cotton in apparel."
${ }^{8}$ Cornfield, Evans, and Hoffenberg, op.cit., Appendix A, p. 17.
${ }^{4}$ Percentages furnished by Marvin Hoffenberg.
after a certain amount of recycling to satisfy the assumption of full employment, arrived at two sets of projected 1950 outputs by industries.
At this point we say to ourselves: Let us make projections by alternative techniques using certain basic assumptions identical with those employed for the input-output projections. We shall file them in a folder marked "not to be opened until 1951." In 1951 we shall compare the projections with actual outputs by industries, and discover the deviations from actual of the various projections.

Which alternative techniques shall we use? One technique in general use is multiple correlation. For these individual industry or commodity projections, we shall arbitrarily use the same relationship for all:

Specific industry output $=a+b$ GNP $+c$ time
For the historical periods, we shall arbitrarily use the periods $1922-41$ and 1946 for each industry or commodity. The gross national products projected will, of course, be those used in the Full Employment Patteris, 1950 projections (186 percent and 179 percent of 1939). We will refer to projections derived by this technique as multiple regression projections.
Our second alternative technique will be simple. We shall assume that
$\frac{\text { Projected industry output in } 1950}{\text { Actual industry output in } 1939}=\frac{\text { Projected GNP in } 1950}{\text { Actual GNP in } 1939}$
With an 86 or 79 percent increase in GNP by 1950, this technique results in projected increases in the output of every specific industry of exactly 86 or 79 percent. We shall refer to these projections as GNP blowups.

Our third alternative is also simple. To employ the input-output matrix used in the Full Employment Patterns, 1950 projections for estimating derived demand, it was necessary to estimate final demand for the output of each industry. These demand estimates reflecting income elasticity were made according to universal estimating practice-regression analysis, budget studies, arbitrary assumption about the government budget, etc.-and had nothing to do with the input-output matrix, beyond uniformity of industry classification. For example, 1950 final demand for agricultural and fishing output was estimated at 52 percent
over 1939 for a consumption-oriented economy and at 35 percent over 1939 for an investment-oriented economy. For ferrous metals, the same estimates were 94 and 139 percent, and for chemicals, 89 and 83 percent. ${ }^{5}$ For this third alternative technique, we assume an increase in the total output of each industry equal to the percentage increase in final demand for the output of that industry. Thus, using the above examples, we project (with $1939=$ 100) the following:

\quad Output by Industry	Consumption Model	Investment Model
Agriculture and fishing	152	135
Ferrous metals	194	239
Chemicals	189	183

Projections by this technique (in which we employ final demand structures identical with those to which the input-output matrix in Full Employment Patterns, 1950 was hinged) will be called final demand blowups.

B. COMPARING 1950 PROJECTIONS WITH ACTUAL

The time is now 1951 and the results of the Full Employment Patterns, 1950 (FEP) and alternative projections may be presented and compared with the 1950 actual. ${ }^{6}$ Table 1, in millions of 1939 dollars, compares actual 1950 output with the eight output projections produced by the published article and the three alternative techniques. Table 2 presents the same information in index numbers, with $1939=100$. Tables 3 and 4 present deviations of the eight projections from the actual, in millions of 1939 dollars and in index number points, with $1939=100$. These tables also present arithmetic means of the errors in the several projections.

[^0]SPECIFIC INDUSTRY OUTPUT
TABLE 1
Comparison of Eight Projections with Actual 1950 Output (in millions of 1939 dollars)

Line Industry	Actual Output, 1950	Method of Projection							
		FULL EMPLOYMENT PATTERNS		multiple regression		FINAL-DEMAND blowup		GNP BLOWUP	
				Larger GNP	Smaller GNP			Larger GNP	Smaller GNP
		C-Modela	I-Modelb	(C-Model)	(I-Model)	C-Model	I-Model	(C-Model)	(I-Model)
1. Agriculture and fishing	13,056	16,937	14,915	13,562	13,259	15,384	13,663	18,825	18,117
2. Food processing	20,152	22,685	19,263	20,948	20,285	22;008	19,092	24,660	23,732
3. Ferrous metals	5,212	4,824	5,927	5,523	5,186	5,030	6,197	4,823	4,641
4. Shipbuilding	481	441	476	2,015	1,892	358	441	813	782
5. Agricultural machinery	1,242	893	1,276	1,225	1,159	896	1,326	817	786
8. Machinery	12,865	9,307	11,837	15,388	14,448	9,599	12,865	9,203	8,857
7. Motor vehicles	6,607	6,157	6,255	6,117	5,756	6,349	6,427	4,801	4,620
8. Aircraft	1,652	2,030	2,269	2,066	1,735	1,840	2,101	500	482
9. Transportation equipment, n.e.c.	609	566	722	1,019	920	572	782	495	476
10. Iron and steel, n.e.c.	4,589	4,066	4,952	4,863	4,566	4,452	5,776	4,246	4,087
11. Nonferrous metals and their products	2,854	3,124	3,473	3,340	3,152	2,713	2,901	2,916	2,807
12. Nonmetallic minerals and their products	3,779	3,522	4,748	4,522	4,254	4,605	4,688	3,841	3,696
13. Petroleum production and refining	7,569	10,067	9,593	7,909	7,715	11,208	10,141	9,025	8,685
14. Coal mining and manufactured solid fuel	2,059	3,015	3,055	2,716	2,578	2,837	2,699	3,218	3,097
15. Manufactured gas and electric power	7,131	5,539	5,233	5,528	5,384	5,986	5,298	5,327	5,127

SPECIFIC INDUSTRY OUTPUT
TABLE 1 (concluded)

Line Industry	Actual Output, 1950	Method of Projection							
		MULTIPLE FEGRESSION							
		FULL EM	OYMENT	Larger GNP (C-Model)	$\begin{gathered} \text { Smaller } \\ \text { GNP } \\ \text { (I-Model) } \end{gathered}$	FINAL-DEMAND BLOWUP		Larger Smaller GNP GNP (C-Model) (1-Model)	
		C-Modela	I-Model ${ }^{\text {b }}$			C-Model	I-Model		
16. Communications	3,047	2,713	2,484	2,638	2,562	3,335	2,714	2,820	2,714
17. Chemicals	8,026	6,411	6,635	8,332	7,992	6,428	6,224	6,326	6,088
18. Lumber and timber products	1,869	2,022	2,791	2,154	1,993	2,476	3,206	2,303	2,216
19. Furniture and other wood manufactures	2,030	2,154	2,281	2,267	2,137	2,184	2,338	2,208	2,125
20. Wood pulp and paper	2,799	3,036	2,914	2,851	2,765	3,107	3,448	3,175	3,056
21. Printing and publishing	3,624	3,962	3,468	3,420	3,307	4,009	3,488	4,213	4,054
22. Textile mill products	5,118	5,743	5,199	5,497	5,276	4,739	4,644	5,876	5,655
23. Apparel and other finished textile products	6,146	6,742	5,645	6,457	6,215	6,664	5,594	6,423	6,181
24. Leather and leather products	1,055	1,667	1,436	1,311	1,272	1,696	1,509	1,834	1,765
25. Rubber	1,757	1,725	1,744	2,052	1,962	1,641	1,713	1,659	1,597
26. All other manufacturing	3,195	3,432	3,217	3,528	3,361	3,744	3,578	3,095	2,979
27. Construction	16,445	14,889	25,291	19,976	18,261	14,932	25,323	18,766	18,059
28. Steam railroad transportation	8,361	8,739	8,563	9,180	8,620	13,361	11,077	8,017	7,715
Gross national product	152,000	170,000	163,000	170,000	163,000	170,000	163,000	170,000	163,000

[^1]SPECIFIC INDUSTRY OUTPUT
TABLE 2
Comparison of Eight Projections with Actual 1950 Outputa (index numbers, $1939=100$)

Line Industry	Actual Output, 1950	Method of Projection							
		MULTIPLE REGRESS						GNP BLOWUP	
		FULL EMPLOYMENT patterns		Larger GNP (C-Model)	$\begin{gathered} \text { Smaller } \\ \text { GNP } \\ \text { (I-Model) } \end{gathered}$	final-demand blowup		Larger GNP	Smaller GNP
		C-Modelb	I-Modelc			C-Model	I-Model	(C-Model)	(I-Model)
1. Agriculture and fishing	129	167	147	134	131	152	135	186	179
2. Food processing	152	171	145	158	153	166	144	186	179
3. Ferrous metals	201	186	229	213	200	194	239	186	179
4. Shipbuilding	110	101	109	461	433	82	101	186	179
5. Agricultural machinery	283	203	291	279	264	204	302	186	179
6. Machinery	260	188	239	311	292	194	260	186	179
7. Motor vehicles	256	239	242	237	223	246	249	186	179
8. Aircraft	614	755	843	768	645	684	781	186	179
9. Transportation equipment, n.e.c.	229	213	271	383	346	215	294	186	179
10. Iron and steel, n.e.c.	201	178	217	213	200	195	253	186	179
11. Nonferrous metals and their products	182	199	221	213	201	173	185	186	179
12. Nonmetallic minerals and their products	183	171	230	219	206	223	227	186	179
13. Petroleum production and refining	156	207	198	163	159	231	209	186	179
14. Coal mining and manufactured solid fuel	119	174	177	158	149	164	156	186	179
15. Manufactured gas and electric power	249	193	183.	193	188	209	185	186	179

SPECIFIC INDUSTRY OUTPUT
TABLE 2 (concluded)

Line Industry	Actual Output, 1950	Method of Projection							
		MULTIPLE REGRESSION						GNP BLOWUP	
		FULL EMPLOYMENT		$\begin{gathered} \text { Larger } \\ \text { GNP } \\ \text { (C-Model) } \end{gathered}$	$\begin{gathered} \text { Smaller } \\ \text { GNP } \\ \text { (I-Model) } \\ \hline \end{gathered}$	FINAL-DEMAND BLOWUP		Larger GNP	Smaller GNP
		C-Model ${ }^{\text {b }}$	I-Modele			C-Model	I-Model	(C-Model)	(I-Model)
16. Communications	201	179	164	174	169	220	179	136	179
17. Chemicals	236	189	195	245	235	189	183	186	179
18. Lumber and timber products	151	163	225	174	161	200	259	186	179
19. Furniture and other wood manufactures	171	181	192	191	180	184	197	186	179
20. Wood pulp and paper	164	178	171	167	162	182	202	186	179
21. Printing and publishing	160	175	153	151	146	177	154	186	179
22. Textile mill products	162	182	165	174	167	150	147	186	179
23. Apparel and other finished textile products	178	195	163	187	180	193	162	186	179
24. Leather and leather products	107	169	146	133	129	172	153	186	179
25. Rubber	197	193	196	230	220	184	192	186	179
26. All other manufacturing	192	206	193	212	202	225	215	186	179
27. Construction	163	148	251	198	181	148	251	186	179
28. Steam railroad transportation	194	203	199	213	200	310	257	186	179
Gross national product	167	186	179	186	179	186	179	186	179

[^2]
SPECIFIC INDUSTRY OUTPUT

TABLE 3
Deviations of Eight Projections from Actual 1950 Output (in millions of 1939 dollars)

Line Industry	Actual Output, 1950	Method of Projection							
		FULL EMPLOYMENT patterns		multiple reghession		final-demand BLOWUP		GNP BLOWUP	
				Larger GNP	Smaller GNP			Larger GNP	Smaller GNP
		C-Modela	I-Modelb	(C-Model)	(I-Model)	C-Model	I-Model	(C-Model)	(I-Model)
1. Agriculture and fishing	13,056	+3,881	+1,859	+506	+203	+2,328	+607	+5,769	+5,061
2. Food processing	20,152	+2,533	-889	+796	+133	+1,856	-1,060	+4,508	+3,580
3. Ferrous metals	5,212	-388	+715	+311	-26	-182	+985	-389	-571
4. Shipbuilding	481	-40	-5	+1,534	+1,411	-123	-40	+332	+301
5. Agricultural machinery	1,242	-349	+34	-17	-83	-346	+84	-425	-456
6. Machinery	12,865	-3,558	-1,028	+2,523	+1,583	-3,266	0	-3,662	-4,008
7. Motor vehicles	6,607	-450	-352	-490	-851	-258	-180	-1,806	-1,987
8. Aircraft	1,652	+378	$+617$	+414	+83	+188	+449	-1,152	-1,170
9. Transportation equipment, n.e.c.	609	-43	+113	+410	+311	-37	+173	-114	-133
10. Iron and steel, n.e.c.	4,589	-523	+363	+274	-23	-137	+1,187	-343	-502
11. Nonferrous metals and their products	2,854	+270	+619	+486	+298	-141	+47	+62	-47
12. Nonmetallic minerals and their products	3,779	-257	+969	+743	+475	+826	$+909$	+62	-83
13. Petroleum production and refining	7,569	+2,498	+2,024	+340	+146	+3,639	+2,572	+1,456	+1,116
14. Coal mining and manufactured solid fuel	2,059	+956	+996	+657	$+519$	+778	+640	+1,159	+1,038
15. Manufactured gas and electric power	7,131	-1,592	-1,898	-1,603	-1,747	-1,145	-1,833	-1,804	-2,004

SPECIFIC INDUSTRY OUTPUT
TABLE 3 (concluded)

Line Industry	Actual Output, 1950	Method of Projection							
		MULTIPLE REGRESSION						GNP BLOWUP	
		FULL EM	OYMENT	$\begin{gathered} \text { Larger } \\ \text { GNP } \\ \text { (C-Model) } \end{gathered}$	Smaller GNP	Final	EMAND	Larger GNP	Smaller GNP
		C-Modela	I-Model ${ }^{\text {b }}$		(I-Model)	C-Model	I-Model	(C-Model)	(I-Model)
16. Communications	3,047	-334	-563	-409	-485	+288	-333	-227	-333
17. Chemicals	8,026	-1,615	-1,391	+306	-34	-1,598	-1,802	-1,700	-1,938
18. Lumber and timber products	1,869	+153	+922	$+285$	+124	+607	+1,337	+434	+347
19. Furniture and other wood manufactures	2,030	+124	+251	+237	+107	$+154$	+308	+178	+95 +257
20. Wood pulp and paper	2,799	$+237$	$+115$	+52	-34	+308	+649	+376	+257
21. Printing and publishing	3,624	+338	-156	-204	-317	+385	-136	$+589$	+430
22. Textile mill products	5,118	$+625$	+81	+379	+158	-379	-474	+758	$+537$
23. Apparel and other finished textile products	6,146	+596 +612	-501 +381	+311 +256	+69 +217	+518 +641	-552 +454	+277 +779	+35 +710
24. Leather and leather products 25. Rubber	1,055 1,757	+612 -32	+381 -13	+256 +295	+217 +205	+641 -116	+454 -44	+779 -98	+710 -160
25. Rubber	1,757	-32	-13	+295	+205	-116	-44	-98	-160
26. All other manufacturing	3,195	+237	+22	+333	+166	+549 +1513	+383 +878	-100	-216
27. Construction	16,445	-1,556	+8,846	+3,531	+1,816	-1,513	+8,878	+2,321	+1,614
28. Steam railroad transportation	8,361	+378 +1558	+202 +825	$\begin{array}{r}+819 \\ \hline 8591\end{array}$	+259 11883	$+5,000$ $+27,306$	$+8,716$ $+28,832$	-344 31.224	-646
Total, ignoring signs		24,553	25,925	18,521	11,883	27,306	28,832	31,224	29,375
Average		877	926	662	424	975	1,030	1,115	1,049

[^3]SPECIFIC INDUSTRY OUTPUT
TABLE 4
Deviations of Eight Projections from Actual 1950 Output (in index points, 1939 actual $=100$)

Line	Actual Output, 1950	Method of Projection							
		MULTIPLE PEGRESSİN						GNP BLOWUP	
		FULL EMPLOYMENT		LargerGNP(C-Model)	$\begin{gathered} \text { Smaller } \\ \text { GNP } \\ \text { (I-Model) } \end{gathered}$	FINAL-DEMAND BLOWUP		$\begin{gathered} \text { Larger } \\ \text { GNP } \\ (C \text {-Model }) \end{gathered}$	Smaller GNP
		C-Modela	I-Model ${ }^{\text {b }}$			C-Model	I-Model		(I-Model)
1. Agriculture and fishing	129	+38	+18	+5	+2	+23	$+6$	+57	$+50$
2. Food processing	152	+19	-7	+6	+1	+14	-8	+34	$+27$
3. Ferrous metals	201	-15	$+28$	$+12$	-1	-7	+38	-15	-22
4. Shipbuilding	110	-9	-1	+351	+323	-28	-9	+76	+69
5. Agricultural machinery	283	-80	+8	-4	-19	-79	+19	-97	-104
6. Machinery	260	-72	-21	+51	+32	-66	0	-74	-81
7. Motor vehicles	256	-17	-14	-19	-33	-10	-7	-70	-77
8. Aircraft	614	+141	+229	+154	+31	+70	$+167$	-428	-435
9. Transportation equipment, n.e.c.	229	-16	+42	+154	+117	-14	+65	-43	-50
10. Iron and steel, n.e.c.	201	-23	+16	+12	-1	-6	+52	-15	-22
11. Nonferrous metals and their products	182	+17	+39	+31	$+19$	-9	+3	+4	-3
12. Nonmetallic minerals and their products	183	-12	+47	+36	+23	$+40$	+44	+3	-4
13. Petroleum production and refining	156	+51	+42	$+7$	+3	$+75$	+53	$+30$	$+23$
14. Coal mining and manufactured solid fuel	119	$+55$	+58	+39	+30	+45	+37	$+67$	+60
15. Manufactured gas and electric power	249	-56	-66	-56	-61	-40	-64	-63	-70

SPECIFIC INDUSTRY OUTPUT
TABLE 4 (concluded)

Line Industry	Actual Output,1950	Method of Projection							
		FULL EMPLOYMENT PATTERNS		multiple regression		FINAL-DEMAND blowur		GNP bLowur	
				Larger GNP	Smaller GNP			Larger GNP	Smaller GNP
		C-Modela	I-Modelb	(C -Model)	(1 -Model)	C-Model	I-Model	(C-Model)	(I-Model)
16. Communications	201	-22	-37	-27	-32	+19	-22	-15	-22
17. Chemicals	236	-47	-41	+9	-1	-47	-53	-50	-57
18. Lumber and timber products	151	+12	+74	+23	+10	+49	+108	+35	+28
19. Fumiture and other wood manufactures	171	+10	+21	+20	+9	+13	+26	+15	+8
20. Wood pulp and paper	164	+14	+7	+3	-2	+18	+38	+22	+15
21. Printing and publishing	160	+15	-7	-9	-14	+17	-6	+26	+19
22. Textile mill products	162	+20	+3	+12	+5	-12	-15	+24	+17
23. Apparel and other finished textile products	178	+17	-15	+9	+2	+15	-16	+8	+1
24. Leather and leather products	107	$+62$	+39	$+26$	$+22$	$+65$	$+46$	+79	$+72$
25. Rubber	197	-4	-1	+33	+23	-13	-5	-11	-18
26. All other manufacturing	192	+14	+1	+20	+10	+33	+23	-6	-13
27. Construction	163	-15	+88	+35	+18	-15	+88	+23	+16
28. Steam railroad transportation	194	+9	+5	+19	+6	+116	+63	-8	-15
Total, ignoring signs		882	975	1,182	850	958	1,081	1,398	1,398
Average		32	35	42	30	34	39	50	50

[^4]The most obvious results are the mean errors. These, expressed as percentages of value of industry output in 1939, are as follows:

PROJECTION TECHNIQUE USED	MEAN ERRORS-PERCENT OF VALUE OF industry output in 1939 Weighted by Specified Industry Value		
Multiple regression	Investment	14	30
Multiple regression	Consumption	22	42
Full Employment Patterns	Consumption	29	32
Full Employment Patterns	Investment	30	35
Final-demand blowup	Consumption	32	34
Final-demand blowup	Investment	34	39
GNP blowup	Investment	34	50
GNP blowup	Consumption	36	50

Which of the mean errors-weighted or unweighted-is more important depends on one's specific projection interest. If interest centers on individual industries, the unweighted mean comparison is more relevant. But means do not fully describe the error patterns. Frequency distribution charts (1 through 4) and tables (5 and 6) yield additional information on the error patterns. These appear to indicate the following:

1. With respect to dollar projections, equivalent to the weighted mean comparison above, and confirming the results indicated by the means, the descending order of "goodness" of these particular projections is: (a) multiple regression; (b) Full Employment Patterns, 1950; (c) final-demand blowup; and (d) GNP blowup.
The horizontal lines on Table 5 indicate the size of error reached by the time the best 23 and 26 cases, respectively, are included. The above order of "goodness" (minimal dispersion) holds when five and two extreme errors in each projection are discarded, as well as when no cases are discarded.
2. For unweighted projections, the results are more equivocal. The horizontal lines on Table 6 are used as they were in Table 5. If five extreme errors in each projection are discarded, multiple regression and Full Employment Patterns, 1950 projections are somewhat better than final-demand blowup and GNP blowup projections. If two extreme cases are discarded, multiple regression projections become inferior to the others, and FEP projections become best. If all cases are included, errors of FEP and final-demand blowup projections are less dispersed than those
of multiple regression and GNP blowup projections. These differing dispersions result in the means indicated above and in Table 4, in which FEP, multiple regression, and final-demand blowup projections are all of approximately equal error, and GNP blowup projections have greater error.

There may be some interest in a classified list of the industries in which each projection was best. In the list below, I have ignored GNP blowups and final-demand blowup projections, in the belief that these are crude approximations of the multiple regression and the FEP projections, respectively. The list is as follows:

Full Employment Patterns	Full Employment Patterns (Consumption Model)	Regression, (Investment Model)
Transportation	Shipbuilding	Smaller GNP
equipment, n.e.c.	Machinery	Agriculture \& fishing
Nonferrous metals	Motor vehicles	Food processing
\& their products	Printing \& publishing	Ferrous metals
Aircraft		
Communications	Textile mill products	Iron \& steel, n.e.c.
Construction	Rubber	Petroleum production
	All other manufactur-	\& refining
	ing	Coal mining
	Steam railroad trans-	Chemicals
	portation	Lumber \& timber products
		Furniture \& other wood
		manufactures
		Wood pulp \& paper
		Apparel
		Leather

The list excludes manufactured gas and electric power, in which FEP projections (consumption model) and regression projections (larger GNP) were tied; and agricultural machinery, where regression projections (larger GNP) were best. If these are included, regression projections are better in 14 industries, FEP projections are better in 13 industries, and both are equally poor in 1 .

C. QUALIFICATIONS

At various times in the preparation of these data, I found myself wondering whether I was testing projections or testing the quality of the index numbers which record the "actual." This problem was aggravated by the fact that I had to match actual 1950 "physical" outputs with the industrial classifications used in Full Employment Patterns, 1950, and these classifications are not homogeneous. The first qualification, then, is that the projection

SPECIFIC INDUSTRY OUTPUT

CHART 1

Frequency Distribution of Errors in Consumption-Model Projections, by Dollar Class Intervals

Source: Table 3.

SPECIFIC INDUSTRY OUTPUT
CHART 2
Frequency Distribution of Errors in Investment-Model Projections, by Dollar Class Intervals

Source: Table 3.

SPECIFIC INDUSTRY OUTPUT

CHART 3

Frequency Distribution of Errors in Consumption-Model Projections, by Index Points

Final Demand Blowup

GNP Blowup

Source: Table 4.

SPECIFIC INDUSTRY OUTPUT

CHART 4
Frequency Distribution of Errors in Investment-Model Projections, by Index Points

Final Demand Blowup

GNP Blowup

Source: Table 4.
TABLE 5
Cumulative Frequency Distribution of Errors; Deviations of Eight Projections from Actual 1950 Outrut (class intervals in millions of 1939 dollars)

Class Interval	Method of Projection							
	multiple regression						GNP BLOWUP	
	FULL EMPLOYMENT PATTERNS		$\begin{gathered} \text { Larger } \\ \text { GNP } \\ \text { (C-Model) } \end{gathered}$	$\begin{gathered} \text { Smaller } \\ \text { GNP } \\ \text { (I-Model) } \end{gathered}$	FINAL-DEMAND bLowup		$\begin{gathered} \text { Larger } \\ \text { GNP } \\ \text { (C-Model) } \end{gathered}$	$\begin{aligned} & \text { Smaller } \\ & \text { GNP } \\ & \text { (I-Model) } \end{aligned}$
	C-Modela	1-Modelb			C-Model	I-Model		
0-200	5	8	2	13	8	8	6	6
0-400	15	13	14	20	14	11	13	11
0-600	18	15	20	23	16	15	16	16
0-800	20	18	23	23	19	18	18	18
0-1,000	21	22	24	24	20	20	18	18
0-1,200	21	23	24	24	21	22	20	21
0-1,400	21	24	24	24	21	23	20	21
0-1,600	23	24	25	26	23	23	21	21
0-1,800	24	24	26	27	23	23	22	22
0-2,000	24	26	26	28	24	25	24	24
0-2,200	24	27	26	-	24	25	24	25
0-2,400	24	27	26	-	25	25	25	25
0-2,600	26	27	27	-	25	26	25	25
0-2,800	26	27	27	-	25	27	25	25
0-3,000	26	27	27	-	25	27	25	25
0-3,200	26	27	27	-	25	27	25	25
0-3,400	26	27	27	-	26	27	25	25
0-3,600	27	27	28	-	26	27	25	26
0-3,800	27	27	-	-	27	27	26	26
0-4,000	28	27	-	-	27	27	26	26

SPECIFIC INDUSTRY OUTPUT
TABLE 5 (concluded)

Class Interval	Method of Projection							
	multiple regression						GNP BLOWUP	
	FULL EMPLOYMENT patterns		Larger GNP (C-Model)	SmallerGNP(I-Model)	FINAL-DEMAND BLOWUP		$\begin{aligned} & \text { Larger } \\ & \text { GNP } \\ & (C-\text { Model }) \end{aligned}$	Smaller GNP (I-Model)
	C-Modela	I-Modelb			C-Model	I-Model		
0-4,200	-	27	-	-	27	27	26	27
0-4,400	-	27	-	-	27	27	26	27
0-4,600	-	27	-	-	27	27	27	27
0-4,800	-	27	-	-	27	27	27	27
0-5,000	-	27	-	-	28	27	27	27
0-5,200	-	27	-	-	-	27	27	28
0-5,400	-	27	-	-	-	27	27	-
0-5,600	-	27	-	-	-	27	27	-
0-5,800	-	27	-	-	-	27	28	-
0-9,000	-	28	-	-	-	28	-	-

TABLE 6
Cumulattve Frequency Distribution of Errors; Deviations of Eight Projections from Actual 1950 Output (class intervals in index number points, $1939=100$)

Class Interval	Method of Projection								
	FULL EMPLOYMENT patterns		multiple regression		final-demand blowur		GNP BLOWUP		
			$\begin{gathered} \text { Larger } \\ \text { GNP } \\ \text { (C-Model) } \end{gathered}$	$\begin{gathered} \text { Smaller } \\ \text { GNP } \\ (\text { I-Model }) \end{gathered}$			Larger	Smaller	
			GNP				GNP		
	C-Modela	I-Modelb			C-Model	I-Model	(C-Model)	(I-Model)	
0-10	4	9		8	13	4	8	5	4
$0-20$	17	13	15	17	14	11	10	11	
0-30	19	16	18	21	16	14	15	17	
0-40	20	19	23	25	19	17	17	17	
0-50	21	23	23	25	22	19	19	19	
0-60	24	24	25	25	22	22	20	21	
0-70	25	25	25	26	25	25	23	23	
0-80	27	26	25	26	27	25	26	25	
0-90	27	27	25	26	27	26	26	26	
0-100	27	27	25	26	27		27	26	
0-110	27	27	25	26	27	27	27	27	
0-120	27	27	25	27	28	27	27	27	
0-130	27	27	25	27	-	27	27	27	
0-140	27	27	25	27	-	27	27	27	
0-150	28	27	25	27	-	27	27	27	
0-160	-	27	27	27	-	27	27	27	
0-170	-	27	27	27	-	28	27	27	
0-230	-	28	27	27	-	-	27	27	
0-330	-	-	27	28	-	-	27	27	
0-360	-	-	28	-	-	-	27	27	
0-430	-	-	-	-	-	-	28	27	
0-440	-	-	-	-	-	-	-	28	
0-450	-	-	-	-	-	-	-		

[^5]errors depend on the handling of the ever present index number problem. ${ }^{7}$ And the second is that the constraint of the input-output-matrix industry classifications was in some cases unkind to regression analysis, which had to combine value weights with heterogeneous physical units which were individually well adapted to correlation analysis and projection (e.g., kilowatthours for electricity and British thermal units for manufactured gas). Full Employment Patterns, 1950 did not directly project commodity outputs in conventional physical units, which regression analysis normally does, and it is relevant that interest in specific industry outputs frequently centers on particular commodities.
A third qualification, related to the above two, is that I did not find it possible to apply the alternative techniques to some of the specific industries covered by the Bureau of Labor Statistics, for lack of output measures from which to determine actual 1950 output in relation to 1939. The deleted industries are trade, business and personal services, eating and drinking places, miscellaneous transportation, and iron and steel foundry products. In addition, I found it necessary to combine five BLS machinery categories (engines and turbines; industrial and heating equipment, n.e.c.; machine tools; merchandising and service machines; and electrical equipment, n.e.c.) in order to approximate the single machinery index of the Federal Reserve Board.
A fourth qualification is that the comparisons cannot be interpreted as generalized evaluations of alternative projection techniques for obvious reasons.

A fifth qualification is that the FEP estimates were not designed to project actual 1950:
"Neither of these models [consumption or investment] is in fact likely to be realized. If full employment is achieved in 1950, it is likely to be as a result of increases in all forms of demand. The

[^6]two models thus provide extremes; a real full employment situation is likely to occupy an intermediate situation" (p. 421).

In this connection, however, the final-demand blowup projections utilized exactly the same extreme assumptions and resulted in mean errors approximately equal to those of Full Employment Patterns, 1950. This connotes that the specific inputoutput matrix used in the published article to calculate derived demand or intermediate output contributed little, in reducing error, to the conventional-type final-demand estimates on which the input-output matrix was hinged. This, however, is indirect and incomplete evidence of the validity of the underlying matrix used in these projections. More definitive evidence in the form of applying 1950's actual final demand is needed. I hope that Evans and Hoffenberg will make this test.

D. RELATIVE ROLES OF FINAL DEMAND AND DERIVED DEMAND IN THE FULL EMPLOYMENT PATTERNS, 1950 PROJECTIONS

I have had to attack the question of derived demand in an indirect fashion.
The differences between the investment-model specific industry projections and those of the consumption model are attributable to (1) sharply different conventional-type final-demand projections, and (2) calculations from a single input-output matrix of differences in derived demand, which stem wholly from the differences in the final-demand estimates. I ask this question: For each industry, what part of the difference between investmentmodel and consumption-model projections was accounted for directly by final-demand-estimate differences and what part stemmed indirectly from final-demand-estimate differences, in the form of input-output calculations of derived demand? The answers appear in Table 7.

It appears that the major part of the differences between in-vestment-model and consumption-model industry projections resulted from the authors' conventionally estimated final-demand differences, and that a lesser part resulted from the input-output derived-demand shifts incident to the differing final demands. ${ }^{8}$

[^7]
SPECIFIC INDUSTRY OUTPUT

TABLE 7
Differences by Industry between Two Models in Full Employment Patterns, 1950
Projections; Portion Accounted for by Final Demand and by Derived Demand (in index number points, $1939=100$)

Line	Industry	Excess of 1950 C-Modela over 1950 I-Modelb (1)	Points in Column I Accounted for by Final Demand (2)	Points in Column 1 Accounted for by Derived Demand (3)
	Agriculture and fishing	+20	+6	+14
	Food processing	+26	+18	+8
	Ferrous metals	-43	-3	-40
	Shipbuilding	-8	-16	+8
	Agricultural machinery	-88	-86	-2
	Machinery	-51	-41	-10
	Motor vehicles	-3	-3	0
	Aircraft	-88	-93	+5
	Transportation equipment, n.e.c.	-58	-61	+3
	Iron and steel, n.e.c.	-39	-8	-31
	Nonferrous metals and their products	-22	-4	-18
	Nonmetallic minerals and their products	s -59	0	-59
	Petroleum production and refining	+9	+11	-2
	Coal mining and manufactured solid fuel	$1-3$	+3	-6
15.	Manufactured gas and electric power	+10	+10	0
16.	Communications	+15	+15	0
17.	Chemicals	-6	+2	-8
	Lumber and timber products	-62	-2	-60
	Furniture and other wood manufactures	-11	-9	-2
	Wood pulp and paper	+7	-2	+9
	Printing and publishing	+22	+7	+15
	Textile mill products	+17	+1	+16
	Apparel and other finished textile products	+32	+31	+1
	Leather and leather products	+23	+17	+6
25.	Rubber	-3	-3	0
26.	All other manufacturing	+13	+5	+8
27.	Construction	-103	-103	0
	Steam railroad transportation	+4	+10	-6
	Total, ignoring signse	845	570	337
	Columns 2 and 3 as percent of total		63	37

[^8]
SPECIFIC INDUSTRY OUTPUT

Derived demand from this matrix appears to be less responsive to final-demand variations than I expected. Evans and Hoffenberg have suggested that the matrix used was probably defective in terms of too large an "unallocated sector" (in the neighborhood of 25 percent of output) and too aggregative a set of industry classifications.

E. CRUCIAL IMPORTANCE OF FINAL DEMAND IN SPECIFIC INDUSTRY PROJECTIONS

Let us conceive of industry projections of, say, 10 or 15 years distance as involving a quantitative determination of how much greater or smaller the increase of an industry's output is than the projected (assumed) change in gross national product.
The Full Employment Patterns, 1950 approach breaks this determination into two stages: (1) a conventional-type estimate of how much industry output for final demand shifts relative to gross national product; (2) an input-output-matrix estimate of how much intermediate output-demand derived from the finaldemand estimates-shifts relative to gross national product. The final-demand estimates thiūs crucially enter both stages of the projections. They are not only large values in themselves in the first element, but they are also the axes on which derived demand turns. Error in final demand directly contributes error to the projections, and, through the input-output matrix, additional error in the derived-demand calculations.

In this situation it seems to me that it is probably at least as important to answer the questions-How valid are final-demand projections? What specific tendencies toward error do they have? What can be done to improve them? What is being done to improve them?-as to ask these questions about the input-output matrix. While I have not followed the recent literature carefully, my impression is that these final-demand questions have been relatively neglected; and it is possible that more attention to them might be at least as helpful in the problem of final-demand projections by industries as were earlier discussions and measurements in the related consumption function controversy.
tween the consumption and investment models become even less. As indicated in Table 7, these construction commodities are the ones for which derived-demand outputs differ very sharply from one model to the other.

SPECIFIC INDUSTRY OUTPUT

In summary, an input-output table is a strenuous and detailed analysis of production functions. It is possible that we need to know a great deal more about analogous detailed consumption (final-demand) functions.
In comparison with the Full Employment Patterns, 1950 approach, a regression analysis of the type used earlier attacks the problem of industry output change relative to change in gross national product without the two-stage operation indicated above. It simply assumes that future total industry output will change relative to gross national product as it has in the past.

It is quite obvious that there is no a priori basis for knowing which type of projections will turn out to be more accurate in a specific case. The answer depends on the practical matter of data availability for each estimating approach. ${ }^{9}$ And since data and classifications are not of uniform quality for various industries and products, the answer depends also on which industries or products are being considered.

APPENDIX

Notes to Table 2

Actual output, 1950 is expressed as an index number, with $1939=100$. The source of this $1950: 1939$ ratio is, in most cases, the series shown in Table A-2. In six cases different series were used, for the reasons indicated below:
$\left.\left.\begin{array}{ll}\text { Industry } & \begin{array}{l}\text { Series and Source Used for 1950 Index } \\ \text { Agricultural machinery } \\ \text { The ratio of 1949 to 1939 total domestic shipments } \\ \text { of wheel-type tractors (Table 628 in the 1950 } \\ \text { Agricultural Statistics) was used because census } \\ \text { data on farm equipment were not available. M. }\end{array} \\ \text { Hoffenberg of the Bureau of Labor Statistics sug- } \\ \text { gested this alternative as a satisfactory approxima- } \\ \text { tion of a farm equipment 1950:1939 ratio. }\end{array}\right\} \begin{array}{ll}\text { I used the Federal Reserve Board petroleum pro- } \\ \text { duction series in error instead of a production and } \\ \text { refining series. These series, which moved together } \\ \text { in prewar years, have diverged since the war. The } \\ \text { correct 1950:1939 ratio is 160, as compared with }\end{array}\right\}$

SPECIFIC INDUSTRY OUTPUT

Industry Series and Source Used for 1950 Index

show 1950 production, which I estimated by increasing 1949 production by $2 \frac{1 / 2}{2}$ percent, the increase from 1948 to 1949. This increase is less than the increase in number of telephones but more than the increase in the number of workers employed in telephone and telegraph industries as shown in the 1951 Survey of Current Business. I preferred the CEA series to my makeshift "number of telephones" series.
Construction I used the CEA series, which I preferred to my own series.
I used the CEA series on transportation services,
Steam railroad transportation which I preferred to the Interstate Commerce Commission series.
The actual gross national product for 1950 is in 1939 dollars (page 179 of the CEA document referred to above) converted to the base $1939=100$.

Full employment patterns projections are from J. Cornfield, W. Evans, and M. Hoffenberg, Full Employment Patterns, 1950 (Government Printing Office, 1947). They may be read directly from Table 15, except in the case of the machinery industry, which comprises five FEP classifications.

Multiple regression projections are based on historical regressions calculated in the Rand computing laboratory, as indicated in the correspondence quoted in part below:

Mr. Ronald W. Shephard
Economics Division
Rand Corporation

Herewith the series (Table A-2 below). You'll remember the problem is to correlate each of the series with GNP and time. The forms of the functions should be simple-either output $=A$ plus (GNP) plus C (time) or output $=a \cdot b^{\text {GNP }} \cdot c^{\mathrm{tIme}}$, whichever would appear to be the better fit. If the better fit cannot be determined by inspection, then let them all be fitted by the latter equation. If the latter equation adds substantially to the work, then let them all be fitted by the former equation, except that I will note that there is considerable usefulness in observing the time drift as a constant rate. Please don't bother with lagging any of the variables-in some cases it is a component of GNP that is the proper independent variable, and I haven't introduced this more important improvement. You'll remember that one of the important elements of the test is that it be quite mechanical in order that there be no question of hindsight.

Harold J. Barnett
Mr. Harold J. Barnett
3417 Pendleton Drive
Wheaton, Maryland
I enclose herewith your original data sheets [Table A-2] and a summary of the correlation calculations [Table A-1]. The regression $\mathbf{Y}=\bar{A} \cdot \bar{B}{ }^{\text {anp }} \cdot \bar{C}{ }^{\mathrm{tImO}}$ is written in logarithmic terms as $\log Y=$ $A+B \mathrm{GNP}+C$ time, where $A=\log \bar{A}, B=\log \bar{B}, C=\log \bar{C}$. But the corresponding standard errors of estimate [(Se) log. est] and correlation coefficients [C.C. log. est] are computed in absolute terms,

SPECIFIC INDUSTRY OUTPUT

that is, in terms of the residuals about the nonlog regression $Y=$ $\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}}^{\text {oNP }} \overline{\boldsymbol{C}}^{\text {tme }}$. The coefficients for both regressions (linear for arithmetic Y and linear for $\log Y$) are given, with D, E, F referring to the straight arithmetic regressions-as indicated in the upper left hand corner of the attached sheet. The coefficients $\bar{A}, \bar{B}, \bar{C}$, of the exponential regression (log. est) are found as anti-logs of A, B, C, respectively.

A word about the equation $Y=D+E($ GNP $)+F($ time $)$. The origin of time for this equation is the year 1934, the unit of time is one year, and time is measured positively going forward from 1934 and negatively going backward from 1934. The year 1950 would correspond to a value of T equal to +16 .

Ronald W. Shephard

The linear relationship $Y=D+E(\mathrm{GNP})+F($ time $)$, which fitted better in most cases, was chosen for the projections for all industries.

The multiple regression projections were computed by taking T (time) $=$ 16, GNP (gross national product) $=170$ for the consumption model, GNP $=163$ for the investment model, and by using the appropriate values of D, E, and F for each industry, as given in Table A-1. The results were then converted, where necessary, to the base $1939=100$. The GNP figures are in billions of dollars. They were obtained by applying the 1939 percentages furnished by Marvin Hoffenberg, 186 and 179, respectively, to the 1939 actual gross national product of $\$ 91.3$ billion.

The time series used in the regressions are presented in Table A-2. The correlation period 1922-41, 1946 was used. A few years were omitted because time series data were not available.

Certain 1950 values have been added. These values were not part of the original data series sent to Rand and referred to in the correspondence quoted above.

Final-Demand Blowups. The source of the changes in final demand from (actual) 1939 to (estimated) 1950 is Full Employment Patterns, 1950, table 14, p. 34. The blowups may be read directly from this table, except for the machinery industry, which comprises five FEP classifications.

SPECIFIC INDUSTRY OUTPUT
TABLE A-1
Correlation of Output with Gross National Product and Time in 28 Industries

Line In	A	B	C	D	E	\boldsymbol{F}	Y	$\log Y$	STANDARD ERROR		CORRELATION COEFFICIENTS	
									Lin. Est.	Log. Est.	Lin. Est.	Log. Est.
1. Agriculture and fishing	1.85953	0.0017487	0.000492	64.3	0.448	0.11	9.6	0.035	3.72	3.64	0.92	0.93
2. Food processing	1.75626	0.0027539	0.003217	38.9	0.710	0.67	16.9	0.060	2.56	3.08	0.99	0.98
3. Ferrous metals	1.09176	0.0104269	-0.016074	-79.4	2.148	-2.68	35.4	0.176	17.89	26.68	0.86	0.66
4. Shipbuilding	0.94019	0.0127157	0.000038	-300.3	5.118	1.01	114.4	0.249	55.73	69.82	0.87	0.79
5. Agricultural machinery	1.34184	0.0075823	-0.000868	-88.8	2.241	-0.80	38.5	0.145	10.95	16.89	0.96	0.90
6. Machinery	1.09272	0.0105814	-0.008473	-126.6	2.763	-1.26	47.8	0.173	10.62	21.15	0.97	0.90
7. Motor vehicles	1.18093	0.0092325	-0.013349	-62.2	1.894	-2.32	31.2	0.156	15.64	20.83	0.87	0.74
8. Aircraft	0.47611	0.0176297	0.018628	-2079.8	30.921	-114.52	345.7	0.518	151.50	326.30	0.90	0.33
9. Transportation equipment, n.e.c.	0.71035	0.0159581	-0.041034	-252.5	4.566	-12.14	74.7	0.244	39.12	42.72	0.85	0.82
10. Iron and steel, n.e.c.	1.09176	0.0104269	-0.016074	-79.4	2.148	-2.68	35.4	0.176	17.89	26.68	0.86	0.66
11. Nonferrous metals and their products	1.27978	0.0084767	-0.010962	-60.9	1.961	-2.00	32.9	0.141	14.60	20.76	0.90	0.78
12. Nonmetallic minerals and their products	1.25528	0.0085885	-0.008651	-68.5	2.011	-1.50	32.0	0.130	4.66	12.80	0.99	0.92
13. Petroleum production and refining	1.76819	0.0020772	0.012537	42.5	0.572	2.24	23.6	0.114	3.90	6.21	0.99	0.96
14. Coal mining and manufactured solid fuel	1.61946	0.0049634	-0.014750	3.9	1.268	-3.87	20.1	0.070	8.00	7.99	0.9 0.92	0.96 0.92
15. Manufactured gas and electric power	1.86423	0.0020471	0.019584	27.2	1.046	3.87	41.7	0.156	6.16	6.76	0.99	0.99

SPECIFIC INDUSTRY OUTPUT
TABLE A-1 (concluded)

Line Industry	A	B	C	D	E	F	Y	Log Y	STANDARD ERROR		CORRELATION coefficients	
									Lin.	Log. Est.	Lin. Est.	Log.
16. Communications	2.01636	0.0024274	0.008166	61.0	1.297	2.60	39.9	0.094	11.74	11.06	0.96	0.96
17. Chemicals	1.61349	0.0042840	0.013584	-29.3	1.544	2.56	42.0	0.149	7.60	5.40	0.98	0.99
18. Lumber and timber products	1.26315	0.0088159	-0.024107	-61.7	1.994	-5.81	31.1	0.139	11.91	14.30	0.92	0.89
19. Furniture and other wood manufactures	1.31277	0.0080003	-0.014299	-46.8	1.756	-2.93	26.4	0.119	10.51	14.75	0.92	0.83
20. Wood pulp and paper	1.72256	0.0027042	0.011364	30.9	0.730	2.20	25.8	0.111	6.51	9.16	0.97	0.93
21. Printing and publishing	1.73105	0.0029159	0.001742	39.8	0.668	0.41	15.4	0.080	5.63	7.17	0.93	0.88
22. Textile mill products	1.66060	0.0037690	0.003272	14.0	0.995	0.71	23.5	0.088	8.02	8.07	0.94	0.94
23. Apparel and other finished textile products	1.61180	0.0041737	0.006201	-0.7	1.145	1.34	29.0	0.123	8.59	8.83	0.96	0.95
24. Leather and leather products	1.80756	0.0020595	0.000386	56.2	0.478	0.11	11.2	0.041	6.03	6.17	0.84	0.84
25. Rubber	1.53410	0.0052881	0.006144	-35.9	1.621	1.25	37.1	0.132	8.76	7.30	0.97	0.98
26. All other manufacturing	1.43672	0.0064791	-0.002736	-34.2	1.595	-0.34	29.1	0.109	6.40	10.75	0.98	0.93
27. Construction	2.50973	0.0117262	-0.033290	-3726.1	84.779	-251.87	1333.3	0.173	547.00	661.40	0.91	0.87
28. Steam railroad transportation	1.92526	0.0073719	-0.015326	-170.8	6.328	-12.27	84.5	0.107	12.94	14.23	0.99	0.99

[^9]SPECIFIC INDUSTRY OUTPUT
TABLE A-2
Gross National Product and Specific Industry Time Series
(data in index points, $1935-39=100$, except where otherwise specified)

Year	Gross National Product, in Billions of 1939 Dollars	Agriculture and Fishing	Food Processing	Ferrous Metals	Shipbuilding	Agricultural Machinery $(1939=100)$	Machinery	Motor Vehicles	Aircraft	Transport Equipment, N.e.c.
1950	-	137	165	229	140	-	270	241	1,075	197
1946	143	136	149	150	383	217	240	159	798	243
1941	118	113	127	186	518	165	221	152	1,103	247
1940	100	110	113	147	195	121	136	118	+129	141
1939	91	106	108	114	127	100	104	94	175	86
1938	84	103	101	68	98	103	82	67	97	72
1937	88	106	103	123	111	127	126	121	105	162
1936	84	94	98	114	97	100	105	114	76	110
1935	74	91	89	81	68	75	83	104	48	69
1934	68	93	88	61	58	-	69	71	42	74
1933	61	96	83	54	46	-	50	50	35	40
1932	61	96	79	32	58	-	43	36	32	52
1931	72	102	90	61	73	56	66	62	-	66
1930	79	98	100	97	103	110	100	87	-	147
1929	87	99	101	133	98	129	130	139	-	174
1928	83	102	93	121	75	106	106	113	-	127
1927	80	98	88	108	93	99	99	88	-	160
1926	79	100	87	115	85	99	102	112		194
1925	76	97	85	108	75	85	89	111	-	184
1924	71	98	81	90	74	67	81	93		218
1923	72	94	82	109	85	78	86	105	-	329
1922	62	91	77	85	-	49	8	68	-	329

SPECIFIC INDUSTRY OUTPUT
TABLE A-2 (continued)

Year	Iron and Steel, N.e.c.	Nonferrous Metals and Their Products	Nonmetallic Minerals and Their Products	Petroleum Production and Refining	Coal Mining and Manufactured Solid Fuel	C Manufactured Gas and Electric Power $(1929=100)$	ommunicatio (Hundred Thousand Tele- phones in Service at Dec. 31)	Chemicals	Lumber and Timber Products	Furniture and Other Wood Manufactures
1950	229	206	209	-	119	-	-	264	160	183
1946	150	157	192	148	130	237	300	236	131	147
1941	186	191	162	120	125	168	212	176	134	145
1940	147	139	124	116	113	151	197	130	116	118
1939	114	113	114	108	100	138	186	112	106	107
1938	68	80	92	104	88	126	177	96	90	87
1937	123	122	114	109	110	126	172	112	113	117
1936	114	104	103	94	109	116	162	99	105	106
1935	81	80	77	85	96	105	152	89	85	83
1934	61	62	64	78	94	97	147	83	64	61
1933	54	60	54	77	87	92	144	76	63	60
1932	32	52	51	67	82	93	151	68	51	54
1931	61	83	77	73	99	101	170	78	76	78
1930	97	106	96	77	122	103	172	87	105	95
1929	133	136	110	86	138	100	169	89	146	135
1928	121	118	110	77	130	91	159	78	142	124
1927	108	108	106	77	135	84	149	73	144	126
1926	115	113	105	66	150	77	140	70	148	120
1925	108	104	101	65	129	67	130	63	148	112
1924	90	93	91	61	132	61	122	56	139	100
1923	109	90	87	63	150	56	114	57	143	99
1922	85	-	73	47	106	48	105	-	-	-

SPECIFIC INDUSTRY OUTPUT

TABLE A-2 (concluded)

SPECIFIC INDUSTRY OUTPUT

Notes to Table A-2

Gross national product. That used in Table A-2 is my deflation of published current-dollar gross national product data of the U.S. Department of Commerce and of Simon Kuznets, National Bureau of Economic Research. The official Department of Commerce gross national product series in 1939 dollars was first published in January 1951, and was not available for use when the regressions were computed. It differs somewhat from the gross national product series used in this paper, as indicated below. Both gross national product series are shown, in billions of 1939 dollars.

Year	Department of Commerce Series	Barnett Series
1929	86	87
1930	78	79
1931	72	72
1932	62	61
1933	62	61
1934	68	68
1935	74	74
1936	84	84
1937	88	88
1938	84	84
1939	91	91
1940	100	100
1941	116	118
1946	138	143

Production indexes. Those cited in the list below as being FRB indexes are from the Board of Govemors of the Federal Reserve System and may be found in the following publications: for 1922-41, Federal Reserve Index of Industrial Production (Board of Governors of the Federal Reserve System, 1943); for 1946 and 1950, Industrial Production, by Industries, Annual Indexes (mimeographed release, Division of Research and Statistics, Federal Reserve System, 1951). There is no published source for the 1946 and 1950 FRB indexes for shipbuilding (private yards), aircraft, railroad cars, and locomotives. These indexes were kindly furnished by the Federal Reserve Board.

Item

1. Agriculture and fishing
2. Food processing
3. Ferrous metals
4. Shipbuilding
5. Agricultural machinery

Source

Department of Agriculture, "Index of Volume of Agricultural Production for Sale and for Consumption in the Farm Home, All Commodities," 1946 Agricultural Statistics, table 612; 1950 Agricultural Statistics, table 655; Annual Economic Review of the Council of Economic Advisers, January 1951, p. 186.
FRB index, "Manufactured Food Products."
FRB index, "Iron and Steel." FRB index, "Shipbuilding (Private Yards)." Department of Agriculture, reprocessed data of the Bureau of the Census on the value of manufacturers' shipments of farm machines and equipment. 1929-46 data from 1950 Agricultural Statistics, table 630, deflated by the Department of Agricul-

Item	Source		
5. Agricultural	ture farm machinery price index from ibid., table		
machinery (cont.)	677, converted by author to base 1939 = 100.		
6. Machinery index, "Machinery."		\quad	FRB
:---	:---		

SPECIFIC INDUSTRY OUTPUT
TABLE A-3
Supporting Data for Table 7
(dollar data in millions of 1939 dollars)

LINE INDUSTRY	$\begin{gathered} 1939 \\ \text { ACTUAL } \\ \text { OUTPUT } \end{gathered}$	1950 estimated final demand C-Modela I-Modelb C minus I			estimated final demand, c minus i, as percentace of 1939 actual output
1. Agriculture and fishing	10,121	5,841	5,200	641	$+6$
2. Food processing	13,258	17,860	15,496	2,364	+18
3. Ferrous metals	2,593	349	430	-81	-3
4. Shipbuilding	437	314	383	-69	-16
5. Agricultural machinery	439	782	1,160	-378	-86
6. Machinery	4,948	5,952	7,980	-2,028	-41
Engines and turbines	134	107	145		
Industrial and heating equipment, n.e.c.	2,216	2,375	3,433	-	
Machine tools	439	724	1,058	-	
Merchandising and service machines	330	521	707	-	
Electrical equipment, n.e.c.	1,829	2,225	2,637	-	-
7. Motor vehicles	2,581	5,499	5,573	-74	-3
8. Aircraft	269	1,772	2,022	-250	-93
9. Transportation equipment, n.e.c.	266	442	605	-163	-61
10. Iron and steel, n.e.c.	2,283	595	773	-178	-8
11. Nonferrous metals and their products	1,568	916	975	-59	-4
12. Nonmetallic minerals and their products	2,065	513	522	-9	0
13. Petroleum production and refining	4,852	5,579	5,060	519	+11
14. Coal mining and manufactured solid fuel	1,730	1,104	1,049	55	+3
15. Manufactured gas and electric power	2,864	2,426	2,141	285	$+10$
16. Communications	1,516	1,219	989	230	+15
17. Chemicals	3,401	2,320	2,242	78	+2
18. Lumber and timber products	1,238	100	129	-29	-2
19. Furniture and other wood manufactures	1,187	1,491	1,596	-105	9
20. Wood pulp and paper	1,707	356	396	-40	-2

SPECIFIC INDUSTRY OUTPUT
TABLE A-3 (concluded)

LINE	E INDUSTRY	$\begin{gathered} 1939 \\ \text { ACTUAL } \\ \text { OUTPUT } \end{gathered}$	$\begin{gathered} 1950 \mathrm{ES} \\ \text { C-Modela } \end{gathered}$	$\begin{aligned} & \text { IMATED FIN } \\ & \text { I-Modeld } \end{aligned}$	al demand C minus I	ESTIMATED FINAL DEMAND, C MINUS I, AS percentage of 1939 ACTUAL OUTPUT
	Printing and publishing	2,265	1,291	1,124	167	$+7$
	Textile mill products	3,159	1,438	1,411	27	+1
23.	Apparel and other finished textile products	3,453	6,670	5,598	1,072	+31
24.	Leather and leather products	986	1,565	1,393	172	+17
	Rubber	892	592	618	-26	-3
26.	All other manufacturing	1,664	2,084	1,996	88	+5
	Construction	$\begin{array}{r} 10,089 \\ 4,310 \end{array}$	14,889	25,291	-10,402	-103
	Steam railroad transportation		2,442	2,024	418	$+10$
	Other industries not here accounted for		59,973	51,675	8,298	
Total			146,376	145,851	525	
a Consumption model. ${ }^{\mathrm{b}}$ Investment model.						
$\begin{array}{r} \text { So } \\ \text { Print } \\ 1950 \end{array}$	ources: 1939 actual output: J. Cornfield, W ting Office, 1947), table 15, p. 35. 0 estimated final demands: ibid., table 14, p.	ns, and	Hoffenbe	Full Emp	oyment Patte	1950 (Government

COMMENT

A. W. Marshall, Rand Corporation

Two comments arise with regard to Dr. Barnett's paper. The first concerns the appropriateness of comparisons made in the paper for decisions as to the acceptance or rejection of proposed forecasting methods. The second comment concerns a suggested alternative method of measuring the forecasting errors.

Given the comparisons in Tables 3 and 4 based upon the mean deviations of actual from predicted industry outputs, it appears that projection methods using input-output tables are not very much better than quite elementary "naïve" model methods. Indeed, the multiple regression forecasts seem to be somewhat better than those based, in part, upon input-output relations. In situations such as this, where "naïve" models have in some sense to be taken seriously (e.g., if asked to forecast output by industry for, say, 1956, I would prefer Barnett's multiple regression forecasts), it is well to keep in mind their purpose and character. They are not intended to be legitimate alternatives to the model or procedure being tested, but rather are designedly crude and inefficient things, almost reductio ad absurdum constructions of economic models and forecasting procedures. They represent a level of efficiency so low and so easily attained that any forecasting procedure proposed for operational use which cannot almost uniformly do better than they can must be rejected as unacceptable.

Two warnings are needed here. First, Barnett's multiple regression model must be conceded to be "seminaïve," in the sense that even if we were to add additional variables to the equations which we felt had a special relevance for the output of some specific industry, it is unlikely, due to the correlation between most economic time series, that continued large reductions in the sum of squares about the regression line could be obtained. Second, the kinds of comparison made in Barnett's paper are very appropriate to decisions as to whether a certain method of forecasting should be used in practice, given its current stage of development, but are often of minor importance with regard to decisions concerning the advisability of continuing development of these methods. Thus, this type of competitive trial of serious, though perhaps immature, models and forecasting methods against "naïve" models should not lead anyone to discard, or

SPECIFIC INDUSTRY OUTPUT

neglect the development of, really promising techniques.
I should also like to suggest an alternative and more natural, at least to a mathematician, measure of the error of prediction of the various methods of projecting or estimating specific industry outputs in some future year. In Tables 3 and 4, Barnett has used as his measure of error

$$
\sum_{i=1}^{28}\left|X_{i}\left(\mathrm{GNP}^{*}\right)-X_{i}(A)\right|
$$

where $X_{i}\left(\mathrm{GNP}^{*}\right)$ denotes the estimated output, in terms of an index number of dollar value, of the i th industry based upon the estimate GNP* of GNP, and $X_{i}(A)$ denotes the actual output of the i th industry. All of the above, of course, refers to some fixed year and method of forecasting. As an alternative, it is appealing to think of the observed production by industry and the projected productions as vectors in n-dimensional Euclidean space, and to think of the error of the projection as being the distance between the two points. Each vector then has 28 components and the distance between the two points (vectors) is

$$
d=\left\{\sum_{i=1}^{28}\left[X_{i}\left(\mathrm{GNP}^{*}\right)-X_{i}(A)\right]^{2}\right\}^{\frac{1}{2}}
$$

Not only is this the more usual definition of the distance between two vectors, but it is also a measure which fits in with what would seem to be, from the statistical point of view, the aim of research in forecasting methods, i.e., the finding of minimum variance estimates of the future values of economic variables. From this point of view, once we decide what to forecast, all questions of further disaggregation resolve themselves into questions as to whether a particular disaggregation reduces the variance of our forecasts.

One additional comment may be made. Since it seems to be almost certain that, in the future, we will have estimates of GNP which have considerably smaller errors than the estimates used in the present paper, some separation of the total error of the various forecasting techniques into its component parts is desirable. Errors of the order of magnitude made in the GNP estimates are so bad that none of the methods obtained a fair trial in an absolute sense. It is in general desirable to be able to factor out the errors contributed by the separate steps in the forecasting methods, since one method may be much more sensitive than another to errors in some common component, say, the first com-

SPECIFIC INDUSTRY OUTPUT

ponent in all of the forecasting methods in Barnett's paper, the estimate of GNP. This factorization is easily carried out in principle as follows: Let us denote by X_{i} (GNP) the estimated output of the i th industry, which we would have made if we had known the true value of GNP. Then we have

$$
d_{1}=\left\{\sum_{i=1}^{28}\left[X_{i}(\mathrm{GNP})-X_{i}(A)\right]^{2}\right\}^{\frac{1}{2}}
$$

as a measure of the error we would have made, even if we had had the best possible knowledge of the value of GNP. Also, we have

$$
d_{2}=\left\{\sum_{i=1}^{28}\left[X_{i}\left(\mathrm{GNP}^{*}\right)-X_{i}(\mathrm{GNP})\right]^{2}\right\}^{\frac{1}{2}}
$$

and thus the total error d is separated into two factors of which it is the vector resultant.

As an example, I have performed this factorization for Barnett's multiple regression method, where one can easily obtain the X_{i} (GNP) from the equation

$$
X_{i}(\text { GNP })=a_{i}+b_{i} \text { GNP }+c_{i} t
$$

by substituting the correct value of GNP rather than the estimate GNP ${ }^{\circ}$ used to obtain the values in Barnett's Tables 3 and 4. To do a similar factorization for the input-output method would entail much more work. Working with the consumption model ($\mathrm{GNP}^{\circ}=170,000$) and the dollar value figures in millions of 1939 dollars, we obtain these components of error:

Error Components	Multiple Regression	Input-Output
\boldsymbol{d} (total error)	5,325	7,178
d_{1} (error, given exact		
\quad GNP estimate)	3,354	-
d_{2} (GNP ${ }^{\circ}$ component of		
\quad error)	6,052	-

Thus, using an estimate of GNP which is too large by 11.5 percent leads to an over-all increase in the error of forecast of 59.0 percent. The reader will also notice that the distance between the two estimates, one based upon GNP and the other upon GNP^{*}, is greater than the distance of each estimate from the true value. If we were concerned with a two-industry world, this situation could be depicted as in Chart 1.

Chart 1

Stanley Lebergott, Bureau of the Budget

Mr. Barnett's paper represents an excellent departure from previous, a priori criticisms in the direction of an empirical evaluation of the input-output technique. It sets a course toward a richer understanding of what this technique offers for economic programming. It suggests the following lines of comment, among others:

1. By making one essential modification in Barnett's procedure, we find that the regression method produces estimates which are markedly better for these particular projections than those derived by the input-output approach.
Barnett's regression-estimating equation is based on 1922-41 and 1946 data. Since he is projecting to a peacetime year (Full Employment Patterns, 1950 assumed no war, a small army), he properly excludes the war years in making his equation. However, for aircraft, shipbuilding, and transportation, n.e.c., the years 1939-41 should also have been excluded. These were years of war preparation-first for the Allies and then for this country. Unless we exclude them, what do we do? For shipbuilding, we derive an estimating equation which tells us that the more ships we build, the more we have to build-this, because the 1939-41 values are so far above those for the first 25 years. ${ }^{1}$ For aircraft the infer-
${ }^{1}$ This arises, of course, because no allowance is made in this model for

SPECIFIC INDUSTRY OUTPUT

ences are even more anomalous: the equation indicates that by 1960 (or earlier) no aircraft will be produced in the United States. ${ }^{2}$ The aircraft estimate has a sizable negative trend term, resulting from a combination of (a) a time series with few observations ($1932-41$ and 1946) and (b) a terminal value-for 1946-some 40 percent below the previous 1941 value. The same general consideration is applicable to each transport industry: Years of extensive war preparation, like years of war output, should be excluded in projecting a peacetime level of production.

By excluding the three industries, we at once reduce the unweighted mean error of estimate for the regression technique to half the error for the input-output investment model and to threequarters of that for the input-output consumption model. (The weighted mean errors for the regression estimate were smaller than those for the input-output estimate even before this exclusion. $)^{3}$
2. The fact that the input-output estimate of production in agriculture and fishing was too great while its estimate for agricultural machinery was too small indicates one of those contradictions which the technique is designed to avoid. Moreover, for industries like petroleum production, coal, gas, and steam rail-roads-where the input-output contribution to the analysis of derived demand should be greatest-the input-output estimates were not better. In most instances they were worse. These facts suggest the importance of making all reasonable adjustments in the technical coefficients before using them for projecting-a possibility which time did not permit when the Full Employment Patterns, 1950 estimates were being made.
3. Regression estimating is not necessarily an alternative to the input-output approach. It may very well supplement that procedure. For by regression analysis we may be able to estimate the proper coefficients to use in input-output projections. For certain industries, the sales and production data are already sound enough; for others, crude attempts can be made. Such attempts deserve more attention than they have hitherto received as a

[^10]means of securing coefficients which will subsume in a nonmechanical way the joint effects of social change, of shifts in distribution patterns, and of shifts in production procedures which, interacting with more obvious technical and economic factors, bring about changes in the technical coefficients.
4. Mr. Barnett rightly emphasizes the role of sound guesswork -it can hardly deserve a more dignified name-in stipulating the final-demand figures. For this purpose, we do not need so much more as more current data on consumption patterns by income level, occupation, and/or class of worker. To the extent that we can secure monthly, quarterly, or even annual data on such patterns, and tabulate them with reasonable speed, we will have a much sounder basis for estimation than is possible given our current reliance on comprehensive, but outdated, survey results.

[^0]: ${ }^{5}$ Cornfield, Evans, and Hoffenberg, op.cit., table 14, p. 34.
 ${ }^{6}$ See Appendix for basic data, sources, and details of computation.

[^1]: a Consumption model
 b Investment model.
 Sources: Full-employment patterns projections are from J. Cornfield, W. Evans, and M. Hoffenberg, Full Employment Patterns, 1950 (Government Printing Office, 1947). They may be read directly from Table 15, page 35 , except in the case of the machinery industry, for which we have lumped rinting Office, 1951), p. 179. five FEP classifications.
 The other projections The other projections were obtained by applying the indexes in Table 2, below, to the 1939 actual outputs for each industry, as given in Table A-3, below.
 Actual

[^2]: a See Appendix for notes on sources. b Consumption model.

[^3]: a Consumption model.
 b Investment model.
 Source: Data obtained by differencing data from Table 1.

[^4]: a Consumption model.
 a Consumption model.
 b Investment model.
 Source: Data obtained by differencing data from Table 2.

[^5]: a Consumption model.
 b Investment model.
 Source: Data obtained from Table 4.

[^6]: ${ }^{7}$ The authors of Full Employment Patterns, 1950 handled this problem in an arbitrary fashion (op.cit., table 16, p. 427). In most cases they appear to have assumed the percentage increases in their industry aggregations were representative of components of these aggregates. Thus they present the percentage increase in "Manufactured Gas and Electric Power" as the percentage increase applicable to kilowatt-hours; the percentage increase in "Agricultural Machinery" as the percentage increase applicable to tractors; the percentage increase in "Rubber" as the percentage increase in tires; etc. The unsatisfactoriness of this is indicated by the fact that this projects public utility electric power output for 1950 at about 245 billion kilowatt-hours, only 10 percent above 1944-46.

[^7]: 8 If construction final demand is visualized as final demand for cement, lumber, and steel, as it could be, then the derived-demand differences be-

[^8]: ${ }^{\text {a }}$ Consumption model.
 b Investment model.
 c This total is less than the sum of columns 2 and 3 because of offsets in some cases; see, e.g., industry 4, shipbuilding.

 Sources: Column 1 was obtained from the Full Employment Patterns, 1950 projection columns, Table 2.

 Column 2 was obtained by subtracting the 1950 final-demand estimate for the investment model from the 1950 final-demand estimate for the consumption model, and expressing the result as a percentage of 1939 total output. See Table A-3.

 Column 3 was obtained by subtracting column 2 from column 1.

[^9]: Note: $\log Y=A+B(\mathrm{GNP})+C(T)$ and $Y=D+E(\mathrm{GNP})+F(T)$.

[^10]: inventory accumulation. An additional term for this item would likewise have improved the estimate for motor vehicles.
 ${ }^{2}$ Barnett's trend term is negative 114.52, while the 1950 aircraft index is 614. His coefficient for GNP is likewise negative.
 ${ }^{3}$ Such hand tailoring is parallel to the procedure of revising the 1939 coal and diesel consumption coefficients for railroads in making the 1950 input-output projections.

